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Abstract
Programmable switches allow network oper-

ators to implement their customized network 
behavior. Despite its benefits, data-plane program-
mability has many practical challenges, including 
the ability to transfer intended behaviors on for-
warding devices. Languages, such as P4 repre-
sent a low level of abstraction, and corresponding 
programs are cumbersome to manage and con-
figure for DevOps engineers, presenting a barrier 
to adoption. To facilitate such adoption, we pro-
pose NAIL, an architecture that allows network 
engineers to articulate desired network behaviors 
at a higher, more expressive layer and then trans-
late such behaviors into executable code using 
a transpiler that acts as a network intent trans-
lator. NAIL can detect and properly instruct the 
network devices affected by the intent. Then, it 
offers continuous monitoring functionality to ver-
ify whether the intent is met. We demonstrate 
the effectiveness of our solutions with some use 
cases, showing the fast reaction to updates and 
the applicability of supplied intent.

Introduction
Recent advances in data-plane programmability 
have enabled users to inject rules into program-
mable switches, allowing network programmers to 
customize the network for their particular needs. 
These switches have distinct programmable archi-
tectures, among which the Programmable Inde-
pendent Switch Architecture (PISA) stands out. 
PISA is a highly customizable pipeline architecture 
that is extensively employed in the telecommuni-
cations and network industries due to its ability to 
adapt to the specific requirements and needs of 
operators. The possibility of programming switch-
es has launched networking into a new era of 
vendor-independent runnable software, providing 
network operators with greater flexibility, portabil-
ity, and consistency. Researchers have shown that 
adopting PISA reduces costs and increases scal-
ability when applied to highly demanding applica-
tion layer systems, for example, Next Generation 
Firewall (NGFW) or Deep Packet Inspection (DPI) 
[1]. Different network programming approach-
es have been developed, protocol based, that is, 
using SRv6, where labels are interpreted as pack-

et instructions or evolved MPLS, currently under 
standardization and data-plane based, such as P4 
and OpenFlow.

Data-plane programming languages, such as 
P4 have caused quite a stir across the industry, as 
they allow network operators to program packet 
processing pipelines that used to be hard-cod-
ed, in the process allowing to implement custom 
packet processing behavior. However, it is also 
known that writing code in P4 is not easy as the 
language is limited by its internal resources, does 
not provide a rich abstraction, and debugging 
data plane programs is complicated, causing net-
work programmers to engage in a series of “trial 
and errors” processes. Researchers have tried to 
make P4 code easier to write by defining data 
structures that allow a more elastic switch pro-
gramming. As an example of this line of research 
P4All [2] stands out, where the authors presented 
an elastic data structure that automatically adapts 
to each switch’s hardware resources, allowing 
more portable and modular modules. Another 
recent work, Lucid [3], presents a language that 
allows PISA switches to customize and control 
their data-planes with P4, thus allowing network 
management to users that are not familiar with 
network programming languages.

Despite such valuable improvements, data 
plane programming in general, and P4 program-
ming in particular, is still considered challenging 
by many, and higher-level programming abstrac-
tions would alleviate the network programmabili-
ty learning curve. To this aim, many authors have 
proposed systems that combine frameworks with 
low-level policy translators to automate the net-
work as much as possible. At the same time, the 
concepts of Intent and Intent-Based Network-
ing have been gaining traction, with intent being 
defined as a declarative set of goals and outcomes 
that a network should meet. An example of a pos-
sible intent could be: “Link utilization in every link 
should be less than 70 percent” [4]. As a result, 
Intent-based networking does not only include 
proper rendering of intent as code on a per-switch 
basis, but also incorporates deployment aspects 
such as the “zero-touch networks” paradigm.

