
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NAIL: A Network Management Architecture for Deploying Intent into Programmable Switches / Angi, Antonino; Sacco,
Alessio; Esposito, Flavio; Marchetto, Guido; Clemm, Alexander. - In: IEEE COMMUNICATIONS MAGAZINE. - ISSN
0163-6804. - ELETTRONICO. - 62:6(2024), pp. 28-34. [10.1109/mcom.001.2300313]

Original

NAIL: A Network Management Architecture for Deploying Intent into Programmable Switches

Publisher:

Published
DOI:10.1109/mcom.001.2300313

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989579 since: 2024-06-17T13:56:23Z

IEEE

IEEE Communications Magazine • June 202428

ISSN: 0163-6804

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Abstract
Programmable switches allow network oper-

ators to implement their customized network
behavior. Despite its benefits, data-plane program-
mability has many practical challenges, including
the ability to transfer intended behaviors on for-
warding devices. Languages, such as P4 repre-
sent a low level of abstraction, and corresponding
programs are cumbersome to manage and con-
figure for DevOps engineers, presenting a barrier
to adoption. To facilitate such adoption, we pro-
pose NAIL, an architecture that allows network
engineers to articulate desired network behaviors
at a higher, more expressive layer and then trans-
late such behaviors into executable code using
a transpiler that acts as a network intent trans-
lator. NAIL can detect and properly instruct the
network devices affected by the intent. Then, it
offers continuous monitoring functionality to ver-
ify whether the intent is met. We demonstrate
the effectiveness of our solutions with some use
cases, showing the fast reaction to updates and
the applicability of supplied intent.

Introduction
Recent advances in data-plane programmability
have enabled users to inject rules into program-
mable switches, allowing network programmers to
customize the network for their particular needs.
These switches have distinct programmable archi-
tectures, among which the Programmable Inde-
pendent Switch Architecture (PISA) stands out.
PISA is a highly customizable pipeline architecture
that is extensively employed in the telecommuni-
cations and network industries due to its ability to
adapt to the specific requirements and needs of
operators. The possibility of programming switch-
es has launched networking into a new era of
vendor-independent runnable software, providing
network operators with greater flexibility, portabil-
ity, and consistency. Researchers have shown that
adopting PISA reduces costs and increases scal-
ability when applied to highly demanding applica-
tion layer systems, for example, Next Generation
Firewall (NGFW) or Deep Packet Inspection (DPI)
[1]. Different network programming approach-
es have been developed, protocol based, that is,
using SRv6, where labels are interpreted as pack-

et instructions or evolved MPLS, currently under
standardization and data-plane based, such as P4
and OpenFlow.

Data-plane programming languages, such as
P4 have caused quite a stir across the industry, as
they allow network operators to program packet
processing pipelines that used to be hard-cod-
ed, in the process allowing to implement custom
packet processing behavior. However, it is also
known that writing code in P4 is not easy as the
language is limited by its internal resources, does
not provide a rich abstraction, and debugging
data plane programs is complicated, causing net-
work programmers to engage in a series of “trial
and errors” processes. Researchers have tried to
make P4 code easier to write by defining data
structures that allow a more elastic switch pro-
gramming. As an example of this line of research
P4All [2] stands out, where the authors presented
an elastic data structure that automatically adapts
to each switch’s hardware resources, allowing
more portable and modular modules. Another
recent work, Lucid [3], presents a language that
allows PISA switches to customize and control
their data-planes with P4, thus allowing network
management to users that are not familiar with
network programming languages.

Despite such valuable improvements, data
plane programming in general, and P4 program-
ming in particular, is still considered challenging
by many, and higher-level programming abstrac-
tions would alleviate the network programmabili-
ty learning curve. To this aim, many authors have
proposed systems that combine frameworks with
low-level policy translators to automate the net-
work as much as possible. At the same time, the
concepts of Intent and Intent-Based Network-
ing have been gaining traction, with intent being
defined as a declarative set of goals and outcomes
that a network should meet. An example of a pos-
sible intent could be: “Link utilization in every link
should be less than 70 percent” [4]. As a result,
Intent-based networking does not only include
proper rendering of intent as code on a per-switch
basis, but also incorporates deployment aspects
such as the “zero-touch networks” paradigm.

