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Ultraviolet–Visible-Near InfraRed spectroscopy for assessing metal powder 
cross-contamination: A multivariate approach for a quantitative analysis 
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A B S T R A C T   

The last few years have seen an increasing use of spherical metals powders to produce bulk parts through metal 
forming technologies like Additive Manufacturing and Metal Injection Molding. This, coupled with the wide 
availability of metal powders, leads to a critical issue: contamination across different systems in different process 
steps. Consequently, it is necessary to find a new, fast, and reliable analysis sensible to tiny traces of contami-
nation. This work evaluates the applicability of Ultraviolet–Visible-Near InfraRed (UV–Vis-NIR) spectroscopy, a 
technique providing information on powders’ reflectance, for studying contaminated powders. This work focuses 
on assessing 3 binary systems obtained from the cross-contamination of 3 components (A92618, C10200 and 
S31603) in a low contamination range (from 0.5 vol% to vol. 6%) and in a high contamination range (25 vol% 
and vol.50%). After the UV–Vis-NIR analysis, multivariate analysis has been used to obtain quantitative results. 
Results show that, as the contamination level increases in the binary system, the shape of spectra changes and 
becomes progressively more similar to the contaminant one. The chemometric analysis allows the detection of 
the contaminant type and its concentration percentage in the contaminated powder.   

1. Introduction 

In recent years, the diffusion of metal-forming powders-based tech-
niques has grown; this is mainly due to the increased use of Metal In-
jection Molding (MIM) [1] and Additive Manufacturing (AM) techniques 
like Electron Beam Melting, Direct Energy Deposition, Laser Powder Bed 
Fusion (L-PBF), and binder jetting [2,3]. MIM technology, as summar-
ised by Basir et al. [4], is widely adopted due to many benefits it gua-
rantees like low cost, material and design flexibility, good dimensional 
control and surface finishing, which result in near-net complex shape 
structures, excellent mechanical properties, little post-production scrap, 
and rapid prototyping. As reported by Narasimharaju et al. [5] and Abd- 
Elaziem et al. [6], additive manufacturing provides many advances, 
including significant time and cost savings, the possibility of obtaining 
complex shapes, high-density parts, and low material wastage. Among 
AM techniques, L-PBF is one of the more adopted; it consists of spreading 
layers of powder and melting selectively with a laser source, pass-by- 
pass, as explained by Chowdhury et al. [7]. Commercially, L-PBF de-
vices are usually equipped with red laser sources characterised by 
wavelengths in the range of 1064–1080 nm as revealed by Jiang et al. 
[8], but they can also be equipped with blue or green laser sources, as 

highlighted by Asano et al. [9] and Siva Prasad et al. [10]. 
The increasing use of powder-based technologies is leading to the 

study and production of new metal powders of elemental metals and 
alloys (Soong et al. [2], Wang et al. [11]). New powder systems are being 
studied and atomised, particularly in the field of Al alloys (Monti et al. 
[12]), Cu-based materials (Shi et al. [13]) and Fe − based powders, as 
reported by Silva et al. [14] in terms of stainless steels or by Sarriegui 
et al. [15] as powders for magnetic application. Generally the same in-
strument is used for the evaluation of the powder properties or for the 
processing of different materials. Considering the growing number of 
powder systems, in case working and/or storage conditions are not 
adequately controlled, cross-contamination might occur. Cross- 
contamination can be more or less catastrophic depending on the me-
chanical/physical properties of the contaminating powder compared to 
the contaminated one and its percentage. Among the possible defects 
that may arise, the reduction of mechanical properties of the final 
products and the inconsistent layer adhesion due to the difference in 
melting temperature of powders must be mentioned as demonstrated by 
Brandão et al. [16] and Zhang et al. [17]. Cross-contamination can take 
place in several different process steps, like during the powders’ pro-
duction process, in the storage, and during the manufacturing of bulk 
parts, as investigated by D’Angelo et al. [18] and Montazeri et al. [19]. 
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The highlighted problems evidence the importance of establishing a 
methodology to verify that powders’ cross-contamination has not 
occurred. 

Different analyses have been considered for the evaluation of cross- 
contamination: X-ray computed tomography (CT) and scanning electron 
microscopy (SEM). It is also known that X-ray photoelectron spectros-
copy (XPS) and secondary ions mass spectrometry (SIMS) could be of 
high interest, as explained by Brandão et al. [16] and Santecchia et al. 
[20]. Each of the previous techniques is characterised by at least one of 
the following cons: complex and/or time consuming analysis, high costs, 
low repeatability. For this reason, another technique, UV–Vis-NIR 
spectroscopy, has been considered as a possible solution to this aim. As 
discussed by Ríos-Reina and Azcarate in their review [21], UV–Vis-NIR 
spectroscopy is a fast, non-invasive, low-cost technique with a simple 
analysis procedure, high repeatability, and it is currently already used in 
many fields. It is a well-known technique widely adopted to evaluate 
structural elucidation of organic compounds, dissociation constant of 
acids and bases, molecular weight determination as performed by 
Verma and Mishra [22], hybrid materials in catalysis, photonics, and 
sensing as shown by Begum et al. [23]. 

During the last few years, UV–Vis-NIR has already been used to 
evaluate metal powder absorption. Its use is fundamental for the eval-
uation of powders’ absorbance since the parameters of production 
techniques like L-PBF must be set depending on the powders’ laser ab-
sorptivity, as evidenced by Jiang et al. [8] and Huang et al. [24]. In case 
incorrect parameters are used, bulk parts will show a microstructure 
with un-melted powders and pores, leading to low-quality objects, as 
confirmed by the studies of Huang et al. [24] and Yang et al. [25]. 

Metal powders absorb some of the radiation when the laser hits their 
surface. The absorption results from 1 minus the reflectance and trans-
mission. This last for metals is negligible since, in these wavelengths, 
metals have a shallow penetration depth. Therefore, absorbance is equal 
to 1 minus reflectance. 

A = 1 − R (1) 

Three different absorption behaviours characterise metals, as 
explained by Brandau et al. [26], depending on their electronic 
configuration: 

a) Continuous increase in absorption towards shorter wavelengths; 
b) Low absorption over the entire wavelength range, apart from 
some inter-band transitions in the VIS-NIR range; 

c) Absorption edges in the spectrum. 

The first behaviour occurs mainly in transition metals such as iron or 
titanium. In contrast, the second is typical of metals like aluminium or 
magnesium, since these are polyvalent metals with filled atomic shells 
whereas the third one is typical for noble metals. Brandau et al. [27] and 
Jadhav et al. [28] discuss in depth how many factors influence metal 
powder absorption: the shape, the surface roughness, the presence of 
surface oxide, the granulometry, the size distribution and the presence 
of external particles. 

