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Abstract

Modeling the collective response to an emergency is a problem of paramount

importance in social science and risk management. Here, we leverage the social-

psychology literature to develop a mathematical model tailored to such a real-

world problem, grounded in the opinion dynamics theory. In our model, a

network of individuals revises their risk perception by processing information

broadcast by the institution and shared by peers, and accounts for heterogene-

ity in terms of individuals’ trust in institutions, peers, and in their own risk

sensitivity. Through a rigorous analysis of the model, we establish that the tem-

poral average opinions of the individuals converge to a steady state and, under

some assumptions, we are able to analytically characterize such a steady state,

shedding light on how the individuals’ heterogeneous risk sensitivity shapes the

collective response. Numerical results and simulations are provided to illustrate

and corroborate our findings.
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1. Introduction

The development and analysis of mathematical models for social dynamics

have witnessed an increasing interest in the systems and control community,

providing novel theoretically-informed tools to understand and predict collective

human behavior [1, 2, 3, 4, 5, 6, 7, 8, 9]. In particular, a key area of research

focuses on studying opinion formation in social communities through the lens

of opinion dynamics models [10, 11, 12, 13, 14, 15, 16]. These models, in which

individuals’ opinions evolve in time through a linear averaging process that

accounts for the information exchanged with peers on a social network, have

been used to explore a wide range of social phenomena, from the evolution of

social power [17, 18], to the emergence of disagreement and polarization [19, 20,

21].

Concerning opinion formation, a problem of particular interest is to predict

the emergent behavior of a population of individuals during an emergency [22].

In this situation, it is crucial to predict how the individuals of a population

collectively respond to the information that public authorities and institutions

broadcast on the nature of the risk of the event under consideration in order

to avoid underestimating the risk or, on the other extreme, emergence of panic

reactions.

Despite the importance of such problem, the literature presents few math-

ematical models of opinion formation tailored specifically to such a scenario.

On the one hand, classical mathematical models focus on an abstract represen-

tation of opinion dynamics [14]; on the other hand, social-psychological efforts

are mostly concerned with unveiling the individual-level risk interpretation pro-

cess [23, 24, 25, 26, 27], typically overlooking how such individual-level mecha-

nism propagates at the population-level. In [28, 29, 30], different agent-based

models tailored to capturing the emergence of collective risk perception about

an emergency have been proposed and used to perform numerical simulations.

However, the complexity of such models hinders rigorous analytical studies, call-

ing for the development of new analytically-treatable mathematical models for
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collective risk perception.

Here, we fill in this gap by proposing a novel analytically-treatable model for

collective risk perception, which is grounded in the theory of opinion dynam-

ics [13, 31]. In particular, inspired by [29] and building on the social-psychology

literature [23, 24, 25, 26, 27], we consider a network of interacting individu-

als who are forming their opinion on the risk of a given hazard. Specifically,

individuals are exposed to two different sources of information: an evaluation

of the risk which is officially broadcasted by the institutions and a local risk

perception shared by peers on a dynamical social influence network [24, 25].

Consistent with the social-psychology literature on risk interpretation [26], in-

dividuals recursively revise their risk perception by processing these different

information sources through their own risk sensitivity [27].

Our main contribution is threefold. First, we propose the mathematical

model for collective risk perception and we demonstrate that it can be cast

as a generalized version of the well-known Friedkin–Johnsen opinion dynamic

model [11] on a time-varying network. However, the complexity of the network

formation process hinders its direct analysis using standard opinion dynamics

techniques [31]. Second, we prove that, while individuals’ opinions in general

tend to keep oscillating, their temporal average converge under some mild as-

sumptions on the social network structure. Third, under some assumptions,

we analytically characterize the steady-state temporal average opinion. Such

theoretical result allows us to shed light on how individuals’ risk sensitivity

shapes the collective risk perception, showing that a small amount of individu-

als with high risk sensitivity could lead to overreactions and panic. Although

abstract, these results can provide useful insights on risk communication and

perception, thus contributing to the important and timely issue of disaster risk

reduction [32].

The rest of the paper is organized as follows. In Section 2, we present the

model. In Section 3, we prove some general properties of the model, including

convergence. In Section 4, we characterize the steady-state temporal average

opinions. Section 5 concludes the paper and outlines future research.
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1.1. Notation

We gather here the notation used in the paper. We denote the set of nonneg-

ative and strictly positive integer numbers by N and N+, respectively. A vector

x is denoted with bold lower-case font, with ith entry xi and x⊤ denoting its

transpose; a matrix A is denoted with bold upper-case font, with jth entry of

the ith row Aij . Given a stochastic event E, we denote its probability by P[E];

given a random variable x, we denote its expectation by E[x].