Following the intent paradigm, researchers
have studied how to apply software methodol-

Antonino Angi, Alessio Sacco, and Guido Marchetto are with Politecnico di Torino, Italy; Antonino Angi is also with Saint Louis University, USA;
Flavio Esposito is with Saint Louis University, USA; Alexander Clemm is with Futurewei Inc., USA.Digital Object Identifier: 10.1109/MCOM.001.2300313

NETWORK SOFTWARIZATION AND MANAGEMENT

The authors propose NAIL, an
architecture that allows network
engineers to articulate desired
network behaviors at a higher,
more expressive layer and then
translate such behaviors into
executable code.

Antonino Angi, Alessio Sacco, Flavio Esposito, Guido Marchetto, and Alexander Clemm

NAIL: A Network Management
Architecture for Deploying Intent

into Programmable Switches

IEEE Communications Magazine • June 2024 29This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

ogies to characterize and understand intent and
have them applied to programmable switches. An
example is P4I/O [5], where the authors imple-
mented an Intent Definition Language with the
goal of understanding and translating high-level
intents to lower-level P4 code. While valuable,
this study does not allow users to customize their
network using an interactive API on-demand,
but only through an Intent Definition Language.
Researchers have also studied a way of translating
high-level code into low-level rules using program-
ming languages. This is the case of P4HLP, which
uses a C-style high-level programming language,
E-Domino, to generate P4 programs [6]. Anoth-
er relevant work is Lumi [7], where the authors
propose a system that allows users to ask ques-
tions about the network of a college in the form
of intents and have the specifi c intent translated
and deployed in the data-plane programming lan-
guage. While very interesting and valuable, the
architecture behind it depends on a specifi c intent
defi nition language (IDL) that, as the authors sug-
gest, needs to be extended to work for diff erent
network environments. The emergence of new
Large Language Models (LLMs) like ChatGPT
[8] or Llama [9] has enabled the automation of
translating high-level programming languages into
low-level ones by prompting applications to gen-
erate code for a specific purpose. Nevertheless,
these models invariably require human oversight
to ensure the accuracy of the output and that it
aligns with the input requests [10]. We experi-
enced that ChatGPT generates code with func-
tions that do not exist on original libraries and are
only added by developers in a separate library
branch. This has caused ChatGPT to propose
programming codes that are not functioning if
not with deep know-how and reverse-engineering
integrating procedures.

Intersecting these eff orts and leveraging such
recent advances, in this article, we present the
design and prototype implementation of NAIL,
a network management architecture that helps
translate high-level intents to diff erent lower-level
data plane programming rules. Our solution is
composed of a transpiler that converts human
language-generated intents into data-plane pro-
grams, in general, and P4 (in this implementation)
in particular, using natural language processing
techniques, and a network management API, that
contains the methods used by NAIL to manipu-
late the involved network elements. With NAIL,
intents are translated into working programs, for
example, P4 table rules, using our API, which,
interacting with the NLP methods and databases,
allows network programmers to customize their
network according to some specific behavior
(e.g., load profi ling, stateful fi rewall). To provide
more fl exibility, these rules can also be modifi ed,
and new ones can be added to the network or
removed. Finally, NAIL allows the network pro-
grammer to collect statistics about demanded
intents or a switch for troubleshooting purposes.
We demonstrated NAIL’s performance with some
use cases, also focusing on the lines of code
(LoC) and the updating rules reaction time. Our
experimental results show that NAIL allows imple-
menting any network intent in fewer LoCs than
other state-of-art solutions, while fast reacting to
any rule update.

overALL ArchItecture desIgn
This section describes the design of our network
management architecture composed of a net-
work management object model, a transpiler, and
databases to help manipulate the intent.