Following the intent paradigm, researchers 
have studied how to apply software methodol-
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ogies to characterize and understand intent and 
have them applied to programmable switches. An 
example is P4I/O [5], where the authors imple-
mented an Intent Definition Language with the 
goal of understanding and translating high-level 
intents to lower-level P4 code. While valuable, 
this study does not allow users to customize their 
network using an interactive API on-demand, 
but only through an Intent Definition Language. 
Researchers have also studied a way of translating 
high-level code into low-level rules using program-
ming languages. This is the case of P4HLP, which 
uses a C-style high-level programming language, 
E-Domino, to generate P4 programs [6]. Anoth-
er relevant work is Lumi [7], where the authors 
propose a system that allows users to ask ques-
tions about the network of a college in the form 
of intents and have the specifi c intent translated 
and deployed in the data-plane programming lan-
guage. While very interesting and valuable, the 
architecture behind it depends on a specifi c intent 
defi nition language (IDL) that, as the authors sug-
gest, needs to be extended to work for diff erent 
network environments. The emergence of new 
Large Language Models (LLMs) like ChatGPT 
[8] or Llama [9] has enabled the automation of 
translating high-level programming languages into 
low-level ones by prompting applications to gen-
erate code for a specific purpose. Nevertheless, 
these models invariably require human oversight 
to ensure the accuracy of the output and that it 
aligns with the input requests [10]. We experi-
enced that ChatGPT generates code with func-
tions that do not exist on original libraries and are 
only added by developers in a separate library 
branch. This has caused ChatGPT to propose 
programming codes that are not functioning if 
not with deep know-how and reverse-engineering 
integrating procedures.

Intersecting these eff orts and leveraging such 
recent advances, in this article, we present the 
design and prototype implementation of NAIL, 
a network management architecture that helps 
translate high-level intents to diff erent lower-level 
data plane programming rules. Our solution is 
composed of a transpiler that converts human 
language-generated intents into data-plane pro-
grams, in general, and P4 (in this implementation) 
in particular, using natural language processing 
techniques, and a network management API, that 
contains the methods used by NAIL to manipu-
late the involved network elements. With NAIL, 
intents are translated into working programs, for 
example, P4 table rules, using our API, which, 
interacting with the NLP methods and databases, 
allows network programmers to customize their 
network according to some specific behavior 
(e.g., load profi ling, stateful fi rewall). To provide 
more fl exibility, these rules can also be modifi ed, 
and new ones can be added to the network or 
removed. Finally, NAIL allows the network pro-
grammer to collect statistics about demanded 
intents or a switch for troubleshooting purposes. 
We demonstrated NAIL’s performance with some 
use cases, also focusing on the lines of code 
(LoC) and the updating rules reaction time. Our 
experimental results show that NAIL allows imple-
menting any network intent in fewer LoCs than 
other state-of-art solutions, while fast reacting to 
any rule update.

overALL ArchItecture desIgn
This section describes the design of our network 
management architecture composed of a net-
work management object model, a transpiler, and 
databases to help manipulate the intent.

Intent to dAtA PLAne ProgrAm WorkfLoW
When the network programmer specifies the 
intent, it can be in any natural language (e.g., 
English, Italian, Chinese) since we developed our 
parser to be language-independent. However, 
the intent could also contain words that may be 
difficult to comprehend, bringing noise to our 
model and causing misunderstandings or wrong 
interpretations. For this reason, we developed our 
models using preprocessing techniques in combi-
nation with Natural Language Processing (NLP), 
a branch of Artificial Intelligence (AI) that deals 
with understanding natural language and extract-
ing information needed for different cases. This 
involves a text-cleaning phase that removes all 
stop words and reduces them to their root form, 
effectively removing any noise and irrelevant 
information. The output of this NLP phase is a list 
of words, subsequently analyzed by our dictionary 
to determine the main objective of the inputted 
intent (e.g., load profi ling, fi rewall), and identifi es 
all network components involved in such intent 
(e.g., switches, links, and port numbers).

An overview of NAIL is shown in Fig. 1. Four 
main components form our architecture:
• Converter includes NLP software libraries, 

connected with a parser and a dictionary to 
create intent objects.

• API includes all methods that allow NAIL 
intent object manipulation, that is, create, 
delete, update, and get_stats().

Management Information Base (MIB) is a log-
ically centralized database that maintains all 
NAIL states, including network elements, 
their ids, and subnets. This database is also 
used to store all the inputted intents, use-
ful to perform modifications (e.g., updates, 
deletion).

• NLP Datasets are used by the NLP meth-
ods to perform the processing phases. They 
include data for stopword recognition and 
stemming techniques.

FIGURE 1. Architecture Overview: intent is translated and injected into the programmable code of the network 
elements.
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As shown in Fig. 1 (yellow blocks), our NAIL API 
can interact with different data-plane program-
ming languages and frameworks, for example, P4, 
DPDK, or eBPF/XDP.

