
24 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On modeling collective risk perception via opinion dynamics / Zino, Lorenzo; Giardini, Francesca; Vilone, Daniele; Cao,
Ming. - In: EUROPEAN JOURNAL OF CONTROL. - ISSN 0947-3580. - ELETTRONICO. - 80:Part A(2024).
[10.1016/j.ejcon.2024.101036]

Original

On modeling collective risk perception via opinion dynamics

Publisher:

Published
DOI:10.1016/j.ejcon.2024.101036

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989571 since: 2024-11-17T07:45:44Z

Elsevier



European Journal of Control 80 (2024) 101036 

A
0
(

Contents lists available at ScienceDirect

European Journal of Control

journal homepage: www.sciencedirect.com/journal/european-journal-of-control

On modeling collective risk perception via opinion dynamics
Lorenzo Zino a,∗, Francesca Giardini b,c, Daniele Vilone d,e, Ming Cao f

a Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
b Department of Sociology, Faculty of Behavioural and Social Sciences, University of Groningen, Grote Rozenstraat 31, Groningen, 9712 TG, The Netherlands
c Rudolf Agricola School for Sustainable Development, University of Groningen, Grote Markt 21, Oude Ebbingestraat 18A, Groningen, 9712 HR, The Netherlands
d Institute of Cognitive Sciences and Technologies, National Research Council, Via Giandomenico Romagnosi 18a, Rome, 00196, Italy
e Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, 28911, Spain
f Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands

A R T I C L E I N F O

Recommended by T. Parisini

Keywords:
Agents networks
Opinion dynamics
Social dynamics

A B S T R A C T

Modeling the collective response to an emergency is a problem of paramount importance in social science
and risk management. Here, we leverage the social psychology literature to develop a mathematical model
tailored to such a real-world problem, grounded in the opinion dynamics theory. In our model, a network of
individuals revise their risk perception by processing information broadcast by the institution and shared by
peers, and accounts for heterogeneity in terms of individuals’ trust in institutions, peers, and in their own risk
sensitivity. Through a rigorous analysis of the model, we establish that the temporal average opinions of the
individuals converge to a steady state and, under some assumptions, we are able to analytically characterize
such a steady state, shedding light on how the individuals’ heterogeneous risk sensitivity shapes the collective
response. Numerical results and simulations are provided to illustrate and corroborate our findings.
1. Introduction

The development and analysis of mathematical models for social dy-
namics have witnessed an increasing interest in the systems and control
community, providing novel theoretically-informed tools to understand
and predict collective human behavior (Aghbolagh, Ye, Zino, Chen, &
Cao, 2023; De Pasquale & Valcher, 2022; Franci, Golubitsky, Stewart,
Bizyaeva, & Leonard, 2023; Friedkin, 2015; Wang et al., 2023; Ye,
Zino, Mlakar, Bolderdijk, Risselada, Fennis, & Cao, 2021; Zhang, Ringh,
Hu, & Karlsson, 2021; Zino, Ye, & Cao, 2020, 2022). In particular, a
key area of research focuses on studying opinion formation in social
communities through the lens of opinion dynamics models (Anderson
& Ye, 2019; Bernardo, Altafini, Proskurnikov, & Vasca, 2024; Deffuant,
Neau, Amblard, & Weisbuch, 2000; DeGroot, 1974; Friedkin & Johnsen,
1990; Proskurnikov & Tempo, 2017; Ye, Qin, Govaert, Anderson, &
Cao, 2019). These models, in which individuals’ opinions evolve in
time through a linear averaging process that accounts for the infor-
mation exchanged with peers on a social network, have been used
to explore a wide range of social phenomena, from the evolution of
social power (Jia, Mirtabatabaei, Friedkin, & Bullo, 2015; Ye, Liu,
Anderson, Yu, & Başar, 2018), to the emergence of disagreement and
polarization (Altafini, 2013; Cisneros-Velarde, Chan, & Bullo, 2020;
Hendrickx, 2014).

∗ Corresponding author.
E-mail addresses: lorenzo.zino@polito.it (L. Zino), f.giardini@rug.nl (F. Giardini), daniele.vilone@istc.cnr.it (D. Vilone), m.cao@rug.nl (M. Cao).

Concerning opinion formation, a problem of particular interest is to
predict the emergent behavior of a population of individuals during an
emergency (Lindell, 2013). In this situation, it is crucial to predict how
the individuals of a population collectively respond to the information
that public authorities and institutions broadcast on the nature of the
risk of the event under consideration in order to avoid underestimating
the risk or, on the other extreme, emergence of panic reactions.

Despite the importance of such a problem, the literature presents
few mathematical models of opinion formation tailored specifically
to such a scenario. On the one hand, classical mathematical models
focus on an abstract representation of opinion dynamics (Anderson &
Ye, 2019); on the other hand, social psychological efforts are mostly
concerned with unveiling the individual-level risk interpretation pro-
cess (Eiser et al., 2012; Mileti & Peek, 2000; Popovic et al., 2020;
Scherer & Cho, 2003; Slovic, 1987), typically overlooking how such
individual-level mechanism propagates at the population-level. In Gia-
rdini and Vilone (2021), Moussaïd (2013) and Roy, Hasan, Abdul-Aziz,
and Mozumder (2022), different agent-based models tailored to cap-
turing the emergence of collective risk perception about an emergency
have been proposed and used to perform numerical simulations. How-
ever, the complexity of such models hinders rigorous analytical studies,
calling for the development of new analytically-treatable mathematical
models for collective risk perception.
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Here, we fill in this gap by proposing a novel analytically-treatable
model for collective risk perception, which is grounded in the theory of
opinion dynamics (Proskurnikov & Tempo, 2017, 2018). In particular,
inspired by Giardini and Vilone (2021) and building on the social psy-
chology literature (Eiser & others, 2012; Mileti & Peek, 2000; Popovic
et al., 2020; Scherer & Cho, 2003; Slovic, 1987), we consider a network
of interacting individuals who are forming their opinion on the risk of
a given hazard. Specifically, individuals are exposed to two different
sources of information: an evaluation of the risk which is officially
broadcast by the institutions and a local risk perception shared by
peers on a dynamical social influence network (Mileti & Peek, 2000;
Scherer & Cho, 2003). Consistent with the social psychology literature
on risk interpretation (Eiser & others, 2012), individuals recursively
revise their risk perception by processing these different information
sources through their own risk sensitivity (Popovic et al., 2020).

