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Abstract
The molecular field-coupled nanocompunting (molFCN) technology encodes the information in the charge distribution of 
electrostatically coupled molecules, making it an exciting solution for future beyond-CMOS low-power electronics. Recent 
literature has shown that multi-molecule molFCN enables the design of devices with tailored unconventional characteristics, 
such as majority voters working as artificial neurons. This work presents a multi-molecule molFCN neuron model based on 
the weighted-inputs formulation to estimate molFCN neurons behavior. Then, the introduced model is used to design each 
neuron of molFCN circuits working as neural networks. In particular, we propose a molFCN neural network operating as 
an input pattern classifier. The results show the model aptitude in predicting the logic output values for individual neurons 
and, consequently, entire networks. The model accuracy has been evaluated by comparing the results from the neuron math-
ematical model with those obtained from the circuit-level simulations conducted with the SCERPA tool. Overall, this study 
highlights the strategic use of diverse molecules in molFCN layouts, customizing circuit operations, and expanding design 
possibilities for specific molFCN device functioning.

Keywords  Molecular field-coupled nanocomputing · Multi-molecule FCN · Molecular modeling · Molecular neural 
networks

1 � Introduction and background

Molecular Field-Coupled Nanocompunting (molFCN) has 
been addressed as a promising solution to extend the land-
scape of Beyond-CMOS technologies. The molFCN imple-
ments the Quantum-dot Cellular Automata (QCA) paradigm 

by encoding logic information in the charge distribution of 
molecular functional groups, called dots [1, 2]. Figure 1a 
reports the structure of the bis-ferrocene, one of the most 
promising molecules studied for molFCN [3]. A pair of elec-
trostatically coupled molecules form the molFCN unit cell, 
reported in Fig. 1b. Charge within each molecule undergoes 
motion due to both electrostatic interactions with nearby 
molecules ( Esw ) and the influence of an external vertical 
clock field ( Eck ), schematically represented in Fig. 1b. A 
positive Eck pushes charges toward Dot1 and Dot2, facili-
tating information encoding in the so-called ‘Hold’ state. 
In such a case, the charge moves along the cell diagonals 
to minimize Coulomb’s repulsion. The resulting two dis-
tinct minimum-energy configurations correspond to the 
logic states ‘0’ and ‘1’ in Fig. 1c. Conversely, a negative Eck 
directs charges into Dot3, erasing the encoded information 
and providing the ‘Null’ state. The polarization ( Pc ) is an 
important figure of merit to evaluate the logic value encoded 
by a molFCN cell and is computed as in the Eq. (1), where 
q1, q2, q3, and q4 are the dot charges in Fig. 1c [4].
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Information transport occurs through electrostatic interac-
tions within molFCN cells arranged on specific layouts [5, 
6]. Figure 1d shows a molFCN wire composed of aligned 
cells. The information propagation is initiated by the fixed 
charge distribution of a driver and propagates thanks to the 
rearrangement of charges within the molecules. The circuit 
is organized in clock regions, reported in Fig. 1d using dif-
ferent colors, which are activated by different clock signals, 
namely CK1, CK2, and CK3 in Fig. 1d. The signals alternate 
between high (H) and low (L) levels, providing the ‘Hold’ 
and ‘Null’ states. The propagation along the wire occurs 
in three steps, namely S1, S2, and S3. In S1, the first clock 
region is in ‘Hold’, and the logic information propagates 
from the driver into the cells via electrostatic coupling. The 
logic information then propagates through CK2 in S2 and 
subsequently into CK3 during S3, finally reaching the cir-
cuit output. In general, the clock region successive activa-
tion ensures forward propagation and permits information 
pipelining [7–10]. Moreover, proper cell layout implements 
digital gates such as the inverter or the Majority Voter (MV), 
with the latter shown in Fig. 1e [11]. The MV outputs the 
most frequent input logic, and its layout is divided into three 

(1)Pc =
q2 + q3 − q1 − q4

q1 + q2 + q3 + q4

clock regions to ensure stable computation. The MV central 
cell activates when IN1, IN2, and IN3 are stable, whereas 
CK3 ensures stable computed logic value propagation, pre-
venting spurious charge switching [5]. From a circuit-level 
perspective, this solution eliminates criticalities arising from 
input propagation delays when longer input branches are 
considered.

As a whole, molFCN promises theoretically highly 
reduced power consumption, THz frequencies operations, 
and room temperature workability [1, 12–15]. Concerning 
fabrication, molFCN could exploit self-assembly and must 
rely on sub-nm control of the substrate on which the mol-
ecules are deposited and accurate lithography of the clocking 
structure [11, 16–18].