UV–Vis-NIR spectroscopy is used as a quantitative analysis to 
determine the amount of solute in a solution, as performed by Lodeiro 
et al. [29]. The use of proper tools like chemometrics may allow to 
obtain deeper pieces of information for solutions and solid samples, as 
demonstrated by Ríos-Reina and Azcarate [21]. 

One of the most basic and valuable tools in multivariate analysis is 
the principal component analysis (PCA), which originates in the work of 
Pearson [30]. It evaluates the variability between samples; where the 
variability is high, a high amount of information is present, and the 
interrelations between samples and measured variables can be studied 
as thoroughly discussed by Oliveri et al. [31]. A new space identified by 
n-principal components (PCs) is generated, where the maximum vari-
ance direction represents the first principal component (PC1). All PCs 
are orthogonal to each other. PCA could describe, in this way, a large 
amount of complex information in bi-dimensional or three-dimensional 
plots. 

Among the multivariate analysis tools, classification and regression 
methods could be adopted to detect the contaminant powders and the 
percentage of contaminant, respectively. 

Oliveri et al. explain [31] that classification techniques belong to 
three main families:  

• distance-based techniques, like k nearest neighbours (k-NN);  
• probabilistic techniques, such as linear discriminant analysis (LDA);  
• experience-based techniques. 

k-NN is one of the most straightforward approaches for classification. 
The samples are considered one by one as the test object. The distances 
of the test object from all of the other samples in the training are eval-
uated, and the test object is sorted to the class with the majority rep-
resentation in the k-selected samples. The parameter k represents the 
number of neighbours to be considered in the assignation rule, and it 
must be defined and optimised depending on the results obtained from 
the model as shown in works [32,33]. 

Fisher developed the linear discriminant analysis (LDA) in 1936 
[34]. The means of each category and the pooled variance are computed 
from the training set. Class probability distributions are evaluated under 
two hypotheses:  

1. Normal (multivariate) distribution in each class  
2. The same variance–covariance for all of the classes, as highlighted by 

Dixon and Brereton [35]. 

For a quantitative prediction of cross-contamination percentage, 
regression techniques such as partial least squares (PLS) could be 
adopted; this method defines mathematical relationships between var-
iables or groups of variables and provides models for predictions. From 
the values of the physical measures performed on samples, the chemical 
quantity in samples could be obtained using the mathematical model 
obtained as summarised [31]. PLS is one of the most widely adopted 
multivariate regression techniques since it represents a better solution to 
both the problems of variable number and intercorrelation. The PLS 
components are directions in the space of the predictors, as Wold et al. 
reported [36]. 

In this work the authors aim to demonstrate that by assessing the 
reflectance of powders it’s possible to detect contamination even at low 

Nomenclature 

General 
AM Additive Manufacturing 
UV–Vis-NIR Ultraviolet–Visible-Near InfraRed 
L-PBF Laser Powder Bed Fusion 
SEM Scanning Electron Microscopy 
EDS Energy Dispersive X-ray Spectroscopy 
MIM Metal Injection Molding 
UNS Unified Numbering System 
EN European Norm 

Chemometrics-related 
PCA Principal Component Analysis 
PC Principal Component 
k-NN k Nearest Neighbours 
LDA Linear Discriminant Analysis 
PLS Partial Least Squares 
CV Cross-Validation 
RMSECV Root Mean Squared Error of Cross-Validation  
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amounts (<1%) qualitatively. Additionally, by creating a mathematical 
model using multivariate analysis, it’s possible to identify the type and 
percentage of contaminant species. While UV–Vis-NIR spectroscopy is 
currently used in the powder metal field for descriptive analysis, the 
authors believe it could become a diagnostic tool for all metal forming 
techniques involving powders. In the following sections, classification 
and regression analyses are reported to demonstrate the predictability of 
UV–Vis-NIR spectroscopy. The goal is to show that this method can 
effectively assess the quality of powders at each stage of the forming 
process, ensuring reliable and consistent controls. By combining this 
analysis with a multivariate approach, pollutant species can also be 
identified. UV–Vis-NIR spectroscopy results can therefore provide 
detailed information on powder quality and suitability for processing, 
allowing operators to take corrective actions as needed throughout the 
process. 

This work adopts the unified numbering system (UNS) alloy desig-
nation and identifies three metal powders (one for each type of metal 
absorption phenomenon): A92618, C10200 and S31603. A92618, an 
alloy based on Al-Cu system, is chosen as a representative material since 

it shows an absorbance behaviour closer to the elemental aluminium one 
compared to other Al alloys, as revealed by the analysis by Brandau et al. 
[26]. A92618 is generally used in applications requiring high strength 
and superior mechanical properties at high temperatures, where Al-Si 
alloys show limitations, as discussed by Schuster et al. [37]. C10200 
(pure copper oxygen-free) is commonly diffused in many applications 
like heat transfer components and electronic applications thanks to its 
superior thermal and electrical conductivity, as confirmed in two studies 
[38,39]; moreover, its low electrochemical migration, high corrosion 
resistance and excellent solderability makes it of high interest as high-
lighted by Wu [40]. Austenitic stainless steel S31603 has an excellent 
corrosion-resistant property in various environments, making it an alloy 
used in many fields, as evidenced by Tucho et al. [41] and Sun et al. 
[42]. Moreover, the powders were chosen with different powder den-
sities and granulometry. This choice was made to evaluate also systems 
where segregation can occur, leading to areas with a heterogeneous 
powders dispersion whose formation was investigated by Popplewell 
et al. [43] and Abouzeid and Fuerstenau [44] and how UV–Vis-NIR 
analysis deals with it when the laser hits these areas. 

Three commercial metal powders were cross-contaminated in binary 
systems in different volume percentages and analysed with a UV–Vis- 
NIR spectroscope; their spectra were surveyed regarding their shift and 
shape modification compared to the uncontaminated powder ones. 

Table 1 
A92618 chemical composition.  

Element Al Cu (%) Fe (%) Mg (%) Ni (%) Si (%) Ti (%) Zn (%) 

wt% (min-max) Balance 1.9-2.7  0.9-1.3 1.3-1.8 0.9-1.2 0.1-0.25 0.04-0.1  <0.1  

Table 2 
C10200 chemical composition.  

Element Cu Fe (%) Cr (%) Zr (%) Si (%) O (%) 

wt% Balance  <0.05 − − − ≤0.1  

Table 3 
S31603 chemical composition.  

Element Fe Cr (%) Ni (%) Mo (%) C (%) Mn (%) Cu (%) P (%) S (%) Si (%) N (%) 

wt% (min–max) Balance 17.0–19.0 13.0–15.0 2.25–3.00  0.03  2.00  0.50  0.025  0.01  0.75  0.10  

Fig. 1. A) SEM image of the surface morphology of the three different commercial powders atomised powders; b-c) size distribution of the three types of powders.  
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2. Materials and methods 

2.1. Powder systems 

A92618 (EN AW-2618) was supplied by ECKA Granules Germany 
GmbH, C10200 (EN Cu-OF) by Sandvik Osprey Ltd and S31603 (EN 
1.4404) by EOS. The following Tables 1 to 3 show the chemical 
composition of the different powders, as declared by the suppliers. 