NAIL API: The User Perspective
NAIL allows network programmers to define an 
intent using the create method and manipulate it 
using three other operations: delete, update, and 
get_stats. By using these four operations, network 
programmers can launch new instances of data-
plane programs without knowing how to program 
in a specific data-plane programming language, 
empowering the zero-touch network paradigm.

Network programmers can define an intent 
using the create() API call:

intent_id = create(intent)

After being specified, the intent goes through a 
preprocessing phase using NLP methods and then 
an analysis with a keyword dictionary to identify 
the involved network elements. Finally, NAIL’s 
interpreter selects the appropriate actions based 
on the intended network elements and primary 
objective. Such an objective could involve bypass-
ing a particular switch, prioritizing traffic from a 
specific IP address, or blocking traffic between 
two specified groups. The return value of the cre-
ate() method is a unique intent_id, corre-
sponding to the intent object that contains the 
involved network elements and the network con-
figuration states that have been added to satisfy 
the intent’s goal.

Network programmers may retrieve statistics 
on a particular intent to troubleshoot the network 
by utilizing the get_stats() API, which accepts two 
optional parameters: intent_id and switch_id.

get_stats(intent_id, switch_id)

The former parameter enables the collection 
of statistics related to a specific intent running on 
the network (e.g., number of processed packets 
for each involved switch), while the latter is used 
to obtain information about a particular switch 
(e.g., queue on ports and dropped packets).

To modify a previously added intent, it is pos-
sible to utilize the update() method. This function 
accepts a parameter that can be the intent_id of 
a previously added intent, or a new intent, which 
would invoke the create(), as before: 

update(intent_id, new_intent)

If network programmers wish to delete a previ-
ously added intent, they can use the delete() API, 
which takes as a parameter the id of the created 
intent object: 

delete(intent_id)

This function deletes all the network configura-
tions that have been inserted with the intent and 
the corresponding intent object.

NAIL API: The Inner Workflow
To describe what happens in NAIL after the user 
inputs the desired intent, we start from the exam-
ple described in Listing 1, where our API is used 
for requesting a stateful firewall.

After the network programmer has asked to 
deploy the intent for blocking traffic from a sub-
net group to another one via the create() method, 
NAIL runs a pre-processing phase. This step, uti-
lizing NLP techniques alongside a pre-built dictio-
nary containing regex and keyword recognition 
methods, separates the network elements asso-
ciated with the intent and the intent’s main goal. 
Such NLP preprocessing phase is composed of 
three main steps: 
•	 The intent is converted into tokens resulting 

in “[‘block’, ‘traffic’, ‘from’, ‘groupa’, ‘to’, 
‘groupb’].”

•	 We remove all the stopwords from the list of 
tokens, resulting in “[‘block’, ‘traffic’, ‘grou-
pa’, ‘groupb’].”

•	 The remaining tokens are manipulated using 
the Porter stemmer, which brings each token 
to its canonical form. 

This third step does not change the content of our 
tokens as they already are in their canonical form. 
It is important to notice that these two last steps 
use the information contained in the NLP Dataset 
to retrieve the necessary words to remove canon-
ical forms. These elements are then matched with 
the MIB database to identify them by finding rel-
evant information (e.g., id, number of ports, IP 
addresses). In the present scenario, the identified 
“group A” and “group B” correspond to two sub-
nets of the topology with two diverse IP ranges. 
Then, to identify the intent goal, our API scans 
the tokens and matches them with our dictionary, 
identifying the keyword “block.”

Concluded this preliminary phase, the deploy 
phase starts, and the program generates an 
intent object containing its unique incremental 
id (returned to the user), the involved network 
elements (subnets belonging to GroupA and 
GroupB), and the intent goal (“block traffic grou-
pa groupb”). Subsequently, NAIL modifies a 
source template P4 code with minimal function-
alities (i.e., IPv4 forwarding), registers, and tables, 
with the blocking functions. This is done by inject-
ing table entries into the switch connected to the 
subnet of groupB using two main methods from 
the P4Runtime library as described below. While 
this approach allows reducing possible errors in 
compilation, we also deployed the get_stats() 
method to allow network programmers to verify 
the network behavior and perform two different 
actions:

LISTING 1. A stateful firewall implementation with NAIL API (user perspective).

int1 = “Block traffic from GroupA to GroupB” 
intentid = create(int1) 
#NLP techniques and keywords recognition 
#Write into the switch’s table for this action 
int2 = “Block traffic from GroupA to GroupC” 
update(intentid, int2) 
#To add a new intent update() calls create() 
intentid = create(int1) 
#To get statistics from an intent 
getstats(intentid) 
#To get statistics from a specific switch 
getstats(switchid) 
#To delete an intent 
delete(intentid)
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•	 Retrieve statistics from the customized net-
work

•	 Troubleshoot the network after the insertion 
of an intent to verify that the injected rules 
are correct.