Aiming to enrich the set of molFCN circuits, we intro-
duced multi-molecule molFCN, demonstrating that using 
different molecules in a molFCN layout tailors the device 
functioning [19, 20]. This work extends the analysis by 
designing molFCN circuits working as multilayered feed-
forward neural networks and adapting their functionality to 
working specifics. First, we introduce the weighted-inputs 
model used to estimate neuron behavior. Then, we design 
neural networks formed by four neurons, demonstrating the 
possibility of customizing the whole circuit functioning by 
predicting the behavior of the single molFCN neurons in 
the network. We use the four-neuron network to define the 
requirements regarding molecule arrangements and clock 
region activation to obtain correct information propagation. 
Finally, we use the four-neuron circuit as a building block in 
designing a molFCN neural network operating as a 3 × 3 pat-
tern classifier. The outcomes from the single-neuron model 
are validated by the calculations deriving from the Self-
Consistent ElectRostatic Potential Algorithm (SCERPA) 
tool [11, 21]. The results obtained using SCERPA showcase 
the possibility of customizing the operation of molFCN cir-
cuits by incorporating molecules with distinct electrostatic 
properties into the layout.

Overall, this study underscores the potential of introduc-
ing diverse molecules within a molFCN layout as a strate-
gic solution to customize circuit operations. This approach 
enhances the design prospects for molFCN circuits, enrich-
ing the landscape of available circuits. Additionally, these 
investigations can guide the synthesis and deposition of 
molecules to tailor molFCN devices functioning, as already 
demonstrated for other molecule-based electronics solutions 
[22–25].

2 � Methodology

This work uses the MoSQuiTo (Molecular Simulator Quan-
tum-dot cellular automata Torino) methodology. The meth-
odology analyses molFCN circuits considering the effective 

Fig. 1   a Bis-ferrocene molecule structure. Dot1, Dot2, and Dot3 are 
the functional groups where the charge localizes according to sur-
rounding electric fields. b Two electrostatically coupled molecules 
form the molFCN unit cell. Esw and Eck are the two fields influenc-
ing the charge position within the molecule. c Unit cell schematic and 
possible charge configurations. d Example of a molFCN wire divided 
into three clock regions. The clock signals CK1, CK2, and CK3 pro-
vides the ‘Hold’ and ‘Null’ states. e Majority Voter gate
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physical behavior, which is fundamental in emerging tech-
nologies [5, 11]. The MoSQuiTo approach consists of three 
steps. First, ab initio simulation analyzes the molecule of 
interest to evaluate the electronic distribution under the 
influence of different electric fields. Then, the simulation 
results are collected to define figures of merit which describe 
the molecule electronic behavior [11]. This work mainly 
exploits the Aggregated Charge (AC) and the input voltage 
Vin , both schematized in Fig. 2a. Specifically, the AC is the 
sum of atomic charges within the molecular dots, whereas 
Vin is determined as the input voltage, evaluated between 
Dot1 and Dot2, generated by the surrounding electric fields. 
The relation between these two figures of merit originates 
the Vin-Aggregated Charge Transcharacteristic (VACT), 
which traces the ACs variation under the influence of dif-
ferent input voltages. The VACT can be evaluated under the 
effects of different clock fields. In particular, Fig. 2b reports 
the VACT of the bis-ferrocene molecule obtained by apply-
ing a positive Eck [11]. Interestingly, the VACT comprises 
a region presenting a linear variation of the ACs with the 
applied Vin and a region where the ACs saturate [8]. The 
minimum voltage to obtain AC saturation is referred to as 
� [19]. Furthermore, the VACT exhibits asymmetry around 
Vin = 0V , highlighted in the inset in Fig. 2b, indicating a 
favored charge localization for Vin values close to 0 V. This 
work shows that the asymmetry impacts the isolated neuron 
and neural network design. In the third step, the extracted 
characteristics are used by the SCERPA tool to evaluate the 

charge distribution in the molecules forming a circuit [11]. 
Specifically, SCERPA iteratively evaluates the input voltage 
on each molecule by integrating the electric fields gener-
ated by the surrounding molecules ACs and associating it 
with the charge distribution on the molecular dots using the 
VACTs.