The morphology of the three different powders has been analysed 
with SEM (Zeiss EVO 15 equipped with an Oxford Instruments Ultim 
Max EDS probe), Fig. 1a. Powders characterised by higher surface 
roughness show a higher absorbance since multiple reflections of the 
beam statistically occur; each time a fraction of the beam is absorbed, 
resulting in a lower reflectance [26]. Granulometry and particle size 
have been analysed through Malvern Mastersizer 3000 equipped with 
Aero S for dry dispersion, Fig. 1b-c. These parameters influence the 
absorbance of the powder; smaller particles result in higher absorbance, 
as demonstrated by Brandau et al. [26]. 

A spherical shape characterises powders, and the dimensions of their 
distribution sizes are reported in Table 4. 

The spectrum of powders has been evaluated in the range of 
250–1250 nm with UV–Vis-NIR spectrophotometer UV-2600 (Shi-
madzu) equipped with the Integrating Sphere Attachment ISR-2600Plus 
(Shimadzu). 

The ISR is an integrated sphere unit with two detectors: a photo-
multiplier and an InGaAs detector. The measurable wavelength range is 
220–400 nm in the UV range, 400–780 nm for Vis and from 780 to 1400 
nm for the NIR range. The integrated sphere is coated with barium 
sulphate; this last in powder is also used as a reference reflectance 
sample. The light source change wavelength from the deuterium to the 
halogen lamps is set at 323 nm, and the detector change from the pho-
tomultiplier to the InGaAs detector is set at 830 nm. Two mask holders 
are present in the instrument, one for the target sample and one for the 
reference sample; they reduce the beam size in the reflectance 
measurement. 

Cuvettes with a quartz window plate (P/N 206–89065-41 from Shi-
madzu) were used as powder sample holders for the analysis. The 
samples were prepared by mixing the metal powders in the right volume 
percentage, inserting them into a 2 ml Eppendorf tube and mixing for 3 
min with a turbula to guarantee maximum homogeneity. Powders were 
then inserted in the cuvettes. Fig. 2 shows their aspects, filled with un-
contaminated powders. The amount of powder inserted into the cuvette 
must guarantee that the light does not interact with the back of the 
cuvette, which would affect the measurement. Therefore, the powder 
thickness inside the cuvette must be at least equal to 1 mm. 

The analyses were carried out using 1 scan at 0.2 nm resolution with 
the diffuse reflectance mode. 

2.2. Cross-contamination 

The three metal powders have been cross-contaminated in binary 
systems in different volume percentages to evaluate UV–Vis-NIR spec-
troscopy as an analysis for detecting cross-contamination across them. 
The choice of volume percentage has been made since very different 
specific weights characterise alloys, determining volume cross- 
contamination as more significant from an experimental point of view. 

Five different contaminations at low concentrations and two at high 
concentrations were set. Low concentrations of 0.5 %, 1 %, 2 %, 4 % and 
6 % have been considered, whereas 25 % and 50 % represented high 
concentrations of contaminants. For more streamlined sample names, 
alloy A92618 is identified with A, C10200 with C and S31603 with S. 
The samples are named as XYy, where: 

X = the letter of the contaminated powder. 
Y = the letter of the contaminant powder. 
y = volume percentage of Y; (for brevity when the volume concen-

tration is equal to 0.5 %, then y = 0). 
For example, AC0 corresponds to a powers blend consisting of 99.5 % 

in volume of A92618 and 0.5 % of C10200, while CS25 is composed of 
75 % in volume of C10200 and 25 % in volume of S31603. All volume 
concentrations are reported in Table A1 in Appendix A. 

For each concentration, 3 samples were prepared; powders were 
measured and mixed in a turbula. Powders were then placed inside the 
cuvette and analysed with the UV–Vis-NIR spectrophotometer in the 
250–1250 nm wavelength range to obtain reflectance spectra. The 
values obtained at each wavelength from the three samples were 
mediated and, by applying equation (1), absorbance values were then 
calculated. 

In order to qualitatively evaluate how varying spectra with the 
variation of the contamination percentage, three different wavelengths 
were identified: 450 nm, 515 nm and 1064 nm; they correspond 
respectively to blue, green and red laser adopted in the laser-based AM 
techniques, and their absorbance values are the ones that could be found 
most in literature as demonstrated by the paper of Brandau et al. [26]. 

2.3. Chemometric analysis 

Chemometric analyses were performed to evaluate the quantitative 
ability of the UV–Vis-NIR spectroscopy analysis in cross-contamination. 
Different steps have been performed to achieve this aim, and the CAT 
(Chemometric Agile Tool) software, developed by Leardi et al. [45], was 
used. 

At first, all samples were analysed with the Principal Component 
Analysis (PCA), then classification was performed, followed by regres-
sion analysis. The classification was done to distinguish which is the 
contaminant species while regression was used to find out the amount of 
contaminant powder percentage (y); for classification and regression, 
samples were divided into two groups: training set and test set. 

Data were treated by binning them with a bin width equal to 5 so that 
the data corresponding to each nm of the wavelength range considered 
is just 1, and it is the average between 5 values. After this, PCA was 
performed, followed by classification and then regression. 

Specifical wavelengths were considered to perform the classification 
analysis to determine which would be the best for fully describing the 
spectra. This analysis evaluated blue, green and red laser wavelengths 
(450 nm, 515 nm, 1064 nm) and the first and last points of spectra (250 
nm and 1250 nm). Moreover, the uncontaminated powder spectra were 
evaluated. The local minimal, maximal and inflexion points were 
detected for each one, and the wavelengths where two pure spectra 
intersected were considered too. Each type of powder has been taken 
into account separately for the test. All the samples containing the 
powder typology under analysis have been evaluated, except for the 
pure ones that can be detected with the qualitative assessment since 
there is no translation or modification of their spectra shape. The test set 
for classification is constituted of 3 samples XY at low concentration, 2 at 

Table 4 
A92618, C10200 and S31603 powder’ distribution sizes.   

d10 (µm) d50 (µm) d90 (µm) 

A92618  28.2  44.5  72.6 
C10200  18.2  28.8  44.5 
S31603  25.6  39.1  61.4  

Fig. 2. Cuvettes filled with metal powders for UV–Vis-NIR analysis.  
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high concentration and for thoroughness, 3 samples at low concentra-
tion of X for a total of 8 samples. Since there are two Y, the test set is 
composed of 16 samples. All the other samples constitute the training 
material. The samples of the test set have been chosen randomly. 

