
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Delay-Aware Routing in Software-Defined Networks via Network Tomography and Reinforcement Learning / Tao, Xu;
Monaco, Doriana; Sacco, Alessio; Silvestri, Simone; Marchetto, Guido. - In: IEEE TRANSACTIONS ON NETWORK
SCIENCE AND ENGINEERING. - ISSN 2327-4697. - ELETTRONICO. - 11:4(2024), pp. 3383-3397.
[10.1109/TNSE.2024.3371384]

Original

Delay-Aware Routing in Software-Defined Networks via Network Tomography and Reinforcement
Learning

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSE.2024.3371384

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989580 since: 2024-06-17T11:05:26Z

IEEE

1

Delay-Aware Routing in Software-Defined
Networks via Network Tomography and

Reinforcement Learning
Xu Tao , IEEE Student Member, Doriana Monaco , Alessio Sacco , IEEE Member,

Simone Silvestri , IEEE Senior Member, and Guido Marchetto , IEEE Senior Member

Abstract—Numerous network management tasks in Software-
defined networking (SDN) infrastructures, such as routing, re-
source allocation, and service placement, heavily depend on
obtaining an accurate view of the network state. However, mon-
itoring individual network elements incurs substantial overhead
and often proves infeasible. To address this challenge, network
tomography has emerged as a promising approach, capable of
inferring the internal network state using end-to-end metrics
observed by a limited set of nodes acting as monitors. Despite
its potential, previous research in network tomography has not
considered specific network management objectives and corre-
sponding challenges, resulting in unsatisfactory performance. In
this paper, we propose Subito (Shortest Path Routing with Multi-
armed Bandits and Network Tomography), which integrates
network tomography and reinforcement learning within software-
defined networks to address the specific needs and challenges
of delay-aware shortest path routing—a cornerstone of various
network management tasks. By harnessing the capabilities of net-
work tomography and reinforcement learning, Subito efficiently
learns routing strategies with bounded regret, achieves minimal
monitoring overhead, and maintains stable routing. Extensive
experimental evaluations on synthetic networks and the GENI
testbed show significant performance improvements of Subito
versus two state-of-the-art approaches.

Index Terms—Network Tomography, Reinforcement Learning,
Multi-armed Bandits, Shortest Path Routing, Software-Defined
Networking.

I. INTRODUCTION

SDN has emerged as a transformative paradigm for quality
of service (QoS)-aware network management, offering un-
precedented flexibility and programmability. By decoupling
the control plane from the data plane, SDN enables centralized
network orchestration, dynamic traffic engineering, adaptive
resource allocation, and network slicing for 5G [1], where ISPs
can form a virtual network for each application [2]. A common
trait of these network management tasks is the need for
accurate knowledge of the current network state (e.g., delay,
jitter, packet loss, and bandwidth) for both physical and virtual
networks. However, it is widely recognized that acquiring
such states through conventional IP-based network monitoring
tools, such as the Simple Network Management Protocol

Xu Tao and Simone Silvestri are with the Department of Computer Science,
University of Kentucky, Lexington, Kentucky, USA (e-mail: xu.tao@uky.edu;
silvestri@cs.uky.edu)

Doriana Monaco, Alessio Sacco and Guido Marchetto are with DAUIN,
Politecnico di Torino, 10129 Turin, Italy (e-mail: doriana.monaco@polito.it,
alessio sacco@polito.it; guido.marchetto@polito.it)

(SNMP) and the Internet Control Message Protocol (ICMP),
generates a high monitoring overhead. Additionally, this is
often impossible due to the large scale, heterogeneity, multiple
ownership, and partial observability of the networks. There-
fore, it is essential to develop novel monitoring techniques that
offer both low traffic overhead and complexity while ensuring
accurate measurements, leveraging the flexibility of SDN.

Network Tomography [3]–[12] has recently received con-
siderable attention as a lean approach for efficient monitoring,
requiring only a small subset of network elements (i.e., nodes
or links) to infer the internal QoS attributes while mitigating
monitoring overhead. This technique relies on end-to-end (e2e)
measurements collected by monitors generally placed at the
edge of the network. The significant reduction in monitor-
ing overhead compared to popular ICMP-based measurement
tools and computational resources relative to packet-level and
flow-level monitoring tools (e.g., NetFlow) endows network
tomography with broad applicability across various domains,
including the Internet [13], overlay networks [5], SDN-enabled
5G networks [1], and smart transportation [7]. Despite the
significant efforts in this domain, current solutions have not
adequately addressed the specific requirements of network
management applications. Consequently, these solutions often
overlook various challenges and fail to optimize their appli-
cability within the context of the given application. Further-
more, numerous existing network tomography models [3]–[12]
assume that monitors, located at the edge of the network,
employ source routing to probe each other and obtain the e2e
measurements. Nonetheless, this assumption proves impracti-
cal in real network infrastructures, primarily due to the lack of
support for such features in standard off-the-shelf switches. To
alleviate this assumption, network tomography can seamlessly
combine with SDN and capitalize the SDN capabilities, such
as controllable routing, programmable control and data plane,
and a holistic view of the network state, for advanced network
management schema [14]–[16].

In this study, we make advancements in the field of network
tomography, with a specific focus on addressing the challenges
of shortest path routing—an essential aspect of numerous net-
work management tasks in all network architectures, including
SDN-based networks. To achieve this objective, we introduce
a novel approach named Subito (Shortest Path Routing with
Multi-armed Bandits and Network Tomography) which rep-
resents a pioneering integration of network tomography and

https://orcid.org/0009-0002-9393-2028
https://orcid.org/0009-0002-7908-5184
https://orcid.org/0000-0003-2835-5455
https://orcid.org/0000-0003-2357-3429
https://orcid.org/0000-0003-3588-9367

2

reinforcement learning. Unlike previous network tomography
solutions, Subito stands out for its ability to swiftly learn
routing paths even in the presence of noisy measurements.
Moreover, by harnessing the customizable nature offered by
the SDN paradigm, the proposed method ensures minimal
monitoring overhead and maintains routing stability, all with-
out the necessity of monitoring individual network elements.

Fig. 1 illustrates the overall framework of our proposed
approach. Subito Routing Logic is in charge of selecting
the shortest path with reduced monitoring overhead. And the
SDN controller is employed to monitor the network, granting
Subito access to a comprehensive network topology view and
telemetry data. However, with Subito, we can mitigate the
measurement overhead with network tomography and collect
e2e metrics only from a subset of total switches, the monitors.
We model the problem of learning the shortest path between
a pair of monitors as a Multi-armed Bandits (MAB) problem,
a subclass of reinforcement learning. At each time slot, an
agent selects a path as the routing strategy to acquire the
delays on that path, with the aim of balancing exploration
and exploitation while facilitating knowledge exchange for
faster learning. Notably, our formulation avoids action space
explosion with network size, which sets it apart from existing
solutions [17], [18]. Next, network tomography consolidates
the set of selected paths into a linear system, and employing
the theory of Matroids [19], it efficiently identifies a basis,
i.e., a set of linearly independent vectors, to infer individual
link metrics, i.e., link delays. However, due to frequent under-
determination of the system, certain links may have infinite
solutions. To address this issue, we propose a method for
estimating the delays of these unidentifiable links. Finally, the
inferred or estimated individual link metrics are used to update
the agents’ collective knowledge and select the paths for the
next time slot.

We prove that Subito has a bounded regret and conduct
extensive experiments to assess its performance on both syn-
thetic and real-world SDN networks. Specifically, we collected
data on the National Science Foundation (NSF) GENI testbed
[20] implementing an SDN controller. Results show substantial
performance improvements of Subito versus two state-of-the-
art approaches.

In summary, the main contributions of this paper are:
• We propose Subito, a novel approach that integrates net-

work tomography and reinforcement learning, harnessing
and complementing the inherent capabilities of SDN, to
efficiently address the challenges of shortest-path routing
in SDN-based architectures;

• We prove that Subito has a bounded regret;
• We conduct experiments in synthetic networks and two

real networks, including the NSF GENI testbed. Results
show up to three times reductions in monitoring overhead
and regret (path delay) compared to two leading state-of-
the-art solutions.

II. RELATED WORK

In this section, we provide an overview of existing method-
ologies focused on inferring link-based metrics from e2e

Fig. 1. Subito is built atop an SDN controller and exploits a minimal amount
of network measurement to infer link metrics.

measurements. Additionally, we explore recent endeavors that
leverage data-driven and Machine Learning (ML)-based tech-
niques to facilitate routing packets. Particular emphasis is
placed on approaches utilized for SDN scenarios.

A. Network Tomography

Network tomography has attracted significant attention as
it offers the capability to reduce the monitoring overhead
in a network by inferring unknown internal link states solely
based on end-to-end measurements [3]–[12], [21]. This tech-
nique primarily deals with additive network metrics com-
monly utilized in routing, such as link delay and packet
loss. By selectively probing a limited set of paths from a
small number of monitors positioned at the network’s edge,
network tomography constructs a linear system capturing the
relationship between observed paths and corresponding link
metrics. Numerous studies have explored the application of
network tomography in various network scenarios. For in-
stance, In [4], a solution is presented for inferring the network
topology, while [5], [22] focuses on loss rate inference by
selecting a minimal set of paths. Recently, [23] introduced
the incorporation of path information to infer link metrics.
Other research investigates network tomography’s robustness
under failures [6], [9], and explores security vulnerabilities
of network tomography approaches [12]. A recent survey
on network tomography is discussed in [11]. Additionally,
recent approaches attempt to estimate additive metrics of
slices, such as delays or logarithms of loss rates, using ML-
based techniques, as seen in [24], where neural networks are
employed.