Our main contribution is threefold. First, we propose the mathe-
matical model for collective risk perception and we demonstrate that
it can be cast as a generalized version of the well-known Friedkin–
Johnsen opinion dynamic model (Friedkin & Johnsen, 1990) on a
time-varying network. However, the complexity of the network forma-
tion process hinders its direct analysis using standard opinion dynamics
techniques (Proskurnikov & Tempo, 2018). Second, we prove that,
while individuals’ opinions in general tend to keep oscillating, their
temporal averages converge under some mild assumptions on the social
network structure. Third, under some assumptions, we analytically
characterize the steady-state temporal average opinion. Such theoret-
ical result allows us to shed light on how individuals’ risk sensitivity
shapes the collective risk perception, showing that a small amount of
individuals with high risk sensitivity could lead to overreactions and
panic. Although abstract, these results can provide useful insights on
risk communication and perception, thus contributing to the important
and timely issue of disaster risk reduction (United Nations Office for
Disaster Risk Reduction (UNDRR), 2022).

The rest of the paper is organized as follows. In Section 2, we
present the model. In Section 3, we prove some general properties of
the model, including convergence. In Section 4, we characterize the
steady-state temporal average opinions. Section 5 concludes the paper
and outlines future research.

1.1. Notation

We denote the set of nonnegative and strictly positive integer num-
bers by N and N+, respectively. A vector 𝒙 is denoted with bold
lower-case font, with 𝑖th entry 𝑥𝑖 and 𝒙⊤ denoting its transpose; a
matrix 𝑨 is denoted with bold upper-case font, with 𝑗th entry of the
𝑖th row 𝐴𝑖𝑗 . Given a stochastic event 𝐸, we denote its probability by
P[𝐸]; given a random variable 𝑥, we denote its expectation by E[𝑥].

. Model

We consider a population of 𝑛 ∈ N+ individuals, denoted by the set
= {1,… , 𝑛}. Individuals are connected through a time-invariant net-
ork  = ( , ) that captures social influence between the individuals
f the population. In particular, the directed edge (𝑖, 𝑗) ∈  if and only
f 𝑖 can be influenced by the opinion of 𝑗. For any individual 𝑖 ∈  , we
enote by 𝑖 ∶= {𝑗 ∶ (𝑖, 𝑗) ∈ } the set of (out)-neighbors of 𝑖, that
s, the set of individuals who can directly influence the opinion of 𝑖,
nd by 𝑑𝑖 ∶= |𝑖| the (out)-degree of the individual. Here, we assume
hat the set of neighbors of each individual is fixed. However, as we
hall see in the following, it is not said that each individual interacts
ith all their neighbors at every time step. This will eventually induce
time-varying structure that describes the temporal evolution of social

nteractions.
Each individual 𝑖 ∈  is characterized by an opinion 𝑥𝑖(𝑡) ∈ [0, 1],

hich represents individual 𝑖’s risk perception on the emergency at
iscrete time 𝑡 ∈ N, with initial opinion 𝑥 (0) ∈ [0, 1]. Opinions are
𝑖

2 
Table 1
Model variables and parameters.

Symbol Meaning

𝑛 number of individuals
𝑖 (out-)neighbors of individual 𝑖
𝑑𝑖 number of (out-)neighbors of individual 𝑖
𝜌𝑖 risk sensitivity of individual 𝑖
𝜏𝑖 trust in institutions of individual 𝑖
𝜇𝑖 trust in peers of individual 𝑖
𝜄 information broadcast by the institutions
𝑓𝑖(⋅) sharing probability function of individual 𝑖
𝑥𝑖(𝑡) opinion of individual 𝑖 at time 𝑡
𝑦𝑖(𝑡) temporal average opinion of individual 𝑖 up to time 𝑡

gathered into a vector 𝒙(𝑡) = [𝑥1(𝑡),… , 𝑥𝑛(𝑡)]⊤, which represents the
tate of the network at time 𝑡.

Each individual 𝑖 ∈  is characterized by three parameters:

1. risk sensitivity 𝜌𝑖 ∈ {−1, 0,+1},
2. trust in institutions 𝜏𝑖 ∈ [0, 1], and
3. trust in peers 𝜇𝑖 ∈ [0, 1],

ith 𝜏𝑖 + 𝜇𝑖 ≤ 1. Note that 1 − 𝜏𝑖 − 𝜇𝑖 can be interpreted as a measure
of the persistence of the individual.

Opinions of the individuals evolve in time in accordance with ob-
servations from the social psychology literature on risk interpretation,
which provides evidence of the fact that individuals do not directly
take the information broadcast by the institution, but they process
it using information from peers and their own risk sensitivity (Eiser
& others, 2012; Mileti & Peek, 2000; Popovic et al., 2020; Scherer
& Cho, 2003; Slovic, 1987). Grounded on such literature, we define
a two-step update mechanism. First, the individuals gather informa-
tion from the institutional source and from peers, and process such
information, according to a weighted average dynamics, regulated by
the parameters representing the individuals’ trust in institutions and
in peers, respectively. Second, the individuals revise their opinion by
further processing the information gathered, based on their own risk
sensitivity. Such a two-step mechanism is illustrated in Fig. 1, and all
the model variables and parameters are summarized in Table 1.

In the following, we formally define these dynamics and explicitly
derive the set of equations that govern the model. For simplicity, we
will denote the intermediate step of the opinion in the revision from
𝑥𝑖(𝑡) to 𝑥𝑖(𝑡 + 1) after the first step as 𝑧𝑖(𝑡).

.1. Step I: Information gathering

At each time step 𝑡 ∈ N+, each individual 𝑖 ∈  receives information
rom the institutions about the nature of the risk. Specifically, the
nstitution broadcasts a (constant) signal 𝜄 ∈ [0, 1], which quantifies the
ature of the risk. Such a signal should be interpreted as a normalized
uantity, so that 𝜄 = 0 means no risk and 𝜄 = 1 corresponds to maximal

risk.
At the same time, individuals share information with their peers,

consistent with the evidence coming from the social psychological
literature on risk management (Mileti & Peek, 2000; Scherer & Cho,
2003). Specifically, at each time-step 𝑡 ∈ N+, each individual 𝑖 ∈ 
nteracts with a peer 𝑗, selected uniformly at random among their

neighbors 𝑖, independently of the past. The neighbor 𝑗 decides to
share with 𝑖 their opinion with state-dependent probability equal to
𝑓𝑗 (𝑥𝑗 (𝑡)), where 𝑓𝑗 ∶ [0, 1] → [0, 1] is a function termed sharing prob-
ability function that maps the opinion of individual 𝑗 to their tendency
to communicate it. This function captures the fact, well-known in the
social psychology literature, that people tend to transmit information
that is in accordance with their risk perception (Popovic et al., 2020).