Two different classification methods have been evaluated: the k 
nearest neighbours (k-NN) and the linear discriminant analysis (LDA). 

Two methods were used in LDA classification for the validation 
procedure: cross-validation and repeated evaluation set (100 times). The 
cross-validation procedure divides samples into N cancellation groups 
following a predetermined scheme. The model is then computed N 
times, and for each time, one of the N groups is used as the evaluation 
set, while the other N-1 groups are the training set. In the repeated case, 
also called Monte Carlo validation, a different evaluation set is created 
each time by random selection; this leads to a higher description of the 
system and a longer computational time, as discussed by Oliveri et al. 
[31]. 

After the cross-validation step, each technique performs the predic-
tion step using the test set. 

For the regression analysis, the PLS method has been adopted. PLS, 
repeated n times (n = 100), was used to have the best-fitting model. 
After performing the regression cross-validation, the global root mean 
squared error of cross-validation (RMSECV) was considered, and the 
variable elimination was repeated as long as the RMSECV decreased, as 
performed by Andries et al. [46]. For the regression analysis, pure 
samples were also taken into account. In this case, the test set is 
constituted of 1 sample for each pure (X and Y), 3 samples at a low 
concentration of X, 2 at a high concentration and 3 samples at a low 
concentration of Y, for a total of 10 samples. All the other samples 
constituted the training test. The samples of the test set have been 
chosen randomly. Again, firstly, the cross-validation (CV) step was 
performed, followed by the prediction step on the test set. 

The summary of the analysis performed, their scope and their 
training test are reported in Fig. 3. 

3. Results and discussion 

3.1. Pure powders 

The UV–Vis-NIR spectroscopy was performed on pure powders, and 
their spectra are reported in Fig. 4. 

In Fig. 4, the 3 different behaviours of powders are shown: 

Fig. 3. Structure of the performed analysis.  

Fig. 4. UV–Vis-NIR spectra of A92618, C10200 and S31603.  

Fig. 5. Absorbance spectra of the mixed powders belonging to the A92618- 
C10200 system. 
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- A92618 has an absorption quite constant over the entire wavelength 
range, apart from some inter-band transitions in the VIS-NIR range; 
alloying elements determine a higher absorption all over the range 
compared to pure aluminium;  

- C10200′s spectrum has an absorption edge between 550–700 nm;  
- S31603′s spectrum has a continuous increase in absorption towards 

shorter wavelengths. 

In Fig. 4, local minimal and maximal points and the inflexion points 
on uncontaminated A92618, C10200 and S31603 could be detected: 
270 nm, 309 nm, 345 nm, 360 nm, 378 nm, 546 nm, 652 nm, 820 nm, 
942 nm, 1080 nm, and 1162 nm. The C10200 crosses both the A92618 
pure spectra (around 600 nm) and S31603 one (around 580 nm); these 
two points were also considered for classification analysis. These were 
added to the 5 wavelengths detected in Section 2: 250 nm, 1250 nm, 
450 nm, 515 nm, and 1064 nm, for a total of 18 data sets. 

3.2. Cross-contaminate systems absorbance 

3.2.1. A92618 − C10200 
The system A92618 − C10200 was evaluated. Fig. 5 reports the 

graph with the medium spectra for each amount of contamination. 
It is possible to evidence that the two pure spectra (A92618 and 

C10200 ones) around 600 nm have the same absorbance, and an 
intersection occurs between the two spectra. Moreover, all the spectra of 
mixed systems have the same absorbance and consequently pass from 
the same point of intersection. In the first part of the graph (250–599 
nm), C10200 has a higher absorbance than A92618; after 600 nm, the 

highest absorbance is the A92618′s. The spectra of mixed powders vary 
depending on the percentage of pure powders constituting them: the 
lower the percentage of contaminating powders (B), the more similar the 
spectrum’s trend will be to that of pure powder (A). 

In Fig. 6 (values can be found in Table A2 in Appendix A), the 
absorbance values of the blue, green, and red laser wavelengths are 
reported considering the amount of C10200 contaminant in volume. 

Fig. 6 shows that a linear trend characterises the relation between 
absorbance and relative percentages of A92618 and C10200 contained 
in the mixture at each wavelength analysed. Since C10200 has a higher 
absorbance than A92618 at low wavelengths, an increased absorbance, 
with the increasing of C10200 content, is determined at the blue and 
green wavelengths. On the contrary, for red laser wavelength, C10200 
has a lower absorbance than A92618, consequentially there is a decrease 
of absorbance. The linear trend highlights that the spectra analysis could 
be qualitative and quantitative since mathematical correlation is 
detected in the graph. 

3.2.2. A92618 – S31603 
The behaviour of the system A92618- S31603 is shown in Fig. 7. 

S31603 shows higher absorbance than A92618 all over the UV–Vis-NIR 
analysed range and the pure spectra do not intersect each other. 

As for the pure spectra, no intersection occurs between those of cross- 
contaminated powders. A shape variation of spectra can be noticed; 
moreover, the translation of spectra leads to no spectra intersections. In 
Fig. 7, looking at the y-axis at the wavelength of 250 nm, it can be 
noticed that the spectra of 0 %, 25 %, 50 %, 75 % and 100 % of S31603 
are uniformly distributed. This indicates that a linear relationship 

Fig. 6. Variation of absorbance at 450, 515, and 1064 nm depending on the 
percentage of C10200 in A92618 powders. 

Fig. 7. Absorbance spectra of the mixed powders belonging to the A92618 −
S31603 system. 

Fig. 8. Variation of absorbance at 450, 515, and 1064 nm depending on the 
percentage of S31603 in A92618 powders. 

Fig. 9. Absorbance spectra of the mixed powders belonging to the C10200 −
S31603 system. 
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between absorbance and contaminant percentage is present. In order to 
analyse this further, the variation of absorbance has been evaluated with 
the increasing content of S31603 powder, as reported in Fig. 8 (Table A3 
in Appendix A). 

Since no intersection occurs between the spectra of uncontaminated 
powders and considering that S31603 has a higher absorbance all over 
the analysed range, the same behaviour characterises the mixtures at all 
3 wavelengths. A linear trend is evidenced at all three wavelengths with 
a different slope, and it is increasing with the increase of S31603 powder 
content in the mixture. 

3.2.3. C10200 − S31603 
In the system C10200 − S31603, the two pure spectra intersect 

around 580 nm, as shown in Fig. 9. 
The two pure spectra (C10200 and S31603 ones) around 580 nm 

have the same absorbance, determining an intersection between the two 
spectra. At the wavelength of 580 nm all the spectra of mixed systems 
are characterised by the same absorbance; at lower wavelengths, 
C10200 has a higher absorbance than S31603; after 580 nm, on the 
contrary, S31603 has a lower reflectance. 