Intent to dAtA PLAne ProgrAm WorkfLoW
When the network programmer specifies the
intent, it can be in any natural language (e.g.,
English, Italian, Chinese) since we developed our
parser to be language-independent. However,
the intent could also contain words that may be
difficult to comprehend, bringing noise to our
model and causing misunderstandings or wrong
interpretations. For this reason, we developed our
models using preprocessing techniques in combi-
nation with Natural Language Processing (NLP),
a branch of Artificial Intelligence (AI) that deals
with understanding natural language and extract-
ing information needed for different cases. This
involves a text-cleaning phase that removes all
stop words and reduces them to their root form,
effectively removing any noise and irrelevant
information. The output of this NLP phase is a list
of words, subsequently analyzed by our dictionary
to determine the main objective of the inputted
intent (e.g., load profi ling, fi rewall), and identifi es
all network components involved in such intent
(e.g., switches, links, and port numbers).

An overview of NAIL is shown in Fig. 1. Four
main components form our architecture:
• Converter includes NLP software libraries,

connected with a parser and a dictionary to
create intent objects.

• API includes all methods that allow NAIL
intent object manipulation, that is, create,
delete, update, and get_stats().

Management Information Base (MIB) is a log-
ically centralized database that maintains all
NAIL states, including network elements,
their ids, and subnets. This database is also
used to store all the inputted intents, use-
ful to perform modifications (e.g., updates,
deletion).

• NLP Datasets are used by the NLP meth-
ods to perform the processing phases. They
include data for stopword recognition and
stemming techniques.

FIGURE 1. Architecture Overview: intent is translated and injected into the programmable code of the network
elements.

API

Parser

AI/ML

Network
Management

Objects

Keywords
Dictionary

Management
Information Base (MIB)

create()
delete()

update()
get_stat()

Daemon
API

DPDK

P4

...

eBPF/XDP

Load
Profiling

Stateful
Firewall

Network Applications

NLP Datasets

Network
Programmer

Programmable
Data-Planes

NA IL

Intent Object

Converter

Heavy
Hitters

IEEE Communications Magazine • June 202430 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

As shown in Fig. 1 (yellow blocks), our NAIL API
can interact with different data-plane program-
ming languages and frameworks, for example, P4,
DPDK, or eBPF/XDP.

NAIL API: The User Perspective
NAIL allows network programmers to define an
intent using the create method and manipulate it
using three other operations: delete, update, and
get_stats. By using these four operations, network
programmers can launch new instances of data-
plane programs without knowing how to program
in a specific data-plane programming language,
empowering the zero-touch network paradigm.

Network programmers can define an intent
using the create() API call:

intent_id = create(intent)

After being specified, the intent goes through a
preprocessing phase using NLP methods and then
an analysis with a keyword dictionary to identify
the involved network elements. Finally, NAIL’s
interpreter selects the appropriate actions based
on the intended network elements and primary
objective. Such an objective could involve bypass-
ing a particular switch, prioritizing traffic from a
specific IP address, or blocking traffic between
two specified groups. The return value of the cre-
ate() method is a unique intent_id, corre-
sponding to the intent object that contains the
involved network elements and the network con-
figuration states that have been added to satisfy
the intent’s goal.

Network programmers may retrieve statistics
on a particular intent to troubleshoot the network
by utilizing the get_stats() API, which accepts two
optional parameters: intent_id and switch_id.

get_stats(intent_id, switch_id)

The former parameter enables the collection
of statistics related to a specific intent running on
the network (e.g., number of processed packets
for each involved switch), while the latter is used
to obtain information about a particular switch
(e.g., queue on ports and dropped packets).

To modify a previously added intent, it is pos-
sible to utilize the update() method. This function
accepts a parameter that can be the intent_id of
a previously added intent, or a new intent, which
would invoke the create(), as before:

update(intent_id, new_intent)

If network programmers wish to delete a previ-
ously added intent, they can use the delete() API,
which takes as a parameter the id of the created
intent object:

delete(intent_id)

This function deletes all the network configura-
tions that have been inserted with the intent and
the corresponding intent object.

NAIL API: The Inner Workflow
To describe what happens in NAIL after the user
inputs the desired intent, we start from the exam-
ple described in Listing 1, where our API is used
for requesting a stateful firewall.

