
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NAIL: A Network Management Architecture for Deploying Intent into Programmable Switches / Angi, Antonino; Sacco,
Alessio; Esposito, Flavio; Marchetto, Guido; Clemm, Alexander. - In: IEEE COMMUNICATIONS MAGAZINE. - ISSN
0163-6804. - ELETTRONICO. - 62:6(2024), pp. 28-34. [10.1109/mcom.001.2300313]

Original

NAIL: A Network Management Architecture for Deploying Intent into Programmable Switches

Publisher:

Published
DOI:10.1109/mcom.001.2300313

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989579 since: 2024-06-17T13:56:23Z

IEEE

1

NAIL: A Network Management Architecture for
Deploying Intent into Programmable Switches
Antonino Angi∗ ‡ Alessio Sacco ∗ Flavio Esposito ‡ Guido Marchetto ∗ Alexander Clemm †

∗ Department of Control and Computer Engineering, Politecnico di Torino, Italy
‡ Computer Science Department, Saint Louis University, USA

† Futurewei Inc., USA

Abstract—Programmable switches allow network operators to
implement their customized network behavior. Despite its bene-
fits, data-plane programmability has many practical challenges,
including the ability to transfer intended behaviors on forwarding
devices. Languages such as P4 represent a low level of abstraction,
and corresponding programs are cumbersome to manage and
configure for DevOps engineers, presenting a barrier to adoption.
To facilitate such adoption, we propose NAIL, an architecture
that allows network engineers to articulate desired network
behaviors at a higher, more expressive layer and then translate
such behaviors into executable code using a transpiler that acts
as a network intent translator. NAIL can detect and properly
instruct the network devices affected by the intent. Then, it offers
continuous monitoring functionality to verify whether the intent
is met. We demonstrate the effectiveness of our solutions with
some use cases, showing the fast reaction to updates and the
applicability of supplied intent.

Index Terms—intent; network programmability; network ar-
chitectures.

I. INTRODUCTION

Recent advances in data-plane programmability have en-
abled users to inject rules into programmable switches, allow-
ing network programmers to customize the network for their
particular needs. These switches have distinct programmable
architectures, among which the Programmable Independent
Switch Architecture (PISA) stands out. PISA is a highly
customizable pipeline architecture that is extensively employed
in the telecommunications and network industries due to its
ability to adapt to the specific requirements and needs of oper-
ators. The possibility of programming switches has launched
networking into a new era of vendor-independent runnable
software, providing network operators with greater flexibility,
portability, and consistency. Researchers have shown that
adopting PISA reduces costs and increases scalability when
applied to highly demanding application layer systems, e.g.,
Next Generation Firewall (NGFW) or Deep Packet Inspection
(DPI) [1]. Different network programming approaches have
been developed, protocol based - e.g., using SRv6, where
labels are interpreted as packet instructions or evolved MPLS,
currently under standardization - but also data-plane based
such as P4 and OpenFlow.

Data-plane programming languages such as P4 have caused
quite a stir across the industry, as they allow network op-
erators to program packet processing pipelines that used to
be hard-coded, in the process allowing to implement custom
packet processing behavior. However, it is also known that

writing code in P4 is not easy as the language is limited
by its internal resources, does not provide a rich abstraction,
and debugging data plane programs is complicated, causing
network programmers to engage in a series of “trial and
errors” processes. Researchers have tried to make P4 code
easier to write by defining data structures that allow a more
elastic switch programming. As an example of this line of
research P4All [2] stands out, where the authors presented an
elastic data structure that automatically adapts to each switch’s
hardware resources, allowing more portable and modular mod-
ules. Another recent work, Lucid [3], presents a language that
allows PISA switches to customize and control their data-
planes with P4, thus allowing network management to users
that are not familiar with network programming languages.