One limitation of existing network tomography solutions is
that the presence of noisy measurements in links’ delays de-
creases the inference accuracy. Several studies have proposed
approaches to address this issue, e.g., [25], [26]. For instance,

3

[3] proposes some monitor placement strategies to maximize
link identifiability, aiming to accurately infer a larger num-
ber of links. Other work provides fundamental bounds [8],
[10]. Nevertheless, despite these efforts, existing solutions
for network tomography, including delay-based tomography,
present several other limitations. First, most of these works
rely on the assumption that monitors are equipped with the
capability of source routing to probe each other to obtain the
end-to-end delay. However, it is impractical in real network
infrastructures, primarily due to the lack of support for such
features in standard off-the-shelf switches. In this work, we
alleviate this assumption by means of a seamless integration
with an SDN controller, thus benefiting its controllable routing
capability. Second, despite current extensive efforts in improv-
ing the inference performance of network tomography, there
is a lack of research addressing the challenges of applying it
in specific network management functions. In this work, we
tackle the challenges of employing network tomography in
the fundamental network function of efficient routing, pairing
it with an advanced learning mechanism, i.e., reinforcement
learning. Through an extensive evaluation, we demonstrate
significantly better performance versus delay tomography.

B. Reactive Network Routing

Modern networks often experience unpredictable and vari-
able traffic flows, resulting in link metrics, such as delay
and packet loss, constantly varying. This variation naturally
poses a challenge to determine efficient routing strategies
since instantaneous measures may not reflect the nature of
the actual link quality [27]–[29]. Several works have recently
exploited ML, and in particular Reinforcement Learning (RL),
to determine routing strategies in dynamic and noisy network
environments. For example, the authors in [30] proposed CFR-
RL, a schema designed to autonomously learn a policy for
selecting critical flows based on the given traffic matrix.
Subsequently, CFR-RL reroutes these identified critical flows
to balance the link utilization of the network. The authors of
[31] formulate the shortest path problem as a Markov decision
process with tabular RL (Q-learning), where actions are de-
termined in each decision iteration with hop-by-hop routing.
The authors of [32] consider the shortest path learning problem
in a stochastic wireless network environment under jamming
attacks. Similarly, QR-SDN [33] demonstrates the utilization
of Q-learning to minimize network latency by optimizing
multipath routing in the context of an SDN architecture. In
the same SDN context, RSIR [34] introduces a knowledge
plane that works in conjunction with the management plane.
The knowledge plane serves as a repository for data, which
the SDN centralized controller then utilizes to determine the
shortest routing path and distribute the load by using link-state
information as the network state.

Similar to our work, the authors of [18], [27] formulate a
reinforcement learning approach based on MAB and propose
policies to learn the expected paths through exploitation and
exploration strategies. While these works illustrate the benefit
of ML, and specifically reinforcement learning, in determining
routing strategies, they all assume the routing strategy to

have perfect and accurate knowledge of the links’ metrics.
Gathering this information by directly monitoring each link
not only results in significant monitoring overhead, but it
is often impossible when internal network elements do not
support or cooperate with the information-gathering protocols.
While several recent studies attempt to alleviate measurement
collection overhead yet utilizing Deep Reinforcement Learning
(DRL) methods for routing, e.g., DRLS [35] and IQoR-
LSE [36], none of them can statistically estimate link-based
metrics. For example, IQoR-LSE [36] simplifies the DRL state
by estimating a binary value (presence of congestion on a link)
starting from a significant set of e2e QoS metrics.

In this study, we propose Subito, a novel approach that
integrates network tomography and MAB techniques for the
first time. Subito aims to expedite the learning of routing paths,
ensure routing stability, and minimize monitoring overhead,
complementing and enhancing the capabilities of SDN.

A preliminary version of this manuscript appeared as a short
paper in [37]. The present version constitutes a substantial
extension by: i) expanding the paper presentation with detailed
explanations, additional figures, and deeper insights; ii) casting
the problem in the domain of SDN; iii) providing a new
algorithm to ensure minimum monitoring overhead, and the
corresponding optimality proof; iv) expanding the experimen-
tal evaluation, which now includes the NSF GENI testbed, on
a variety of performance metrics.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This section introduces the network model and problem
formulation. Key notations employed in this paper are sum-
marized in Table I.

TABLE I
SUMMARY OF KEY NOTATION

Symbol Description
G = (V, L) Network G, V the set of OpenFlow switches, L the set

of physical or virtual links
M ⊆ V Set of switches acting as monitors
mi ∈ M i-th monitor
lk ∈ L k-th link
Xt

k Actual delay of link lk at time t

X̂t
k Inferred or estimated delay of link lk at time t

dk Expected delay E(Xk) of lk
d Set of expected delays of dk , k = 1, ..., |L|
d̂tk Mean of observed delays of lk at time t

d̂ Vector of mean observed delays d̂tk , k = 1, ..., |L|
btk Number of observations of lk at time t

b Vector of number of observations btk at time t

ptij A path between monitors mi and mj

p∗i,j Shortest path between monitors mi and mj

P t Set of paths selected at time t

Pt Path matrix of P t

Bt Basis of Pt

Bt Set of paths corresponding to Bt

ytpij End-to-end measurement of path pij at time t

ytBt Vector of end-to-end measurements of paths in Bt

4

A. Network Model and Assumptions

Similar to prior literature on network tomography [4],
[6], [8], [9], [12], we model the network topology as an
undirected graph G = (V,L), where V and L represent the
sets of OpenFlow switches and links (physical or virtual),
respectively. Each link lk ∈ L is associated with an additive
metric, such as delay [3], [23] or packet loss [5], as commonly
assumed in network tomography. In this study, we focus on
link delay since minimizing end-to-end latency is a prevalent
objective for several applications, such as interactive and
immersive applications [38]. We model the delay of each link
as a random variable Xk, aligning with previous research in
communication networks [39]. At time t, the delay of lk is
represented by the realization Xt

k of the random variable Xk.
Following the experimental findings of [39], we assume that
the distribution of Xk remains stationary over a sufficiently
extended period, i.e., the type of the distribution and the
expected value of Xk remain unchanged within this period.
Note that, aside from stationarity of the series, Subito does not
assume any specific distribution for these variables. However,
we encounter two primary challenges: (i) the direct observation
of Xt

k is unfeasible, and (ii) the expected value dk = E(Xk)
remains unknown. The collection of all expected values is
denoted as d = dk, k = 1, . . . , |L|. Furthermore, we impose
no restrictions on the type or dependency of the distribution
of delays across links.

A subset of access switches denoted as M ⊆ V serve as
monitors in the network. These monitor switches are typically
located at the network’s edge, providing external access to
the network for customers or other connected networks. We
assume the locations of the monitors are predefined in the
network. However, numerous research endeavors [3], [4], [11]
have concentrated on refining monitor deployment strategies to
enhance the inference accuracy of network tomography. These
strategies are orthogonal to Subito and can be easily integrated
with it. Centralized control of the network is achieved through
the use of a single SDN controller. In our SDN scenario, the
controller only communicates with the monitors to collect end-
to-end delays between them by exchanging probing packets.
Here, we assume that the communication between the SDN
controller and monitors is realized through southbound chan-
nels, not shared with the data links. We provide a discussion
about the advantages of our approach when such assump-
tion does not hold, and consequently southbound channels
are shared with data links, in Section VII. We adopt the
assumption as in prior research [3]–[5], [9], that link delays are
additive. This implies that when a path ptij is probed between
two monitors mi,mj ∈ M at time t, the resulting end-to-end
measurement is given by ytpij

=
∑

lk∈pt
ij
Xt

k. These measure-
ments serve as the foundation for our network tomography
inference framework. Once the SDN controller collects these
end-to-end measurements, our network tomography module
can utilize them to infer the link delays. Then, Subito can
make delay-aware routing decisions based on this information
by utilizing an MAB-based learning technique, as described
in Section IV-A.

B. Problem Statement

The primary objective of this research is to efficiently
learn the optimal routing, represented by the set of shortest
paths, among the monitors M within an unknown network
environment. These shortest paths are determined with respect
to the expected delays d. The environment remains unknown
due to three main factors: i) direct observation of link delays is
not feasible, ii) link delays are intrinsically dynamic, following
the distribution of variables Xk for lk ∈ L, and iii) the
expected delays d are not known. In addition to being effective,
we aim for the learning process to be highly efficient, causing
minimal monitoring overhead, and to provide routing stabil-
ity, i.e., converging towards the optimal path and avoiding
continuous oscillations across multiple paths that would cause
performance instability and poor resource utilization.