This work uses SCERPA to design molFCN circuits 
working as neural networks by inserting molecules with 
different electrostatic characteristics in the layout, taking 
advantage of the algorithm flexibility to consider circuits 
comprising different molecules [21]. Figure 2c schematizes 
the adopted three-step framework. First, we use the SCERPA 
tool to evaluate the synaptic weights encoded in the slope of 
a set of customized VACTs [19], which are associated with 
ad-hoc defined molecules. In the second step, we employ 
the just calculated synaptic weights to design artificial neu-
rons and neural networks. Specifically, the synaptic weights 
are introduced in a model based on the weighted sum of 
inputs. The model calculates the molFCN neuron polariza-
tion, which is associated with the computed logic value [4]. 
The model assists us in determining the synaptic weights to 
be positioned at each neuron input to attain predefined cir-
cuit functionality, such as input pattern classification. In the 
third step, SCERPA analyzes the neural circuits comprising 
bis-ferrocenes and the molecules having tailored VACTs. 
Precisely, SCERPA evaluates the information propagation 
considering the different VACTs characterizing the mol-
ecules in the circuit [19, 21]. This methodology permits the 
analysis of the behavior of designed neurons and networks. 
In addition, we compare the circuit final outputs obtained by 
SCERPA with those predicted by the mathematical model 
for each neuron forming the circuit. Our approach, integrat-
ing ab initio and ad-hoc molecule characterization, ensures 
precise circuit functionality and enables in-depth analysis 
of neuron and network behavior. Overall, this methodology 
offers a robust foundation for progressing the molFCN cir-
cuit landscape.

3 � Design and results

This section illustrates the design of molFCN neural net-
works, delineating the adopted three-step design approach 
that progresses from individual neurons to multilayered 
feed-forward networks. First, a single-neuron linear model 
is introduced. Then, four neurons are connected to form a 
two-layer neural network. Careful organization of the clock 
regions and activation processes has been implemented to 
guarantee accurate information propagation. Finally, the 
four-neuron circuit layout works as a building block in a 
molFCN neural network working as a 3x3 input pattern clas-
sifier. The classification capabilities underscore the mathe-
matical model aptitude for designing molFCN-based layered 

Fig. 2   a Schematic representation of the aggregated charges and the 
input voltage of a molecule as considered by the MoSQuiTo method-
ology. b Vin-to-Aggregated Charge Transcharacteristic (VACT) of the 
bis-ferrocene molecule subjected to a positive clock field. The zoom-
in on the curves around Vin = 0V highlights the bis-ferrocene VACT 
asymmetry. c Adopted framework. SCERPA is used in the first step 
to evaluate the synaptic weights associated with each ad-hoc defined 
molecule. The synaptic weights are used to evaluate and tailor the 
neuron working behavior. Finally, SCERPA is again used to evaluate 
the information propagation through the final circuit, taking the cir-
cuit layout and the VACTs as inputs
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neural networks and the advantages of using multi-molecule 
solutions to obtain predefined circuit behavior.

3.1 � Design of a molFCN neuron

In recent years, diverse molecules-based electronics synaptic 
mechanisms have been explored [19, 26–28]. In particular, 
authors in [19, 28] proposed two different neuron models 
compatible with molFCN, each relying on the weighted-inputs 
formulation [29–31]. Specifically, we proposed in [19] a multi-
molecule neuron solution based on the MV layout. Figure 3a 
shows the neuron layout. This work uses intermolecular dis-
tances between molecule centers equal to 0.9 nm and 2 nm 
along the z and y directions, respectively. The interface cells, 
namely INT1, INT2, and INT3, and the output cell, labeled 
saturator cell, are made with molecules with ad-hoc defined 
VACTs [19]. Bis-ferrocenes compose the central cell, also 
referred to as the computational cell. V INTi , where i = 1, 2, 3, 
represents the voltages applied at each interface input. The 
fixed charge arrangement of the driving cells determines these 
voltages. In particular, the saturator cell is made by molecules 
having steep transcharacteristics, hereafter labeled as saturator 
molecules [19]. The saturator molecule used in this work has 
� = 0.3 V. The low � eliminates the risk of output information 
aberration and provides an entirely digital nature to the neu-
ron [19]. Figure 3b shows the VACTs of the molecules used 

to compose the interfaces. The VACTs have � values ranging 
from +1V to +3V with steps of +0.5V, and the slope of their 
linear region encodes the synaptic weights [19]. In this work, 
we use the weight definition reported by equation (2), which 
links the input voltage applied on each interface to the induced 
polarization in the computational cell.