Despite such valuable improvements, data plane program-
ming in general, and P4 programming in particular, is still
considered challenging by many, and higher-level program-
ming abstractions would alleviate the network programma-
bility learning curve. To this aim, many authors have pro-
posed systems that combine frameworks with low-level policy
translators to automate the network as much as possible.
At the same time, the concepts of Intent and Intent-Based
Networking have been gaining traction, with intent being
defined as a declarative set of goals and outcomes that a
network should meet. An example of a possible intent could
be: “Link utilisation in every link should be less than 70%” [4].
As a result, Intent-based networking does not only include
proper rendering of intent as code on a per-switch basis, but
also incorporates deployment aspects such as the “zero-touch
networks” paradigm.

Following the intent paradigm, researchers have studied how
to apply software methodologies to characterize and under-
stand intent and have them applied to programmable switches.
An example is P4I/O [5], where the authors implemented an
Intent Definition Language with the goal of understanding and
translating high-level intents to lower-level P4 code. While
valuable, this study does not allow users to customize their
network using an interactive API on-demand, but only through
an Intent Definition Language. Researchers have also studied
a way of translating high-level code into low-level rules
using programming languages. This is the case of P4HLP,
which uses a C-style high-level programming language, E-
Domino, to generate P4 programs [6]. Another relevant work
is Lumi [7], where the authors propose a system that allows
users to ask questions about the network of a college in the

2

form of intents and have the specific intent translated and
deployed in the data-plane programming language. While very
interesting and valuable, the architecture behind it depends
on a specific intent definition language (IDL) that, as the
authors suggest, needs to be extended to work for different
network environments. The emergence of new Large Language
Models (LLMs) like ChatGPT [8] or Llama [9] has enabled the
automation of translating high-level programming languages
into low-level ones by prompting applications to generate code
for a specific purpose. Nevertheless, these models invariably
require human oversight to ensure the accuracy of the output
and that it aligns with the input requests [10]. We experienced
that ChatGPT generates code with functions that do not exist
on original libraries and are only added by developers in a
separate library branch. This has caused ChatGPT to propose
programming codes that are not functioning if not with deep
know-how and reverse-engineering integrating procedures.

Intersecting these efforts and leveraging such recent ad-
vances, in this paper, we present the design and prototype
implementation of NAIL, a network management architecture
that helps translate high-level intents to different lower-level
data plane programming rules. Our solution is composed of
a transpiler that converts human language-generated intents
into data-plane programs, in general, and P4 (in this imple-
mentation) in particular, using natural language processing
techniques, and a network management API, that contains the
methods used by NAIL to manipulate the involved network
elements. With NAIL, intents are translated into working
programs, e.g., P4 table rules, using our API, which, inter-
acting with the NLP methods and databases, allows network
programmers to customize their network according to some
specific behavior (e.g., load profiling, stateful firewall). To pro-
vide more flexibility, these rules can also be modified, and new
ones can be added to the network or removed. Finally, NAIL
allows the network programmer to collect statistics about
demanded intents or a switch for troubleshooting purposes.
We demonstrated NAIL’s performance with some use cases,
also focusing on the lines of code (LoC) and the updating rules
reaction time. Our experimental results show that NAIL allows
implementing any network intent in fewer LoCs than other
state-of-art solutions, while fast reacting to any rule update.

II. OVERALL ARCHITECTURE DESIGN

This section describes the design of our network manage-
ment architecture composed of a network management object
model, a transpiler, and databases to help manipulate the
intent.

A. Intent to data plane program workflow

When the network programmer specifies the intent, it can
be in any natural language (e.g., English, Italian, Chinese)
since we developed our parser to be language-independent.
However, the intent could also contain words that may be dif-
ficult to comprehend, bringing noise to our model and causing
misunderstandings or wrong interpretations. For this reason,
we developed our models using preprocessing techniques
in combination with Natural Language Processing (NLP), a

API

Parser

AI/ML

Network
Management

Objects

Keywords
Dictionary

Management
Information Base (MIB)

create()
delete()

update()
get_stats()

Daemon
API

DPDK

P4

...