2. Model

We consider a population of n ∈ N+ individuals, denoted by the set V =

{1, . . . , n}. Individuals are connected through a time-invariant network G =

(V, E) that captures social influence between the individuals of the population.

In particular, the directed edge (i, j) ∈ E if and only if i can be influenced by

the opinion of j. For any individual i ∈ V, we denote by Ni := {j : (i, j) ∈ E}

the set of (out)-neighbors of i, that is, the set of individuals who can directly

influence the opinion of i, and by di := |Ni| the (out)-degree of the individual.

Here, we assume that the set of neighbors of each individual is fixed. However,

as we shall see in the following, it is not said that each individual interacts with

all their neighbors at every time step. This will eventually induce a time-varying

structure that describes the temporal evolution of social interactions.

Each individual i ∈ V is characterized by an opinion xi(t) ∈ [0, 1], which

represents individual i’s risk perception on the emergency at discrete time t ∈ N,

with initial opinion xi(0) ∈ [0, 1]. Opinions are gathered into a vector x(t) =

[x1(t), . . . , xn(t)]
⊤, which represents the state of the network at time t.

Each individual i ∈ V is characterized by three parameters:

1. risk sensitivity ρi ∈ {−1, 0,+1},

2. trust in institutions τi ∈ [0, 1], and

3. trust in peers µi ∈ [0, 1],
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with τi + µi ≤ 1. Note that 1 − τi − µi can be interpreted as a measure of the

persistence of the individual.

Opinions of the individuals evolve in time in accordance with observations

from the social-psychology literature on risk interpretation, which provides ev-

idence of the fact that individuals do not directly take the information broad-

casted by the institution, but they process it using information from peers and

their own risk sensitivity [23, 24, 25, 26, 27]. Grounded on such literature, we

define a two-step update mechanism. First, the individuals gather information

from the institutional source and from peers, and process such information,

according to a weighted average dynamics, regulated by the parameters repre-

senting the individuals’ trust in institutions and in peers, respectively. Second,

the individuals revise their opinion by using such information gathered, and

further processing it, based on their own risk sensitivity. Such a two-step mech-

anism is illustrated in Fig. 1, and all the model variables and parameters are

summarized in Table 1.

In the following, we formally define these dynamics and explicitly derive

the set of equations that governs the model. For simplicity, we will denote the

intermediate step of the opinion in the revision from xi(t) to xi(t+ 1) after the

first step as zi(t).

2.1. Step I: Information gathering

At each time step t ∈ N+, each individual i ∈ V receives information from the

institutions about the nature of the risk. Specifically, the institution broadcasts

a (constant) signal ι ∈ [0, 1], which quantifies the nature of the risk. Such a

signal should be interpreted as a normalized quantity, so that ι = 0 means no

risk and ι = 1 corresponds to maximal risk.

At the same time, individuals share information with their peers, consistent

with the evidence coming from the social-psychological literature on risk man-

agement [24, 25]. Specifically, at each time-step t ∈ N+, each individual i ∈ V

interacts with a peer j, selected uniformly at random among their neighbors Ni,

independently of the past. The neighbor j decides to share with i their opinion
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Table 1: Model variables and parameters.

symbol meaning

n number of individuals

Ni (out-)neighbors of individual i

di number of (out-)neighbors of individual i

ρi risk sensitivity of individual i

τi trust in institutions of individual i

µi trust in peers of individual i

ι information broadcast by the institutions

fi(·) sharing probability function of individual i

xi(t) opinion of individual i at time t

yi(t) temporal average opinion of individual i up to time t

with state-dependent probability equal to fj(xj(t)), where fj : [0, 1] → [0, 1] is

a function termed sharing probability function that maps the opinion of indi-

vidual j to their tendency to communicate it. This function captures the fact,

well-known in the social-psychology literature, that people tend to transmit

information that is in accordance with their risk perception [27].

To represent such an information sharing process, we use a time-varying

network Gt = (V, Et). If at time t ∈ N individual i interacts with j, and j decides

to share their opinion, then we add the link (i, j) to the edge set Et. We define

the adjacency matrix of the communication network as a n × n time-varying

matrix A(t), with off-diagonal entries Aij(t) = 1 if (i, j) ∈ Et and Aij(t) = 0

otherwise. The diagonal entries are defined as Aii(t) = 1 −
∑

j∈V\{i} Aij(t).