In Eq. (2) w1 , w2 , and w3 refer to INT1, INT2, and INT3, 
respectively. From a circuit-design perspective, the chosen 
weight formulation considers the interfaces as black boxes 
with effects on the central cell charge distribution defined 
by their constituent molecules. Figure 3c shows the details 
of the weights evaluation. The impact of the defined mol-
ecules on each interface is analyzed in SCERPA by varying 
the corresponding VINTi from −1 to +1 V while evaluating 
Pc , whereas the other interfaces are omitted from the lay-
out to analyze the effect of INTi solely. Figure 3d shows 
the polarization values obtained through SCERPA by plac-
ing the ad-hoc defined molecules on INT3. The weights 
are calculated based on the slope of the curve linking the 
SCERPA-evaluated Pc , denoted as PcS , with the input volt-
ages within the range of linear variations of the curves. The 
inset of Fig. 3d zooms-in on PcS derived from interfaces 
formed by molecules having � values ranging from 1.5 to 
3 V. The curves reveal a minimal influence of those mol-
ecules on the computational cell polarization when placed 
on INT3, providing PcS values ranging from −0.03 to +0.07 
for � = 1.5 V. Noticeably, all the curves are not symmetric to 
PcS equal to 0, owing to the intrinsic asymmetry of the bis-
ferrocene VACT. The same procedure is repeated on each 
interface molecule, permitting us to separately evaluate the 
impact of the different ad-hoc defined molecules on the Pc 
when positioned on INT1, INT2, or INT3. Table 1 reports 
the evaluated weights. The values indicate that the higher 
the � , the lower the weight of the corresponding interface, 
confirming the results obtained in [19]. Thus, the higher the 
� , the lower the influence on Pc.

The calculated weights are then used to estimate the 
neuron computation in the design phase. Precisely, we 

(2)wi =
Pc

VINTi

|||
|VINTi=[−1;1]V

, with i = 1, 2, 3

Fig. 3   a Neuron circuit diagram with interfaces receiving distinct 
input voltages ( VINTi, i = 1, 2, 3 ) determined by fixed charge distribu-
tion of drivers. The polarization of the central cell Pc depends on the 
weighted-inputs superposition. A saturator cell made by � = 0.3 V 
molecules is positioned at the circuit output. b Ad-hoc defined VACT 
curves of the interface molecules. c Configuration schematic to assess 
the weight of each ad-hoc molecule for one of three interfaces. The 
interface of interest undergoes a VINTi sweep from −  1  V to +1  V 
while the other two receive VINTi = 0V . d Pc curves obtained by 
applying a VINTi sweep on interface INT3 made by the ad-hoc defined 
molecules. Inset: zoom-in on the polarization curves for � molecules 
equal to 1.5 V, 2 V, 2.5 V, and 3 V

Table 1   Weights w
i
 evaluated by considering the ad-hoc defined mol-

ecules on each interface

� (V) w
1
 ( V−1) w

2
 ( V−1) w

3
 ( V−1)

1.0 0.3543 0.3543 0.4560
1.5 0.1523 0.1631 0.0689
2.0 0.1105 0.1169 0.0253
2.5 0.0899 0.0945 0.0153
3.0 0.0774 0.0811 0.0132
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evaluate the expected computational cell polarization 
( PcE ) adopting a model relying on the weighted linear 
combination of the voltages in input to the interfaces as 
defined by Eq. (3). This approach agrees with the com-
monly adopted weighted input sum formulation [29–31].

In this work, the molFCN unit cell configurations ‘0’ and ‘1’ 
are associated with negative and positive PcE , respectively. 
To permit the association, we assume the neuron activation 
function as a step-like function to link the logic behavior to 
PcE during the design procedure, simplifying the approach 
compared to the model proposed in [19, 31, 32]. The key 
distinction lies in the direct link established between PcE and 
VINTi , differently from the model in [19], which correlates 
the input voltages to the computational cell and the resulting 
output voltage of the computational cell itself. Therefore, 
the novel approach presented in this article favors the design 
procedure by treating the interfaces as black boxes with 
known input voltage to induced polarization relationships. 
This work demonstrates Eq. (3) reliability in predicting the 
neuron logic response while operating molecules within the 
linear regions of their transcharacteristics, which guarantees 
linear weighting during neuron functioning [19].