eBPF/XDP

Load
Profiling

Stateful
Firewall

Network Applications

NLP Datasets

Network
Programmer

Programmable
Data-Planes

NAIL

Intent Object

Converter

Heavy
Hitters

Fig. 1: Architecture Overview: intent is translated and injected
into the programmable code of the network elements.

branch of Artificial Intelligence (AI) that deals with under-
standing natural language and extracting information needed
for different cases. This involves a text-cleaning phase that
removes all stop words and reduces them to their root form,
effectively removing any noise and irrelevant information. The
output of this NLP phase is a list of words, subsequently
analyzed by our dictionary to determine the main objective of
the inputted intent (e.g., load profiling, firewall), and identifies
all network components involved in such intent (e.g., switches,
links, and port numbers).

An overview of NAIL is shown in Fig. 1. Four main
components form our architecture:

• Converter: this component includes NLP software li-
braries, connected with a parser and a dictionary to create
intent objects;

• API: this includes all methods that allow NAIL intent ob-
ject manipulation, i.e.,: (1) create, (2) delete, (3) update,
(4) get stats();

• Management Information Base (MIB): this is a logically
centralized database that maintains all NAIL states, in-
cluding network elements, their ids, and subnets. This
database is also used to store all the inputted intents,
useful to perform modifications (e.g., updates, deletion).

• NLP Datasets: these datasets are used by the NLP meth-
ods to perform the processing phases. They include data
for stopword recognition and stemming techniques.

As shown in Fig. 1 (yellow blocks), our NAIL API can
interact with different data-plane programming languages and
frameworks, e.g., P4, DPDK, or eBPF/XDP.

B. NAIL API: The User Perspective

NAIL allows network programmers to define an intent
using the create method and manipulate it using three other
operations: delete, update and get stats. By using these four
operations, network programmers can launch new instances
of data-plane programs without knowing how to program in
a specific data-plane programming language, empowering the
zero-touch network paradigm.

Network programmers can define an intent using the cre-
ate() API call:

intent id = create(intent)

3

int_1 = "Block traffic from GroupA to GroupB"
intent_id = create(int_1)
#NLP techniques and keywords recognition
#Write into the switch’s table for this action
int_2 = "Block traffic from GroupA to GroupC"
update(intent_id, int_2)
#To add a new intent update() calls create()
intent_id = create(int_1)
#To get statistics from an intent
get_stats(intent_id)
#To get statistics from a specific switch
get_stats(switch_id)
#To delete an intent
delete(intent_id)

Listing 1: A stateful firewall implementation with NAIL API
(user perspective).

After being specified, the intent goes through a preprocess-
ing phase using NLP methods and then an analysis with a
keyword dictionary to identify the involved network elements.
Finally, NAIL’s interpreter selects the appropriate actions
based on the intended network elements and primary objective.
Such an objective could involve bypassing a particular switch,
prioritizing traffic from a specific IP address, or blocking
traffic between two specified groups. The return value of the
create() method is a unique intent_id, corresponding to
the intent object that contains the involved network elements
and the network configuration states that have been added to
satisfy the intent’s goal.

Network programmers may retrieve statistics on a particular
intent to troubleshoot the network by utilizing the get stats()
API, which accepts two optional parameters: intent id and
switch id.

get stats(intent id, switch id)

The former parameter enables the collection of statistics
related to a specific intent running on the network (e.g.,
number of processed packets for each involved switch), while
the latter is used to obtain information about a particular switch
(e.g., queue on ports, dropped packets).

To modify a previously added intent, it is possible to utilize
the update() method. This function accepts a parameter that
can be the intent id of a previously added intent, or a new
intent, which would invoke the create(), as before:

update(intent id, new intent).

If network programmers wish to delete a previously added
intent, they can use the delete() API, which takes as a
parameter the id of the created intent object:

delete(intent id)

This function deletes all the network configurations that have
been inserted with the intent and the corresponding intent
object.