After the network programmer has asked to
deploy the intent for blocking traffic from a sub-
net group to another one via the create() method,
NAIL runs a pre-processing phase. This step, uti-
lizing NLP techniques alongside a pre-built dictio-
nary containing regex and keyword recognition
methods, separates the network elements asso-
ciated with the intent and the intent’s main goal.
Such NLP preprocessing phase is composed of
three main steps:
•	 The intent is converted into tokens resulting

in “[‘block’, ‘traffic’, ‘from’, ‘groupa’, ‘to’,
‘groupb’].”

•	 We remove all the stopwords from the list of
tokens, resulting in “[‘block’, ‘traffic’, ‘grou-
pa’, ‘groupb’].”

•	 The remaining tokens are manipulated using
the Porter stemmer, which brings each token
to its canonical form.

This third step does not change the content of our
tokens as they already are in their canonical form.
It is important to notice that these two last steps
use the information contained in the NLP Dataset
to retrieve the necessary words to remove canon-
ical forms. These elements are then matched with
the MIB database to identify them by finding rel-
evant information (e.g., id, number of ports, IP
addresses). In the present scenario, the identified
“group A” and “group B” correspond to two sub-
nets of the topology with two diverse IP ranges.
Then, to identify the intent goal, our API scans
the tokens and matches them with our dictionary,
identifying the keyword “block.”

Concluded this preliminary phase, the deploy
phase starts, and the program generates an
intent object containing its unique incremental
id (returned to the user), the involved network
elements (subnets belonging to GroupA and
GroupB), and the intent goal (“block traffic grou-
pa groupb”). Subsequently, NAIL modifies a
source template P4 code with minimal function-
alities (i.e., IPv4 forwarding), registers, and tables,
with the blocking functions. This is done by inject-
ing table entries into the switch connected to the
subnet of groupB using two main methods from
the P4Runtime library as described below. While
this approach allows reducing possible errors in
compilation, we also deployed the get_stats()
method to allow network programmers to verify
the network behavior and perform two different
actions:

LISTING 1. A stateful firewall implementation with NAIL API (user perspective).

int1 = “Block traffic from GroupA to GroupB”
intentid = create(int1)
#NLP techniques and keywords recognition
#Write into the switch’s table for this action
int2 = “Block traffic from GroupA to GroupC”
update(intentid, int2)
#To add a new intent update() calls create()
intentid = create(int1)
#To get statistics from an intent
getstats(intentid)
#To get statistics from a specific switch
getstats(switchid)
#To delete an intent
delete(intentid)

IEEE Communications Magazine • June 2024 31This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

•	 Retrieve statistics from the customized net-
work

•	 Troubleshoot the network after the insertion
of an intent to verify that the injected rules
are correct.

Prototype Implementation and Evaluation
We evaluated NAIL by implementing several
use-cases (described in Table 1) and choosing P4
as our data-plane programming language. To do
so, we compiled the intent using the p4c com-
piler and adopted the behavioral model version
2 (bmv2) as the target for our software switch.
Finally, we simulated and tested our P4-generated
programs using a leaf-spine datacenter topology
composed of 10 servers and deployed in Mininet,
a network emulator that allows reproducing virtu-
al networks.

NAIL Integration with P4Runtime
We chose P4 as our prototype implementation
because of its compatibility with both software
and hardware-based platforms [1]. While P4 pro-
vides the potential to customize the network to
suit diverse use cases, modifying the P4 program
requires stopping the execution of the current
program and restarting it with an updated one,
which cannot be performed in real-time. For
this reason, in NAIL, we adopted P4Runtime as
a support to our API to improve the flexibility
and the performance of the methods of whom
NAIL is composed, for example, insert, delete,
and update intents. P4Runtime is an open-source
API that enables the communication between a
dataplane and a controller, allowing a single, stan-
dardized interface for controlling and monitoring
the behavior of P4-programmable network devic-
es [11]. Notably, although P4Runtime already
provides a method to insert entries on P4 tables,
it lacks methods for manipulating those entries
after. For this reason, we added three more meth-
ods: to update and delete the added entries and
to retrieve statistics. This has been shown to pro-
vide network programmers and administrators
more flexibility and management of their network.