Note that, at each time, exactly one entry per each row of A(t) is nonzero: this

is the jth entry if i receives information from j, or diagonal entry if i does not

receive information from the network at time t.

Then, individual i revises their opinion by averaging their current opinion

xi(t) with the information they receive from the different sources of information
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(i.e., ι and, possibly, xj(t)), using the weights given by the trust in institutions

τi and in peers µi, respectively, obtaining the following convex combination:

zi(t) = (1− µi − τi)xi(t) + µi

∑
j∈V

Aij(t)xj(t) + τiι, (1)

which reduces to zi(t) = (1−τi)xi(t)+τiι, when no information is received from

the network, i.e., if Aii(t) = 1.

2.2. Step II: Opinion processing through risk sensitivity

After having revised their opinion on the basis of the information gathered

from external sources (institutions and peers), individuals further process their

opinion through their own risk sensitivity. Specifically, following [29], we assume

that each individual i ∈ V updates their opinion as

xi(t+ 1) =


1
2 (1 + zi(t)) if ρi = +1,

zi(t) if ρi = 0,

1
2zi(t) if ρi = −1,

(2)

which can be conveniently re-written as a linear combination:

xi(t+ 1) =
(
1− 1

2
|ρi|

)
zi(t) +

1

4
|ρi|(1 + ρi). (3)

We conclude this section by observing that the entire two-step opinion up-

date mechanism can be cast in a compact form as the linear averaging dynamics

on a (weighted) time-varying network, which is summarized in the following

statement.

Proposition 1. For each and every i ∈ V, the opinion update mechanism reads

xi(t+ 1) = (1− λi)
∑
j∈V

Ãij(t)xj(t) + λiui, (4)

where

Ãij(t) =


µi

1− τi
Aij(t) if j ̸= i,

1− µi

1− τi

(
1−Aii(t)

)
if j = i,

(5a)

λi =
1

2
|ρi|(1− τi) + τi, (5b)
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Figure 1: Schematic of the two-step opinion update mechanism.

ui =

(
1− 1

2 |ρi|
)
τiι+

1
4 |ρi|(1 + ρi)

1
2 |ρi|(1− τi) + τi

. (5c)

Proof. By substituting Eq. (1) into Eq. (3), we obtain

xi(t+ 1) =
(
1− 1

2 |ρi|
)(

(1− µi − τi)xi(t)

+µi

∑
j∈V Aij(t)xj(t) + τiι

)
+ 1

4 |ρi|(1 + ρi)

=
(
1− 1

2 |ρi|
)((

1− τi − µi(1−Aii(t))
)
xi(t)

+µi

∑
j∈V\{i} Aij(t)xj(t) + τiι

)
+ 1

4 |ρi|(1 + ρi),

(6)

which, after simplification and proper-re-writing of the coefficients, yields Eqs. (4)–

(5).

Remark 1. From Proposition 1, we observe that Eq. (4) can be interpreted as

a Friedkin–Johnsen opinion dynamics model on a time-varying network [11].

However, it is important to notice that the complexity of the network formation

process (which is inherently state-dependent) does not allow to directly apply the

theoretical findings for Friedkin–Johnsen models, which have been developed in

a time-invariant framework [13], and then extended to time-varying (but not

state-dependent) scenarios [31]. This makes the study of the model nontrivial.

3. Convergence Results

In this section, we prove some general properties of the model. Our main con-

tribution is a characterization of the asymptotic behavior of the model. Specif-
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ically, we prove that, while individuals’ opinion will tend to keep oscillating,

their temporal average converges to a steady state. Before obtaining such a

result, we start by observing that the model is always well-defined, that is, that

the opinions will always remain within their domain.

Lemma 1. The set [0, 1]n is positively invariant for the model in Eq. (4), that

is, if x(0) ∈ [0, 1]n, then x(t) ∈ [0, 1]n, for all t ∈ N .

Proof. We proceed by induction. At t = 0, xi(0) ∈ [0, 1] for all i ∈ V by

assumption. Now, assume that xi(t) ∈ [0, 1], for all i ∈ V. Then, from Eq. (5a),

we observe that all the entries of Ã are nonnegative and each row sums to 1.

Hence, Eq. (4) states that xi(t+ 1) is a convex combination of the states xj(t),

and ui. Hence xi(t+1) ≥ min{minj∈V xj(t), ui} ≥ 0, being ui ≥ τi
τi+1 ι ≥ 0; and

xi(t+ 1) ≤ max{maxj∈V xj(t), ui} ≤ 1, being ui ≤ 1− τi
τi+1 (1− ι) ≤ 1.