C. NAIL API: The Inner Workflow

To describe what happens in NAIL after the user inputs
the desired intent, we start from the example described in

Listing 1, where our API is used for requesting a stateful
firewall.

After the network programmer has asked to deploy the in-
tent for blocking traffic from a subnet group to another one via
the create() method, NAIL runs a pre-processing phase. This
step, utilizing NLP techniques alongside a pre-built dictionary
containing regex and keyword recognition methods, separates
the network elements associated with the intent and the intent’s
main goal. Such NLP preprocessing phase is composed of
three main steps: i) The intent is converted into tokens result-
ing in “[’block’, ’traffic’, ’from’, ’groupa’, ’to’, ’groupb’]”. ii)
We remove all the stopwords from the list of tokens, resulting
in “[’block’, ’traffic’, ’groupa’, ’groupb’]”. iii) The remaining
tokens are manipulated using the Porter stemmer, which brings
each token to its canonical form. This third step does not
change the content of our tokens as they already are in their
canonical form. It is important to notice that these two last
steps use the information contained in the NLP Dataset to
retrieve the necessary words to remove canonical forms. These
elements are then matched with the MIB database to identify
them by finding relevant information (e.g., id, number of ports,
IP addresses). In the present scenario, the identified “group A”
and “group B” correspond to two subnets of the topology with
two diverse IP ranges. Then, to identify the intent goal, our
API scans the tokens and matches them with our dictionary,
identifying the keyword “block”.

Concluded this preliminary phase, the deploy phase starts,
and the program generates an intent object containing its
unique incremental id (returned to the user), the involved
network elements (subnets belonging to GroupA and GroupB),
and the intent goal (“block traffic groupa groupb”). Subse-
quently, NAIL modifies a source template P4 code with mini-
mal functionalities (i.e., IPv4 forwarding), registers, and tables,
with the blocking functions. This is done by injecting table
entries into the switch connected to the subnet of groupB using
two main methods from the P4Runtime library as described
in Section III-A. While this approach allows reducing possible
errors in compilation, we also deployed the get stats() method
to allow network programmers to verify the network behavior
and perform two different actions: i) retrieve statistics from
the customized network, ii) troubleshoot the network after
the insertion of an intent to verify that the injected rules are
correct.

III. PROTOTYPE IMPLEMENTATION AND EVALUATION

We evaluated NAIL by implementing several use-cases
(described in Table I below) and choosing P4 as our data-
plane programming language. To do so, we compiled the
intent using the p4c compiler and adopted the behavioral
model version 2 (bmv2) as the target for our software switch.
Finally, we simulated and tested our P4-generated programs
using a leaf-spine datacenter topology composed of 10 servers
and deployed in Mininet, a network emulator that allows
reproducing virtual networks.

A. NAIL Integration with P4Runtime
We chose P4 as our prototype implementation because

of its compatibility with both software and hardware-based

4

platforms [1]. While P4 provides the potential to customize the
network to suit diverse use cases, modifying the P4 program
requires stopping the execution of the current program and
restarting it with an updated one, which cannot be performed
in real-time. For this reason, in NAIL, we adopted P4Runtime
as a support to our API to improve the flexibility and the
performance of the methods of whom NAIL is composed, e.g.,
insert, delete and update intents. P4Runtime is an open-source
API that enables the communication between a dataplane and a
controller, allowing a single, standardized interface for control-
ling and monitoring the behavior of P4-programmable network
devices [11]. Notably, although P4Runtime already provides
a method to insert entries on P4 tables, it lacks methods for
manipulating those entries after. For this reason, we added
three more methods: to update and delete the added entries
and to retrieve statistics. This has been shown to provide
network programmers and administrators more flexibility and
management of their network.