IV. SUBITO

As shown in Fig. 1, Subito has three main components: (i)
an SDN controller to have a centralized view of the network
topology and interact with data plane, (ii) a MAB algorithm
for shortest path selection, (iii) network tomography to reduce
monitoring overhead. The MAB and network tomography
components constitute the Subito Routing Logic. We depict
in Fig. 2 the information flow of our system. The MAB
algorithm is constituted by multiple agents, where each agent
is responsible for selecting the shortest path of its responsible
monitor pair. The SDN controller probes the reduced path set
by collecting e2e measurements from the network environment
(with unknown link delays) and installs flow rules associated
with the selected paths. Subsequently, network tomography
utilizes these e2e measurements to estimate the link delays,
which are then fed back to the MAB component to update
the knowledge of link delays and make decisions for the next
iteration.

We outline these steps in Algorithm 1, and we elaborate on
each of these main components in the rest of this section.

Fig. 2. Subito Information Flow

A. Learning Routing through Multi-Armed Bandit

MAB is a reinforcement learning technique where an agent
aims at learning the best policy to optimize an objective [27],
[32]. In our scenario, an agent is assigned to each pair of
monitors mi and mj from the set M . At every decision slot t,
each agent needs to employ a policy to choose an action, which
involves selecting a path ptij between mi and mj . Conversely,
the non-monitor switches are not involved in the decision

5

process, but traffic might flow over them. In this case, they
just forward packets using the routes selected by agents.

We denote the action space for each agent as Fij (i.e.,
the possible paths between mi and mj) and the set of paths
selected at time t by all agents as P t ⊆

⋃
mi,mj∈M Fij .

It can be noted that, although the action space Fij grows
exponentially with the size of the network, Subito allows
agents to efficiently navigate this expansive action space and
prevents exploring every path within it, as detailed below.

When actions are played by agents, end-to-end measure-
ments are observed. By exploiting network tomography (de-
tailed in Section IV-B), we are able to infer and estimate
individual link delays from end-to-end measurements with a
minimum monitoring overhead. Since such links are shared
among paths between different agents, Subito allows agents to
share the gathered knowledge, thus achieving faster learning.
The state is given by this collective knowledge of individual
links observed by agents through two vectors, d̂ and b. These
vectors store the mean of observed delay samples for each link
lk, and the number of times lk has been observed, respectively.
This state, used to determine the best action at each iteration,
is shared among all agents to enhance the scalability of the
learning process and to allow agents to efficiently navigate the
action space. The reward for each agent associated with the
monitor pair mi, mj at time slot t is the observed end-to-end
delay of the selected path ptij , denoted as ytpij

=
∑

lk∈pt
ij
Xt

k.
Let p∗ij represent the optimal shortest path between mi,mj ,

and yp∗
ij
=

∑
lk∈p∗

ij
dk be the corresponding expected reward.

We recall that dk is the expected value of the variable Xk. We
define the regret ℜt at time t, as the sum of the differences
between the cumulative reward obtained by the paths selected
by MAB and the expected reward achieved by always selecting
the optimal shortest paths for all agents. Formally, it is
represented as:

ℜt =
∑

mi,mj∈M

T∑
t=1

(
ytpij

− yp∗
ij

)
(1)

Note that, agents only use reward for their decisions. The
regret is only considered to assess the strategy learned by
agents in Theorem 3.

As shown in Algorithm 1, Subito is composed of two
phases: initialization phase, and learning and inference phase.

1) Initialization Phase: The initialization phase (lines 1-
7) aims to ensure that we gather a minimum amount of
knowledge for each random variable, i.e., link delay. For this
purpose, a for loop iterates over the set of links. At the k-
th iteration, we guarantee that link lk will be probed. This is
achieved by selecting a pair of monitors (mi,mj) and finding
a simple path from mi to an end point of lk, and another
simple path from the other end point to mj . These paths can be
found, for example, using Dijkstra’s algorithm [40]. The path
pt resulting from the concatenation of these paths with lk is
subsequently probed by the SDN controller to collect end-to-
end measurements ytp. However, since we cannot observe the
individual delay of the links in pt, and network tomography
is ineffective when a single path is probed, we estimate the
delay of each link in pt using the average end-to-end delay

Algorithm 1: Subito
/* Initialization phase */

1 t = 0; d̂ = [0]1×|L|; b = [0]1×|L|;
2 for k=1 to |L| do
3 t = t+ 1;
4 Probe a path pt s.t. lk ∈ pt and collect the end-to-end

measurement ytp;
5 for each lr ∈ L do

6 Update d̂tr =


d̂t−1
r bt−1

r +
yt
p

|pt|

bt−1
r +1

if lr ∈ pt

d̂t−1
r otherwise

;

7 Update btr =

{
bt−1
r + 1 if lr ∈ pt

bt−1
r otherwise

;

/* Learning and Inference phase */
8 while True do
9 t = t+ 1;

10 P t = {};
11 for any two monitors mi,mj ∈ M do

12 ptij = argmin
p∈Fij

∑
lk∈p

(d̂t−1
k −

√
(|L|+1) ln t

bt−1
k

);

13 P t = P t + ptij ;

/* Probing and Inference with Network
Tomography */

14 Build binary path matrix Pt from P t;
15 Find the optimal basis Bt of Pt with Algo. 2, s.t. Bt ⊆ P t;
16 Probe paths in Bt with SDN controller, observe end-to-end

measurements ytBt ;
17 Build linear system Btxt = ytBt ;
18 Infer and estimate the delay of links in Lt

prob by solving the
linear system;

19 for each lk ∈ Lt
prob do

20 X̂t
k =


Xt

k if lk ∈
⋃

q∈Bt Lid
q

min
pq∈Bt s.t. lk∈pq

yt
q−

∑
lk∈Lid

q
Xt

k

|Lu
q | otherwise

;

21 for each lk ∈ L do

22 Update d̂tk =


d̂t−1
k

bt−1
k

+X̂t
k

bt−1
k

+1
if lk ∈ Lt

prob

d̂t−1
k otherwise

;

23 Update btk =

{
bt−1
k + 1 if lk ∈ Lt

prob

bt−1
k otherwise

;

yt
p

|pt| . This information is stored in the vectors d̂ and b, which
are updated for all the links in pt, including lk, as follows:

d̂tr =


d̂t−1
r bt−1

r +
yt
p

|pt|

bt−1
r +1

if lr ∈ pt

d̂t−1
r otherwise

btr =

{
bt−1
r + 1 if lr ∈ pt

bt−1
r otherwise

(2)

Equation (2) , given a link lr, updates d̂tr if lr belongs to the
current probed path pt. Specifically, given the new estimated
delay

yt
p

|pt| , it updates the previous average d̂tr with this new
value, considering the number of samples btr used to calculate
that average. Additionally, it increases btr by one. If lr is not
in pt, d̂tr and btr are left unchanged.

2) Learning and Inference Phase: During this phase (lines
8-23), at each time slot t, a path ptij is selected by an agent
for each pair of monitors mi and mj ∈ M according to the
following Equation (3):

ptij = argmin
p∈Fij

∑
lk∈p

(
d̂t−1
k −

√
(|L|+ 1) ln t

bt−1
k

)
(3)

6

Intuitively, the agent selects the path based on the current
knowledge of each link delay stored in d̂. However, the delay

d̂t−1
k of link lk is modified by an amount of -

√
(|L|+1) ln t

bt−1
k

,

where L denotes the set of links, t the current time slot,
and bt−1

k the number of times link lk has been probed.

The adjustment of
√

(|L|+1) ln t

bt−1
k

is derived using Chernoff-

Hoeffding inequality [41] and it is established as an upper
bound ensuring that the deviation from the expected delay
of each link is within this bound. Moreover, this term plays
a pivotal role during the exploration phase by facilitating
the selection of links with fewer measures, as numerous
observations allow for a more accurate determination of the
true expected delay. Over time, the number of observations
increases (bt−1

k becoming larger), leading the adjustment term

−
√

(|L|+1) ln t

bt−1
k

towards 0. Ultimately, the algorithm transitions

from exploration to exploitation and converges to the optimal
paths with the learned knowledge during exploration, ensuring
the stability of the routing strategy. We refer the reader to [41]
for more details.

We store all selected paths in a set P t. This set is initially
processed using network tomography to find a subset Bt ⊆ P t

that possesses the same inference power as P t but requires
minimum monitoring overhead. The calculation of Bt is
explained in Section IV-B. Then, the paths within the basis
Bt are probed by SDN controller, and the resulting end-to-
end measurements are observed. Let Lt

prob represent the set of
links of the paths in Bt. Subito utilizes network tomography to
infer and estimate the individual delay of the links in Lt

prob.
Specifically, for each link lk ∈ Lt

prob, we calculate a new
realization X̂t

k of the random variable Xk. It is important to
note that, as detailed in Section IV-B, the estimation X̂t

k may
slightly differ from the actual realization Xt

k, especially for
unidentifiable links. Finally, X̂t

k is used to update the vectors
d̂ and b.

B. Probing and Inference with Network Tomography

In the following, we outline how Subito utilizes network
tomography to minimize network monitoring overhead and
estimate individual link delays based on end-to-end measure-
ments.