In general, the opinion of each node, xi(t), may not necessarily converge to a

steady state value, but it can oscillate, due to the stochastic nature of the process

that regulates the opinion exchange mechanism. See, e.g., the simulations in

Fig. 2a. However, we can define the temporal average opinion of agent i ∈ V as

yi(t) :=
1

t+ 1

∑t

s=0
xi(s). (7)

From Fig. 2b, one can observe that the temporal average opinion vector y(t) =

[y1(t), . . . , yn(t)]
⊤ seem to converge. This phenomenon resembles the emergent

behavior of gossip consensus dynamics with stubborn agents [33, 34]. However,

in our model, oscillations are due to heterogeneity in how individuals process

information, rather than due to the presence of stubborn individuals. In the rest

of this section, we will prove a convergence result to provide analytical support

to such claim. We start by showing that the dynamics is ergodic.

Proposition 2. The process x(t) with update mechanism in Eq. (4) is ergodic.

Proof. The proof follows from the compact formulation of the ORE model in

Eq. (4), which satisfies the assumptions in Theorem 1 in [35]. In fact, we observe

that, at each time step t ∈ N+, the network Gt is generated independent of
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Figure 2: Numerical simulation depicting the temporal evolution of (a) opinions and (b)

temporal average opinions for n = 8 individuals on a complete backbone network. Parameters

τi and µi are selected uniformly at random in [0, 1/2], ρi in {−1, 0,+1}, and initial condition

xi(0) in [0, 1], for each i ∈ V independently of the others.
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previous time steps, implying that (A(t))t∈N+ and, ultimately, the (Ã(t))t∈N+ ,

are sequences of independent matrices.

Corollary 1. Since the process x(t) is ergodic, it holds that if the mean dy-

namics E[x(t)] converges to a steady state x̄, then the temporal average opinion

vector converges to the steady state of the mean dynamics, i.e., limt→∞ y(t) = x̄.

Based on Corollary 1, we study the mean dynamics, i.e., the evolution of

E[x(t)], in order to draw conclusions on the temporal average opinion. We start

by explicitly deriving the update rule for the mean opinion dynamics.

Proposition 3. For each and every i ∈ V, the expected opinion evolves as

E[xi(t+ 1)] =
(
1− λi

)∑
j∈V

Wij(x(t))xj(t) + λiui, (8)

with

Wij(x(t)) =


µi

di(1−τi)
fj(xj(t)) if j ∈ Ni,

1− µi

di(1−τi)

∑
j∈Ni

fj(xj(t)) if j = i,

0 otherwise,

(9)

and λi and ui from Eq. (5b) and Eq. (5c), respectively.

Proof. First, we compute the probability that i receives information from j ∈ Ni

at time t, as

P[Aij(t) = 1] = P[i contacts j]P[j shares] =
fj(xj(t))

di
. (10)

Using Eq. (10), we compute the probability that i receives information not only

from the institution, but also from the network, at time t, as

P [Aii(t) = 0] =
∑
j∈Ni

P[Aij(t) = 1] =
1

di

∑
j∈Ni

fj(xj(t)). (11)

Hence, using Eq. (1), Eq. (10), and Eq. (11), we compute the expected

value of the opinion of individual i after the information exchange step, by
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conditioning on the values of the ith row of matrix A(t), as follows:

E[zi(t)] = P [Aii(t) = 1]
(
(1− τi)xi(t) + τiι

)
+

∑
j∈Ni

P [Aij(t) = 1]
(
(1− µi − τi)xi(t) + µixj(t) + τiι

)
=

(
1− 1

di

∑
j∈Ni

fj(xj(t))
)(

(1− τi)xi(t) + τiι
)

=
∑
j∈Ni

1

di
fj(xj(t))

(
(1− µi − τi)xi(t) + µixj(t) + τiι

)
=

(
1− µi

di

∑
j∈Ni

fj(xj(t))− τi

)
xi(t) +

µi

di

∑
j∈Ni

fj(xj(t))xj(t) + τiι.

(12)

Finally, we combine Eq. (12) and Eq. (3), obtaining an equation that de-

termines the expected value of the opinion at time t + 1, as a function of the

current opinion of the individual, of their neighbors, and the model parameters:

E[xi(t+ 1)]=
(
1− |ρi|

2

)(
1− µi

di

∑
j∈Ni

fj(xj(t))−τi
)
xi(t)

+
(
1− 1

2
|ρi|

)µi

di

∑
j∈Ni

fj(xj(t))xj(t)

+
(
1− 1

2
|ρi|

)
τiι+

1

4
|ρi|(1 + ρi),

(13)

which can be conveniently re-written as Eq. (8), yielding the claim.