When NAIL finishes preprocessing a new intent and creates
the intent object, it prepares the entry to be added using the
buildTableEntry P4Runtime method which takes as parameters
the table name, the action name, and the action parameters,
taken from the intent object, in order to find the name of
the table where the specified action and its parameters are.
Finally, NAIL calls the WriteTableEntry P4Runtime method
to add the entry to the table. The same procedure is visible
when network programmers want to update or delete the rules
of a previously added intent. In this cases, NAIL calls the Up-
dateTableEntry or the DeleteTableEntry function, respectively,
and simply replaces the old entry with the new one or deletes
the corresponding intent.

B. NAIL Prototype: Design and Evaluation Metrics

In evaluating our solution, we began by examining the lines
of code (LoC) that comprise NAIL and comparing them to
other relevant works. LoC serves as a simple yet effective
software size validation metric, allowing us to more accurately
assess the scale and complexity of our implementation [12].
For this reason, while writing the code for our use-cases, we
report how many lines of code NAIL generated and compared
it with the LoC generated by P4, P4All [13], and P4I/O [5].

As shown in Table I, in our implementation, we considered
eight use-cases: an IPv4 forwarding, a stateful firewall, a load
profiling, a heavy hitter detector, a DDoS attack detector,
BeauCoup, PRECISION, and SketchLearn. BeauCoup is a
system that monitors the network through queries, PRECI-
SION is an algorithm that uses probabilistic recirculation
to find top flows (e.g., detect heavy hitters) on switches,
SketchLearn uses multi-level sketches to identify flows that are
statistically responsible for causing traffic conflicts. For these
three network applications, the LoC is directly taken from [13].
An interesting observation is that for most applications, the
internal code of which NAIL is composed is fewer lines of
code than other intent-based architectures, such as P4I/O. Next
to the internal LoC, we looked at how many LoC would take
for network programmers to customize their network. This is
shown in the “user perspective” column where we assumed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Port number

0

10

20

30

40

50

L
oa

d
(k

B
)

Actual Load Profile
Desirable Load Profile

Fig. 2: Traffic follows the desired load profiling rule specified
by the intent.

that the network programmer uses at least all the methods
create(), delete(), get stats(), update() multiple times.

Table I also shows the “Installation time” column as the time
needed for NAIL to customize the network after inputting an
intent. In general, the process of translating an intent to code
depends on two main factors: the intent needs to be translated
into network policies (mapping the intent to specific network
elements) and the code generation to implement the desired
network policies. In the table, we can see that this value is
relatively low for all network applications, showing how NAIL
easily reacts to an intent and installs it into the network in
only a few steps. Taking only a few seconds to parse and
install network intents, we believe that NAIL can open up
new opportunities for network programmers compared to the
hours (or even days) that are needed to write P4 programs and
then deploy them.

C. Load Profiling (LP)

Load profiling refers to the process of having different
priorities for different traffic demands. Studies have shown
how critical it can be to deploy an efficient load profiler, as
the whole traffic optimization depends on it, especially when it
is adopted in big topologies such as datacenters. By analyzing
traffic patterns and associating a specific profile, the network
administrator can identify bottlenecks, efficiently allocate re-
sources and improve the network’s overall performance. For
this reason, researchers have studied different algorithms and
ways of bringing load profiling into the data-plane of SDN pro-
grammable switches, using P4 as programming language [14].

In NAIL, we considered a use-case of a load profiler that
sets different weights on each switch’s port. To test our use-
case and evaluate if our network respects the desired profile,
we sent and received 1000 ICMP packets between two servers
not belonging to the same leaf. Fig. 2 compared the generated
load profile: the obtained one (in green) and the desired one (in
white). It is noticeable that the actual load profile coherently
respects the desired one throughout all ports of our switches.