1) Reduce Monitoring Overhead: Let Pt be a binary path
matrix of size |P t| × |L|, representing the links in the set of
paths P t selected by Subito at time slot t. Specifically, for
each pq ∈ P t, Pt

q,k = 1 if path pq contains link lk, and
Pt
q,k = 0 otherwise. In addition, we denote the observed end-

to-end path measurements in P t by the column vector yt =
(yt1, ..., y

t
q)

T . Due to the additive nature of delay [42], it is
possible to formulate a linear system as follows:

Ptxt = yt (4)

where xt = (Xt
1, ..., X

t
|L|)

T represents a column vector
containing the delay realizations of all links at time t.

As in our network tomography model, we reduce the
monitoring overhead by solving a linear system, we recall that
the concept of basis in such a linear system, referred to as Bt,

represents the maximal set of linearly independent paths, with
each path considered as its vector representation in Pt. It has
been shown that a basis provides the same inference power as
Pt [7]. Specifically, given ytBt as the column vector containing
only the end-to-end measurement of paths in Bt, the following
linear system induced by Bt:

Btxt = yt
Bt (5)

has the same solutions as the system in Eq. 4 [7].
However, not all bases are equal in terms of the resulting

monitoring overhead. While all bases have the same cardinality
(number of paths), bases may differ in terms of the overhead
induced by monitoring such paths. Here, we assume that
the overhead is proportional to the number of probe packets
introduced in the network, and thus to the length (number of
hops) of a path. Consequently, let Bt be the set of paths in
a basis Bt, we define the cost C(Bt) =

∑
pq∈Bt |pq|, where

|pq| is the length of pq . Our objective is to find a basis of Pt

with minimum overhead, that is:

min
Bt⊆P t

C(Bt)

s.t. Bt is a basis of Pt
(6)

We can optimally solve the above problem using the theory
of Matroids [19]. Specifically, we can design a greedy algo-
rithm as shown in Alg. 2. The algorithm takes the set of paths
P t as input. It initializes an empty solution set Bt (line 2),
then sort paths in P t by increasing overhead (i.e., increasing
length) (line 3). At each iteration of the for loop (lines 4-7),
the path pi is considered, according to the sorted order. If
the rank increases by adding pi to Bt , i.e., if pi is linearly
independent with respect to the paths in Bt, then pi is added
to Bt. The rank can be calculated using Gaussian Elimination
(GE) [42]. Finally, path matrix Bt is returned (line 8).

Algorithm 2: Find minimum basis
1 Input: Path set P t;
2 Bt = ∅ ;
3 Sort paths in P t by increasing overhead;
4 for i = 1, . . . , |P t| do
5 Let Bt

pi
be the path matrix of Bt ∪ pi;

6 if rank(Bt) < rank(Bt
pi
) then

7 Bt = Bt + pi;

8 return Bt;

We can show that Algorithm 2 finds the optimal basis using
the theory of Matroids.

Definition 1 (Matroid [19]). A matroid M is a pair (U,S),
where U is a finite ground set and S is a non-empty collection
such that S ⊆ 2U, with the following properties:
• ∀A ⊂ D ⊆ U , if D ∈ S, then A ∈ S.
• ∀A,D ∈ S with |D| > |A|, ∃x ∈ D \A s.t. A ∪ {x} ∈ S

The following theorem proves the optimality of Algorithm 2.

Theorem 2. ([19]). Let M = (U,S) be a matroid and C :
2U → R+ a modular function, i.e., C(A) =

∑
a∈A C({a}),

∀A ∈ S. Then, the greedy algorithm finds an optimal solution
for minimizing C(S) subject to S ∈ S.

7

Proof. It is well-known that the notion of linear independence
over a set of vectors forms a matroid [6]. Additionally, the
function C() is modular since it sums the number of links in
a path independently. As a result, the algorithm is optimal.

2) Link Delay Inference with End-to-End Measurements:
After probing the paths in Bt, we obtain the vector of end-
to-end measurements ytBt . We can then formulate and solve
the linear system1 in Eq. (5). Unfortunately, this linear system
is often undetermined. Consequently, a unique solution exists
only for a subset of links [3], [8], referred to as identifiable
links, while the remaining links are unidentifiable, i.e., they
have an infinite number of possible solutions. With Subito, we
provide an estimation for both identifiable and unidentifiable
links.

Given a path pq ∈ Bt, Lid
q the set of identifiable links, and

Lu
q the set of unidentifiable links in pq , for each link lk in pq ,

if lk ∈ Lid
q , we can obtain its unique solution Xt

k. However,
if lk ∈ Lu

q , we calculate an estimation X̂t
k as follows.

We start by calculating the amount of delay attributed
to unidentifiable links in path pq at time t, denoted as
ytq −

∑
lk∈Lid

q
Xt

k. We then average this amount over all
unidentifiable links in Lu

q . This result serves as an estimate
of the delay of the links in Lu

q . However, it is important to
note that an unidentifiable link may appear in multiple paths
and each of these paths provides an estimate for that link.
Therefore, we assign an approximate delay to an unidentifiable
link by considering the minimum of the estimates provided by
the paths it appears in. More formally, the estimate X̂t

k for a
link lk ∈ Lu

q is given by:

X̂t
k = min

pq∈Bt s.t. lk∈pq

ytq −
∑

lk∈Lid
q

Xt
k

|Lu
q |

(7)

Such estimated delay is utilized by Subito to update d̂
t

and
bt for the subsequent iterations, as shown in lines 22-23 of
Algorithm 1. The approximation approach with the minimum
estimation for unidentifiable links is simple, efficient, and
effective. Although this approach might cause discrepancies
between estimated and actual delays at certain time slots, this
effect can be mitigated during the learning process. As Subito
encourages exploration at the beginning of the learning phase,
the estimated link delay X̂t

k is determined by different sets
of probing paths at different iterations. And the mean value
of link delay, stored in d̂, is updated by averaging over the
accumulative historical estimations of X̂t

k. As the observation
frequency of each link increases during the exploration phase,
d̂ becomes more accurate. The experimental results in section
V demonstrate the accuracy and efficiency of this approach.

C. Bounded Regret

We also demonstrate how the regret provided by Subito for
identifiable links is bounded.

1Note that, monitors exchange multiple probing packets when calculating
the end-to-end delay of a path. This makes it unlikely that all packets will
be lost or dropped while probing. Nevertheless, in the unlikely event of this
happening, the SDN controller loses visibility of that path and consequently
the path remains absent from the linear system in the current iteration.

Theorem 3. Provided that all links are identifiable, Subito
has a bounded regret given by:

ℜt ≤ |M |2
[
4|L|3(|L|+ 1) ln t

(∆min)2
+ |L|+ π2

3
|L|2

]
∆max,

(8)
where ∆min and ∆max represent the minimum and maximum
regrets of actions, while |M | and |L| refer to the number of
monitors and links, respectively.

Proof Sketch. Our approach extends the solution presented in
[41] by incorporating multiple agents with shared knowledge.
In particular, our formulation involves an agent for each
pair of monitors in M , and the observed realizations are
shared through the vectors d̂

t
and bt. As a result, agents

can collectively gather more information at each time slot.
Therefore, the theorem follows based on the regret bound
provided in [41] and our definition of regret in Eq. 1.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate Subito versus two state-of-the-
art approaches using synthetic and realistic networks. The first
comparison approach exploits MAB, while the second one
employs network tomography. Before describing our results
in which Subito outperforms these two techniques, we first
describe the comparison approaches and then the experimental
setup.

A. Benchmarks Description

The first benchmark, called UCB1 [18], is based on a MAB
approach where each agent (monitor pair) learns indepen-
dently. Differently from Subito, the action space for UCB1
are all possible paths between a monitor pair, and paths’
delays are learned individually. Thus, UCB1 does not rely on
network tomography, since it does not work at the granularity
of links. However, this approach prevents agents from sharing
information. It is essential to note that the state space for each
agent in UCB1 is defined by the number of paths between the
corresponding monitor pair, and thus it grows exponentially
with the network’s size. For a fair comparison, we limit
the size of the state space for each monitor pair to 2

|V |
10 ,

where V represents the number of nodes. This constraint is
a significant lower bound compared to the total number of
paths. To populate the state space, we randomly include paths,
ensuring the shortest path is among the available paths (refer
to [18] for more details). By comparing our approach with
UCB1, we can evaluate the benefit of network tomography,
sharing knowledge across agents, and having a finer grain
modeling of the action space at the link level.

The second benchmark is a recently proposed network
tomography approach, named Bound-based Network Tomog-
raphy (BoundNT) [21]. This approach utilizes end-to-end
measurements to decrease the overhead and infer internal
link delays using network tomography. Additionally, BoundNT
calculates an upper bound bmin on the delay of each uniden-
tifiable link lk at each time slot t. Such bound is used to
estimate the realization of the random variable associated to

8

each unidentifiable link lk, i.e., X̂t
k = bmin. Unlike Subito,

however, BoundNT is not designed for a specific network
management task. In order to adopt this method for routing,
since BoundNT does not learn over time, we calculate the
shortest paths between monitor pairs at round t based on
the instantaneous delays inferred at round t − 1. BoundNT
employs network tomography to provide inference capability
with low monitoring overhead. However, it lacks learning over
time. By comparing Subito with BoundNT, we can evaluate
the importance of including a learning process in determining
optimal shortest paths to achieve better routing behavior.