In Fig. 10 (values in Table A4 in Appendix A), it is possible to 
highlight that a linear trend is detected in the absorbance variation 
depending on the contamination percentage. 

Since C10200 has a higher absorbance than S31603 at low wave-
lengths, a decreased absorbance, with the increase of S31603 content, is 

determined at the blue and green wavelengths. On the contrary, C10200 
has a higher reflectance for red laser wavelength than S31603, and the 
absorbance increases with the increasing content of S31603. 

If the graph in Fig. 10 was plotted as a function of C10200 per-
centage, it would result in a plot very similar to the one reported in 
Fig. 6: same linear trends but with a different slope. 

The analysis of the three different systems (AC, AS, CS) shows that 
the UV–Vis-NIR technique detects the cross-contamination since a shift 
and a shape modification of the spectra of admixed powders occur as a 
function of the percentage of powders constituting the systems. Quali-
tative information are obtained on the percentage of contaminant 
powders by analysing the absorbance spectra. 

Summing up, in binary systems, with an intersection point (λP) be-
tween pure spectra, if absorbances at two different wavelengths, one 
lower and one higher than λP, are plotted as a function of the percentage 
content of powder B, the trend of the two will be discord; one will in-
crease and the other decrease. If the wavelength selected is equal to λP, 
the trend will be a line parallel to the x-axis. Instead, if no intersection 
occurs between pure systems, it is because one of the two powders (B) 
has a higher absorbance all over the range, and whatever the two 
wavelengths considered to compare the trend of their absorbance 
against the percentage content of powder B, these will show an 
increasing linear trend with, at most, different slopes. 

In addition to what reported so far, a quantitative study on the 
percentage of contaminant powder can also be performed with chemo-
metric tools. They can be used for the identification of the contaminant 
specie, as shown in the following sections. 

3.3. Chemometric analysis − Principal Component analysis 

All samples’ spectra after the binning operation have been evaluated 
with the Principal Component Analysis. The first two components 
almost explain the total variance (up to 99.9 %), so only these are 
considered. The results are reported in Fig. 11, where the score plot 
reports the projection of each sample in the space defined by the new 
variables: the coordinate values obtained are called scores as explained 
by Oliveri et al. [31]. 

In Fig. 11 b), it is possible to notice that the different points, each 
representing a sample, lie on an ideal triangle: uncontaminated powders 
(A92618, C10200, S31603) are located on its vertices, while cross- 
contaminated samples (AC, AS, CS) lie on the ideal triangle’s sides, in 
particular on the side connecting the two vertices constituted by the 
pure powders present in the mixture. For example, if the system taken 
into account is AS, A92618 and S31603 uncontaminated powders 

Fig. 10. Variation of absorbance at 450, 515, and 1064 nm depending on the 
percentage of S31603 in C10200 powders. 

Fig. 11. PCA of all samples: a) loading plot; b) score plot.  

M. Ceroni et al.                                                                                                                                                                                                                                 



Materials & Design 242 (2024) 113023

8

represent two of the three vertices, all mixtures samples AS are located 
on the line (side) joining A and S; the highest the content of S31603 the 
closer the point representing the sample will be to the S31603′s vertex. 

For a more comprehensive evaluation of all the systems taken into 
account in the following paragraphs, PCA analysis was performed on all 
systems; results are reported in Appendix B:  

- Classification: A92618 − Fig. B1, C10200 − Fig. B2, S31603 −
Fig. B3;  

- Regression: A92618- C10200 system − Fig. B4, A92618-S31603 
system − Fig. B5, C10200 − S31603 system − Fig. B6. 

3.4. Chemometric analysis − classification 

After the general PCA, classification was performed on samples to 
evaluate which is the contaminant powder. 

3.4.1. A92618 
Samples containing A92618 powders were considered for the clas-

sification analysis. The results for the different k of the k-NN analysis can 
be found in Table 5. 

For the A92618 system, the number of neighbour samples that best 
fit the model to discriminate the class group for the samples belonging to 

the A92618 system is 3, as evidenced in Table 5; k-NN classification 
results with k = 3 are reported in Table 6 with those of single LDA. 

From the table, it can be seen that for this system, k-NN and LDA 
analysis provide the same results with the cross-validation step and the 
prediction of the test set; for this last, both models give 100 % accuracy 
of results. The LDA Monte Carlo validation results are reported in Fig. 12 
and Table 7. 

The Monte Carlo validation is highly predictive; samples contami-
nated with S31603 are more accurately classified than those contami-
nated with C10200. The highest prediction capability for the samples 
contaminated with S31603 could be found in the PCA plots (Fig. B1), 
where all the samples containing A92618 and S31603 are all aligned on 
a straight line, while those with C10200 are more dispersed. From the 
table, it is possible to highlight that using a specific set of cancellation 

Table 5 
Percentage of correct predictions in CV for k-NN classification depending on k 
for samples containing A92618 powders.   

AC AS Total 

k ¼ 1 96.15 96.15 96.15 
k ¼ 2 92.31 92.31 92.31 
k ¼ 3 96.15 100.00 98.08 
k ¼ 4 84.62 88.46 86.54 
k ¼ 5 84.62 96.15 90.39 
k ¼ 6 80.77 92.31 86.54 
k ¼ 7 84.62 100.00 92.31  

Table 6 
k-NN and LDA classification results in CV and prediction for samples containing 
A92618 powders.  

percentage Correct Predictions k-NN LDA 

AC AS total AC AS total 

CV 96.2 100 98.1 96.2 100 98.1 
Prediction 100 100 100 100 100 100  

Fig. 12. Plots describing the frequency in repeated LDA classification for 
samples containing A92618 powders. 

Table 7 
Percentage of correct predictions for LDA classification (repeated 100 times) 
results in CV for samples containing A92618 powders.   

mean min max 

AC  91.12  80.77 96.15 
AS  96.92  92.31 100 
Total  94.02  88.46 98.08  

Table 8 
Percentage of correct predictions in CV for k-NN classification depending on k 
for samples containing C10200 powders.   

AC CS total 

k ¼ 1 73.08 70.37 71.72 
k ¼ 2 65.38 59.26 62.32 
k ¼ 3 84.62 70.37 77.50 
k ¼ 4 65.38 62.96 64.17 
k ¼ 5 73.08 66.67 69.88 
k ¼ 6 65.38 59.26 62.32 
k ¼ 7 84.62 70.37 77.50  

Table 9 
k-NN and LDA classification results in CV and prediction for samples containing 
C10200 powders.  

percentage Correct Predictions k-NN LDA 

AC CS total AC CS total 

CV 84.6 70.4 77.5 96.2 100 98.1 
Prediction 100 75.0 87.5 87.5 87.5 87.5  

Fig. 13. Plots describing the frequency in repeated LDA classification for 
samples containing C10200 powders. 
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groups with LDA results in the best performance, as indicated by the 
values matching the maximum ones from the Monte Carlo validation. 
The Monte Carlo validation involves running the Linear Discriminant 
Analysis (LDA) multiple times with different randomly selected sets of 
data. However, the best results obtained from this analysis may coincide 
with those of a single LDA, as seen in this specific case. Additionally, it’s 
crucial to examine the distribution of results presented in Fig. 12. It’s 
evident that in this scenario, the test set used by the software to conduct 
the single LDA corresponds to the best conditions for both AS and AC. 
Consequently, the overall prediction capability is also the highest. 