D. Stateful Firewall (SFW)

We considered a stateful firewall (SFW) as a use-case sce-
nario given the fact that nowadays companies and individuals
widely use a firewall to protect their networks from unsolicited
traffic, and researchers have introduced firewall applications in

5

LoC in P4 LoC in P4All LoC in P4I/O LoC in NAIL
(user perspective)

LoC in NAIL
(internal code) Installation time [s]

IPv4 Forwarding 197 217 416 5 241 0.558
Stateful Firewall 207 217 477 11 294 1.714
Load Profiling 294 286 N/A 8 305 1.784

Heavy hitters det. 316 N/A 477 6 298 1.762
DDoS Attack det. 233 N/A 477 9 298 1.883

BeauCoup 1500 541 N/A 10 320 1.707
PRECISION 283 266 N/A 9 297 2.487
SketchLearn 366 88 N/A 15 284 2.644

TABLE I: With NAIL several network applications can be implemented with a smaller number of lines of code (LoC) when
compared to BeauCoup, PRECISION and SketchLearn in P4, P4All [2], P4I/O [5] and with NAIL both user perspective and
internal code.

100 500 900 1200 1500 5000 10000
Packet size (Bytes)

0

50

100

R
T

T
(m

s)

Firewall with NAIL
Firewall with P4Guard
No Firewall

Fig. 3: RTT evolution for different packet size (in bytes) when
a stateful firewall is installed.

their studies [1], [3]. As firewalls are used to categorize and
filter traffic, we developed our solution in the data plane using
a bloom filter: a probabilistic data structure mainly used for
its fast computation time in small memory space. Although it
may cause false positive filtering during the computation, the
bloom filter is still widely adapted in various network security
and privacy methods.

We implemented our SFW in the data-plane as it does
not need constant interaction with the control-plane, which
may cause delays and high response time. In this study,
for each flow, our PISA switches compute a bloom filter
hashing the 5-tuple composed of IP source & destination
address, TCP source & destination port, and the protocol
used. The results are stored in registers for a subsequent
lookup function, which determines whether incoming packets
are from the internal network or external and, in this latter
case, discard them. Additionally, we track the number of
packets passing through each switch, including those dropped,
for statistical and troubleshooting purposes. One common
problem in implementing a stateful firewall is the order in
which rules are installed and evaluated in the device. If rules
are not ordered correctly in a stateful firewall, it can lead
to unintended consequences, e.g., blocking desired traffic. In
NAIL, we consider the intent specification time as a priority
criterion and continuous monitoring as a way for the user to
verify that rules are applied correctly and that desired security
outcomes are achieved.

In Fig. 3, we evaluated how the round trip time (RTT)
reacts when the packet size increases and compared it to
another software firewall, P4Guard [15], and to a baseline
case when there is no SFW installed. The figure shows that

the three cases achieve almost the same performance when the
packets are small (100-900 Bytes). However, when the packets
are big (900-10000 Bytes), it is more visible that, despite
using bloom filters, the firewall deployed with NAIL performs
better than P4Guard. This shows that the implementation made
by NAIL, despite a zero-touch data-plane coding from the
network programmer, gives promising results. It is important
to notice that P4Guard uses the P4 14 version of P4 instead
of the last one, P4 16, which is known to perform better than
the previous version. When our firewall is compared to a case
with no firewall installed, we can notice a limited overhead
that could be caused by the hash functions deployed in our
firewall.

E. Updating Rules

Another important aspect of NAIL is the possibility of
updating an existing table entry by just using the update()
method. As mentioned earlier, NAIL can dynamically modify
any forwarding table, adding new entries or even modifying
existing ones, in response to changes in the network topology,
traffic patterns, user needs, or other factors. This allows the
network to adapt to changing conditions and optimize its
performance in real-time without restarting the whole config-
uration. This dynamic modification of a table entry has to
be performed as quickly as possible, since there might be
situations in which a rerouting needs to be performed for a
failed link or other reason, making the reaction time to an
update a critical factor.