As an example of neuron computation, consider the fol-
lowing inputs and weights arrangement: w

1
= 0.3543 V

−1 , 
V
INT1

= −0.5 V  ;  w2 = 0.0945V
−1  ,  VINT2 = 0.5   V; 

w3 = 0.0253 V
−1
,VINT3 = 0.5V . By using Eq.  (3), we 

evaluate PcE = −0.1179; thus, a logic ‘0’ is expected as 
the result of the computation. Figure  4a, b report the 
SCERPA simulation results. Specifically, the figures pre-
sent the electrostatic potential 0.2 nm above the Dot1 and 
Dot2 plane. The bright spots identify positive charges. 
Figure 4a highlights the computation step of the neuron 
central cell, which presents PcS equal to −0.2516. The dif-
ference between PcS and PcE values derives from the model 
inherent linearity, which does not consider coupling effects 
among interfaces and possible molecule nonlinearities. 
Nevertheless, the model correctly estimates the expected 
logic value computed on the neuron central cell. Finally, 
the saturator activation increases PcS to −0.9541, thus lead-
ing to the high charge distribution in Fig. 4b and ensuring 
information stability. Interestingly, Fig. 4b also demon-
strates that, for such a set of weights and voltages, the less 
recurrent logic input drives the neuron output if applied 
on the most influencing interface. Hence, using different 
molecules broadens the possibilities associated with the 
MV gate layout, and the proposed example demonstrates 
the adopted model efficiency in predicting such situations.

(3)PcE =

3∑

i=1

wi ⋅ VINTi

3.2 � Simulating a two‑layer neural network

This section reports the design of two-layer neural networks 
using the single neuron presented in Sect. 3.1. The linear 
model permits to customize the individual functioning of 
the neurons in the network. Indeed, given that the saturator 
guarantees a digital facet to each neuron, understanding the 
isolated neuron behaviors permits us to predict and fine-
tune the overall neural network digital functioning. Figure 5a 
shows the two-layer neural network made of four neurons 
(NN4). The input layer comprises neurons ‘A’, ‘B’, and ‘C’, 
whereas the ‘Out’ neuron works as the output layer. B is-
ferrocene molecules make the interconnections among the 

Fig. 4   a Neuron computation results provided by SCERPA evaluating 
the electrostatic potential 0.2 nm above the Dot1 and Dot2 plane. The 
bright spots highlight the presence of positive charges. The driver 
cells charge distribution generates the input voltages VINTi , high-
lighted in light green. The computational cell, in red, shows a charge 
polarization PcS equal to −0.2516. b Activation of the saturator cell, 
which correctly samples the central cell logic value and enhances its 
polarization for future propagation

Fig. 5   a Layout of a four-neuron neural network and clock region 
organization for stable information propagation. T-connections are 
designed considering potential issues arising from molecular electro-
statics [5]. b The clock signals timing. The colors in the diagram cor-
respond to those in the layout schematic. CK2 and CK3 have been 
designed to avoid unstable propagation, possibly due to the presence 
of the highly susceptible saturator molecules and the low Pc in the 
neuron computational cell
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neurons. Moreover, Fig. 5a illustrates the five clock regions 
required to ensure effective information propagation. In par-
ticular, T-connections pose a potential challenge in molFCN 
due to molecular electrostatics, as demonstrated in [5]. Con-
sequently, the layout of these connections needs to be ade-
quately handled. Figure 5b reports the five signals, namely 
CKi, with i ranging from 1 to 5, governing the clock regions. 
Each signal consists of High and Low levels separated by a 
plateau used to model the transitions. The simulation steps 
in which the first Low-to-High transitions occur are referred 
to as ti , i = [1, 5]. The three levels correspond to positive, 
negative, and null Eck values, respectively. The waveforms 
are designed to ensure correct information propagation. Spe-
cifically, proper activation of the saturator molecules is cru-
cial given their high susceptibility to the surrounding fields, 
primarily due to the low � [33]. Additionally, possible low 
Pc values indicate unstable charge separation, increasing the 
risk of information loss. Therefore, as in Fig. 5b, t2 and t3 
are anticipated toward t1 compared to t4 and t5, thus making 
t2–t1 and t3–t1 lower than t4–t3. Such an insight ensures 
correct logic value sampling by the saturator molecules, 
preventing information loss and preserving maximum and 
stable charge separation conditions [33].