Prototype Implementation and Evaluation
We evaluated NAIL by implementing several 
use-cases (described in Table 1) and choosing P4 
as our data-plane programming language. To do 
so, we compiled the intent using the p4c com-
piler and adopted the behavioral model version 
2 (bmv2) as the target for our software switch. 
Finally, we simulated and tested our P4-generated 
programs using a leaf-spine datacenter topology 
composed of 10 servers and deployed in Mininet, 
a network emulator that allows reproducing virtu-
al networks.

NAIL Integration with P4Runtime
We chose P4 as our prototype implementation 
because of its compatibility with both software 
and hardware-based platforms [1]. While P4 pro-
vides the potential to customize the network to 
suit diverse use cases, modifying the P4 program 
requires stopping the execution of the current 
program and restarting it with an updated one, 
which cannot be performed in real-time. For 
this reason, in NAIL, we adopted P4Runtime as 
a support to our API to improve the flexibility 
and the performance of the methods of whom 
NAIL is composed, for example, insert, delete, 
and update intents. P4Runtime is an open-source 
API that enables the communication between a 
dataplane and a controller, allowing a single, stan-
dardized interface for controlling and monitoring 
the behavior of P4-programmable network devic-
es [11]. Notably, although P4Runtime already 
provides a method to insert entries on P4 tables, 
it lacks methods for manipulating those entries 
after. For this reason, we added three more meth-
ods: to update and delete the added entries and 
to retrieve statistics. This has been shown to pro-
vide network programmers and administrators 
more flexibility and management of their network.

When NAIL finishes preprocessing a new 
intent and creates the intent object, it prepares 
the entry to be added using the buildTableEntry 
P4Runtime method which takes as parameters 
the table name, the action name, and the action 
parameters, taken from the intent object, in order 

to find the name of the table where the specified 
action and its parameters are. Finally, NAIL calls 
the WriteTableEntry P4Runtime method to add 
the entry to the table. The same procedure is vis-
ible when network programmers want to update 
or delete the rules of a previously added intent. 
In this cases, NAIL calls the UpdateTableEntry or 
the DeleteTableEntry function, respectively, and 
simply replaces the old entry with the new one or 
deletes the corresponding intent.

NAIL Prototype: Design and Evaluation Metrics
In evaluating our solution, we began by examin-
ing the lines of code (LoC) that comprise NAIL 
and comparing them to other relevant works. 
LoC serves as a simple yet effective software size 
validation metric, allowing us to more accurately 
assess the scale and complexity of our implemen-
tation [12]. For this reason, while writing the code 
for our use-cases, we report how many lines of 
code NAIL generated and compared it with the 
LoC generated by P4, P4All [13], and P4I/O [5].

As shown in Table 1, in our implementation, 
we considered eight use-cases: an IPv4 forward-
ing, a stateful firewall, a load profiling, a heavy 
hitter detector, a DDoS attack detector, Beau-
Coup, PRECISION, and SketchLearn. BeauCoup 
is a system that monitors the network through 
queries, PRECISION is an algorithm that uses 
probabilistic recirculation to find top flows (e.g., 
detect heavy hitters) on switches, SketchLearn 
uses multi-level sketches to identify flows that are 
statistically responsible for causing traffic conflicts. 
For these three network applications, the LoC is 
directly taken from [13]. An interesting obser-
vation is that for most applications, the internal 
code of which NAIL is composed is fewer lines of 
code than other intent-based architectures, such 
as P4I/O. Next to the internal LoC, we looked at 
how many LoC would take for network program-
mers to customize their network. This is shown in 
the “user perspective” column where we assumed 
that the network programmer uses at least all the 
methods create(), delete(), get_stats(), update() 
multiple times.