In NAIL we evaluated the reaction time of updating a table
entry in Fig. 4, focusing on the applications that we deployed:
load profiling (Fig. 4b), stateful firewall (Fig. 4c), and an
overall reaction time when both applications are running
(Fig. 4a). Looking at Fig. 4b, we evaluated the reaction time
when the network administrator wants to update an existing
rule on a table, modifying the weights that have been put on
a specific switch’s ports, and compared it to the traditional
way of updating an existing rule: writing the new entry on
a textual file and restarting the configuration of the network.
From the figure, we can see that NAIL, thanks to the update()
performed in real-time, always achieves lower reaction times
(in ms) compared to a traditional entry update, allowing the
network programmer to quickly modify the profile for its
network according to its needs, failed links, traffic pattern
or other factors. It is also visible that the highest reaction
time is achieved when the function is called for the first time;

6

0 20 40 60 80
Time

0

10

20

R
ea

ct
io

n
tim

e
(m

s) Load Profiling
Stateful Firewall

(a)

0 20 40 60 80
Time

0

20

40

60

R
ea

ct
io

n
tim

e
(m

s) Load Profiling with NAIL
Load Profiling without NAIL

(b)

0 20 40 60 80
Time

0

10

20

30

R
ea

ct
io

n
tim

e
(m

s) Stateful Firewall with NAIL
Stateful Firewall without NAIL

(c)

Fig. 4: Reaction time when an update() is requested for a load profiling and a stateful firewall application (a). Comparing the
reaction time when an update() is performed with NAIL and without NAIL for a load profiling (b) and a stateful firewall (c).

meanwhile, the reaction time is even lower for all the next
calls. The same behavior is noticeable in Fig. 4c, where a
stateful firewall is installed in our network. Even in this case,
we compared a stateful firewall rule updated with NAIL and
a stateful firewall updated traditionally. It is visible from the
figure that NAIL performs better and achieves up to 83.8%
faster reaction time than the traditional update way when the
update() is called for the first time, while still maintaining
better performance when an update is requested other times.
After collecting these results, we considered a situation when
we have both applications running in our networks: load
profiling and a stateful firewall; and the network programmer
wants to update rules in both applications. The results are
shown in Fig. 4a, where we computed the reaction time and,
similarly to the case when only one of the applications is
deployed, we can see that the reaction time is considerably
low and achieves up to 22.6 ms in the case of update a rule
for a load profiling, probably because of the different weights
to install for each switch’s port.

IV. CONCLUSION

In this paper, we presented NAIL, an architecture that trans-
lates network intents into programmable entities programs,
with the aim of creating a management abstraction that is
more flexible and simpler to manage even for users with
limited technical expertise. While NAIL can be used for
different programmable switches, here we focus on switches
designed following the PISA architecture and on their default
programming language, P4. We have evaluated our transpiler
with known use-cases, demonstrating how different intent can
be specified, ranging from prioritizing profiles to security
issues detection.

That being said, we are far from being done, as considerable
items for further work remain. For one, to simplify the task of
network engineers further, NAIL could be complemented with
automated deployment techniques, such as zero-touch Deploy-
ment (ZTD) to deliver continuous code updates. Secondly,
the natural language interface can be improved by integrating
NAIL and emerging chatbots to not only allow the user to input
intent but to engage them in a dialog as needed to refine intent,
inform of what intent the network can actually deliver, and
negotiate issues such as the need to resolve potential conflicts
between competing intent.

REFERENCES

[1] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming with
P4: Fundamentals, advances, and applied research,” Journal of Network
and Computer Applications, vol. 212, p. 103561, 2022.

[2] M. Hogan, S. Landau-Feibish, M. Tahmasbi Arashloo, J. Rexford,
D. Walker, and R. Harrison, “Elastic Switch Programming with P4All,”
in Proceedings of the 19th ACM Workshop on Hot Topics in Networks
(HotNets), 2020, pp. 168–174.

[3] J. Sonchack, D. Loehr, J. Rexford, and D. Walker, “Lucid: A language
for control in the data plane,” in Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, 2021, pp. 731–747.

[4] A. Leivadeas and M. Falkner, “A Survey on Intent-Based Networking,”
IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 625–655,
2022.