Consider as an example the circuit arrangement reported 
in Table 2. The PcE for neurons ‘A’, ‘B’, and ‘C’ are +0.2173, 
+0.1927, and +0.2121, respectively. Thus, three logic ‘1’ 
are expected. Figure 6 shows the SCERPA results. Fig-
ure 6a only focuses on the first computation step, i.e., the 
propagation of the information in the input layer. Therefore, 
the charge distribution on the output layer is not relevant. 
The PcS values evaluated before the saturators activation 
are +0.0627, +0.2216, and +0.2243 for ‘A’, ‘B’, and ‘C’. 
The PcS are close to those predicted by the linear model for 
neurons ‘B’ and ‘C’. Contrarily, the difference between PcE 
and PcS for neuron ‘A’ is relatively high. This condition is 
probably a result of relevant coupling effects between the 
interfaces due to the chosen interface configuration. Still, the 
logic outcomes of the three neurons are correctly predicted. 
Figure 6b reports the activation of the saturator cells, which 
drive the polarizations to PcS = +0.8567, PcS = +0.9082 and 
PcS = +0.9813 for ‘A’, ‘B’, and ‘C’, confirming three logic 
‘1’ as outcomes of the first layer of the network. Then, the 
digital information propagates through the interconnections, 
reaching the ‘Out’ neuron interfaces. To estimate PcE for the 

output neuron, +0.5 V and −0.5 V are assumed as VINTi for 
logic ‘1’ and ‘0’, respectively. This assumption reasonably 
estimates the voltages at the end of bis-ferrocene saturated 
wires [8]. Indeed, the SCERPA-computed VINT1 , VINT2 , and 
VINT3 are +0.4254 V, +0.4763 V and +0.4452 V, thus vali-
dating the adopted approximation. Considering the chosen 
output neuron configuration, PcE = +0.5823 derives from 
Eq. (3), i.e., a logic ‘1’. Figures 6c, d confirm logic ‘1’ to be 
the final network output, which is reasonable given that the 
same logic value is present in input to the three interfaces. 
Remarkably, Fig. 6c also demonstrates that a new computa-
tion is performed in the input layer neurons, proving the cho-
sen clock layout allows pipelining. Overall, the whole circuit 
outcome is correctly predicted by separately applying the 
linear model in Eq. (3) on the neurons forming the network.

Table 2   NN4 circuit weights w
i
 

and inputs VINTi for each neuron
Neuron w

1
V
INT1

w
2

V
INT2

w
3

V
INT3

(V−1) (V) (V−1) (V) (V−1) (V)

A 0.3543 0.8 0.1169 −0.5 0.0153 −0.5
B 0.1523 0.8 0.1631 0.5 0.0153 −0.7
C 0.0899 −0.3 0.0945 0.6 0.456 0.4
Out 0.3543 0.3543 0.456

Fig. 6   a Input layer neurons computation using the setup reported 
in Table  2. The PcS values evaluated by SCERPA agree with those 
obtained using the neuron linear model. b The saturator cells activate, 
maximizing the polarization values of the input layer neurons and ini-
tiating the digital propagation. c The output layer interfaces weigh the 
logic values, computing the circuit output. d The information propa-
gates correctly along the circuit output wire
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3.2.1 � Case study: error recovery

In the network design phase, the possibility to select neu-
ron interfaces provides a valuable tool for error recovery. 
Indeed, proper interface selection on the output layer neuron 
can effectively reduce or nullify the influence of specific 
interfaces on Pc . Table 3 reports a set of weights and inputs 
ensuring error recovery. Supposing the desired network 
output is a logic ‘0’, the selected molecules would provide 
it. Indeed, the PcE values on the input layer neurons are 
+0.0521, −0.2154, and −0.0577, i.e., logic ‘0’ for ‘B’, ‘C’, 
and logic ‘1’ for ‘A’. Moreover, the interfaces of the output 
neuron, combined with the ±0.5 V approximation previously 
discussed, provide a final PcE = −0.2082 on the output neu-
ron, leading to a logic ‘0’ as a final result. Opposite to the 
expectations, Fig. 7a reports neuron ‘C’ computing a logic 
‘1’. The PcS values evaluated before activating the saturators 
are +0.0312, −0.3604, and +0.0051 for neurons ‘A’, ‘B’, 
and ‘C’, respectively. A possible reason for the incorrect 
prediction is the intrinsic asymmetry to Vin = 0 V of the 
bis-ferrocene VACT, leading to wrong logic values when Pc 
is approximately zero. In general, low polarization values, 
such as the obtained Pc for neuron ‘C’, introduce instabili-
ties, possibly leading to unpredictable neuron behavior after 
the saturator activation. This result showcases how molecule 
electrostatics significantly influence molFCN circuit design. 

It emphasizes the need for proper molecule characterization 
to evaluate the circuit behavior in multi-molecule FCN solu-
tions accurately [5, 19, 20].

