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Abstract—Low-power energy-efficient subgraph isomorphism
(LESS) is an open-source field-programmable gate array-only low-
memory subgraph matching solver designed for energy efficiency.
Depending on the input datagraph, the energy consumption of
LESS, averaged on different diverse queries, is up to 38× and 93×
lower than CPU and GPU solvers respectively.

Index Terms—subgraph isomorphism, FPGA, energy efficiency

I. INTRODUCTION

Subgraph isomorphism is an NP-hard graph matching prob-
lem consisting in finding every instance of a specific pattern
(query graph) within a larger data graph. As an example, Fig. 1
highlights the matches of the query {u0, u1, u2} against the data
graph in Fig. 1b. Subgraph isomorphism is applied to various
domains such as social network analysis [1], chemical compound
search [2], and resource description framework (RDF) query
processing [3].

The literature proposed different computing architectures,
with an emphasis on performance, particularly for GPU-based
solutions. However, energy efficiency is critical for many appli-
cations such as databases. LESS1 is a novel low-power energy-
efficient subgraph isomorphism implementation. Unlike previous
solutions, LESS does not require a power-hungry CPU host,
as the field-programmable gate array (FPGA) handles both the
pre-processing and the matching tasks while still requiring a
limited amount of resources. The architecture, deployed on
a low-power embedded FPGA, demonstrates superior energy
efficiency compared to state-of-the-art CPU and GPU solutions
in real-world graph experiments, outperforming RapidMatch [4]
by up to 3.6×, DAF [5] by up to 38.6×, and GSI [6] by up to
93.7× in terms of average energy consumption.

II. ARCHITECTURE

The architecture of LESS, shown in Fig. 2, consists of two
main phases. The pre-processing phase reorganizes and loads the
graphs to the data structures. The enumeration phase iteratively
builds the matches via set intersections.

Both phases are implemented on FPGA according to the
dataflow paradigm, where tasks concurrently process different
partial solutions. Furthermore, the tasks are internally pipelined.

This work was partially supported by the Key Digital Technologies Joint
Undertaking under the REBECCA Project with grant agreement number
101097224, receiving support from the European Union, Greece, Germany,
Netherlands, Spain, Italy, Sweden, Turkey, Lithuania, and Switzerland.

1The code is open-source at https://github.com/robertoBosio/LESS.
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(b) Data graph.

Fig. 1. Query (a) and data graph (b) example. Matches highlighted in yellow.

A. Pre-processing

The pre-processing step aims at shrinking the search space.
Our pre-processing focuses on building hash tables and enhanc-
ing spatial locality to improve caching performance.

The Filter step groups graph edges based on relations and
filters vertices with labels not in the query.

Then, the Data structures step builds a hash table for each
relation to keep track of the different adjacency lists. Addi-
tionally, it generates the Bloom filters. Each Bloom filter is
associated with a hash table bucket and represents the vertices
within it. The data structure shares similarities with partitioned
compressed sparse row representation, but differs for a second
layer of hashing, for quickly checking vertex presence, and the
overflow handling. The off-chip memory usage is proportional
to the number of query edges and the dimension of the hash
tables, which are determined at runtime given the dimension
of the graphs and the amount of available memory. Large hash
tables reduce hash collision at the expense of increased off-
chip memory usage. Conversely, small tables save memory but
increase the number of slow and energy-hungry off-chip memory
transactions in the enumeration phase.

B. Enumeration

The enumeration phase extends a partial match to cover an
additional query vertex in a graph. Similarly to previous studies,
our approach exploits set intersection. Specifically, given a
partial solution and a query vertex to be covered, it identifies
potential extensions by selecting query vertices already mapped
in the vertex’s neighborhood and intersecting their mapping’s
adjacency list. The algorithm reads, expands, and updates partial
matches until no expandable solutions are left. The technique
for computing the intersection is based on finding the smallest
set among the considered ones and then probing its elements
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Fig. 2. The architecture of LESS.

against the other set’s hash tables, respectively done in the
Propose and Filter and Valid Extension tasks.

To reduce the memory accesses, the Approximate Intersection
phase intersects small Bloom filters representing adjacency lists.
This approximate representation allows filtering wrong matches
without checking the existence of the edge in memory.

C. Memory management

Graph processing is often memory-bound due to little to no
locality. The issue is even more critical in the FPGA context,
because of the limited on-chip memories.

LESS couples high-locality data structures with an open-
source FPGA cache [7], to introduce and exploit both spatial
and temporal locality. Spatial locality is achieved through re-
organized adjacency lists, optimizing memory accesses during
extension set validity checks. Temporal locality stems from a
breadth-first search approach, prioritizing data reuse between
consecutive extensions of partial matches.

Additionally, to handle a potentially large number of par-
tial solutions, LESS employs a dynamic FIFO that efficiently
switches between on-chip and off-chip memory storage, effec-
tively managing data overflow while masking memory latency.

III. RESULTS

We compared LESS with the state-of-the-art open-source
solutions for vertex-labeled subgraph matching, namely Rapid-
Match, DAF, and GSI. We described LESS in C++ compatible
with Xilinx Vitis HLS 2022.2 and deployed it on an AMD Kria
KV260 with 4GB of off-chip memory and 3MB of on-chip
memory. The kernel runs at 290MHz. We executed CPU-based
solutions on a CentOS 7 workstation equipped with a 16-core
Intel i7-6900K CPU (3.2GHz) and 128GB of host memory.
We executed GPU-based solutions on an NVIDIA GeForce
GTX 1070 (1.5GHz) with 1920 CUDA cores and 8GB of
global memory. The GPU and the FPGA share the same 16 nm
technology, and the CPU uses a similar one (i.e., 14 nm).

A. Datasets and queries

Following previous studies, we utilize five real-world data
graphs from SNAP [8]. For each data graph, we randomly
assigned labels to the vertices, taken from a small set to avoid
trivial queries, as a larger number of labels would noticeably
reduce the search space. We generated 30 random query tem-
plates, with 3 to 8 vertices and 3 to 26 edges.

TABLE I
THROUGHPUT COMPARISON.

Algorithm Throughput (Msolution/s)

Enron Github Gowalla Dblp Wikitalk

LESS 12.15 6.17 6.66 20.39 3.24
RM 31.89 21.92 23.70 83.15 31.37
DAF 20.14 10.11 6.88 15.72 12.68
GSI 2.81 1.93 1.12 – –

B. Comparison

We measured the time elapsed and the energy consumed
from the start of the algorithm execution until all the matches
were found, neglecting the time spent loading the data graph to
memory from disk. Figure 3 reports the energy consumption of
the algorithms on each dataset, averaged on the different queries.
Similarly, Table I reports the average throughput expressed as
solutions per time unit. GSI failed to solve most of the queries on
Dblp and Wikitalk due to memory overflow. Thus, we omitted
this data.

LESS systematically outperforms the energy efficiency of
state-of-the-art implementations, achieving up to 3.6× lower en-
ergy per query compared to RM (Enron), up to 38.6× compared
to DAF (Dblp) and up to 93.7× compared to GSI (Enron).

While maintaining its top-tier energy efficiency, the advantage
of LESS over the other solutions is less evident on Wikitalk,
due to the skewed distribution of edges across the graph which
reduces the filtering capability of the Bloom filters.

Enron GitHub Gowalla Dblp Wikitalk
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Fig. 3. Average energy consumption per query of each algorithm
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