Finally, we are ready to prove that, under some reasonable assumptions on

the network of interactions and on the function f , the expected opinions and,

ultimately, the temporal average opinions converge to a steady state.

Assumption 1. Assume that the network G = (V, E) is strongly connected,

fi(x) > 0 for all x > 0 and i ∈ V, ι > 0, and τi > 0, for all i ∈ V.

We would like to comment that Assumption 1 is not very restrictive and

is consistent with real-world scenarios. In fact, imposing fi(x) > 0 for all

x > 0 implies that individuals have a nonzero probability of discussing about

the possible disaster if they perceive some risk; ι > 0 means that there exists

a risk (which is the key motivation of the model); and τi > 0 means that the

signal broadcasted by the institution has at least some impact (possibly very
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marginal) on individuals’ risk perception, consistent with the social-psychology

literature on the topic [26, 27]. Finally, in many scenarios, social interactions

are undirected (i.e., for any pair of individuals i, j ∈ V, if information can be

shared from i to j, then it can also be shared from j to i. In this case, the

strong connectivity assumption is either always satisfied, or the population can

be partitioned into isolated connected communities, where each community can

be treated on its own as a strongly connected population.

Theorem 1. Under Assumption 1, the temporal average opinion vector y(t)

defined in Eq. (7) under the opinion update in Eq. (4) converges almost surely

to a steady state, i.e., limt→∞ y(t) = x̄ ∈ [0, 1]n.

Proof. First of all, we observe that if τi = 1 or µi = 0, then an individual’s

opinion is not influenced by others, so xi(t) = xi(0) for all t ≥ 0, yielding the

claim for individual i. Let now focus on the individuals with µi ̸= 0 and τi ̸= 1.

We start proving that, under Assumption 1, the mean dynamics of the ORE

model E[xi(t)] from Proposition 3 converges almost surely to a steady state, that

is, limt→∞ E[xi(t)] = x̄i ∈ [0, 1]. To obtain such convergence result, we consider

the mean dynamics in Eq. (8), with the expression of Wij(x(t)) reported in

Eq. (9). First of all, we observe that, the update rule in Eq. (4) establishes

a lower-bound on xi(t). In fact, since from Lemma 1, xi(t) ≥ 0, then we can

further refine the bound by establishing that xi(t) ≥ λiui ≥ 1
2τiι. We define the

uniform bound

α := min
i∈V

µi

di(1− τi)
fi

(1
2
τiι

)
. (14)

Under Assumption 1, we observe that 1
2τiι > 0, which implies that also fi(

1
2τiι) >

0. Hence, α > 0. From Eq. (9), we observe that we can derive the following

time-invariant bound on the weight for each link: Wij(x(t)) ≥ α, for all i ∈ V,

j ∈ Ni. Thus, the time-varying graph with weights W is strongly connected,

being G strongly connected. Hence, the mean dynamics in Eq. (8) is a Friedkin-

Johnsen model on a strongly connected time-varying network, so E[x(t)] con-

verges [11, 13].
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Finally, the fact that the mean dynamics E[x(t)] converges almost surely

to a steady state x̄ (proved in the above), combined with the fact that the

process is ergodic (Proposition 2) implies that limt→∞ y(t) = limt→∞ E[x(t)] =

x̄ (Corollary 1), which yield the claim.

4. Steady state characterization

In the previous section, we proved that, under some mild assumptions, the

temporal average opinion of the individuals converges to a steady-state value.

In general, the characterization of such a steady state is nontrivial due to the

complexity of Eq. (8), which yields a system of n coupled nonlinear recursive

equations — one for each individual, where the inherent nonlinearity comes from

the fact that the term Wij(x) (which couples the equations) is state-dependent.

In this section, we consider a specific implementation of the model, for which

we can analytically compute such a quantity, with a specific focus on the role of

risk sensitivity. To perform such analysis, we make the following assumptions.

Assumption 2. Let G be a complete network, that is, Ni = V, for all i ∈ V.

Moreover, let us assume that the parameters are uniform across the individuals,

that is, τi = τ ∈ (0, 1] and µi = µ, and that the functions fi are uniform across

the individuals and coincide with the identity function, that is, fi(xi) = xi. We

also assume ι > 0.

In such a setting, we introduce the following notation. Let η+ := 1
n |{i : ρi =

+1}|, η− := 1
n |{i : ρi = −1}|, and η0 := 1

n |{i : ρi = 0}| be the fraction of

population with high, low, and neutral risk sensitivity, respectively. It clearly

holds η+ + η− + η0 = 1.