To represent such an information sharing process, we use a time-
varying network 𝑡 = ( , 𝑡). If at time 𝑡 ∈ N individual 𝑖 interacts with
𝑗, and 𝑗 decides to share their opinion, then we add the link (𝑖, 𝑗) to
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Fig. 1. Schematic of the two-step opinion update mechanism.
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he edge set 𝑡. We define the adjacency matrix of the communication
etwork as a 𝑛 × 𝑛 time-varying matrix 𝑨(𝑡), with off-diagonal entries
𝑖𝑗 (𝑡) = 1 if (𝑖, 𝑗) ∈ 𝑡 and 𝐴𝑖𝑗 (𝑡) = 0 otherwise. The diagonal entries are
efined as 𝐴𝑖𝑖(𝑡) = 1 −

∑

𝑗∈⧵{𝑖} 𝐴𝑖𝑗 (𝑡). Note that, at each time, exactly
one entry per each row of 𝑨(𝑡) is nonzero: this is the 𝑗th entry if 𝑖
receives information from 𝑗, or the diagonal entry if 𝑖 does not receive
information from the network at time 𝑡.

Then, individual 𝑖 revises their opinion by averaging their current
opinion 𝑥𝑖(𝑡) with the information received from the different sources
of information (i.e., 𝜄 and, possibly, 𝑥𝑗 (𝑡)), using the weights given by
the trust in institutions 𝜏𝑖 and in peers 𝜇𝑖, respectively, obtaining the
following convex combination:

𝑧𝑖(𝑡) = (1 − 𝜇𝑖 − 𝜏𝑖)𝑥𝑖(𝑡) + 𝜇𝑖
∑

𝑗∈
𝐴𝑖𝑗 (𝑡)𝑥𝑗 (𝑡) + 𝜏𝑖𝜄, (1)

which reduces to 𝑧𝑖(𝑡) = (1−𝜏𝑖)𝑥𝑖(𝑡)+𝜏𝑖𝜄, when no information is received
from the network, i.e., if 𝐴𝑖𝑖(𝑡) = 1.

2.2. Step II: Opinion processing through risk sensitivity

After having revised their opinion on the basis of the information
gathered from external sources (institutions and peers), individuals
further process their opinion through their own risk sensitivity. Specif-
ically, following Giardini and Vilone (2021), we assume that each
individual 𝑖 ∈  updates their opinion as

𝑥𝑖(𝑡 + 1) =

⎧

⎪

⎨

⎪

⎩

1
2

(

1 + 𝑧𝑖(𝑡)
)

if 𝜌𝑖 = +1,

𝑧𝑖(𝑡) if 𝜌𝑖 = 0,
1
2 𝑧𝑖(𝑡) if 𝜌𝑖 = −1,

(2)

which can be conveniently re-written as the following linear combina-
tion:

𝑥𝑖(𝑡 + 1) =
(

1 − 1
2
|𝜌𝑖|

)

𝑧𝑖(𝑡) +
1
4
|𝜌𝑖|(1 + 𝜌𝑖). (3)

We conclude this section by observing that the entire two-step
opinion update mechanism can be cast in a compact form as the linear
averaging dynamics on a (weighted) time-varying network, which is
summarized in the following statement.

Proposition 1. For each and every 𝑖 ∈  , the opinion update mechanism
reads

𝑥𝑖(𝑡 + 1) = (1 − 𝜆𝑖)
∑

𝑗∈
�̃�𝑖𝑗 (𝑡)𝑥𝑗 (𝑡) + 𝜆𝑖𝑢𝑖, (4)

where

�̃�𝑖𝑗 (𝑡) =

⎧

⎪

⎨

⎪

⎩

𝜇𝑖
1 − 𝜏𝑖

𝐴𝑖𝑗 (𝑡) if 𝑗 ≠ 𝑖,

1 −
𝜇𝑖

1 − 𝜏𝑖

(

1 − 𝐴𝑖𝑖(𝑡)
)

if 𝑗 = 𝑖,
(5a)

𝜆 = 1
|𝜌 |(1 − 𝜏 ) + 𝜏 , (5b)
𝑖 2 𝑖 𝑖 𝑖 n

3 
𝑢𝑖 =

(

1 − 1
2 |𝜌𝑖|

)

𝜏𝑖𝜄 +
1
4 |𝜌𝑖|(1 + 𝜌𝑖)

1
2 |𝜌𝑖|(1 − 𝜏𝑖) + 𝜏𝑖

. (5c)

Proof. By substituting Eq. (1) into Eq. (3), we obtain

𝑥𝑖(𝑡 + 1) =
(

1 − 1
2 |𝜌𝑖|

) (

(1 − 𝜇𝑖 − 𝜏𝑖)𝑥𝑖(𝑡)

+𝜇𝑖
∑

𝑗∈ 𝐴𝑖𝑗 (𝑡)𝑥𝑗 (𝑡) + 𝜏𝑖𝜄
)

+ 1
4 |𝜌𝑖|(1 + 𝜌𝑖)

=
(

1 − 1
2 |𝜌𝑖|

) (

(

1 − 𝜏𝑖 − 𝜇𝑖(1 − 𝐴𝑖𝑖(𝑡))
)

𝑥𝑖(𝑡)

+𝜇𝑖
∑

𝑗∈⧵{𝑖} 𝐴𝑖𝑗 (𝑡)𝑥𝑗 (𝑡) + 𝜏𝑖𝜄
)

+ 1
4 |𝜌𝑖|(1 + 𝜌𝑖),

(6)

hich, after simplification and proper-re-writing of the coefficients,
ields Eqs. (4) and (5). □

emark 1. From Proposition 1, we observe that Eq. (4) can be
nterpreted as a Friedkin–Johnsen opinion dynamics model on a time-
arying network (Friedkin & Johnsen, 1990). However, it is important
o notice that the complexity of the network formation process (which
s inherently state-dependent) does not allow to directly apply the
heoretical findings for Friedkin–Johnsen models, which have been
eveloped in a time-invariant framework (Proskurnikov & Tempo,
017), and then extended to time-varying (but not state-dependent)
cenarios (Proskurnikov & Tempo, 2018). This makes the study of the
odel nontrivial.

