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ABSTRACT

We propose a 3D meshless method to compute mean pressure fields i n t urbulent fl ows fr om im age velocimetry. 

The method is an extension of the constrained Radial Basis Function (RBF) formulation by Sperotto et al. (2022) to a 

Reynolds Averaged Navier Stokes (RANS) framework. This is designed to handle both scattered data as in Particle 

Tracking Velocimetry (PTV) and data in uniform grids as in correlation-based Particle Image Velocimetry (PIV). The 

RANS extension includes the Reynolds stresses into the constrained least square problem. We test the approach on a 

numerical database featuring a Backward Facing Step (BFS) with a Reynolds number of 6400 (defined with respect to 

the inlet velocity and step height), obtained via Direct Numerical Simulation (DNS).

1. Introduction

Many methods have been proposed to compute pressure fields from image velocimetry in the
last decade. These can be broadly classified into Eulerian and Lagrangian methods depending on
how the material acceleration is computed. Eulerian methods are based on the available velocity
fields, which can be instantaneous or time-averaged. These can be further classified into directional
method, integrating Navier Stokes equation (eg. Jakobsen et al. (1997); Köngeter (1999); Liu &
Katz (2006); Wang et al. (2019)), and global method, solving the pressure Poisson equation (eg.
Gurka et al. (1999); Ghaemi et al. (2012); Pan et al. (2016)). Lagrangian methods are based on the
computation of particle trajectories and have been primarily fostered by recent advances in 3D
tracking techniques (Schanz et al. (2016)). These can be further distinguished into techniques that
interpolate the particle acceleration onto a Cartesian grid (Gesemann et al., 2016; Huhn et al., 2016,
2018; Schneiders & Scarano, 2016) and techniques that integrate the pressure on scattered data such
as the Voronoi integration proposed by Neeteson & Rival (2015).

All of the aforementioned methods rely on ‘classic‘ mesh-based numerical methods (e.g. Finite
Differences or Finite Elements) to solve the Partial Differential Equations (PDE) involved, namely
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the Navier Stokes Equation or the Poisson equation. Recently, we proposed a meshless approach
based on Radial Basis Functions (Sperotto et al., 2022) for integrating the pressure field from scat-
tered velocity measurements in an incompressible and laminar flow. This approach builds on the
vast literature of RBF based PDE solvers (Kansa, 1990; Fornberg & Flyer, 2015; Šarler, 2005; Chen
& Tanaka, 2002; Chen, 2003; Šarler, 2007) and consists in solving two linear least square problems
with differential constraints. The first is the regression of the velocity field constrained by the con-
tinuity equation and the relevant boundary conditions; the second is the integration of the pressure
Poisson equation given the regressed velocity fields.

In this work, we extend the previous contribution in Sperotto et al. (2022) to the Reynolds Av-
eraged Navier Stokes (RANS) formulation firstly proposed by Gurka et al. (1999). The pressure
integration consists in solving the pressure Poisson equation in the RANS problem, i.e. including
the contribution of the Reynolds stresses. Assuming that the available dataset is statistically suf-
ficiently resolved to compute the Reynolds stresses, these are regressed using an RBF expansion
as done for the velocity fields. Both the RBF approximations of the Reynolds stresses and velocity
fields are then used in the pressure computation.

We introduce the RANS based pressure computation problem and the RBF-based integration ap-
proach in Section 2. We test our approach on the flow past a Backward Facing Step (BFS) at a
moderately large Reynolds number. The dataset was constructed by sampling a Direct Numerical
Simulation (DNS), thus providing high-fidelity and statistically resolved data on the mean veloc-
ity and mean pressure fields. This allows testing the accuracy of the RBF regression and pressure
computation. The test case is described in Section 3. Finally, section 4 reports on the comparison
between the RBF regression and pressure integration and the ground truth, while section 5 closes
with conclusions and outlooks.