3.4.2. C10200 
Mixtures containing C10200 powders have been evaluated. The re-

sults for the different k of the k-NN analysis can be found in Table 8. 
The number of neighbours that must be evaluated for samples 

containing C10200 powders equals 3 or 7. Both k were evaluated in the 
prediction model since they are equal, and k = 7 provides better pre-
diction capability. The results of this analysis and single LDA are re-
ported in Table 9. 

For mixtures containing C10200 powders, the technique with a 
higher prediction ability in CV is the LDA. LDA repeated CV was per-
formed; its results are reported in Fig. 13 and Table 10. 

The set of cancellation groups used by the single LDA model provides 
the best result for CS samples, but it predicts AC samples less accurately 
compared to the mean result. This underscores the importance of the 
Monte Carlo validation. On average, the model performs better in 
identifying samples contaminated with A92618 powder. In this specific 
case, there are test sets where all CS samples are correctly associated, 
and the same applies to those belonging to AC. However, Monte Carlo 
validation reveals that these two occurrences don’t coincide, as the total 
predictable capability never reaches 100 %. For instance, the set 
considered by the software for the single LDA shows the highest CS and 
total prediction ability in CV, but not for samples belonging to the AC 
system. This discrepancy demonstrates that achieving high predictabil-
ity for one category doesn’t guarantee the same for another, highlighting 
the complexity of the classification task. 

3.4.3. S31603 
The classification of mixtures with S31603 powders was performed. 

The results for the different k of the k-NN analysis can be found in 
Table 11. The best k result is k = 3; the results of this analysis and single 
LDA are reported in Table 12. 

Once again, the LDA method resulted in a more predictive model. 
The results of the repeated LDA are reported in Fig. 14 and Table 13. 

In this classification, the samples from the A92618-S31603 system 
show better classification performance, as they align more closely on a 
straight line in PCA plots (Fig. B 3) and are more easily associated with 
the mathematical model. The average accuracy of LDA classification, 
calculated from multiple cross-validation runs, is lower than the accu-
racy obtained from a single LDA analysis (as shown in Table 12). This 
highlights the importance of conducting repeated LDA cross-validation 
to ensure more reliable results. Monte Carlo validation indicates that 

Table 10 
Percentage of correct predictions for LDA classification (repeated 100 times) 
results in CV for samples containing C10200 powders.   

mean min max 

AC  97.88  92.31  100.00 
CS  91.11  81.48  100.00 
Total  94.50  90.60  98.15  

Table 11 
Percentage of correct predictions in CV for k-NN classification depending on k 
for samples containing S31603 powders.   

AS CS Total 

k ¼ 1 96.15 92.59 94.37 
k ¼ 2 88.46 85.19 86.82 
k ¼ 3 96.15 92.59 94.37 
k ¼ 4 92.31 74.07 83.19 
k ¼ 5 96.15 81.48 88.81 
k ¼ 6 88.46 74.07 81.26 
k ¼ 7 100.00 74.07 87.03  

Table 12 
k-NN and LDA classification results in CV and prediction for samples containing 
S31603 powders.  

percentage Correct Predictions k-NN LDA 

AS CS total AS CS total 

CV 96.2 92.6 94.4 100 96.3 98.1 
Prediction 100 87.5 93.8 100 100 100  

Fig. 14. Plots describing the frequency in repeated LDA classification for samples containing S31603 powders.  

Table 13 
Percentage of correct predictions for LDA classification (repeated 100 times) 
results in CV for samples containing S31603 powders.   

mean min max 

AS  94.27  88.46  100.00 
CS  88.56  77.78  96.30 
Total  91.41  83.12  98.15  
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the results obtained from the single LDA analysis belong to sets that 
yield the best results for cross-validation. It’s essential to note that with a 
higher number of iterations or repetitions, the results of Monte Carlo 
validation could potentially vary, possibly characterized by wider dis-
tributions due to the random selection of data sets. 

Table 14 presents an outline of the two different classification 
models applied to the various mixtures; it is possible to provide evidence 
that both systems offer a highly predictable ability in cross-validation 
and prediction. 

Applying chemometrics classification techniques can provide accu-
rate results in determining the contaminant species at a low cost. 

3.5. Chemometric analysis − regression 

3.5.1. A92618 − C10200 
For the A92618- C10200 powder system, all the AC mixtures have 

been taken into account, and non-contaminated A92618 and C10200 
samples have been used too. The PLS analysis has been performed 
considering 10 components. After the regression, the plot reported in 
Fig. 15a has been obtained (values can be found in Table B 1 in Appendix 
B): the global root mean squared error of cross-validation (RMSECV) 
decreases until the number of components was equal to 8. After setting 

the number of components equal to 8, the training set was validated. The 
comparison between the experimental and calculated values is reported 
in Fig. 15b. The two plots show no significant differences, indicating that 
the model calculated by the software is valid and that the analysis of 
spectra corresponds to their contaminant percentage. The prediction 
step was performed with the test set, and results are shown in Fig. 15c 
and Table 15. 

Table 15 highlights that mixtures show predicted values very close to 
the real ones, with a deviation lower than ± 0.8 %, apart from the 
sample CA25_t. In this case, due to the different densities and gran-
ulometry characterising A92618 and C10200, powders segregation 
occurred, resulting in a slightly higher deviation. Considering pure 
powders, it can be highlighted that their deviation is locating them out 
of the scale, evidencing that these are negatively contaminated and 
consequentially, since this cannot be, they are pure. Negative percent-
ages of contamination help their individuation among the other 
samples. 

3.5.2. A92618 – S31603 
For the A92618-S31603 powder system, non-contaminated A92618 

and S31603 samples and all the AS mixtures have been taken into ac-
count. Also in this case, PLS analysis was done considering 10 

Table 14 
Summary of percentage of correct predictions in CV and prediction for k-NN and LDA classification.  

percentage Correct Predictions A92618 C10200 S31603 

AC AS total AC CS total AS CS Total 

k-NN CV 96.2 100 98.1 84.6 70.4 77.5 96.2 92.6 94.4 
Prediction 100 100 100 100 75.0 87.5 100 87.5 93.8 

LDA CV– repeated (mean) 91.1 96.9 94.0 97.9 91.1 94.5 94.3 88.6 91.4 
Prediction 100 100 100 87.5 87.5 87.5 100 100 100  

Fig. 15. A) evaluation of the global RMSECV in the regression of the AC system; b) Experimental vs calculated values of training test in the CV of the regression of 
system AC; c) Predicted values of test set in the regression of system AC. 