When NAIL finishes preprocessing a new
intent and creates the intent object, it prepares
the entry to be added using the buildTableEntry
P4Runtime method which takes as parameters
the table name, the action name, and the action
parameters, taken from the intent object, in order

to find the name of the table where the specified
action and its parameters are. Finally, NAIL calls
the WriteTableEntry P4Runtime method to add
the entry to the table. The same procedure is vis-
ible when network programmers want to update
or delete the rules of a previously added intent.
In this cases, NAIL calls the UpdateTableEntry or
the DeleteTableEntry function, respectively, and
simply replaces the old entry with the new one or
deletes the corresponding intent.

NAIL Prototype: Design and Evaluation Metrics
In evaluating our solution, we began by examin-
ing the lines of code (LoC) that comprise NAIL
and comparing them to other relevant works.
LoC serves as a simple yet effective software size
validation metric, allowing us to more accurately
assess the scale and complexity of our implemen-
tation [12]. For this reason, while writing the code
for our use-cases, we report how many lines of
code NAIL generated and compared it with the
LoC generated by P4, P4All [13], and P4I/O [5].

As shown in Table 1, in our implementation,
we considered eight use-cases: an IPv4 forward-
ing, a stateful firewall, a load profiling, a heavy
hitter detector, a DDoS attack detector, Beau-
Coup, PRECISION, and SketchLearn. BeauCoup
is a system that monitors the network through
queries, PRECISION is an algorithm that uses
probabilistic recirculation to find top flows (e.g.,
detect heavy hitters) on switches, SketchLearn
uses multi-level sketches to identify flows that are
statistically responsible for causing traffic conflicts.
For these three network applications, the LoC is
directly taken from [13]. An interesting obser-
vation is that for most applications, the internal
code of which NAIL is composed is fewer lines of
code than other intent-based architectures, such
as P4I/O. Next to the internal LoC, we looked at
how many LoC would take for network program-
mers to customize their network. This is shown in
the “user perspective” column where we assumed
that the network programmer uses at least all the
methods create(), delete(), get_stats(), update()
multiple times.

Table 1 also shows the “Installation time” col-
umn as the time needed for NAIL to customize
the network after inputting an intent. In gener-
al, the process of translating an intent to code
depends on two main factors: the intent needs to
be translated into network policies (mapping the

TABLE 2. With NAIL several network applications can be implemented with a smaller number of lines of code (LoC) when compared to BeauCoup, PRECISION
and SketchLearn in P4, P4All [2], P4I/O [5] and with NAIL both user perspective and internal code.

LoC in
P4

LoC in
P4All

LoC in
P4I/O

LoC in NAIL\
(user perspective)

LoC in NAIL\
(internal code)

Installation
time [s]

IPv4 Forwarding 197 217 416 5 241 0.558

Stateful Firewall 207 217 477 11 294 1.714

Load Profiling 294 286 N/A 8 305 1.784

Heavy hitters det. 316 N/A 477 6 298 1.762

DDoS Attack det. 233 N/A 477 9 298 1.883

BeauCoup 1500 541 N/A 10 320 1.707

PRECISION 283 266 N/A 9 297 2.487

SketchLearn 366 88 N/A 15 284 2.644

IEEE Communications Magazine • June 202432 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

intent to specifi c network elements) and the code
generation to implement the desired network pol-
icies. In the table, we can see that this value is rel-
atively low for all network applications, showing
how NAIL easily reacts to an intent and installs it
into the network in only a few steps. Taking only
a few seconds to parse and install network intents,
we believe that NAIL can open up new opportu-
nities for network programmers compared to the
hours (or even days) that are needed to write P4
programs and then deploy them.

LoAd ProfILIng (LP)
Load profiling refers to the process of having
different priorities for different traffic demands.
Studies have shown how critical it can be to
deploy an effi cient load profi ler, as the whole traf-
fic optimization depends on it, especially when
it is adopted in big topologies, such as datacen-
ters. By analyzing traffi c patterns and associating
a specific profile, the network administrator can
identify bottlenecks, effi ciently allocate resources
and improve the network’s overall performance.
For this reason, researchers have studied diff erent
algorithms and ways of bringing load profi ling into
the data-plane of SDN programmable switches,
using P4 as programming language [14].