. Convergence results

In this section, we prove some general properties of the model. Our
ain contribution is a characterization of the asymptotic behavior of

he model. Specifically, we prove that, while individuals’ opinion will
end to keep oscillating, their temporal average converges to a steady
tate. Before obtaining such a result, we start by observing that the
odel is always well-defined, that is, that the opinions will always

emain within their domain.

emma 1. The set [0, 1]𝑛 is positively invariant for the model in Eq. (4),
hat is, if 𝒙(0) ∈ [0, 1]𝑛, then 𝒙(𝑡) ∈ [0, 1]𝑛, for all 𝑡 ∈ N.

roof. We proceed by induction. At 𝑡 = 0, 𝑥𝑖(0) ∈ [0, 1] for all 𝑖 ∈  by
assumption. Now, assume that 𝑥𝑖(𝑡) ∈ [0, 1], for all 𝑖 ∈  . Then, from
Eq. (5a), we observe that all the entries of �̃� are nonnegative and each
row sums to 1. Hence, Eq. (4) states that 𝑥𝑖(𝑡+ 1) is a convex combina-
tion of the states 𝑥𝑗 (𝑡), and 𝑢𝑖. Hence 𝑥𝑖(𝑡+1) ≥ min{min𝑗∈ 𝑥𝑗 (𝑡), 𝑢𝑖} ≥ 0,
eing 𝑢𝑖 ≥ 𝜏𝑖

𝜏𝑖+1
𝜄 ≥ 0; and 𝑥𝑖(𝑡 + 1) ≤ max{max𝑗∈ 𝑥𝑗 (𝑡), 𝑢𝑖} ≤ 1, being

𝑖 ≤ 1 − 𝜏𝑖
𝜏𝑖+1

(1 − 𝜄) ≤ 1. □

In general, the opinion of each node, 𝑥𝑖(𝑡), may not necessarily con-
erge to a steady-state value, but it can oscillate, due to the stochastic

ature of the process that regulates the opinion exchange mechanism.
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Fig. 2. Numerical simulation depicting the temporal evolution of (a) opinions and (b) temporal average opinions for 𝑛 = 8 individuals on a complete backbone network. Parameters
𝜏𝑖 and 𝜇𝑖 are selected uniformly at random in [0, 1∕2], 𝜌𝑖 in {−1, 0,+1}, and initial condition 𝑥𝑖(0) in [0, 1], for each 𝑖 ∈  independently of the others.
P
f

P

P

o
c

a

See, e.g., the simulations in Fig. 2(a). However, we can define the
temporal average opinion of agent 𝑖 ∈  as

𝑦𝑖(𝑡) ∶=
1

𝑡 + 1

𝑡
∑

𝑠=0
𝑥𝑖(𝑠). (7)

From Fig. 2(b), one can observe that the temporal average opinion
vector 𝒚(𝑡) = [𝑦1(𝑡),… , 𝑦𝑛(𝑡)]⊤ seems to converge. This phenomenon
resembles the emergent behavior of gossip consensus dynamics with
stubborn agents (Acemoğlu, Como, Fagnani, & Ozdaglar, 2013; Frasca,
Ravazzi, Tempo, & Ishii, 2013). However, in our model, oscillations
are due to heterogeneity in how individuals process information, rather
than due to the presence of stubborn individuals. In the rest of this sec-
tion, we will prove a convergence result to provide analytical support
to such a claim. We start by showing that the dynamics is ergodic.

Proposition 2. The process 𝒙(𝑡) with update mechanism in Eq. (4) is
rgodic.

roof. The proof follows from the compact formulation of the ORE
odel in Eq. (4), which satisfies the assumptions needed to apply
heorem 1 from Ravazzi, Frasca, Tempo, and Ishii (2015). In fact, we
bserve that, at each time step 𝑡 ∈ N+, the network 𝑡 is generated inde-
endent of previous time steps, implying that (𝑨(𝒕))𝑡∈N+

and, ultimately,
he ( ̃𝑨(𝒕))𝑡∈N+

, are sequences of independent matrices. □

orollary 1. Since the process 𝒙(𝑡) is ergodic, it holds that if the
ean dynamics E[𝒙(𝑡)] converges to a steady state �̄�, then the temporal
verage opinion vector converges to the steady state of the mean dynamics,
.e., lim𝑡→∞ 𝒚(𝑡) = �̄�.

Based on Corollary 1, we study the mean dynamics, i.e., the evolu-
ion of E[𝒙(𝑡)], in order to draw conclusions on the temporal average
pinion. We start by explicitly deriving the update rule for the mean
pinion dynamics.

roposition 3. For each and every 𝑖 ∈  , the expected opinion evolves
s

[𝑥𝑖(𝑡 + 1)] =
(

1 − 𝜆𝑖
)
∑

𝑗∈
𝑊𝑖𝑗 (𝒙(𝑡))𝑥𝑗 (𝑡) + 𝜆𝑖𝑢𝑖, (8)

with

𝑊𝑖𝑗 (𝒙(𝑡)) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇𝑖
𝑑𝑖(1−𝜏𝑖)

𝑓𝑗 (𝑥𝑗 (𝑡)) if 𝑗 ∈ 𝑖,

1 − 𝜇𝑖
𝑑𝑖(1−𝜏𝑖)

∑

𝑗∈𝑖
𝑓𝑗 (𝑥𝑗 (𝑡)) if 𝑗 = 𝑖,

0 otherwise,

(9)

nd 𝜆 and 𝑢 from Eqs. (5b) and (5c), respectively.
𝑖 𝑖 a

4 
roof. First, we compute the probability that 𝑖 receives information
rom 𝑗 ∈ 𝑖 at time 𝑡, as

[𝐴𝑖𝑗 (𝑡) = 1] = P[𝑖 contacts 𝑗] ⋅ P[𝑗 shares] = 1
𝑑1

𝑓𝑗 (𝑥𝑗 (𝑡)). (10)