Table 15 
Predicted values of test set in the regression of system AC and the deviation from the expected values.  

sample name A_t AC0_t AC2_t AC4_t AC25_t CA25_t CA4_t CA1_t CA0_t C_t 

% C10200  − 3.24  0.19  2.48  4.65  24.26  79.53  95.69  99.47  100.14  101.98 
Deviation  − 3.24  − 0.31  +0.48  +0.65  − 0.74  +4.53  − 0.31  +0.47  +0.64  +1.98  
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components. Results are reported in Fig. 16a (values in Table B2 in 
Appendix B). From Fig. 16a, it is possible to highlight that in this system, 
the number of components must be set equal to 2 since this is the first 
local point of minimum. The validation of the training set leads to the 
plots shown in Fig. 16b, and the comparison of experimental and 
calculated values does not differ significantly. The test set was used to 

validate the prediction capability of the regression model. Results are 
shown in Fig. 16c and Table 16. 

Mixtures with a low percentage of contaminant have a deviation up 
to ± 1.5 %. At high concentrations of cross-contamination, the predic-
tion ability is slightly lower since it has a deviation from actual values 
between 4–6 %. This is correlated to the fact that A92618 granulometry 

Fig. 16. A) evaluation of the global RMSECV in the regression of the AS system; b) Experimental vs calculated values of training test in the CV of the regression of 
system AS; c) Predicted values of test set in the regression of system AS. 

Table 16 
Predicted values of test set in the regression of system AS and the deviation from the expected values.  

sample name A_t AS0_t AS1_t AS6_t AS50_t SA25_t SA6_t SA4_t SA0_t S_t 

% S31603  − 0.25  0.19  1.65  4.60  53.92  81.03  92.49  94.97  98.09  100.66 
Deviation  − 0.25  − 0.31  +0.65  − 1.40  +3.92  +6.03  − 1.51  − 1.03  − 1.41  +0.66  

Fig. 17. A) evaluation of the global RMSECV in the regression of the CS system; b) experimental vs calculated values of training test in the CV of the regression of 
system CS; c) predicted values of test set in the regression of system CS. 
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is similar to those of S31603, but their specific weight is very different. 
This can lead again to the local de-mixing of powders, originating areas 
with heterogeneous distribution, as previously discussed. 

3.5.3. C10200 – S31603 
For the C10200 − S31603 powder system, the PLS analysis has been 

performed considering 10 components. After the regression, the plot 
reported in Fig. 17a was obtained (values in Table B3 in Appendix B): 
the number of components has been set equal to 3. The validation of the 
training test evidences that no differences can be highlighted between 
the experimental and calculated values reported in plots, Fig. 17b. 
Lastly, the prediction step was performed with the test set, and the re-
sults are shown in Fig. 17c and Table 17. 

The regression model in this system shows the highest predicting 
ability, with a deviation lower than ± 0.6 %. This system’s predictable 
ability at high and low concentrations is comparable since a similar 
specific weight characterises C10200 and S31603 powders, and the 
powders’ distribution size does not differ significantly. 

Comparing the results of the three systems, it is possible to evidence 
that chemometrics tools applied to UV–Vis-NIR spectra result in a 
quantification of the percentage of cross-contamination among the 
different powders. Moreover, it is possible to underline that the per-
centage of contamination predicted is closer to the actual value as the 
powder’s densities and granulometries of the two species constituting 
the system are more similar. When the density of the contaminated 
powder is very different from the contaminant one, especially at high 
percentages of cross-contamination, the occurring segregation leads to a 
deviation of approx. 5 % instead of 0.5–1.5 %, depending on the 
systems. 

Chemometric analysis can detect, with a precision higher than 85 %, 
the contaminant specie among those considered potential in the 
different process steps. Once the contaminant powder has been identi-
fied, it is possible to determine its amount with the regression analysis. 

4. Conclusions 

UV–Vis-NIR spectroscopy is evaluated as a fast, non-invasive, and 
low-cost technique for detecting cross-contamination in metal powders. 
The spectrum shape changes with increasing contamination percentage, 
showing shifts and modifications. The spectra of contaminated powders 

become more similar to pure powders as the content of the contami-
nating powder increases. Specific wavelengths show a linear trend be-
tween contaminant percentage and absorbance variation. This method 
allows qualitative analysis of cross-contamination and can be used in 
Powder Metallurgy to assess process conditions and maintain control. 
For known contaminants, a multivariate approach can be used, 
employing classification models like LDA and k-NN, which show over 
85 % prediction capability. Regression analysis is applied to identify 
contaminant type and concentration. PLS analysis is effective for qual-
itative analysis, especially when powders have similar densities. Che-
mometric tools combined with UV–Vis-NIR spectroscopy allow for 
contaminant identification and quantitative analysis, aiding in the re-
covery of cross-contaminated powders based on user knowledge. 
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Appendix A:. Systems evaluation and their absorbance  

Table A1 
Samples names and their powder concentrations.   

Volume % A92618 Volume % C10200  Volume % A92618 Volume % S31603  Volume % C10200 Volume % S31603 

AC0 99.5 0.5 AS0 99.5 0.5 CS0 99.5 0.5 
AC1 99.0 1.0 AS1 99.0 1.0 CS1 99.0 1.0 
AC2 98.0 2.0 AS2 98.0 2.0 CS2 98.0 2.0 
AC4 96.0 4.0 AS4 96.0 4.0 CS4 96.0 4.0 
AC6 94.0 6.0 AS6 94.0 6.0 CS6 94.0 6.0 
AC25 75.0 25.0 AS25 75.0 25.0 CS25 75.0 25.0 
AC50 50.0 50.0 AS50 50.0 50.0 CS50 50.0 50.0 
CA25 25.0 75.0 SA25 25.0 75.0 SC25 25.0 75.0 
CA6 6.0 94.0 SA6 6.0 94.0 SC6 6.0 94.0 
CA4 4.0 96.0 SA4 4.0 96.0 SC4 4.0 96.0 

(continued on next page) 

Table 17 
Predicted values of test set in the regression of system CS and the deviation from the expected values.  

sample name C_t CS1_t CS4_t CS6_t CS50_t SC25_t SC6_t SC4_t SC0_t S_t 

% S31603  − 0.26  0.96  3.96  5.56  49.87  75.33  93.68  96.59  99.40  99.59 
Deviation  − 0.26  − 0.04  − 0.04  − 0.44  − 0.13  +0.33  − 0.32  +0.59  − 0.10  − 0.41  
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Table A1 (continued )  

Volume % A92618 Volume % C10200  Volume % A92618 Volume % S31603  Volume % C10200 Volume % S31603 

CA2 2.0 98.0 SA2 2.0 98.0 SC2 2.0 98.0 
CA1 1.0 99.0 SA1 1.0 99.0 SC1 1.0 99.0 
CA0 0.5 99.5 SA0 0.5 99.5 SC0 0.5 99.5   

Table A2 
Absorbance of the different concentrations of contamination between A92618 and C10200 powders for the selected laser wavelength.  