Finally, to evaluate the efficiency of the proposed delay
estimation method for unidentifiable links, in Eq. (7), we
compare Subito to Subito*. Subito* is a version of Subito
with zero estimation error that is able to observe the individual
link delays of each probed path. Table II summarizes the main
features of Subito, UCB1, and BoundNT.

TABLE II
MERITS OF SUBITO, UCB1, AND BOUNDNT

Method Learning Reduced Overhead
Subito ✓ ✓
UCB1 ✓

BoundNT ✓

B. Experimental Networks

We evaluate Subito, Subito*, UCB1 and BoundNT on both
synthetic and realistic networks.

Synthetic networks. Network typologies are generated
with the Barabasi-Albert (BA) model [43]. Nodes are added
iteratively, each new node attaches to 2 existing nodes using
the preferential attachment. This is well-known to result in
Internet-like scale-free networks. We then assign the link
delays with realistic distributions. The variable Xk for link
lk can be modeled as an exponential distribution with a
parameter λk, randomly chosen in the interval [0, 1], as
discussed in [39]. As a result, the unknown expected delay
of lk is dk = 1

λk
.

Real networks. We first consider the real-world topology
BTN from the Internet Topology Zoo [44]. We used synthetic
delays in this case, as for BA networks. In order to consider a
more realistic case, we extended an SDN controller over the
GENI testbed using an NSF-like [45] network. We collected
link delay measurements by utilizing a triangulation method as
in [46]. Packets marked with a specific IP protocol number,
e.g., 253, notify the switch to insert the current timestamp
in the IP Option field before forwarding the packet. Once
this type of packet traverses the initial switch, it is directed
to the adjacent switch and subsequently forwarded to the
SDN controller. Upon receiving the packet via the Packet-
In message, the controller compares the current system time
with the timestamp in order to determine the loop delay.
This delay encompasses both the link delay between the two
switches and the delay of the control link. To ascertain the
control link delay, the module simultaneously sends an Echo

message to each switch, utilizing the symmetric message to
obtain the necessary information. By subtracting the control
link delay from the loop delay, we can calculate the delay of
a specific link. This process is repeated at every link, while
the end-to-end delay is also computed easily from the final
destination. We collect the data for a total of 12 hours where
delay information is computed every 10 seconds. Although
the NSF network is of relatively small size, it allows us to
consider a real-world scenario where delays are not artificially
generated but collected based on real traffic. The size of
this testbed is limited by physical limitations and resource
constraints inherent of the experimental infrastructure.

In all experiments, we randomly select switches as monitors.
Since our goal is to learn the shortest paths between monitors,
we prune the network from all links that are not included in
any simple path between any pair of monitors. These links,
by definition, do not belong to any shortest path. In fact, in
order for these to belong to a path between two monitors, the
path must contain a cycle. An example of these links (in green
and thick) is shown in Figure 3. To simplify the experiments
and concentrate on the goal, these links are omitted from the
network topology in the experiments.

Fig. 3. An example of links (in green and thick) that are not included in any
simple path between any pair of monitors.

Table III summarizes the adopted topologies, including
network type, network size, and the path space for UCB1. We
do not impose any bound on the path space which composes
the action space of Subito. The average degree for BTN and
NSF is 2.5. Table IV illustrates the statistical summary for both
the synthetic dataset and dataset collected from GENI. The
parameters µ and σ2 correspond to the average link delays and
delay variances, respectively, across all links in the datasets.

TABLE III
NETWORK TOPOLOGY USED IN EXPERIMENTS

Network Type #nodes #links #paths space for UCB1
BA 20 36 4
BA 40 76 16
BA 50 96 32
BA 60 116 64
BA 80 156 256

BTN 53 65 32
NSF 11 14 2

C. Experiment Results in Synthetic Networks
We run Subito, Subito*, UCB1 and BoundNT over 3000

time slots over multiple runs in BA networks and BTN net-

9

TABLE IV
STATISTICS OF LINK DELAY DATASETS

Dataset µ (ms) σ2 (ms) samples of each link
synthetic (0,10] (0, 85] 4000

GENI testbed (27, 66] (0, 209] 4320

work with synthetic link delay distribution. In the experiments,
we show the resulting average and standard deviation.
Experiment I: Scalability over the percentage of monitors
in synthetic BA network. In the first experiment, we vary the
percentage of switches acting as monitors from 10% to 50%
in the synthetic network with 50 nodes. We first study the
learning error overtime incurred by Subito during the learning
phase. The error at time t is calculated using the Mean Square
Error (MSE) of the learned averages of the random variables
X1, . . . , X|L| stored in the vector d̂

t
with respect to the actual

averages in d.
Fig. 4 shows the results. Initially, the error is high irre-

spective of the number of monitors available. This is due
to the inaccurate knowledge gathered during the initialization
phase, where single paths are probed and network tomography
is not adopted. Nevertheless, as soon as the learning phase
starts, Subito is able to quickly learn the expected link delays
and reduce the learning error. There are two main points to
note in Fig. 4. First, as we increase the number of monitors,
the error significantly reduces due to the increased ability of
network tomography in estimating the individual link delays
as more paths are probed between monitors. Second, the
error stabilizes and never reaches zero. Since our goal is to
discover the shortest paths between monitors, we do not need
to perfectly learn the expected delays of all links. As Subito
gathers knowledge through exploration, it gradually switches
to exploitation to use the shortest path that has been learned.

Fig. 4. Experiment I: MSE over time of learned delays under different % of
monitors using BA network with 50 nodes.

Next, we study the average regret. The average regret can
be interpreted as the average additional delay incurred by
not selecting the shortest paths. It is calculated as the regret
defined in Eq. 1 divided by the total time and the number
of monitor pairs. This normalization is necessary to compare
regret across different scenarios. The results are presented in
Fig. 5(a). BoundNT suffers from the lack of learning, resulting
in an increasing regret as more monitors become available.

Subito*, Subito, and UCB1 exhibit decreasing regret due to
the increased information gathered among agents. Subito*
achieves the best performance, since it can observe the actual
real-time delay realization of each individual link. Note that,
although this eliminates the estimation error attributed to the
unidentifiable links introduced by network tomography, it still
incurs in a regret larger than zero. This is due to the need
of learning the links’ expected delays, and thus the optimal
paths. However, the gap between Subito* and Subito reduces
as more monitors become available, as network tomography
becomes more accurate. On the other hand, UCB1 shows
poor performance due to its inability to share knowledge and
efficiently explore the state space. As a numerical example,
UCB1 and BoundNT show a regret that is up to twice and
three times higher than Subito, respectively.

(a) (b)

Fig. 5. Experiment I: Average regret (a) and Monitoring overhead (b) varying
the % of monitors using BA network with 50 nodes.

We now consider the monitoring overhead introduced by
probing paths between monitors, as defined in Section IV-B1.
At each iteration, we calculate the overhead and average it
over the entire experiment. Results are shown in Fig. 5(b).
Subito and BoundNT show similar performance thanks to
the ability of network tomography to reduce the monitoring
overhead. It is worth noting that, in some cases, BoundNT has
a slight less overhead than Subito, which appears to contradict
Theorem 2. It is important to realize that these two approaches
work on a different set of paths. BoundNT selects a random
basis of all paths between monitors, while the MAB phase
of Subito returns the set of paths to be probed balancing
exploration and exploitation. It may occur that BoundNT
achieves less overhead. Nevertheless, the overhead of Subito
is overall within 5% of BoundNT. Although BoundNT offers
monitoring overhead comparable to Subito, attributed to the
benefits of network tomography, it faces a significantly higher
regret, and unstable routing behaviors, as shown in the next
set of experiments, due to the absence of a learning mecha-
nism. Conversely, the monitoring overhead incurred by UCB1
increases tremendously as the number of monitors increases,
reaching about six times that of Subito and BoundNT. This is
due to agents monitoring paths independently, paired with the
increase of the state space under UCB1. Overall, the results
in Fig. 5 (a) and (b) demonstrate the benefits of combining
network tomography with MAB in achieving low regret as
well as low monitoring overhead.

The next set of experiments focuses on the quality of rout-
ing. Specifically, we examine the frequency optimal actions,

10

(a) (b) (c) (d)

Fig. 6. Experiment I: Freq. of optimal actions (a) and path oscillations under Subito (b), UCB1 (c), and BoundNT (d) under different % of monitors in BA
network with 50 nodes.

which refers to how often the actual shortest path is selected,
and path oscillations, which measures the stability of the
routing. Fig. 6(a) shows the frequency of optimal actions
for Subito, Subito*, BoundNT, and UCB1 under different
percentages of monitors. Here we focus on the last 1000
time slots out of the 3000 considered. Although the delay
bounds for unidentifiable links becoming more accurate as
the percentage of monitors increases under BoundNT, this
approach exhibits a decreased rate of optimal actions. This
is due to the increasing difficulty of selecting the shortest
paths using only the latest delays when more potential paths
are available. Similarly, UCB1 does not scale well with the
number of available monitors. In contrast to Subito, the agents
in UCB1 learn paths independently and cannot share the
collected knowledge. Each agent learns within its own action
space, so increasing the number of available monitors does
not improve performance. Conversely, Subito significantly
outperforms UCB1 and BoundNT. The frequency of optimal
actions improves as more monitors are deployed since more
monitors allow more paths to be probed. This allows agents
to collect and share more information, and it improves the
ability of network tomography to provide accurate inferences.
Noticeably, Subito achieves performance close to Subito*,
showing the inferencing power of network tomography and
the proposed estimation of unidentifiable links.