Besides the incorrect prediction of neuron ‘C’, the value 
computed by the output layer is a logic ‘0’, as Fig. 7b reports. 
Indeed, the chosen interface molecules on INT1 effectively 
nullify the effects of VINT1 on the computational cell polari-
zation. The result demonstrates that the chosen weights 
effectively suppress the error arising from Neuron ‘C’, thus 
increasing the effect of the information coming from neuron 
‘B’. Therefore, the ability to select neuron interfaces offers 
a solution for error recovery in molFCN neural networks. 
Remarkably, the output neuron PcE value considering the 
computation error becomes −0.1308, which confirms the 
logic ‘0’ as the output. This example highlights the design 
flexibility inherent in multi-molecule molFCN circuits 
and underscores the ability to analyze individual neurons 
by combining the neuron linear model and the SCERPA 
calculations. This analysis capability identifies potentially 
unstable computation conditions and facilitates the strategic 
arrangement of other neurons within the network to ensure 
the desired outcomes are consistently achieved.

3.3 � Implementation of a molFCN classifier

Finally, we propose the design of a three-layer molFCN neu-
ral network working as an input pattern classifier based on 
the NN4 layout. The network task involves recognizing the 
3 × 3 matrix patterns presented in Fig. 8a according to the 
following criteria: Pattern A labeled as ‘10’, Pattern B as 
‘01’, and ‘00’ or ‘11’ if other patterns are detected. There-
fore, a two-bit output parallelism is needed. In Fig. 8a, black 
squares correspond to input logic ‘1’, while white squares to 
logic ‘0’. The circuit is divided into two distinct and autono-
mous neural networks, denoted as Sub-Networks (SNs). The 
entire network is schematically illustrated in Fig. 8b. Each 
SN processes the whole pattern as input, providing one of 
the two output bits. Figure 8c schematizes each SN detailed 
internal block scheme. The SNs consist of three NN4 units, 
labeled as NN41 , NN42 , and NN43 , each receiving input 
values from a single row of the matrix pattern on its cor-
responding input layer neurons. Notice that the logic inputs 
derived from the patterns are provided considering the 
±0.5 V approximation introduced previously in this work. 

Fig. 7   a Computation in the input layer adopting the neurons configu-
rations reported in Table 3. Neuron ‘C’ computes a logic ‘1’, oppo-
sitely to the expectations. b The final output computed by the NN4 
still aligns with the specifications because of the low w1 . The chosen 
w
i
 minimizes the impact of any errors produced by Neuron ‘C’, dem-

onstrating error recovery possibilities by proper interface selection

Table 3   Example of neurons 
w
i
 and VINTi in the 4NN circuit 

permitting error recovery

Neuron w
1

V
INT1

w
2

V
INT2

w
3

V
INT3

(V−1) (V) (V−1) (V) (V−1) (V)

A 0.1523 0.5 0.1169 −0.5 0.0689 0.5
B 0.3543 −0.5 0.1631 −0.3 0.0153 0.7
C 0.1105 0.6 0.1169 0.5 0.456 −0.4
Out 0.0774 0.3543 0.0153
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Furthermore, Fig. 8c depicts the input management of the 
first row of Pattern A by NN41 . The three bits forming Pat-
tern A upper row are given in inputs to the three neurons of 
the NN41 input layer.

Generally, the neurons present in each SN have different 
interface molecules. Figure 8d reports the chosen setups, 
whereas Fig. 8e highlights the specific arrangement of the 
two Sub-Networks. Specifically, a trial-and-error methodol-
ogy is employed to determine the optimal weights for each 
neuron interface, aiming to maximize the output accuracy. 
This selection process evaluates each neuron performance 
by applying Eq. (3). The maximum classification accuracy is 
obtained using � = 1V , � = 2.5V, and � = 3V molecules on 
the input and output layer neurons. In contrast, the neurons 

in the hidden layer, i.e., those forming the NN4i  output, 
have � = 1V molecules on each of the three interfaces, thus 
behaving as majority voters. Each SN is divided into 19 
clock regions governed by the five clock signals presented 
in Fig. 8b to ensure correct propagation. The proposed 
molFCN classifier comprises 26 neurons arranged in three 
layers and 588 molecules, including the interconnections. 
Besides possibly increasing circuit redundancy, the just-
explained circuit design enables the use of the NN4 structure 
without modifications and streamlines the weight selection 
process for the different neurons within the circuit.