2. Methodology

The starting point of the method is the RANS formulation, which we briefly recall in section 2.1.
Three linear least square problems are set. The first two are (1) the RBF regression of the (mean)
velocity field and (2) the RBF regression of the Reynolds stresses. Both are carried out with differ-
ential constraints. The third problem consists in (3) solving the pressure Poisson equation using
the (analytic) results of the previous two steps.

While the solution of problem (1) and (3) are extensively described in Sperotto et al. (2022), the
step (2) constitute a major novelty and is briefly illustrated in section 2.3. The fundamentals of the
RBF-regression and meshless Poisson solver are briefly recalled in 2.2.



20th LISBON Laser Symposium 2022

2.1. The RANS formulation

The RANS equation are obtained by introducing the Reynolds decomposition u = u(x) +u′(x, t),
where u(x) = (u, v, w) is the averaged velocity field and u′(x, t) = (u′, v′, w′) is the fluctuating (time
dependent) field. For the incompressible flow of a Newtonian fluids with constant properties,
introducing this decomposition in the Navier stokes equation and averaging yields the RANS
equations:

ρ (u · ∇)u = −∇p+ µ∆u− ρ∇ ·R (u′,u′) , (1)

where p the pressure field, ρ is the density, µ the dynamic viscosity and R (u′,u′) = u′
iu

′
j is the

Reynolds stresses tensor, with the indices i, j = 1, 2, 3 referring to the three components. This
collects the correlation between the fluctuating components of the velocity field and introduces
additional stresses used to model the mean flow’s non-linear diffusion due to turbulence. Taking
the divergence on both sides and using the continuity equation for the mean flow (i.e. ∇ · u = 0)
yields the pressure Poisson equation in the RANS context. Together with its boundary conditions,
this reads Pope (2000)

∆p = −ρ (∇ · (u · ∇u) +∇ · (∇ ·R (u′,u′))) x ∈ Ω

∂np = ∇p · n = ρ (− (u · ∇)u−∇ ·R (u′,u′) + ν∆u) · n x ∈ ΓN

p = pD x ∈ ΓD.

(2)

where Ω ⊂ R3 is the integration domain with boundaries ∂Ω. The Dirichlet and Neumann condi-
tion are applied respectively in ΓD and ΓN , which are such that ΓD ∪ ΓN = ∂Ω.

In the context of pressure integration from measured velocity fields, the Dirichlet conditions are
usually prescribed by a set of pressure probes (e.g. pressure taps or Pitot tubes) while the Neumann
boundary conditions are evaluated by projecting the RANS equations into the relevant boundaries.
The reader is referred to Pan et al. (2016); Faiella et al. (2021) for an extensive discussion on the
impact of boundary conditions in the pressure integration from image velocimetry.

2.2. RBF Regression and Meshless PDE Integration

The RBF regression consists in finding an approximation of a function as a linear combination of
RBFs. That is, given a function f(x) : R3 → R, we seek the set of weights wi such that

f(x) ≃ f̃(x) =
nc∑
i=1

wiφ (x | x∗
i , ci) =

nc∑
i=1

wiφi (3)

where ci and x∗
i are the shape factor and the collocation point of the i-th basis functions φi and nc

is the number of bases involved. As in Sperotto et al. (2022), we here consider isotropic Gaussians
as basis functions.

Assuming that values of f(x) are given in a set of np points such that f = f (xj) = fj with
j = 1, . . . , np, the regression consists in finding the weights wi that minimize the least square error
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between the approximation and the available points. Arranging the basis functions into a matrix
Φ (X) ∈ Rnp×nc , with X ∈ R3×np the coordinates of the points xj in which data is available,
equation (3) can be written as f ≈ Φ (X) ·w where w is the vector collecting the nc weights wi.