Theorem 2. Under Assumption 2, the asymptotic value of the temporal average

opinion of individual i ∈ V under the opinion update in Eq. (4) satisfies

lim
t→∞

yi(t) =


ȳ+ if ρi = +1 ,

ȳ0 if ρi = 0 ,

ȳ− if ρi = −1 ,

(15)
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where (ȳ+, ȳ0, ȳ−) ∈ [0, 1]3 is solution of

ȳ+ =
1

2

(
1− µ

(
η+ȳ+ + η0ȳ0 + η−ȳ−

)
− τ

)
ȳ+

+
1

2
µ
(
η+ȳ

2
+ + η0ȳ

2
0 + η−ȳ

2
−
)
+

1

2
τι+

1

2
, (16a)

ȳ0 =
(
1− µ

(
η+ȳ+ + η0ȳ0 + η−ȳ−

)
− τ

)
ȳ0

+ µ
(
η+ȳ

2
+ + η0ȳ

2
0 + η−ȳ

2
−
)
+ τι, (16b)

ȳ− =
1

2

(
1− µ

(
η+ȳ+ + η0ȳ0 + η−ȳ−

)
− τ

)
ȳ−

+
1

2
µ
(
η+ȳ

2
+ + η0ȳ

2
0 + η−ȳ

2
−
)
+

1

2
τι. (16c)

Proof. First, we observe that, according to Theorem 1, the temporal averages of

individuals’ opinion converge to a steady state x̄, which is the steady state of the

mean dynamics. Then, we observe that ergodicity of the process guarantees that

the steady states of the mean dynamics do not depend on the initial condition.

Based on this observation, a symmetry argument can be used to guarantee

that x̄i = x̄j if ρi = ρj , being all the other parameters equal and the network

fully connected, that is, Eq. (15) holds. At this stage, we observe that, at the

equilibrium, under Assumption 2, the following two equalities hold true:

1

di

∑
j∈Ni

f(x̄j) =
1

n

∑
j∈V

x̄j = η+ȳ+ + η0ȳ0 + η−ȳ− (17)

and

1

di

∑
j∈V

f(x̄j)x̄j =
1

n

∑
j∈Ni

x̄2
j

=
1

n

∑
j:ρi=+1

ȳ2+ +
1

n

∑
j:ρi=0

ȳ20 +
1

n

∑
j:ρi=−1

ȳ2−

= η+ȳ
2
+ + η0ȳ

2
0 + η−ȳ

2
+.

(18)

Finally, we write the equilibrium condition for the mean dynamics, starting

from Eq. (13), and we substitute Eq. (17) and Eq. (18) into such expression,

obtaining Eq. (16).

Theorem 2 provides a powerful tool to characterize the steady-state tem-

poral average opinion of the network. In general, given the parameter of the
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Figure 3: Numerical simulation of the ORE model with n = 8 individuals on a complete

backbone network, with ι = 0.5, τi = µi = 0.3, for all i ∈ V, initial condition xi(0) selected

uniformly at random in [0, 1], for each i ∈ V independently of the others, and (a) ρi = +1,

(b) ρi = 0, (c) ρi = −1, for all i ∈ V. The gray dashed lines are the predicted consensus state

from Proposition 4.

model, the solution of the three coupled quadratic equations in Eq. (16) can

be easily computed using a numerical solver. On the other hand, determining

the analytical solution may be, in general, challenging, due to the complexity

of the equations. In the rest of this section, we will use Theorem 2 to analyt-

ically characterize the steady-state temporal average opinion for some specific

scenarios where analytical treatment is possible. Then, we will complement the

study by means of numerical simulations.

4.1. Homogeneous population

First, we consider the scenarios of a homogeneous population, where all

the individuals have positive, neutral, or negative risk sensitivity, i.e., setting

η+ = 1, η0 = 1, or η− = 1, respectively. In these scenarios, we are able to

prove almost sure convergence of the opinion of each individual to a consensus,

and characterize its expected value, as detailed in the following. Our theoretical

results are confirmed by simulation results in Fig. 3.

Proposition 4. If Assumption 2 holds and the entire population has the same

risk sensitivity, then the ORE model in Eq. (4) almost surely converges to a
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consensus, that is, limt→∞ xi(t) = x∗ with:

E[x∗] =


ι+

1− ι

1 + τ
if η+ = 1,

ι if η0 = 1,

ι− ι

1 + τ
if η− = 1.