Using Eq. (10), we compute the probability that 𝑖 receives information
not only from the institution, but also from the network, at time 𝑡, as
[

𝐴𝑖𝑖(𝑡) = 0
]

=
∑

𝑗∈𝑖

P[𝐴𝑖𝑗 (𝑡) = 1] = 1
𝑑𝑖

∑

𝑗∈𝑖

𝑓𝑗 (𝑥𝑗 (𝑡)). (11)

Hence, using Eqs. (1), (10) and (11), we compute the expected value
f the opinion of individual 𝑖 after the information exchange step, by
onditioning on the values of the 𝑖th row of matrix 𝑨(𝑡), as follows:

E[𝑧𝑖(𝑡)] = P
[

𝐴𝑖𝑖(𝑡) = 1
] (

(1 − 𝜏𝑖)𝑥𝑖(𝑡) + 𝜏𝑖𝜄
)

+
∑

𝑗∈𝑖

P
[

𝐴𝑖𝑗 (𝑡) = 1
] (

(1 − 𝜇𝑖 − 𝜏𝑖)𝑥𝑖(𝑡) + 𝜇𝑖𝑥𝑗 (𝑡) + 𝜏𝑖𝜄
)

=
(

1 − 1
𝑑𝑖

∑

𝑗∈𝑖

𝑓𝑗 (𝑥𝑗 (𝑡))
)

(

(1 − 𝜏𝑖)𝑥𝑖(𝑡) + 𝜏𝑖𝜄
)

=
∑

𝑗∈𝑖

1
𝑑𝑖
𝑓𝑗 (𝑥𝑗 (𝑡))

(

(1 − 𝜇𝑖 − 𝜏𝑖)𝑥𝑖(𝑡) + 𝜇𝑖𝑥𝑗 (𝑡) + 𝜏𝑖𝜄
)

=
(

1 −
𝜇𝑖
𝑑𝑖

∑

𝑗∈𝑖

𝑓𝑗 (𝑥𝑗 (𝑡)) − 𝜏𝑖
)

𝑥𝑖(𝑡)

+
𝜇𝑖
𝑑𝑖

∑

𝑗∈𝑖

𝑓𝑗 (𝑥𝑗 (𝑡))𝑥𝑗 (𝑡) + 𝜏𝑖𝜄.

(12)

Finally, we combine Eqs. (3) and (12), obtaining an equation that
determines the expected value of the opinion at time 𝑡+1, as a function
of the current opinion of the individual, of their neighbors’ opinions,
and the model parameters:

E[𝑥𝑖(𝑡 + 1)] =
(

1 −
|𝜌𝑖|
2

)(

1 −
𝜇𝑖
𝑑𝑖

∑

𝑗∈𝑖

𝑓𝑗 (𝑥𝑗 (𝑡)) − 𝜏𝑖
)

𝑥𝑖(𝑡)

+
(

1 − 1
2
|𝜌𝑖|

)𝜇𝑖
𝑑𝑖

∑

𝑗∈𝑖

𝑓𝑗 (𝑥𝑗 (𝑡))𝑥𝑗 (𝑡)

+
(

1 − 1
2
|𝜌𝑖|

)

𝜏𝑖𝜄 +
1
4
|𝜌𝑖|(1 + 𝜌𝑖),

(13)

which can be conveniently re-written as Eq. (8), yielding the claim. □

Finally, we are ready to prove that, under some reasonable assump-
tions on the network of interactions and on the function 𝑓 , the expected
opinions and, ultimately, the temporal average opinions converge to a
steady state.

Assumption 1. Assume that the network  = ( , ) is strongly
connected, 𝑓𝑖(𝑥) > 0 for all 𝑥 > 0 and 𝑖 ∈  , 𝜄 > 0, and 𝜏𝑖 > 0, for
ll 𝑖 ∈  .

We would like to comment that Assumption 1 is not very restrictive
nd is consistent with real-world scenarios. In fact, imposing 𝑓 (𝑥) > 0
𝑖
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for all 𝑥 > 0 implies that individuals have a nonzero probability of
discussing about the possible disaster if they perceive some risk; 𝜄 > 0
means that there exists a risk (which is the key motivation of the
model); and 𝜏𝑖 > 0 means that the signal broadcast by the institution
has at least some impact (possibly very marginal) on individuals’ risk
perception, consistent with the social psychology literature on the
topic (Eiser & others, 2012; Popovic et al., 2020). Finally, in many
scenarios, social interactions are undirected (i.e., for any pair of indi-
viduals 𝑖, 𝑗 ∈  , if information can be shared from 𝑖 to 𝑗, then it can also
e shared from 𝑗 to 𝑖. In this case, the strong connectivity assumption
s either always satisfied, or the population can be partitioned into
solated connected communities, where each community can be treated
n its own as a strongly connected population.

heorem 1. Under Assumption 1, the temporal average opinion vector
(𝑡) defined in Eq. (7) under the opinion update in Eq. (4) converges almost
urely to a steady state, i.e., lim𝑡→∞ 𝒚(𝑡) = �̄� ∈ [0, 1]𝑛.

Proof. First of all, we observe that if 𝜏𝑖 = 1 or 𝜇𝑖 = 0, then an
individual’s opinion is not influenced by others, so 𝑥𝑖(𝑡) = 𝑥𝑖(0) for
ll 𝑡 ≥ 0, yielding the claim for individual 𝑖. Let now focus on the
ndividuals with 𝜇𝑖 ≠ 0 and 𝜏𝑖 ≠ 1.