Fig. 6 (b)-(d) shows the path oscillations for Subito, UCB1,
and BoundNT, respectively. Under stable traffic conditions,
a routing algorithm should stabilize around a few paths to
ensure a consistent and efficient utilization of network re-
sources. Path oscillations can lead to unstable performance,
poor resource utilization, thus affecting TCP flows’ normal
operation. However, Subito aims to prevent path switching
and efficiently converge to the optimal path for any pair of
monitors, minimizing disruptions and ensuring efficient data
transmission. We measure path oscillations as the number
of paths used by each approach, calculated over a moving
window of 200 time slots.

Initially, Subito and UCB1 exhibit high oscillations due
to their MAB nature, which prioritizes exploration versus
exploitation at the beginning of the learning process. However,
both approaches gradually converge to using less than five
paths as they accumulate historical learned knowledge. Subito
converges much faster than UCB1 and achieves a lower
path oscillation, demonstrating its superior learning efficiency.
Specifically, Subito finds the optimal path when the number

of path oscillation converges to 1. As can be seen in Fig.
6 (b), this takes between 200 to 400 iterations, when the
percentage of monitors is between 20% to 50%. In contrast,
BoundNT maintains a steady path oscillation under all monitor
settings. Furthermore, the path oscillations are higher when
more monitors are available, mainly due to the lack of learning
and the reliance on the latest delays. A path that appears to
be the shortest at a certain iteration is likely not going to be
at the next, leading to continuous switching and increasing
path oscillations as more monitors, and thus paths, become
available. These results demonstrate the strength of MAB
learning in achieving efficient and stable routing compared
to alternative approaches.
Experiment II: Scalability over network size in synthetic
BA networks. In the second set of experiments, we scale the
BA network size with 20, 40, 60, and 80 nodes and fix the
percentage of monitors to 30%.

(a) (b)

Fig. 7. Experiment II: Average regret (a) and Monitoring overhead (b)
increasing BA network size.

Fig. 7 (a) shows the average regret. For all approaches,
learning becomes more difficult when the network is larger.
Although the average regret increases for all approaches,
Subito significantly outperforms UCB1 and BoundNT, re-
sulting in a regret 60% less and closely comparable with
Subito*. This achievement is attributed to the efficient learn-
ing and knowledge sharing among MAB agents, which are
significantly beneficial capabilities when the network size
grows. Unlike Subito, the agents of UCB1 learn at the path
level and the knowledge is isolated from each other, which
hinder learning efficiency and accuracy. Although BoundNT
can benefit from its inference capability, it suffers again due
to the lack of learning and only picks paths using the latest

11

knowledge. This shortage deteriorates the performance and
causes much higher additional delays with larger networks.

Fig. 7(b) shows the monitoring overhead. Subito and
BoundNT provide similar performances and experience a slow
increase as the network size grows. Conversely, UCB1 results
in a surge of overhead from three times at network size 40
to almost six times at network size 80, compared to that of
Subito* and BoundNT. These results validate the inference
power of network tomography and its impressive capability of
reducing the monitoring overhead.
Experiment III: Impact of shared links in synthetic BA
network. In this set of experiments, we start evaluating the
link distribution after Subito converges to the optimal paths.
Fig. 8 (a) shows the percentage of links shared by multiple
paths. It can be seen that links are well distributed. As a
numerical example, no link is shared by more than 15% of
the paths, and around 65% of the links are shared by less than
5% of the paths. These results support the evidence that Subito
does not artificially create congestion by evenly distributing
traffic in the network.

Subsequently, we study the impact of links shared by
multiple paths in a BA network with 50 nodes, where 30%
of nodes are selected as monitors. At each time slot t during
the learning process, we increase the delay of a link depending
on the number of paths going through that link. Specifically,
given the expected delay dk of each shared link lk, assuming
that nt

k is the number of paths sharing link lk at time t, the
expected delay at time slot t+1 becomes dk+nt

k · e, where e
is a constant representing the contribution that each path adds
to the delay.

Fig. 8 (b) shows the average end-to-end delay of the paths
selected by Subito over time, under different settings of e, from
0 to 0.01 ms. In all considered scenarios, the delay quickly
drops and stabilizes in a few iterations. This implies that,
although the delays are affected by paths sharing the same
links, Subito is able to converge towards a stable routing and
learn the shortest path. It is worth noting that, the increase
of average delays is due to higher values of e that affect the
higher expected delays of links.

(a) (b)

Fig. 8. Experiment III: link utilization after subito converges to optimal paths
(a) and End-to-end delay over time under different delay increments e (b).

D. Experiments Results in Real Networks

Experiment IV: Scalability over the percentage of monitors
in BTN with synthetic dataset. Fig. 9 (a) compares the
averaged regret among UCB1, BoundNT, Subito, and Subito*

(a) (b)

Fig. 9. Experiment IV: Average regret (a) and Monitoring overhead (b)
increasing % of monitors in BTN.

while increasing the number of monitors. Similar to the case
of synthetic networks, BoundNT presents an increasing regret
due to the lack of learning and higher number of available
paths. UCB1 achieves smaller regret than BoundNT, but it is
unable to fully exploit the benefit of extra monitors available.
Conversely, Subito outperforms the comparison approaches
and closely matches Subito* as the number of available
monitors grows. By benefiting from the inference power of
network tomography, and the shared knowledge among MAB
agents, Subito achieves a regret that is two to three times lower
than the comparison approaches.

Fig. 9 (b) shows the monitoring overhead as the monitor
size increases. Subito outperforms BoundNT as the monitor
size increases, being able to select a basis with smaller
overhead. Conversely, UCB1 introduces monitoring overheads
that are significantly larger (up to four times) than Subito
and BoundNT. The result demonstrates again the benefit of
combining the learning efficiency offered by MAB with the
inference power provided network tomography in Subito.

Fig. 10 (a) shows the frequency of optimal actions while
Fig. 10 (b)-(d) show the path oscillation of Subito, UCB1,
and BoundNT, respectivelty. Once again, Subito significantly
outperforms the comparison approaches. Subito shows an
impressive ability to quickly learn the optimal paths as well
as achieve very stable routing. Numerically, Subito has a
frequency of optimal actions around 90% in all settings and
uses less than 3 paths on average between monitors.
Experiment V: Scalability over the percentage of monitors
in NSF with GENI testbed dataset. In this experiment, we
investigate the impact of varying the number of monitors in a
real NSF network using the dataset collected from the GENI
testbed. we run the four approaches over 1500 time slots.
Considering the relatively small size of the NSF network, the
link identifiability is considerably low, with less than 5 nodes
randomly selected as monitors. To ensure a fair and consistent
comparison, we consider at least 60% of nodes serving as
monitors.

Fig. 11 (a) illustrates the percentage of identifiable links
as the number of monitors increases. With only 60% of
nodes selected as monitors, the number of identifiable links
is 54.5%, and it reaches 100% when monitors are deployed
in each node. On the other hand, Fig. 11 (b) displays the
corresponding learning error over the initial 600 time slots. As

12

(a) (b) (c) (d)

Fig. 10. Experiment IV: Freq. of opt. actions (a) and path oscillations under Subito (b), UCB1 (c), and BoundNT (d) under different % of monitors in BTN.

(a) (b)

Fig. 11. Experiment V: Percentage of Identifiable Links (a) and Learning
Error (b) varying the % of monitors using NSF network with real traffic data.

(a) (b)

Fig. 12. Experiment V: Average regret (a) and Monitoring overhead (b)
increasing % of monitors in NSF network with real traffic data.

network tomography accurately infers link delay realizations
for identifiable links, the error diminishes with the availability
of more monitors and eventually converges to 0 when all links
become identifiable with 100% monitors.