(19)

Proof. First of all, we prove almost sure convergence using Theorem 3.3 from

[36]. The proving argument involves the definition of an augmented network

with an additional node (which we can label as 0) with µ0 = τ0 = 0, and initial

opinion equal to

x0(0) =

(
1− 1

2 |r|
)
τι+ 1

4 |r|(1 + r)
1
2 |r|(1− τ) + τ

(20)

with r = 1 if η+ = 1, r = 0 if η0 = 1, and r = −1 if η− = 1. Note that,

being µ0 = τ0 = 0, then it holds true that x0(t) = x0(0), for all t ≥ 0. The

entire model can be reformulated as a De Groot model on a time-varying (state-

dependent) network [13, 31] with node 0 as a globally reachable node at every

time t. Hence, Theorem 3.3 from [36] guarantees almost sure convergence to a

consensus, which yields the first part of the claim.

Since x0(0) = x0(t), for all t ≥ 0, necessarily the value of the expected

consensus state coincides with the state of the stubborn node of the augmented

network, x0(t). Finally, by substituting r ∈ {+1, 0,−1} into Eq. (20), we obtain

Eq. (19).

Remark 2. From Proposition 4, we observe that, for uniform populations, the

system converges to a consensus, whose expected value can be computed. In the

absence of any risk sensitivity biases, the consensus coincides with the actual

information sent out by the institution x∗ = ι. Positive or negative risk sensi-

tivity would instead lead to an overestimation or a underestimation of the risk,

respectively, as can be observed in Fig. 3.

Remark 3. Note that the trust in peers (i.e., parameter µ) does not play a

role in determining the asymptotic consensus state, but it may affect the speed

of convergence. As a consequence, one could relax the assumption that such a

quantity is homogeneous across the population in Assumption 2.
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4.2. Role of heterogeneous risk sensitivity

Here, we want to investigate the role of individuals with high risk sensitivity

in shaping the emergent behavior of the population. We start by considering

a polarized scenario, in which half of the population has low risk sensitivity

and half of the population has high risk sensitivity. In this scenario, we can

analytically prove that the presence of individuals with high risk sensitivity

would lead to an overestimation of the risk. Then, numerical solution of the

equations in Eq. (16) is used to provide further evidence to our claim.

Proposition 5. If Assumption 2 holds, ι = 1/2, η+ = η− = 1/2, and µ =

1− τ then the temporal average opinion of each individual in the ORE model in

Eq. (4) almost surely converges to a steady state with mean opinion < ȳi >:=

1
n

∑
i∈V ȳi ≥ 1/2, with strict inequality holding if τ < 1.

Proof. In this scenario, the equilibrium equations in Eq. (16) reduce to the

following coupled quadratic equations:

ȳ+ =
1

2
(1− τ)

(
ȳ+ − 1

2
ȳ−y+ +

1

2
ȳ2−

)
+

1

2
τ +

1

2
, (21a)

ȳ− =
1

2
(1− τ)

(
ȳ− − 1

2
ȳ+y− +

1

2
ȳ2+

)
+

1

2
τ, (21b)

where Eq. (16b) is omitted, being η0 = 0. Let us define ξ = ȳ++ȳ−
2 and ζ =

ȳ+−ȳ−
2 as the average and half-difference between the two mean opinions. We

observe that the steady state with mean opinion < ȳi >:= 1
n

∑
i∈V ȳi = ξ.

Hence, the problem reduces to prove that ξ > 1/2. By computing the sum and

the difference between the two equations in Eq. (21) and recalling the definition

of ξ and ζ, we derive

ξ =
1

2
(1− τ)(1− ξ)ξ +

1

2
(1− τ)(ξ2 + ζ2) +

1

4
τ +

1

4
, (22a)

ζ =
1

2
(1− τ)(1− ξ)ζ +

1

4
. (22b)

From Eq. (22b), we explicitly compute

ξ =
1− 2ζ(1 + τ)

2ζ(1− τ)
. (23)
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ȳ
i
>

−
ι

(a) ι = 0.5

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

0%

20%

40%

60%

80%

100%

In
d
ivid

u
als

w
ith

h
igh

risk
p
ercep

tion
,
η
+

In
d
iv
id
u
al
s
w
it
h
n
eu
tr
al

ri
sk

p
er
ce
p
ti
on
,
η 0

Individuals with low risk perception, η−

−1

−0.5

0

0.5

1

G
a
p
<

ȳ
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Figure 4: Average final opinion for different fractions of individuals with high, neutral, and

low risk sensitivity, computed by solving numerically Eq. (16). In (a), ι = 0.5, in (b), ι = 0.3.