Figure 9a reports the relevant steps of the information 
propagation, evaluated with the SCERPA tool, in which the 
network output layer neurons compute the outputs. Specifi-
cally, Fig. 9a reports the PcS and the associated binary values 
for both SNs with Pattern A as input. The black vertical 
line indicates the saturator cells activation and the two SNs 
provide ‘1’ and ‘0’, respectively, classifying Pattern A as 
expected. The values preceding saturator activation are not 
considered since depending on random molecular AC states 

Fig. 8   a Schematic representation of target input patterns. b Com-
plete neural network high-level schematic. c Single macro-neuron 
schematic and inset on the third-row manipulation. d Interface con-
figurations of the neurons in the Sub-Networks forming the whole 
classifier circuit. e Sub-Networks neurons setup and connection sche-
matic

Fig. 9   Waveforms presenting the polarization and the binary values 
extracted from SCERPA at the Sub-Networks outputs. a Pattern A 
classification waveforms. The saturator activation leads to maximum 
charge distributions in the output neurons. The network correctly 
classifies Pattern A. b Pattern B classification waveforms. PcS for the 
output neurons in SN1 and SN2 follows the expectations providing a 
final ‘01’
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before the correct information arrives. Analogous considera-
tions can be provided for Pattern B, whose output waveforms 
behave as expected and are reported in Fig. 9b. Furthermore, 
we analyzed all the significant pattern variations to evalu-
ate the circuit robustness. As a result, the network correctly 
classifies Pattern A, Pattern B, or their modifications in 65% 
of the cases. It is worth noting that variations within the 
middle row of the binary patterns are particularly critical. 
Indeed, the middle row is managed by NN42 , whose out-
put is directed toward the interface with the most negligible 
impact on the computation of the output layer neuron, as 
determined by the selected configuration. Therefore, pos-
sible errors in the middle row can be undetected, leading 
to the network producing classifications identical to those 
provided for Pattern A or Pattern B.

Overall, the results related to the molFCN classifier 
showcase the proposed methodology potential applicabil-
ity in composing multi-molecule circuits with predeter-
mined behavior. Indeed, the entire network operation can 
be designed by employing the linear black-box model out-
lined in this article to characterize each neuron in the lay-
out. For future molFCN neural networks prototyping proper 
molecule patterning and clocking structures realization must 
be addressed. In addition, it is necessary to include proper 
models for power analysis in the framework [10, 11, 34]. 
Concerning molecule patterning, molFCN can use self-
assembly, [16, 35], and proper network functioning could be 
achieved through single-molecule manipulation techniques, 
pattern templating [18, 36], and employing crosswiring to 
achieve complex layouts [20]. Finally, atomic-scale control 
of the deposition substrate must be considered to achieve the 
sub-nm patterning precision required by molFCN [16, 37].

4 � Conclusion

This work investigates with SCERPA the implementation 
of molFCN neural networks using multi-molecule circuits. 
We introduced a model linking input voltages to neuron 
charge distribution. This model predicted neuron logic 
output and guided the design and simulation of two-layer 
networks. The interconnections between neurons were 
designed with precise clock region organization, prevent-
ing information aberration. The results demonstrate the 
proposed model capabilities to assist the network design to 
achieve the desired circuit behavior. In particular, we show 
the case study of an error recovery solution obtained by 
adequately setting the output neuron interfaces. Finally, we 
presented a 3 × 3 pattern classifier comprising 26 neurons 
and 588 molecules. The classifier effectively discriminates 
between the two target input patterns, exhibiting an over-
all accuracy of 65% even in the presence of input pattern 
variations. The classification accuracy of the proposed 

network can be further enhanced by refining the proposed 
single-neuron black-box model. Future research will refine 
the introduced black-box model to improve classification 
capabilities and permit comparisons with state-of-the-art 
solutions. The refinement will include interface coupling 
contributions and nonlinearities derived from molecules 
electrostatics in the model.

To sum up, implementing the proposed molFCN neu-
ral networks demonstrates the advantages of designing 
advanced molFCN circuits with specified functioning by 
adopting multi-molecule solutions. From a more general per-
spective, the findings and evidence presented in this article 
can be extrapolated to other technological implementations 
of QCA circuits. Future works will analyze the proposed 
molFCN neural network with comprehensive device-level 
considerations, particularly regarding power dissipation, 
energy efficiency, and time-sensitivity analysis. Specifically, 
time-dependent information propagation models and device 
fabrication-level considerations will be integrated into the 
MoSQuiTo framework to address comparisons with current 
state-of-the-art CMOS neural networks.
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