In NAIL, we considered a use-case of a
load profiler that sets different weights on each
switch’s port. To test our use-case and evaluate
if our network respects the desired profile, we
sent and received 1000 ICMP packets between
two servers not belonging to the same leaf. Fig-
ure 2 compared the generated load profile: the
obtained one (in green) and the desired one (in
white). It is noticeable that the actual load profi le
coherently respects the desired one throughout
all ports of our switches.

stAtefuL fIreWALL (sfW)
We considered a stateful fi rewall (SFW) as a use-
case scenario given the fact that nowadays com-

panies and individuals widely use a firewall to
protect their networks from unsolicited traffi c, and
researchers have introduced fi rewall applications
in their studies [1, 3]. As fi rewalls are used to cate-
gorize and fi lter traffi c, we developed our solution
in the data plane using a bloom fi lter: a probabi-
listic data structure mainly used for its fast com-
putation time in small memory space. Although it
may cause false positive fi ltering during the com-
putation, the bloom fi lter is still widely adapted in
various network security and privacy methods.

We implemented our SFW in the data-plane
as it does not need constant interaction with the
control-plane, which may cause delays and high
response time. In this study, for each flow, our
PISA switches compute a bloom fi lter hashing the
5-tuple composed of IP source and destination
address, TCP source and destination port, and the
protocol used. The results are stored in registers
for a subsequent lookup function, which deter-
mines whether incoming packets are from the
internal network or external and, in this latter case,
discard them. Additionally, we track the number
of packets passing through each switch, including
those dropped, for statistical and troubleshooting
purposes. One common problem in implement-
ing a stateful firewall is the order in which rules
are installed and evaluated in the device. If rules
are not ordered correctly in a stateful fi rewall, it
can lead to unintended consequences, for exam-
ple, blocking desired traffi c. In NAIL, we consider
the intent specifi cation time as a priority criterion
and continuous monitoring as a way for the user
to verify that rules are applied correctly and that
desired security outcomes are achieved.

In Fig. 3, we evaluated how the round trip
time (RTT) reacts when the packet size increas-
es and compared it to another software fi rewall,
P4Guard [15], and to a baseline case when there
is no SFW installed. The figure shows that the
three cases achieve almost the same performance
when the packets are small (100-900 Bytes).
However, when the packets are big (900–10000
Bytes), it is more visible that, despite using bloom
fi lters, the fi rewall deployed with NAIL performs
better than P4Guard. This shows that the imple-
mentation made by NAIL, despite a zero-touch
data-plane coding from the network program-
mer, gives promising results. It is important to
notice that P4Guard uses the P4_14 version of P4
instead of the last one, P4_16, which is known to
perform better than the previous version. When
our fi rewall is compared to a case with no fi rewall
installed, we can notice a limited overhead that
could be caused by the hash functions deployed
in our fi rewall.

uPdAtIng ruLes
Another important aspect of NAIL is the possi-
bility of updating an existing table entry by just
using the update() method. As mentioned earli-
er, NAIL can dynamically modify any forwarding
table, adding new entries or even modifying exist-
ing ones, in response to changes in the network
topology, traffi c patterns, user needs, or other fac-
tors. This allows the network to adapt to changing
conditions and optimize its performance in real-
time without restarting the whole configuration.
This dynamic modifi cation of a table entry has to
be performed as quickly as possible, since there

FIGURE 3. RTT evolution for diff erent packet size (in bytes) when a stateful
firewall is installed.

100 500 900 1200 1500 5000 10000
Packet size (Bytes)

0

50

100

RT
T
(m

s)

Firewall with NAIL
Firewall with P4Guard
No Firewall

FIGURE 2. Traff ic follows the desired load profiling rule specified by the
intent.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Port number

0

10

20

30

40

50

Lo
ad

(k
B)

Actual Load Profile
Desirable Load Profile

IEEE Communications Magazine • June 2024 33This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

might be situations in which a rerouting needs
to be performed for a failed link or other reason,
making the reaction time to an update a critical
factor.