Common parameters are n = 100, and τ = µ = 0.5. The opinion of each individual is sampled

uniformly at random in [0, 1], independently of the others.
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Our objective is to verify that ξ > 1/2. Using Eq. (23), a necessary and sufficient

condition for having ξ > 1/2 is that

ξ >
1

2
⇐⇒ 1− 2ζ(1 + τ) > ζ(1− τ) ⇐⇒ ζ <

1

3τ + 1
. (24)

To check this condition, we need to compute the solution of Eq. (22) for the

variable ζ. To this aim, we substitute Eq. (23) into Eq. (22a) and, after all the

algebraic simplifications, we obtain the following third-order equation:

ϕ(ζ) = 2(1− τ)3ζ3 + (τ2 + 4τ + 3)ζ − (1 + τ) = 0. (25)

It is straightforward to check that the function ϕ(ζ) is monotonically increasing

in ζ for any τ ∈ [0, 1]. In fact, it holds

ϕ′(ζ) = 6(1− τ)3ζ2 + τ2 + 4τ + 3 > 0 (26)

that ϕ(0) < 0 and ϕ(1) > 0. Therefore, Eq. (25) has only one real solution,

which lies in [0, 1]. However, despite this solution can be analytically computed

(being the unique real solution of a third-order equation), its complexity hinders

the possibility to readily check whether it is less than 1
3τ+1 . However, we can

compute

ϕ
( 1

3τ + 1

)
=

(
2(1− τ)3 + (τ2 + 4τ + 3)(1 + 3τ)2 − (1 + 3τ)3(1 + τ)

)
(3τ + 1)3

=
4 + 6τ + 22τ2 − 14τ3 − 16τ4

(3τ + 1)3
,

(27)

which is strictly positive for any τ < 1. Therefore, being ϕ(ζ) strictly monoton-

ically increasing, its unique zero must satisfy ζ < 1
3τ+1 , implying that ξ > 1/2,

which yields the claim.

This theoretical result suggests that the presence of individuals with high

risk sensitivity may be critical in determining a collective overreaction to the

information broadcast by the institution. Our hypothesis is that even a minority

of individuals with high risk sensitivity could be sufficient to steer the mean final

opinion towards an overestimation of the risk.
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To provide evidence to support such hypothesis, we leverage Theorem 2 by

numerically solving Eq. (16) for a wide range of different values of the param-

eters η+, η0, and η−. Our results, reported in Fig. 4a, show that the region

in which the risk is overestimated (red) is larger than the one in which it is

underestimated (cyan), suggesting that people with high risk sensitivity play a

dominant role in determining the final average opinion of the entire population.

For instance, from the plot we observe that if only 10% of the population has

high risk sensitivity, then the risk will be overestimated as far as the fraction of

population with low risk sensitivity is less than 15%. This phenomenon is even

more visible when institution communicates that the risk is small. For instance,

in Fig. 4b, we observe that for ι = 0.3, if only 10% of the population has high

risk sensitivity, then the risk will be overestimated as far as the people with low

risk sensitivity is less than 35%. When at least 27% of the population has high

risk sensitivity, then the risk is always overestimated. The direct analytical ver-

ification of such hypothesis in more general scenarios requires nontrivial efforts

due to the nonlinearity of the equations in Theorem 2 and is thus beyond the

scope of this paper and left for future research.

5. Conclusion

In this paper, we proposed a model for collective risk perception grounded

on the theory on the mathematical theory of opinion dynamics [11, 13, 31]

and on the the social-psychology literature on risk perception [23, 24, 26, 27].

Through the analysis of the model, we proved convergence of the temporal

average opinions on the risk of a given event. Then, under some homogeneity

assumption, we provided a characterization of the steady-state temporal average

opinions which have allowed us to provide analytical insight into the impact that

few individuals with high risk sensitivity may have in determining collective

overreactions.

The promising preliminary results presented in this paper pave the way for

several avenues of future research. First, our theoretical analysis should be ex-
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tended along several directions, including investigating the speed of convergence

of the temporal average opinions and their transient behavior (see, e.g.,[37]), and

generalizing our characterization of the steady-state, beyond the limitations of

Assumption 2, e.g., toward unveiling the impact of the network structures and

heterogeneity across the population on the system’s emergent behavior. Second,

effort should be placed in extending the model to incorporate further real-world

features, such as the presence of media which may bias the information pro-

vided by the institution [38], and the possible occurrence or non-occurrence

of the event and understand how this impact the collective risk perception.

Third, in order to make this model relevant in the real world, validation and

parametrization using experimental and survey data on risk perception will be

performed as part of our future research.
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