Denoting as L{f}(x) a differential operator acting on f , one has L{f}(x) = L{Φ} (x) ·w. A differ-
ential constraint is thus a linear constraint on w, here denoted L{Φ} ·w = fL. Similarly, Dirichlet
boundary conditions on XD ∈ ΓD can be written as Φ (XD) · w = fD and Neumann boundary
conditions on XN ∈ ΓN can be written as ∂nΦ (XN) ·w = fN , where ∂n denotes derivatives normal
to the boundaries.

The RBF regression with differential constraints with Dirichlet and Neumann boundary conditions
is thus a quadratic programming problem with linear constraints. Using Lagrange multipliers, the
solution consists in finding the weights w and the multipliers λ = (λL,λD,λN) that minimize the
augmented cost function

J∗(w,λ) = ||f−Φ(X)·w||22+λT
L

(
L{Φ}·w−fL

)
+λT

D

(
Φ (ΓD)·w−fD

)
+λT

N

(
Φ (ΓN)·w−fN

)
(4)

where || • ||2 denotes the l2 norm.

In the regression of the velocity field, differential constraints are used to impose the divergence-
free conditions; the Dirichlet conditions are used to set no-slip on walls and Neumann conditions
are used on ’outlet’ patches. In the solution of the pressure Poisson equation, the basis functions
are the Laplacian of the RBFs, and the constraints are used to set the boundary conditions for the
pressure integration. The reader is referred to Sperotto et al. (2022) for more details on the least
square problem formulation for scalar and vector fields and the numerical methods implemented
for their solution.

2.3. The Regression of the Reynolds stresses

The problem of regressing the Reynolds stresses is analogous to the problem of regressing the
velocity field. In the formulation implemented in this work, no simplifications are considered for
the Reynolds stresses. Therefore, this regression consists in regressing six functions, that is the
entries in the tensor R (u′,u′) = u′

iu
′
j . The problem can be considerably simplified if turbulence is

assumed to be isotropic (then R is diagonal) or isotropic and homogeneous (then R is a multiple
the identity matrix).

The regression of these terms were constrained with the Dirichlet condition u′
iu

′
j = 0 ∀i, j = 1, 2, 3

at walls. Moreover, since the velocity fluctuations must vanish sufficiently close to the walls, it is
also possible to show that all derivatives of the Reynolds stresses must also vanish at walls, that is
∂xk

u′
iu

′
j = 0∀i, j, k = 1, 2, 3.
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3. Select Test Case

We create a synthetic 3D PTV database for the flow past a Backward Facing Step (BFS). The data
was obtained via Direct Numerical Simulation (DNS) by Oder et al. (2019). This simulation ana-
lyzes the heat transfer in a low Prandtl number fluid (Pr = 0.005) and Reynolds number, based on
the inlet velocity U0 and step height h, of Re = ρhU0/µ = 6400. The main geometrical parameters
are shown in Figure 1.

The dataset was provided in dimensionless form, with velocities normalized with respect to the
inlet velocity and spatial coordinates normalized with respect to the step height. Therefore, we
take the freedom of setting the inlet velocity to U0 = 1m/s, and the step height to h = 2cm. Taking
ρ = 1 kg/m3, we then consider µ/ρ = 3.125 · 10−5m2/s to keep the same Reynolds number. The
remaining relevant dimensions, as shown in Figure 1, respect the proportions of the computational
domain by Oder et al. (2019). The domain extends 3.6 cm in the z direction. Inlet, outlet and wall
patches are shown with violet, blue and green lines respectively.

34 cm

14 cm

2
cm

12 cm

3.
6

cm

Step

x

y

z

Walls in green
Outlet in blue
Inlet in violet
Pressure Taps

Figure 1. Domain of the analyzed configuration, namely the flow past a BFS via DNS by Oder et al. (2019). The
region of interest simulating an experimental acquisition is shown in red. The black markers illustrate the position of
10 pressure taps, installed with a spacing of 1.4cm, used to aid the pressure computation from the velocity fields.