Fig. 12 (a) presents a comparison of the averaged regret
among UCB1, BoundNT, Subito, and Subito* with an increas-
ing number of monitors in the real network scenario. Unlike
the cases with synthetic traffic data (Fig. 9(a)), BoundNT
exhibits a decreasing regret in this scenario. In the synthetic
dataset, the delay distribution Xk and the expected value dk
of each link lk remains unchanged. However, at each time
slot t, we randomly draw a realization of that distribution.
Conversely, the flows in this NSF network are the actual
traffic generated by the GENI testbed. This creates temporal
dependencies, and smoother variability, between the delays
over successive time slots. This characteristic aids BoundNT in
achieving more accurate bound estimations for unidentifiable
links, consequently exhibiting a decreasing regret owning to

the smoother variability. Additionally, when the percentage
of monitors exceeds 80%, more than 85% of links can be
identified. BoundNT significantly benefits from the inference
power of network tomography in these cases. UCB1 shows a
significant regret decrease as the number of monitors increases.
This is due to the relatively small size of this topology,
which limits the path space to 2 paths per monitor pair. As
the number of monitors increases, the shortest paths become
shorter and more easily identifiable in such a small path space.
Remarkably, Subito demonstrates exceptional performance in
this experiment, achieving near-zero regrets even with only
60% monitors. This is due to the shared knowledge among
agents, which enables in a smaller topology to learn the
shortest paths in only few iterations. Numerically, Subito is
able to converge to the optimal solutions only in around
15 to 20 iterations after the initialization phase. Fig. 12 (b)
illustrates the monitoring overhead of the different approaches.
Subito outperforms BoundNT as the number of monitors
increases, enabling the selection of the optimal basis with the
least overhead using Algorithm 2. It is worth noting that the
overhead incurred by Subito reaches the number of links when
the monitors reach 100%. This phenomenon is attributed to
Subito’s ability to reduce probing paths to a minimum basis,
facilitated by Algo. 2, wherein each basis corresponds to the
direct link connecting monitor pairs. Conversely, BoundNT
blindly identifies a basis with no specific criteria, thus incur-
ring a larger monitoring overhead. Conversely, UCB1 does
not benefit from network topography and shared knowledge
among agents. As a result, this approach introduces signifi-
cantly larger monitoring overhead, up to four times that of
BoundNT and eight times that of Subito.

We now assess the quality of routing under varying percent-
ages of monitors. Fig. 13 (a) depicts the frequency of optimal
actions, while (b)-(d) illustrate the path oscillation for Subito,
UCB1, and BoundNT, respectively. Subito* achieves a near-
optimal action rate of 1 with only 60% monitors, thanks to
its perfect knowledge of link delays. Subito, despite having
unknown delays, achieves similar performance as Subito*.
This also results in a very low path oscillation. UCB1, with
a limited path exploration space of 2, quickly converges to
the optimal action, however at a slower rate than Subito. In
contrast to synthetic traffic scenarios, BoundNT exhibits an
improved rate of optimal actions and path oscillation this case.
This is due to its reliance on network tomography and the
similarity of link delays in consecutive time slots. However,

13

(a) (b) (c) (d)

Fig. 13. Experiment V: Freq. of opt. actions (a) and path oscillations under Subito (b), UCB1 (c), and BoundNT (d) under different % of monitors in NSF
with real dataset.

path oscillation is still order of magnitudes higher than Subito
and UCB1.

VI. CONCLUSION

In this study, we explore the application of network tomog-
raphy for the purpose of a fundamental network management
function, namely shortest-path routing, in SDN-based network
architectures, which has not been investigated before. To
achieve this, we introduce a novel approach named Subito that
combines network tomography and reinforcement learning.
Subito demonstrates superior performance in tackling the
unique challenges associated with shortest-path routing in
SDN environments and seamlessly integrates within an SDN
controller. The proposed approach exhibits a bounded regret,
minimizes monitoring overhead, and ensures stable routing.
Through extensive experiments on both real and synthetic
networks, we illustrate that Subito outperforms two state-of-
the-art approaches across multiple performance metrics.

VII. DISCUSSION AND FUTURE WORK

In this paper we assumed that the southbound channels
that allow communication between the SDN controller and
monitors are dedicated links. If this assumption does not hold,
and southbound channels are shared with the data links, Subito
still presents several advantages discussed in the following.
Subito is based on Network Tomography, which has been
proposed with the exact purpose of reducing the monitoring
overhead. Subito inherits such benefits. Specially, first, we do
not need to monitor each link individually. We can rely on
aggregated end-to-end measurements and exploit the power
of network tomography to infer the delays of internal links.
Furthermore, not all nodes need to act as monitors. Our
experiments in section V show that even just 20% of the
nodes acting as monitors can provide a very accurate view
of the link delays. Additionally, we do not need to monitor
all paths between monitor pairs, but only a subset of them
that constitute a basis of the corresponding linear system.
The clear advantage in terms of monitoring overhead are
shown in Figures 7 (b) and 9 (b). In addition, Subito requires
centralized communication between monitors and the SDN
controller. This could be achieved by each monitor sending
an individual packet to the SDN controller aggregating the
information contained in the probing packets ending at that

monitor along the probing path. As a result, the number of
packets sent per round are linear in the number of monitors.
It is important to highlight here that this is in contrast with
standard Internet routing protocols, such as Link State Routing
and OSPF. In the case of such protocols, each router sends a
Link State packet to all other routers in the network. Without
counting potential retransmissions of acknowledged flooding,
the number of packets is quadratic in the number of routers.
Noting that with Subito only 20% of nodes act as monitors,
the advantages in terms of monitoring overhead are evident.

Furthermore, all routing algorithms need to provide reactiv-
ity to potential congestion or failures that may dynamically
arise in the network. As a result, periodic monitoring is
unavoidable to obtain fresh data on the status of network
links, and any monitoring solution, e.g., via SNMP or ICMP
messages, causes additional overhead to the network. Subito
combines Network Tomography with reinforcement learning
to reduce the monitoring overhead and quickly converge
towards the shortest path routing. The frequency of end-to-end
data collection and the corresponding communications with
the SDN controller can be adjusted finding a tradeoff between
reactivity and overhead. Ideally, such time could be even
adjusted dynamically based on the characteristics of the traffic.
We reserve the investigation on the setting of the monitoring
period in our future work.

In our future work, we will also extend the proposed
approach to deal with highly dynamic networks, where link
delays learned by Subito may become outdated over time.
This will require either a new learning process or an adap-
tive learning strategy. Furthermore, we will explore how the
collection of other metrics, such as flow count and link
bandwidth, can improve the learning and routing decisions. As
an example, bandwidth tomography methodologies for reactive
traffic engineering solutions can be further combined with
multi-path techniques.

REFERENCES

[1] G. Kakkavas, A. Stamou, V. Karyotis, and S. Papavassiliou, “Network
Tomography for Efficient Monitoring in SDN-Enabled 5G Networks
and Beyond: Challenges and Opportunities,” IEEE Communications
Magazine, vol. 59, no. 3, pp. 70–76, 2021.

[2] C. Feng, L. Wang, K. Wu, and J. Wang, “Bound-based network tomogra-
phy with additive metrics,” in IEEE INFOCOM 2019-IEEE Conference
on Computer Communications. IEEE, 2019, pp. 316–324.

14

[3] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Inferring link
metrics from end-to-end path measurements: Identifiability and monitor
placement,” IEEE/ACM Transactions on Networking, vol. 22, no. 4, pp.
1351–1368, 2014.

[4] Q. Zheng and G. Cao, “Minimizing probing cost and achieving identifi-
ability in probe-based network link monitoring,” IEEE Transactions on
Computers, vol. 62, no. 3, pp. 510–523, 2013.

[5] Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An algebraic approach to
practical and scalable overlay network monitoring,” SIGCOMM Comput.
Commun. Rev., vol. 34, no. 4, pp. 55–66, 2004.

[6] S. Tati, S. Silvestri, T. He, and T. La Porta, “Robust network tomography
in the presence of failures,” in International Conference on Distributed
Computing Systems, 2014, pp. 481–492.

[7] R. Zhang, S. Newman, M. Ortolani, and S. Silvestri, “A network
tomography approach for traffic monitoring in smart cities,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 7, pp.
2268–2278, 2018.

[8] N. Bartolini, T. He, V. Arrigoni, A. Massini, F. Trombetti, and H. Kham-
froush, “On fundamental bounds on failure identifiability by boolean
network tomography,” IEEE/ACM Transactions on Networking, vol. 28,
no. 2, pp. 588–601, 2020.

[9] V. Arrigoni, N. Bartolini, A. Massini, and F. Trombetti, “Failure local-
ization through progressive network tomography,” in IEEE Conference
on Computer Communications (INFOCOM), 2021, pp. 1–10.

[10] V. Arrigoni and N. Bartolini, “Network identifiability: Advances in
separating systems and networking applications,” IEEE Networking
Letters, vol. PP, pp. 1–1, 01 2022.

[11] T. He, L. Ma, A. Swami, and D. Towsley, Network Tomography: Identifi-
ability, Measurement Design, and Network State Inference. Cambridge
University Press, 2021.

[12] C.-C. Chiu and T. He, “Stealthy dgos attack against network tomogra-
phy: The role of active measurements,” IEEE Transactions on Network
Science and Engineering, vol. 8, no. 2, pp. 1745–1758, 2021.

[13] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot, “NetDiagnoser:
Troubleshooting network unreachabilities using end-to-end probes and
routing data,” in ACM CoNEXT conference, 2007, pp. 1–12.

[14] P. Zhang, Y. Zhao, Y. Wang, and Y. Jin, “SDN Enhanced Tomography for
Performance Profiling in Cloud Network,” IET Communications, vol. 11,
no. 4, pp. 593–603, 2017.

[15] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering
in software defined networks,” in 2013 Proceedings IEEE INFOCOM,
2013, pp. 2211–2219.

[16] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “Supporting Sus-
tainable Virtual Network Mutations With Mystique,” IEEE Transactions
on Network and Service Management, vol. 18, no. 3, pp. 2714–2727,
2021.

[17] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[18] D.-H. Le, H.-A. Tran, and S. Souihi, “A reinforcement learning-based
solution for intra-domain egress selection,” in International Conference
on High Performance Switching and Routing (HPSR), 2021, pp. 1–6.