We start proving that, under Assumption 1, the mean dynamics of
he ORE model E[𝑥𝑖(𝑡)] from Proposition 3 converges almost surely to

steady state, that is, lim𝑡→∞ E[𝑥𝑖(𝑡)] = �̄�𝑖 ∈ [0, 1]. To obtain such
onvergence result, we consider the mean dynamics in Eq. (8), with the
xpression of 𝑊𝑖𝑗 (𝑥(𝑡)) reported in Eq. (9). First of all, we observe that,
he update rule in Eq. (4) establishes a lower-bound on 𝑥𝑖(𝑡). In fact,

since from Lemma 1, 𝑥𝑖(𝑡) ≥ 0, then we can further refine the bound by
establishing that 𝑥𝑖(𝑡) ≥ 𝜆𝑖𝑢𝑖 ≥

1
2 𝜏𝑖𝜄. We define the uniform bound

∶= min
𝑖∈

𝜇𝑖
𝑑𝑖(1 − 𝜏𝑖)

𝑓𝑖
( 1
2
𝜏𝑖𝜄

)

. (14)

nder Assumption 1, we observe that 1
2 𝜏𝑖𝜄 > 0, which implies that

also 𝑓𝑖(
1
2 𝜏𝑖𝜄) > 0. Hence, 𝛼 > 0. From Eq. (9), we observe that we can

erive the following time-invariant bound on the weight for each link:
𝑖𝑗 (𝒙(𝑡)) ≥ 𝛼, for all 𝑖 ∈  , 𝑗 ∈ 𝑖. Thus, the time-varying graph
ith weights 𝑊 is strongly connected, being  strongly connected.
ence, the mean dynamics in Eq. (8) is a Friedkin–Johnsen model on a

trongly connected time-varying network, so E[𝒙(𝑡)] converges (Fried-
in & Johnsen, 1990; Proskurnikov & Tempo, 2017).

Finally, the fact that the mean dynamics E[𝒙(𝑡)] converges almost
urely to a steady state �̄� (proved in the above), combined with the
act that the process is ergodic (Proposition 2) implies that lim𝑡→∞ 𝒚(𝑡) =
im𝑡→∞ E[𝒙(𝑡)] = �̄� (Corollary 1), which yield the claim. □

. Steady state characterization

In the previous section, we proved that, under some mild assump-
ions, the temporal average opinion of the individuals converges to a
teady-state value. In general, the characterization of such a steady
tate is nontrivial due to the complexity of Eq. (8), which yields a
ystem of 𝑛 coupled nonlinear recursive equations — one for each
ndividual, where the inherent nonlinearity comes from the fact that
he term 𝑊𝑖𝑗 (𝒙) (which couples the equations) is state-dependent. In
his section, we consider a specific implementation of the model, for
hich we can analytically compute such a quantity, with a specific

ocus on the role of risk sensitivity. To perform such analysis, we make
he following assumptions.

ssumption 2. Let  be a complete network, that is, 𝑖 =  , for
ll 𝑖 ∈  . Moreover, let us assume that the parameters are uniform
cross the individuals, that is, 𝜏𝑖 = 𝜏 ∈ (0, 1] and 𝜇𝑖 = 𝜇, and that the
unctions 𝑓𝑖 are uniform across the individuals and coincide with the
dentity function, that is, 𝑓 (𝑥 ) = 𝑥 . We also assume 𝜄 > 0.
𝑖 𝑖 𝑖 s

5 
In such a setting, we introduce the following notation. Let 𝜂+ ∶=
1
𝑛 |{𝑖 ∶ 𝜌𝑖 = +1}|, 𝜂− ∶= 1

𝑛 |{𝑖 ∶ 𝜌𝑖 = −1}|, and 𝜂0 ∶= 1
𝑛 |{𝑖 ∶ 𝜌𝑖 = 0}| be

he fraction of population with high, low, and neutral risk sensitivity,
espectively. It clearly holds 𝜂+ + 𝜂− + 𝜂0 = 1.

heorem 2. Under Assumption 2, the asymptotic value of the temporal
verage opinion of individual 𝑖 ∈  under the opinion update in Eq. (4)
atisfies

lim
𝑡→∞

𝑦𝑖(𝑡) =

⎧

⎪

⎨

⎪

⎩

�̄�+ if 𝜌𝑖 = +1 ,

�̄�0 if 𝜌𝑖 = 0 ,

�̄�− if 𝜌𝑖 = −1 ,

(15)

here (�̄�+, �̄�0, �̄�−) ∈ [0, 1]3 is solution of

�̄�+ =1
2

(

1 − 𝜇
(

𝜂+�̄�+ + 𝜂0�̄�0 + 𝜂−�̄�−
)

− 𝜏
)

�̄�+

+ 1
2
𝜇
(

𝜂+�̄�
2
+ + 𝜂0�̄�

2
0 + 𝜂−�̄�

2
−
)

+ 1
2
𝜏𝜄 + 1

2
, (16a)

�̄�0 =
(

1 − 𝜇
(

𝜂+�̄�+ + 𝜂0�̄�0 + 𝜂−�̄�−
)

− 𝜏
)

�̄�0

+ 𝜇
(

𝜂+�̄�
2
+ + 𝜂0�̄�

2
0 + 𝜂−�̄�

2
−
)

+ 𝜏𝜄, (16b)

�̄�− =1
2

(

1 − 𝜇
(

𝜂+�̄�+ + 𝜂0�̄�0 + 𝜂−�̄�−
)

− 𝜏
)

�̄�−

+ 1
2
𝜇
(

𝜂+�̄�
2
+ + 𝜂0�̄�

2
0 + 𝜂−�̄�

2
−
)

+ 1
2
𝜏𝜄. (16c)

Proof. First, we observe that, according to Theorem 1, the temporal
averages of individuals’ opinion converge to a steady state �̄�, which is
the steady state of the mean dynamics. Then, we observe that ergodicity
of the process guarantees that the steady states of the mean dynamics
do not depend on the initial condition. Based on this observation, a
symmetry argument can be used to guarantee that �̄�𝑖 = �̄�𝑗 if 𝜌𝑖 = 𝜌𝑗 ,
being all the other parameters equal and the network fully connected,
that is, Eq. (15) holds. At this stage, we observe that, at the equilibrium,
under Assumption 2, the following two equalities hold true:
1
𝑑𝑖

∑

𝑗∈𝑖

𝑓 (�̄�𝑗 ) =
1
𝑛
∑

𝑗∈
�̄�𝑗 = 𝜂+�̄�+ + 𝜂0�̄�0 + 𝜂−�̄�− (17)

and
1
𝑑𝑖

∑

𝑗∈
𝑓 (�̄�𝑗 )�̄�𝑗 = 1

𝑛
∑

𝑗∈𝑖

�̄�2𝑗

= 1
𝑛

∑

𝑗∶𝜌𝑖=+1
�̄�2+ + 1

𝑛
∑

𝑗∶𝜌𝑖=0
�̄�20 +

1
𝑛

∑

𝑗∶𝜌𝑖=−1
�̄�2−

= 𝜂+�̄�2+ + 𝜂0�̄�20 + 𝜂−�̄�2+.