% C10200 450 nm 515 nm 1064 nm 

0 61.13 ± 0.03 61.31 ± 0.00 55.21 ± 0.07 
0.5 62.21 ± 0.70 62.33 ± 0.73 55.58 ± 0.77 
1 62.22 ± 1.07 62.31 ± 1.07 55.14 ± 0.97 
2 63.08 ± 0.71 63.06 ± 0.67 55.14 ± 0.29 
4 63.80 ± 0.91 63.58 ± 0.88 54.08 ± 0.79 
6 64.06 ± 0.20 63.83 ± 0.22 54.40 ± 0.37 
25 71.11 ± 0.40 69.88 ± 0.35 50.40 ± 0.32 
50 79.51 ± 0.21 77.33 ± 0.14 44.64 ± 0.28 
75 85.73 ± 1.21 82.94 ± 1.14 40.27 ± 0.55 
94 87.29 ± 0.50 84.32 ± 0.44 37.75 ± 0.73 
96 87.49 ± 0.39 84.46 ± 0.29 37.42 ± 0.35 
98 87.78 ± 0.05 84.73 ± 0.07 36.70 ± 0.29 
99 88.03 ± 0.19 84.93 ± 0.28 36.81 ± 0.65 
99.5 88.00 ± 0.14 84.90 ± 0.21 36.41 ± 0.62 
100 87.94 ± 0.03 84.81 ± 0.03 36.41 ± 0.23   

Table A3 
Absorbance of the different concentrations of contamination between A92618 and S31603 powders for the selected laser wavelength.  

% S31603 450 nm 515 nm 1064 nm 

0 61.67 ± 0.80 61.88 ± 0.82 55.70 ± 0.83 
0.5 61.43 ± 0.18 61.61 ± 0.18 55.35 ± 0.19 
1 61.65 ± 0.12 61.78 ± 0.12 55.57 ± 0.14 
2 61.37 ± 0.53 61.51 ± 0.56 55.29 ± 0.56 
4 61.90 ± 0.80 61.98 ± 0.80 55.81 ± 0.79 
6 62.10 ± 0.23 62.13 ± 0.25 56.04 ± 0.21 
25 64.59 ± 0.62 64.32 ± 0.59 58.53 ± 0.66 
50 68.51 ± 0.31 67.69 ± 0.28 62.37 ± 0.30 
75 71.59 ± 0.29 70.35 ± 0.26 65.26 ± 0.29 
94 73.32 ± 0.14 71.81 ± 0.15 66.89 ± 0.16 
96 73.91 ± 0.27 72.37 ± 0.29 67.42 ± 0.24 
98 73.92 ± 0.16 72.34 ± 0.15 67.44 ± 0.13 
99 74.34 ± 0.54 72.77 ± 0.57 67.93 ± 0.64 
99.5 74.18 ± 0.15 72.59 ± 0.15 67.69 ± 0.12 
100 75.30 ± 0.29 73.76 ± 0.29 69.06 ± 0.26   

Table A4 
Absorbance of the different concentrations of contamination between C10200 and S31603 powders for the selected laser wavelength.  

% S31603 450 nm 515 nm 1064 nm 

0 87.94 ± 0.12 84.89 ± 0.16 36.45 ± 0.30 
0.5 87.79 ± 0.10 84.65 ± 0.17 36.22 ± 0.30 
1 87.81 ± 0.24 84.71 ± 0.24 36.80 ± 0.55 
2 88.15 ± 0.22 84.90 ± 0.35 37.65 ± 0.56 
4 87.40 ± 0.23 84.26 ± 0.32 37.65 ± 0.35 
6 87.40 ± 0.27 84.28 ± 0.20 38.15 ± 0.42 
25 86.23 ± 1.13 83.31 ± 1.07 44.36 ± 1.02 
50 82.52 ± 0.11 79.88 ± 0.06 51.80 ± 0.32 
75 78.84 ± 0.13 76.63 ± 0.12 59.74 ± 0.06 
94 75.26 ± 0.20 73.48 ± 0.26 65.32 ± 0.74 
96 74.35 ± 0.19 72.67 ± 0.14 66.06 ± 0.59 
98 74.34 ± 0.50 72.65 ± 0.45 66.36 ± 0.57 
99 74.39 ± 0.33 72.80 ± 0.34 67.52 ± 0.29 
99.5 73.86 ± 0.25 72.25 ± 0.26 67.20 ± 0.34 
100 74.78 ± 0.15 73.30 ± 0.14 68.76 ± 0.14  
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Appendix B:. Chemometric

Fig. B1. PCA of mixtures containing A92618 powders: sx) loading plot; dx) score plot 

Fig. B2. PCA of mixtures containing C10200 powders: sx) loading plot; dx) score plot  
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Fig. B3. PCA of mixtures containing S31603 powders: sx) loading plot; dx) score plot 

Fig. B4. PCA of samples containing A92618 and C10200 powders: sx) loading plot; dx) score plot 

Fig. B5. PCA of samples containing A92618 and S31603 powders: sx) loading plot; dx) score plot  
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Fig. B6. PCA of samples containing C10200 and S31603 powders: sx) loading plot; dx) score plot   

Table B1 
Results of PLS analysis on the AC system.  

components 1 2 3 4 5 6 7 8 9 10 

CV% Explained Variance  99.38  99.5  99.72  99.79  99.83  99.87  99.87  99.88  99.88  99.87 
Global RMSECV  3.45  3.11  2.31  2.03  1.79  1.57  1.56  1.52  1.55  1.58   

Table B2 
Results of PLS analysis on the AS system.  

components 1 2 3 4 5 6 7 8 9 10 

CV% Explained Variance  99.23  99.64  99.52  99.56  99.58  99.55  99.55  99.56  99.55  99.55 
Global RMSECV  3.81  2.59  3.01  2.87  2.79  2.91  2.89  2.87  2.90  2.90   

Table B3 
Results of PLS analysis on the CS system.  

components 1 2 3 4 5 6 7 8 9 10 

CV% Explained Variance  99.79  99.84  99.95  99.93  99.91  99.93  99.92  99.93  99.93  99.93 
Global RMSECV  2.02  1.76  1.03  1.14  1.31  1.21  1.24  1.16  1.19  1.20  
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