In NAIL we evaluated the reaction time of
updating a table entry in Fig. 4, focusing on the
applications that we deployed: load profi ling (Fig.
4b), stateful fi rewall (Fig. 4c), and an overall reac-
tion time when both applications are running (Fig.
4a). Looking at Fig. 4b, we evaluated the reaction
time when the network administrator wants to
update an existing rule on a table, modifying the
weights that have been put on a specifi c switch’s
ports, and compared it to the traditional way of
updating an existing rule: writing the new entry
on a textual file and restarting the configuration
of the network. From the figure, we can see
that NAIL, thanks to the update() performed in
real-time, always achieves lower reaction times
(in ms) compared to a traditional entry update,
allowing the network programmer to quickly
modify the profi le for its network according to its
needs, failed links, traffi c pattern or other factors.
It is also visible that the highest reaction time is
achieved when the function is called for the fi rst
time; meanwhile, the reaction time is even lower
for all the next calls. The same behavior is notice-
able in Fig. 4c, where a stateful fi rewall is installed
in our network. Even in this case, we compared
a stateful firewall rule updated with NAIL and a
stateful fi rewall updated traditionally. It is visible
from the figure that NAIL performs better and
achieves up to 83.8 percent faster reaction time
than the traditional update way when the update()
is called for the first time, while still maintaining
better performance when an update is requested
other times. After collecting these results, we con-
sidered a situation when we have both applica-
tions running in our networks: load profi ling and
a stateful firewall; and the network programmer
wants to update rules in both applications. The
results are shown in Fig. 4a, where we computed
the reaction time and, similarly to the case when
only one of the applications is deployed, we can
see that the reaction time is considerably low and
achieves up to 22.6 ms in the case of update a
rule for a load profi ling, probably because of the
diff erent weights to install for each switch’s port.

concLusIon
In this article, we presented NAIL, an architecture
that translates network intents into programma-
ble entities programs, with the aim of creating
a management abstraction that is more flexible
and simpler to manage even for users with limited
technical expertise. While NAIL can be used for
diff erent programmable switches, here we focus

on switches designed following the PISA architec-
ture and on their default programming language,
P4. We have evaluated our transpiler with known
use-cases, demonstrating how diff erent intent can
be specifi ed, ranging from prioritizing profi les to
security issues detection.

That being said, we are far from being done,
as considerable items for further work remain. For
one, to simplify the task of network engineers fur-
ther, NAIL could be complemented with automat-
ed deployment techniques, such as zero-touch
Deployment (ZTD) to deliver continuous code
updates. Secondly, the natural language interface
can be improved by integrating NAIL and emerg-
ing chatbots to not only allow the user to input
intent but to engage them in a dialog as needed
to refi ne intent, inform of what intent the network
can actually deliver, and negotiate issues such as
the need to resolve potential conflicts between
competing intent.

AcknoWLedgment
This work has been partially supported by NSF
awards 2133407 and 2201536.

references
[1] F. Hauser et al., “A Survey on Data Plane Programming

With P4: Fundamentals, Advances, and Applied Research,”
J. Network and Computer Applications, vol. 212, 2022, p.
103561.

[2] M. Hogan et al., “Elastic Switch Programming with P4All,”
Proc. 19th ACM Workshop on Hot Topics in Networks,
2020, pp. 168–74.

[3] J. Sonchack et al., “Lucid: A Language for Control in the
Data Plane,” Proc. 2021 ACM SIGCOMM 2021 Conf., 2021,
pp. 731–47.

[4] A. Leivadeas and M. Falkner, “A Survey on Intent-Based Net-
working,” IEEE Commun. Surveys & Tutorials, vol. 25, no. 1,
2022, pp. 625–55.

[5] M. Riftadi and F. Kuipers, “P4I/O: Intent-Based Networking
with P4,” Proc. 2019 IEEE Conf. Network Softwarization,
IEEE, 2019, pp. 438–43.

[6] Z. Hang et al., “Programming Protocol-Independent Packet
Processors High-Level Programming (P4HLP): Towards Uni-
fi ed High-Level Programming for a Commodity Programma-
ble Switch,” Electronics, vol. 8, no. 9, 2019, p. 958.