(18)

inally, we write the equilibrium condition for the mean dynamics,
tarting from Eq. (13), and we substitute Eqs. (17) and (18) into such
xpression, obtaining Eq. (16). □

Theorem 2 provides a powerful tool to characterize the steady-
tate temporal average opinion of the network. In general, given the
arameter of the model, the solution of the three coupled quadratic
quations in Eq. (16) can be easily computed using a numerical solver.
n the other hand, determining the analytical solution may be, in
eneral, challenging, due to the complexity of the equations. In the
est of this section, we will use Theorem 2 to analytically characterize
he steady-state temporal average opinion for some specific scenarios
here analytical treatment is possible. Then, we will complement the

tudy by means of numerical simulations.

.1. Homogeneous population

First, we consider the scenarios of a homogeneous population,
here all the individuals have positive, neutral, or negative risk sen-

itivity, i.e., setting 𝜂+ = 1, 𝜂0 = 1, or 𝜂− = 1, respectively. In these

cenarios, we are able to prove almost sure convergence of the opinion



L. Zino et al.

u
s

o
a
s

P
s
t

E

w
t
𝑡
t
2
T
c

c
a

European Journal of Control 80 (2024) 101036 
Fig. 3. Numerical simulation of the ORE model with 𝑛 = 8 individuals on a complete backbone network, with 𝜄 = 0.5, 𝜏𝑖 = 𝜇𝑖 = 0.3, for all 𝑖 ∈  , initial condition 𝑥𝑖(0) selected
niformly at random in [0, 1], for each 𝑖 ∈  independently of the others, and (a) 𝜌𝑖 = +1, (b) 𝜌𝑖 = 0, (c) 𝜌𝑖 = −1, for all 𝑖 ∈  . The gray dashed lines are the predicted consensus
tate from Proposition 4.
𝜇
m
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P
t

O
s

𝜉

I
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𝜙

t

f each individual to a consensus, and characterize its expected value,
s detailed in the following. Our theoretical results are confirmed by
imulation results in Fig. 3.

roposition 4. If Assumption 2 holds and the entire population has the
ame risk sensitivity, then the ORE model in Eq. (4) almost surely converges
o a consensus, that is, lim𝑡→∞ 𝑥𝑖(𝑡) = 𝑥∗ with:

[𝑥∗] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜄 + 1 − 𝜄
1 + 𝜏

if 𝜂+ = 1,

𝜄 if 𝜂0 = 1,

𝜄 − 𝜄
1 + 𝜏

if 𝜂− = 1.

(19)

Proof. First of all, we prove almost sure convergence using Theorem
3.3 from Fagnani and Frasca (2018). The proving argument involves the
definition of an augmented network with an additional node (which we
can label as 0) with 𝜇0 = 𝜏0 = 0, and initial opinion equal to

𝑥0(0) =

(

1 − 1
2 |𝑟|

)

𝜏𝜄 + 1
4 |𝑟|(1 + 𝑟)

1
2 |𝑟|(1 − 𝜏) + 𝜏

(20)

ith 𝑟 = 1 if 𝜂+ = 1, 𝑟 = 0 if 𝜂0 = 1, and 𝑟 = −1 if 𝜂− = 1. Note
hat, being 𝜇0 = 𝜏0 = 0, then it holds true that 𝑥0(𝑡) = 𝑥0(0), for all
≥ 0. The entire model can be reformulated as a De Groot model on a
ime-varying (state-dependent) network (Proskurnikov & Tempo, 2017,
018) with node 0 as a globally reachable node at every time 𝑡. Hence,
heorem 3.3 from Fagnani and Frasca (2018) guarantees almost sure
onvergence to a consensus, which yields the first part of the claim.

Since 𝑥0(0) = 𝑥0(𝑡), for all 𝑡 ≥ 0, necessarily the value of the expected
onsensus state coincides with the state of the stubborn node of the
ugmented network, 𝑥0(𝑡). Finally, by substituting 𝑟 ∈ {+1, 0,−1} into

Eq. (20), we obtain Eq. (19). □

Remark 2. From Proposition 4, we observe that, for uniform popula-
tions, the system converges to a consensus, whose expected value can
be computed. In the absence of any risk sensitivity biases, the consen-
sus coincides with the actual information sent out by the institution
𝑥∗ = 𝜄. Positive or negative risk sensitivity would instead lead to an
overestimation or a underestimation of the risk, respectively, as can be
observed in Fig. 3.

Remark 3. Note that the trust in peers (i.e., parameter 𝜇) does not
play a role in determining the asymptotic consensus state, but it may
affect the speed of convergence. As a consequence, one could relax the
assumption that such a quantity is homogeneous across the population
in Assumption 2.

4.2. Role of heterogeneous risk sensitivity

Here, we want to investigate the role of individuals with high
risk sensitivity in shaping the emergent behavior of the population.
 r

6 
We start by considering a polarized scenario, in which half of the
population has low risk sensitivity and half of the population has high
risk sensitivity. In this scenario, we can analytically prove that the
presence of individuals with high risk sensitivity would lead to an
overestimation of the risk. Then, numerical solution of the equations
in Eq. (16) is used to provide further evidence to our claim.

Proposition 5. If Assumption 2 holds, 𝜄 = 1∕2, 𝜂+ = 𝜂− = 1∕2, and
= 1 − 𝜏 then the temporal average opinion of each individual in the ORE
odel in Eq. (4) almost surely converges to a steady state with mean opinion
�̄�𝑖⟩ ∶=

1
𝑛
∑

𝑖∈ �̄�𝑖 ≥ 1∕2, with strict inequality holding if 𝜏 < 1.

roof. In this scenario, the equilibrium equations in Eq. (16) reduce
o the following coupled quadratic equations:

�̄�+ = 1
2
(1 − 𝜏)

(

�̄�+ − 1
2
�̄�−𝑦+ + 1

2
�̄�2−

)

+ 1
2
𝜏 + 1

2
, (21a)

�̄�− = 1
2
(1 − 𝜏)

(

�̄�− − 1
2
�̄�+𝑦− + 1

2
�̄�2+

)