We construct the 3D PTV dataset assuming that the region of interest for the measurement is the
one in red in figure 1. The measurement volume is 8mm thick in the z-direction and is located in
the centre of the channel along z. To aid the pressure computation from the image velocimetry, we
assume that 10 pressure taps are installed on the bottom wall (black markers in figure 1) with a
spacing of 1.4cm.

This work considers only averaged quantities, hence mean velocity, mean pressure, and Reynolds’s
stress fields. These were randomly sampled on 8400 points from the available computational grid,
i.e. avoiding any form of interpolation in the data generation. Considering images with 1024 x 2048
pixels, this leads to a particle density of 3.4 ·10−3 ppp. Figure 2 shows the mean velocity field of the
obtained PTV dataset. This scattered sampling of the averaged fields can be pictured as the result
of an ensemble PTV averaging as proposed by Agüera et al. (2016). Our meshless method works
equally well on a uniform grid (such as obtained via PIV), but we stick to the scattered sampling
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approach to test the accuracy of the regression without the interfering effect of interpolation in the
data preparation. Similarly, we here take the Reynolds stresses in these points from the DNS to
evaluate the regression performances on the ground truth data. However, to make the data more
realistic, we add a random white noise of 5% on the velocity, pressure and Reynolds stresses fields
as well as on the sampling points simulating pressure taps.

Figure 2. Plot of the sampled mean flow field in the middle plane. All the available points are shown; this allows
visualizing the (modest) seeding density used in the investigated test case.

4. Results

The results are given in terms of the euclidean norm E = ∥f (X) − f̃ (X) ∥2 and the relative eu-
clidean norm ε = ∥f (X) − f̃ (X) ∥2/∥f (X) ∥2 in Table 1. These result show that some variables
(w, u′w′ and v′w′) have large values of ε. However, these fields still an acceptable E, hence the
main discrepancy is due to the low value of these quantities for the investigated test case.

The result of the regression for the mean velocity are shown in Figure 3 (right) and compared with
the DNS data (left). These are indistinguishable. Figure 4 shows the same comparison for the
velocity component w, which particularly low values because of the bi-dimensionality of the flow.
The reconstruction appears slightly smoothed but captures the main features. Finally, figures 5 and
6 shows the same comparison for the turbulent kinetic energy and pressure fields. Considering
the moderate seeding density and the realistic noise levels, these results are considered largely
satisfactory.

u v w u′u′ u′v′ u′w′ v′v′ v′w′ w′w′ p

ε 0.026 0.054 0.144 0.036 0.019 0.314 0.019 0.172 0.063 0.038
E 0.571 0.156 0.206 0.111 0.021 0.013 0.033 0.028 0.128 0.668

Table 1. Table of errors.

The resulting in-plane velocities are shown in Fig. 3. Instead, the pressure reconstruction is dis-
played in Fig. 6. The results are in agreement with the DNS flow field. Even though, they are
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Figure 3. In plane velocity components (u, v). DNS (left) and reconstructed (right)

Figure 4. Span-wise velocity component w. DNS (left) and reconstructed (right)

compared over a uniform grid of size 100 × 100 in one plane resulting in 10000 points. This value
exceeds the original PTV data, sampled over the whole volume, by almost 2000 points.

5. Conclusion and future perspectives

We proposed the first RANS extension of the RBF meshless integration framework for computing
pressure fields from image velocimetry. This allows extending the meshless pressure computation
to the mean pressure fields in turbulent flows. The method requires the statistical convergence of
the velocimetry measurements and extends the work presented in Sperotto et al. (2022) by includ-
ing the (constrained) regression of the Reynolds stresses.

The meshless RANS integration was tested on a synthetic dataset constructed from DNS data,
and no simplifying assumptions on the Reynolds stresses were considered (i.e. the turbulence
is non-homogeneous and non-isotropic). The results of the pressure computation were excellent.
Ongoing activities are focused on applying the method to PIV experimental data.

Figure 5. Turbulent kinetic energy k. DNS (left) and reconstructed (right)
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Figure 6. Pressure p. DNS (left) and reconstructed (right)
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