Table 1 also shows the “Installation time” col-
umn as the time needed for NAIL to customize 
the network after inputting an intent. In gener-
al, the process of translating an intent to code 
depends on two main factors: the intent needs to 
be translated into network policies (mapping the 

TABLE 2. With NAIL several network applications can be implemented with a smaller number of lines of code (LoC) when compared to BeauCoup, PRECISION 
and SketchLearn in P4, P4All [2], P4I/O [5] and with NAIL both user perspective and internal code.

LoC in 
P4

LoC in 
P4All

LoC in 
P4I/O

LoC in NAIL\ 
(user perspective)

LoC in NAIL\ 
(internal code)

Installation 
time [s]

IPv4 Forwarding 197 217 416 5 241 0.558

Stateful Firewall 207 217 477 11 294 1.714

Load Profiling 294 286 N/A 8 305 1.784

Heavy hitters det. 316 N/A 477 6 298 1.762

DDoS Attack det. 233 N/A 477 9 298 1.883

BeauCoup 1500 541 N/A 10 320 1.707

PRECISION 283 266 N/A 9 297 2.487

SketchLearn 366 88 N/A 15 284 2.644
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intent to specifi c network elements) and the code 
generation to implement the desired network pol-
icies. In the table, we can see that this value is rel-
atively low for all network applications, showing 
how NAIL easily reacts to an intent and installs it 
into the network in only a few steps. Taking only 
a few seconds to parse and install network intents, 
we believe that NAIL can open up new opportu-
nities for network programmers compared to the 
hours (or even days) that are needed to write P4 
programs and then deploy them.

LoAd ProfILIng (LP)
Load profiling refers to the process of having 
different priorities for different traffic demands. 
Studies have shown how critical it can be to 
deploy an effi  cient load profi ler, as the whole traf-
fic optimization depends on it, especially when 
it is adopted in big topologies, such as datacen-
ters. By analyzing traffi  c patterns and associating 
a specific profile, the network administrator can 
identify bottlenecks, effi  ciently allocate resources 
and improve the network’s overall performance. 
For this reason, researchers have studied diff erent 
algorithms and ways of bringing load profi ling into 
the data-plane of SDN programmable switches, 
using P4 as programming language [14].

In NAIL, we considered a use-case of a 
load profiler that sets different weights on each 
switch’s port. To test our use-case and evaluate 
if our network respects the desired profile, we 
sent and received 1000 ICMP packets between 
two servers not belonging to the same leaf. Fig-
ure 2 compared the generated load profile: the 
obtained one (in green) and the desired one (in 
white). It is noticeable that the actual load profi le 
coherently respects the desired one throughout 
all ports of our switches.

stAtefuL fIreWALL (sfW)
We considered a stateful fi rewall (SFW) as a use-
case scenario given the fact that nowadays com-

panies and individuals widely use a firewall to 
protect their networks from unsolicited traffi  c, and 
researchers have introduced fi rewall applications 
in their studies [1, 3]. As fi rewalls are used to cate-
gorize and fi lter traffi  c, we developed our solution 
in the data plane using a bloom fi lter: a probabi-
listic data structure mainly used for its fast com-
putation time in small memory space. Although it 
may cause false positive fi ltering during the com-
putation, the bloom fi lter is still widely adapted in 
various network security and privacy methods.

We implemented our SFW in the data-plane 
as it does not need constant interaction with the 
control-plane, which may cause delays and high 
response time. In this study, for each flow, our 
PISA switches compute a bloom fi lter hashing the 
5-tuple composed of IP source and destination 
address, TCP source and destination port, and the 
protocol used. The results are stored in registers 
for a subsequent lookup function, which deter-
mines whether incoming packets are from the 
internal network or external and, in this latter case, 
discard them. Additionally, we track the number 
of packets passing through each switch, including 
those dropped, for statistical and troubleshooting 
purposes. One common problem in implement-
ing a stateful firewall is the order in which rules 
are installed and evaluated in the device. If rules 
are not ordered correctly in a stateful fi rewall, it 
can lead to unintended consequences, for exam-
ple, blocking desired traffi  c. In NAIL, we consider 
the intent specifi cation time as a priority criterion 
and continuous monitoring as a way for the user 
to verify that rules are applied correctly and that 
desired security outcomes are achieved.