+ 1
2
𝜏, (21b)

where Eq. (16b) is omitted, being 𝜂0 = 0. Let us define 𝜉 = �̄�++�̄�−
2

and 𝜁 = �̄�+−�̄�−
2 as the average and half-difference between the two

mean opinions. We observe that the steady state with mean opinion
⟨�̄�𝑖⟩ ∶=

1
𝑛
∑

𝑖∈ �̄�𝑖 = 𝜉. Hence, the problem reduces to prove that 𝜉 > 1∕2.
By computing the sum and the difference between the two equations
in Eq. (21) and recalling the definition of 𝜉 and 𝜁 , we derive

𝜉 = 1
2
(1 − 𝜏)(1 − 𝜉)𝜉 + 1

2
(1 − 𝜏)(𝜉2 + 𝜁2) + 1

4
𝜏 + 1

4
, (22a)

𝜁 = 1
2
(1 − 𝜏)(1 − 𝜉)𝜁 + 1

4
. (22b)

From Eq. (22b), we explicitly compute

𝜉 =
1 − 2𝜁 (1 + 𝜏)
2𝜁 (1 − 𝜏)

. (23)

ur objective is to verify that 𝜉 > 1∕2. Using Eq. (23), a necessary and
ufficient condition for having 𝜉 > 1∕2 is that

> 1
2

⟺ 1 − 2𝜁 (1 + 𝜏) > 𝜁(1 − 𝜏) ⟺ 𝜁 < 1
3𝜏 + 1

. (24)

To check this condition, we need to compute the solution of Eq. (22)
for the variable 𝜁 . To this aim, we substitute Eq. (23) into Eq. (22a)
and, after all the algebraic simplifications, we obtain the following
third-order equation:

𝜙(𝜁 ) = 2(1 − 𝜏)3𝜁3 + (𝜏2 + 4𝜏 + 3)𝜁 − (1 + 𝜏) = 0. (25)

t is straightforward to check that the function 𝜙(𝜁 ) is monotonically
ncreasing in 𝜁 for any 𝜏 ∈ [0, 1]. In fact, it holds

′(𝜁 ) = 6(1 − 𝜏)3𝜁2 + 𝜏2 + 4𝜏 + 3 > 0 (26)

hat 𝜙(0) < 0 and 𝜙(1) > 0. Therefore, Eq. (25) has only one

eal solution, which lies in [0, 1]. However, despite this solution can
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Fig. 4. Average final opinion for different fractions of individuals with high, neutral,
and low risk sensitivity, computed by solving numerically Eq. (16). In (a), 𝜄 = 0.5, in
(b), 𝜄 = 0.3. Common parameters are 𝑛 = 100, and 𝜏 = 𝜇 = 0.5. The opinion of each
individual is sampled uniformly at random in [0, 1], independently of the others.

be analytically computed (being the unique real solution of a third-
order equation), its complexity hinders the possibility to readily check
whether it is less than 1

3𝜏+1 . However, we can compute

𝜙
( 1
3𝜏 + 1

)

=

(

2(1 − 𝜏)3 + (𝜏2 + 4𝜏 + 3)(1 + 3𝜏)2 − (1 + 3𝜏)3(1 + 𝜏)
)

(3𝜏 + 1)3

= 4 + 6𝜏 + 22𝜏2 − 14𝜏3 − 16𝜏4

(3𝜏 + 1)3
,

(27)

which is strictly positive for any 𝜏 < 1. Therefore, being 𝜙(𝜁 ) strictly
monotonically increasing, its unique zero must satisfy 𝜁 < 1

3𝜏+1 ,
implying that 𝜉 > 1∕2, which yields the claim. □

This theoretical result suggests that the presence of individuals with
high risk sensitivity may be critical in determining a collective overre-
action to the information broadcast by the institution. Our hypothesis
is that even a minority of individuals with high risk sensitivity could
be sufficient to steer the mean final opinion towards an overestimation
of the risk.

To provide evidence to support such hypothesis, we leverage The-
orem 2 by numerically solving Eq. (16) for a wide range of different
values of the parameters 𝜂+, 𝜂0, and 𝜂−. Our results, reported in
Fig. 4(a), show that the region in which the risk is overestimated
(red) is larger than the one in which it is underestimated (cyan),
7 
suggesting that people with high risk sensitivity play a dominant role
in determining the final average opinion of the entire population. For
instance, from the plot we observe that if only 10% of the population
has high risk sensitivity, then the risk will be overestimated as far as the
fraction of population with low risk sensitivity is less than 15%. This
phenomenon is even more visible when institution communicates that
the risk is small. For instance, in Fig. 4(b), we observe that for 𝜄 = 0.3, if
only 10% of the population has high risk sensitivity, then the risk will
be overestimated as far as the people with low risk sensitivity is less
than 35%. When at least 27% of the population has high risk sensitivity,
then the risk is always overestimated. The direct analytical verification
of such hypothesis in more general scenarios requires nontrivial efforts
due to the nonlinearity of the equations in Theorem 2 and is thus
beyond the scope of this paper and left for future research.

5. Conclusion

In this paper, we proposed a model for collective risk perception
grounded on the theory on the mathematical theory of opinion dynam-
ics (Friedkin & Johnsen, 1990; Proskurnikov & Tempo, 2017, 2018)
and on the social psychology literature on risk perception (Eiser &
others, 2012; Mileti & Peek, 2000; Popovic et al., 2020; Slovic, 1987).
Through the analysis of the model, we proved convergence of the
temporal average opinions on the risk of a given event. Then, under
some homogeneity assumptions, we provided a characterization of
the steady-state temporal average opinions which have allowed us to
provide analytical insight into the impact that few individuals with high
risk sensitivity may have in determining collective overreactions.

The promising preliminary results presented in this paper pave
the way for several avenues of future research. First, our theoretical
analysis should be extended along several directions, including inves-
tigating the speed of convergence of the temporal average opinions
and their transient behavior (see, e.g., Xing and Johansson (2024)),
and generalizing our characterization of the steady state, beyond the
limitations of Assumption 2, e.g., towards unveiling the impact of
the network structures and heterogeneity across the population on
the system’s emergent behavior. Second, effort should be placed in
extending the model to incorporate further real-world features, such
as the presence of media which may bias the information provided by
the institution (Vasterman, Yzermans, & Dirkzwager, 2005), and the
possible occurrence or non-occurrence of the event and understand how
this impact the collective risk perception. Third, in order to make this
model relevant in the real world, validation and parametrization using
experimental and survey data on risk perception will be performed as
part of our future research.
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