[7] A. S. Jacobs et al., “Hey, Lumi! Using Natural Language for
Intent-Based Network Management,” Proc. USENIX Annual
Technical Conf., 2021, pp. 625–39.

[8] Introducing ChatGPT; https://openai.com/blog/chatgpt;
accessed: 2023-5-8.

[9] Introducing Llama: A Foundational, 65-Billion-Parameter Lan-
guage Model; https://ai.facebook.com/blog/large-language-
model-llama-meta-ai/; accessed: 2023-5-8.

[10] A. Borji, “A Categorical Archive of Chatgpt Failures,” arXiv
preprint arXiv:2302.03494, 2023.

[11] P4Runtime Spec.; https://p4.org/p4-spec/p4runtime/main/
P4Runtime-Spec.html; accessed: 2023-5-8.

[12] H. Zhang, “An Investigation of the Relationships Between
Lines of Code and Defects (ICSM),” Proc. 2009 IEEE Int’l.
Conf. Software Maintenance, 2009, pp. 274–83.

[13] M. Hogan et al., “Modular Switch Programming Under
Resource Constraints,” Proc. USENIX Symposium on Net-
worked Systems Design and Implementation, 2022, pp.
1–15.

FIGURE 4. a) Reaction time when an update() is requested for a load profiling and a stateful firewall application; b) Comparing the reaction time when an update() is performed with NAIL and without
NAIL for a load profiling; c) For a stateful firewall.

0 20 40 60 80
Time

0

10

20
Re

ac
tio

n
tim

e
(m

s) Load Profiling
Stateful Firewall

0 20 40 60 80
Time

0

20

40

60

Re
ac
tio

n
tim

e
(m

s) Load Profiling with NAIL
Load Profiling without NAIL

0 20 40 60 80
Time

0

10

20

30

Re
ac
tio

n
tim

e
(m

s) Stateful Firewall with NAIL
Stateful Firewall without NAIL

a) b) c)

IEEE Communications Magazine • June 202434 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[14] A. Angi et al., “Howdah: Load Profiling via In-Band Flow
Classification and P4,” Proc. 2022 18th Int’l. Conf. Network
and Service Management, IEEE, 2022, pp. 46–54.

[15] R. Datta et al., “P4Guard: Designing P4 Based Firewall,”
Proc. 2018 IEEE Military Commun. Conf., IEEE, 2018, pp.
1–6.

Biographies
Antonino Angi received his M.Sc. degree in Computer Engi-
neering from Politecnico di Torino, Italy, in 2020, and he is
currently a Ph.D. student at the same university. His research
interests include network architecture and management proto-
cols, machine learning for computer networks, and data-plane
programmability.

Alessio Sacco is an Assistant Professor at Politecnico di Torino,
Italy. He received his Ph.D. degree in computer engineering
from the same university, in 2022. His research interests include
architecture and protocols for network management, imple-
mentation and design of cloud computing applications, and
algorithms and protocols for service-based architecture, such
as Software Defined Networks (SDN), used in conjunction with
Machine Learning algorithms.

Flavio Esposito is an Associate Professor with the Depart-
ment of Computer Science at Saint Louis University (SLU). He
received an M.Sc. degree in Telecommunication Engineering
from the University of Florence and a Ph.D. in computer science
from Boston University. Flavio’s main research interests include
network management, network virtualization, and distributed
systems.

Guido Marchetto received a Ph.D. degree in computer engi-
neering from the Politecnico di Torino, in 2008, where he is
currently an Ass. Prof. with the Department of Control and
Computer Engineering. His research topics cover distributed sys-
tems and formal verification of systems and protocols. His inter-
ests also include network protocols and network architectures.

Alexander Clemm is a Distinguished Engineer in Futurewei’s
Future Networks and Innovation Group in Santa Clara, CA.
He has been involved in networking software and manage-
ment technology throughout his career. He has served on the
Organizing Committees of many management and network
softwarization conferences. He has around 50 publications, 50
issued patents, and several books and RFCs. He holds an M.S. in
computer science from Stanford University and a Ph.D. from the
University of Munich, Germany.

Open Access funding provided by Politecnico di Torino within the CRUI CARE agreement.