[19] J. Lee, A first course in combinatorial optimization. Cambridge
University Press, 2004, vol. 36.

[20] Berman et al., “GENI: A Federated Testbed for Innovative Network
Experiments,” Computer Networks, vol. 61, pp. 5–23, 2014.

[21] C. Feng, L. Wang, K. Wu, and J. Wang, “Bound inference in network
performance tomography with additive metrics,” IEEE/ACM Transac-
tions on Networking, vol. 28, no. 4, pp. 1859–1871, 2020.

[22] B. Holbert, S. Tati, S. Silvestri, T. F. La Porta, and A. Swami, “Network
topology inference with partial information,” IEEE Transactions on
Network and Service Management, vol. 12, no. 3, pp. 406–419, 2015.

[23] L. Xue, M. K. Marina, G. Li, and K. Zheng, “Paint: Path aware iterative
network tomography for link metric inference,” in IEEE International
Conference on Network Protocols(ICNP), 2022.

[24] Rkhami et al., “On the Use of Machine Learning and Network To-
mography for Network Slices Monitoring,” in IEEE 22nd International
Conference on High Performance Switching and Routing (HPSR ’21’).
IEEE, 2021, pp. 1–7.

[25] A. Sacco, F. Esposito, and G. Marchetto, “Completing and Predicting
Internet Traffic Matrices Using Adversarial Autoencoders and Hidden
Markov Models,” IEEE Transactions on Network and Service Manage-
ment, vol. 20, no. 3, pp. 2244–2258, 2023.

[26] A. Sacco, A. Angi, F. Esposito, and G. Marchetto, “HINT: Support-
ing Congestion Control Decisions with P4-driven In-Band Network
Telemetry,” in IEEE 24th International Conference on High Performance
Switching and Routing (HPSR). IEEE, 2023, pp. 83–88.

[27] K. Liu and Q. Zhao, “Adaptive shortest-path routing under unknown
and stochastically varying link states,” in International Symposium on
Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt), 2012, pp. 232–237.

[28] A. Azzouni, R. Boutaba, and G. Pujolle, “Neuroute: Predictive dynamic
routing for software-defined networks,” in International Conference on
Network and Service Management (CNSM), 2017, pp. 1–6.

[29] A. Sacco, F. Esposito, and G. Marchetto, “RoPE: An Architecture for
Adaptive Data-driven Routing Prediction at the Edge,” IEEE Transac-
tions on Network and Service Management, vol. 17, no. 2, pp. 986–999,
2020.

[30] J. Zhang, M. Ye, Z. Guo, C.-Y. Yen, and H. J. Chao, “Cfr-rl: Traffic
engineering with reinforcement learning in sdn,” IEEE Journal on
Selected Areas in Communications, vol. 38, no. 10, pp. 2249–2259,
2020.

[31] W. Xia, C. Di, H. Guo, and S. Li, “Reinforcement learning based
stochastic shortest path finding in wireless sensor networks,” IEEE
Access, vol. 7, pp. 157 807–157 817, 2019.

[32] P. Zhou, J. Xu, W. Wang, Y. Hu, D. O. Wu, and S. Ji, “Toward optimal
adaptive online shortest path routing with acceleration under jamming
attack,” IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp.
1815–1829, 2019.

[33] J. Rischke, P. Sossalla, H. Salah, F. H. Fitzek, and M. Reisslein, “QR-
SDN: Towards Reinforcement Learning States, Actions, and Rewards
for Direct Flow Routing in Software-Defined Networks,” IEEE Access,
vol. 8, pp. 174 773–174 791, 2020.

[34] D. M. Casas-Velasco, O. M. C. Rendon, and N. L. da Fonseca, “Intel-
ligent Routing Based on Reinforcement Learning for Software-Defined
Networking,” IEEE Transactions on Network and Service Management,
vol. 18, no. 1, pp. 870–881, 2020.

[35] L. Zhao, J. Wang, J. Liu, and N. Kato, “Routing for Crowd Management
in Smart Cities: A Deep Reinforcement Learning Perspective,” IEEE
Communications Magazine, vol. 57, no. 4, pp. 88–93, 2019.

[36] B. Dai, Y. Cao, Z. Wu, and Y. Xu, “IQoR-LSE: An Intelligent QoS On-
Demand Routing Algorithm With Link State Estimation,” IEEE Systems
Journal, vol. 16, no. 4, pp. 5821–5830, 2022.

[37] X. Tao and S. Silvestri, “Network tomography and reinforcement learn-
ing for efficient routing,” in IEEE International Conference on Mobile
Ad-Hoc and Smart Systems (MASS), 2023.

[38] Z. Hou, C. She, Y. Li, L. Zhuo, and B. Vucetic, “Prediction and commu-
nication co-design for ultra-reliable and low-latency communications,”
IEEE Transactions on Wireless Communications, vol. 19, no. 2, pp.
1196–1209, 2020.

[39] A. M. Sukhov and N. Y. Kuznetsova, “What type of distribution for
packet delay in a global network should be used in the control theory?”
ArXiv, vol. abs/0907.4468, 2009.

[40] H. Ortega-Arranz, A. Gonzalez-Escribano, and D. R. Llanos, The
shortest-path problem: Analysis and comparison of methods. Springer
Nature, 2022.

[41] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network op-
timization with unknown variables: Multi-armed bandits with linear
rewards and individual observations,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 5, pp. 1466–1478, 2012.

[42] W. H. Greub, Linear algebra. Springer Science & Business Media,
2012, vol. 23.

[43] A.-L. Barabasi and R. Albert, “Albert, r.: Emergence of scaling in
random networks. science 286, 509-512,” Science, vol. 286, pp. 509–12,
11 1999.

[44] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan.
[45] D. L. Mills and H. Braun, “The nsfnet backbone network,” in Proceed-

ings of the ACM Workshop on Frontiers in Computer Communications
Technology, ser. SIGCOMM ’87. Association for Computing Machin-
ery, 1987, p. 191–196.

[46] T. Dong, Q. Qi, J. Wang, A. X. Liu, H. Sun, Z. Zhuang, and J. Liao,
“Generative Adversarial Network-based Transfer Reinforcement Learn-
ing for Routing With Prior Knowledge,” IEEE Transactions on Network
and Service Management, vol. 18, no. 2, pp. 1673–1689, 2021.

15

Xu Tao received the M.Sc degree in computer
engineering from Politecnico di Torino, Italy, in
2018. Then, she worked as a researcher in the
Research Institute of LINKS Foundation, Italy, from
2018 to 2021. She is currently pursuing a Ph.D.
degree in computer science at the University of Ken-
tucky, USA. Her research lies in computer network
monitoring and management; integration of IoT and
cyber-physical systems in a variety of multidisci-
plinary areas, such as smart agriculture.

Doriana Monaco received the M.Sc degree in Com-
puter Engineering from Politecnico di Torino, in
2022, where she is currently pursuing a Ph.D de-
gree. Her research interests cover computer networks
monitoring and management; distributed learning
applications for Software-Defined Networks (SDN);
cloud-computing solutions.

Alessio Sacco is an Assistant Professor at Po-
litecnico di Torino. He received the M.Sc. degree
(summa cum laude) and the Ph.D. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Italy, in 2018 and 2022, respec-
tively. His research interests include architecture and
protocols for network management; implementation
and design of cloud computing applications; algo-
rithms and protocols for service-based architecture,
such as Software Defined Networks (SDN), used in
conjunction with Machine Learning algorithms.

Simone Silvestri (Senior Member, IEEE) received
the M.S. and Ph.D. degrees in computer science
from the Sapienza University of Rome, Italy, in 2006
and 2010, respectively. He is currently an Associate
Professor with the Department of Computer Science,
University of Kentucky. He has published more than
80 papers in international journals and conferences.
His research interests include cyber–physical–human
systems, the Internet of Things, energy manage-
ment systems, terrestrial and aerial mobile networks,
and network management. Dr. Silvestri’s research is

funded by several national and international agencies such as NIFA, NATO
and the NSF, and he received the NSF CAREER award in 2020. He has
served on the organizing committee of several international conferences, and
the technical program committee of over 100 conferences.

Guido Marchetto received the Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Associate Profes-
sor with the Department of Control and Computer
Engineering. His research topics cover distributed
systems and formal verification of systems and pro-
tocols. His interests also include network protocols
and network architectures.

	Introduction
	Related Work
	Network Tomography
	Reactive Network Routing

	System Model and Problem Formulation
	Network Model and Assumptions
	Problem Statement

	Subito
	Learning Routing through Multi-Armed Bandit
	Initialization Phase
	Learning and Inference Phase

	Probing and Inference with Network Tomography
	Reduce Monitoring Overhead
	Link Delay Inference with End-to-End Measurements

	Bounded Regret

	Experimental Evaluation
	Benchmarks Description
	Experimental Networks
	Experiment Results in Synthetic Networks
	Experiments Results in Real Networks

	Conclusion
	Discussion and Future Work
	References
	Biographies
	Xu Tao
	Doriana Monaco
	Alessio Sacco
	Simone Silvestri
	Guido Marchetto