[5] M. Riftadi and F. Kuipers, “P4I/O: Intent-based Networking with P4,”
in 2019 IEEE Conference on Network Softwarization (NetSoft). IEEE,
2019, pp. 438–443.

[6] Z. Hang, M. Wen, Y. Shi, and C. Zhang, “Programming Protocol-
Independent Packet Processors High-Level Programming (P4HLP):
Towards Unified High-Level Programming for a Commodity Pro-
grammable Switch,” Electronics, vol. 8, no. 9, p. 958, 2019.

[7] A. S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z.
Granville, W. Willinger, and S. G. Rao, “Hey, Lumi! Using Natural
Language for Intent-Based Network Management,” in USENIX Annual
Technical Conference, 2021, pp. 625–639.

[8] Introducing ChatGPT. Accessed: 2023-5-8. [Online]. Available:
https://openai.com/blog/chatgpt

[9] Introducing Llama: A foundational, 65-billion-parameter lan-
guage model. Accessed: 2023-5-8. [Online]. Available:
https://ai.facebook.com/blog/large-language-model-llama-meta-ai/

[10] A. Borji, “A categorical archive of chatgpt failures,” arXiv preprint
arXiv:2302.03494, 2023.

[11] P4Runtime Spec. Accessed: 2023-5-8. [Online]. Available:
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html

[12] H. Zhang, “An Investigation of the Relationships Between Lines of
Code and Defects (ICSM),” in 2009 IEEE International Conference on
Software Maintenance, 2009, pp. 274–283.

[13] M. Hogan, S. Landau-Feibish, M. T. Arashloo, J. Rexford, and
D. Walker, “Modular Switch Programming Under Resource Con-
straints,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2022, pp. 1–15.

[14] A. Angi, A. Sacco, F. Esposito, G. Marchetto, and A. Clemm, “Howdah:
Load Profiling via In-Band Flow Classification and P4,” in 2022 18th
International Conference on Network and Service Management (CNSM).
IEEE, 2022, pp. 46–54.

[15] R. Datta, S. Choi, A. Chowdhary, and Y. Park, “P4Guard: Designing P4
Based Firewall,” in 2018 IEEE Military Communications Conference
(MILCOM). IEEE, 2018, pp. 1–6.

7

Antonino Angi received his M.Sc. degree in Com-
puter Engineering from Politecnico di Torino, Italy
in 2020, and he is currently a Ph.D. student at
the same university. His research interests include
network architecture and management protocols,
machine learning for computer networks, and data-
plane programmability.

Alessio Sacco is an Assistant Professor at Politec-
nico di Torino, Italy. He received the Ph.D. degree
in computer engineering from the same university in
2022. His research interests include architecture and
protocols for network management; implementation
and design of cloud computing applications; algo-
rithms and protocols for service-based architecture,
such as Software Defined Networks (SDN), used in
conjunction with Machine Learning algorithms.

Flavio Esposito is an Associate Professor with the
Department of Computer Science at Saint Louis
University (SLU). He received an M.Sc. degree in
Telecommunication Engineering from the University
of Florence and a Ph.D. in computer science from
Boston University. Flavio’s main research interests
include network management, network virtualiza-
tion, and distributed systems.

Guido Marchetto received a Ph.D. degree in com-
puter engineering from the Politecnico di Torino, in
2008, where he is currently an Ass. Prof. with the
Department of Control and Computer Engineering.
His research topics cover distributed systems and
formal verification of systems and protocols. His
interests also include network protocols and network
architectures.

Alexander Clemm is a Distinguished Engineer in
Futurewei’s Future Networks and Innovation Group
in Santa Clara, CA. He has been involved in
networking software and management technology
throughout his career. He has served on the Organiz-
ing Committees of many management and network
softwarization conferences. He has around 50 pub-
lications, 50 issued patents, and several books and
RFCs. He holds an M.S. in computer science from
Stanford University and a Ph.D. from the University
of Munich, Germany.