In Fig. 3, we evaluated how the round trip 
time (RTT) reacts when the packet size increas-
es and compared it to another software fi rewall, 
P4Guard [15], and to a baseline case when there 
is no SFW installed. The figure shows that the 
three cases achieve almost the same performance 
when the packets are small (100-900 Bytes). 
However, when the packets are big (900–10000 
Bytes), it is more visible that, despite using bloom 
fi lters, the fi rewall deployed with NAIL performs 
better than P4Guard. This shows that the imple-
mentation made by NAIL, despite a zero-touch
data-plane coding from the network program-
mer, gives promising results. It is important to 
notice that P4Guard uses the P4_14 version of P4 
instead of the last one, P4_16, which is known to 
perform better than the previous version. When 
our fi rewall is compared to a case with no fi rewall 
installed, we can notice a limited overhead that 
could be caused by the hash functions deployed 
in our fi rewall.

uPdAtIng ruLes
Another important aspect of NAIL is the possi-
bility of updating an existing table entry by just 
using the update() method. As mentioned earli-
er, NAIL can dynamically modify any forwarding 
table, adding new entries or even modifying exist-
ing ones, in response to changes in the network 
topology, traffi  c patterns, user needs, or other fac-
tors. This allows the network to adapt to changing 
conditions and optimize its performance in real-
time without restarting the whole configuration. 
This dynamic modifi cation of a table entry has to 
be performed as quickly as possible, since there 

FIGURE 3. RTT evolution for diff erent packet size (in bytes) when a stateful 
firewall is installed.
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might be situations in which a rerouting needs 
to be performed for a failed link or other reason, 
making the reaction time to an update a critical 
factor.

In NAIL we evaluated the reaction time of 
updating a table entry in Fig. 4, focusing on the 
applications that we deployed: load profi ling (Fig. 
4b), stateful fi rewall (Fig. 4c), and an overall reac-
tion time when both applications are running (Fig. 
4a). Looking at Fig. 4b, we evaluated the reaction 
time when the network administrator wants to 
update an existing rule on a table, modifying the 
weights that have been put on a specifi c switch’s 
ports, and compared it to the traditional way of 
updating an existing rule: writing the new entry 
on a textual file and restarting the configuration 
of the network. From the figure, we can see 
that NAIL, thanks to the update() performed in 
real-time, always achieves lower reaction times 
(in ms) compared to a traditional entry update, 
allowing the network programmer to quickly 
modify the profi le for its network according to its 
needs, failed links, traffi  c pattern or other factors. 
It is also visible that the highest reaction time is 
achieved when the function is called for the fi rst 
time; meanwhile, the reaction time is even lower 
for all the next calls. The same behavior is notice-
able in Fig. 4c, where a stateful fi rewall is installed 
in our network. Even in this case, we compared 
a stateful firewall rule updated with NAIL and a 
stateful fi rewall updated traditionally. It is visible 
from the figure that NAIL performs better and 
achieves up to 83.8 percent faster reaction time 
than the traditional update way when the update()
is called for the first time, while still maintaining 
better performance when an update is requested 
other times. After collecting these results, we con-
sidered a situation when we have both applica-
tions running in our networks: load profi ling and 
a stateful firewall; and the network programmer 
wants to update rules in both applications. The 
results are shown in Fig. 4a, where we computed 
the reaction time and, similarly to the case when 
only one of the applications is deployed, we can 
see that the reaction time is considerably low and 
achieves up to 22.6 ms in the case of update a 
rule for a load profi ling, probably because of the 
diff erent weights to install for each switch’s port.

concLusIon
In this article, we presented NAIL, an architecture 
that translates network intents into programma-
ble entities programs, with the aim of creating 
a management abstraction that is more flexible 
and simpler to manage even for users with limited 
technical expertise. While NAIL can be used for 
diff erent programmable switches, here we focus 

on switches designed following the PISA architec-
ture and on their default programming language, 
P4. We have evaluated our transpiler with known 
use-cases, demonstrating how diff erent intent can 
be specifi ed, ranging from prioritizing profi les to 
security issues detection.

That being said, we are far from being done, 
as considerable items for further work remain. For 
one, to simplify the task of network engineers fur-
ther, NAIL could be complemented with automat-
ed deployment techniques, such as zero-touch 
Deployment (ZTD) to deliver continuous code 
updates. Secondly, the natural language interface 
can be improved by integrating NAIL and emerg-
ing chatbots to not only allow the user to input 
intent but to engage them in a dialog as needed 
to refi ne intent, inform of what intent the network 
can actually deliver, and negotiate issues such as 
the need to resolve potential conflicts between 
competing intent.
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