
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A novel virtual prototyping methodology for timing-accurate simulation of AMS circuits / Vallone, T.; Hasou, H. V.; Colizzi,
E.; Vinco, S.; Zoni, D.. - ELETTRONICO. - Proceedings - International Symposium on Quality Electronic Design,
ISQED:(2024), pp. 1-8. (Intervento presentato al convegno 25th International Symposium on Quality Electronic Design,
ISQED 2024 tenutosi a San Francisco (USA) nel 03-05 April 2024) [10.1109/ISQED60706.2024.10528712].

Original

A novel virtual prototyping methodology for timing-accurate simulation of AMS circuits

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISQED60706.2024.10528712

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989523 since: 2024-06-13T21:23:39Z

IEEE

A novel virtual prototyping methodology for
timing-accurate simulation of AMS circuits

Teo Vallone, Hayri Verner Hasou, Ernesto Colizzi, Sara Vinco and Davide Zoni

Abstract—Nowadays, analog-mixed-signal (AMS) circuits are
at the core of a large variety of devices targeting automotive,
medical, communication, and energy applications. Despite their
ubiquity, AMS design methodologies are not automated, rely on
long manual iterations, and leverage slow SPICE-level simulation
as golden standard. Moreover, SPICE simulations cannot help in
verifying timing checks on the digital elements of the circuit,
thus allowing possible escaped bugs in the final device. In this
scenario, virtual prototypes are used to abstract the modeling of
the AMS circuit to boost simulation speed, favor design reuse,
and allow early evaluation of the design choices at the cost of a
reduced accuracy.

This paper presents a novel virtual prototyping methodology
for AMS circuits. Starting from the netlist of an AMS circuit and
the description of the target technology library, the methodology
automatically generates the SystemC models for the digital
elements, extended with additional timing checks. To deliver the
final timing-accurate AMS simulation, the generated SystemC
models are then integrated into a co-simulation framework
where the analog parts of the circuit are still simulated using
SPICE. Experimental results demonstrated the validity of the
proposed solution to deliver timing-accurate AMS simulations.
The methodology can identify and check five timing violation
classes for the digital parts of the circuit that are unchecked at
SPICE level.

Index Terms—Design automation, ICs, AMS, SPICE, SystemC

I. INTRODUCTION

The ever-increasing demand for advanced mobile commu-
nication, automotive, and medical devices fuels the need for
modern and complex analog-mixed-signal (AMS) circuits that
are at the core of the modern digital world.

Despite their ubiquity, the methodologies to design and
verify AMS circuits represent a critical bottleneck. In the
past, digital and analog parts have been verified by means of
different design flows, while the complexity of modern devices
integrating analog and digital functionalities on the same chip
impose the use of novel analog-on-top design methodologies
for AMS circuit design [1].

On one hand, digital design methodologies are keeping the
pace with the continuous evolution of digital circuits offering
a vast set of tools, mostly automated, to support the entire
design flow. On the other hand, analog design methodologies
are not automated for the majority of their design steps and
still heavily rely on the expertise of the HW engineers, thus
hindering the evolution of analog-on-top design flows [1].

Apart from the lack of automation, analog-on-top method-
ologies suffer from two other limitations [2]. First, AMS tim-
ing verification is achieved through slow SPICE simulations

CLK

Reset

A[15:0]

P[31:0]

P[31:0]_FF

Outputs (SPICE)

1 2 3

B[15:0]

100 2

82 1

5 3

10 800 24 3 20

0 10 24 3

Inputs c6288
4 5

6

4 20

24 120

2 24

Fig. 1. Examples of timing issues that remain unchecked in the SPICE flow.

that are, however, considered a golden standard that cannot be
neglected. Second, SPICE simulations are not able to reliably
represent the possible timing-based issues which are typical of
the digital blocks in the AMS designs. If said issues remain
unverified throughout the whole design flow, this will likely
lead to unexpected behaviors in the final product.

An example is provided in Fig. 1, which represents the
behavior of the circuit c6288, a 16-bit multiplier from the
ISCAS-85 benchmark suite. A and B are the two 16-bit inputs,
while P is the 32-bit output. To highlight timing issues, we
appended a flip-flop (FF) to each output. We recreated three
typical timing issues:

• setup time violation - (cycle 1). By toggling one of the
inputs (i.e., the input A) right before the sensitive edge of
the clock (i.e., the rising edge), we may not have enough
time for the new signal to be correctly sampled by the
FF. As a consequence, we won’t be perfectly certain on
the FF output during the next clock cycle.

• reset minimum pulse width violation - (cycle 3). If the
reset input is activated (i.e., pulled to 0) for a very short
time, we won’t know for certain whether the FF outputs
have been brought to the default value (e.g., 0) or not.

• hold time violation - (cycle 5). By toggling one of the
inputs (i.e., the input B) right after the sensitive edge of
the clock (i.e., the rising edge), the new value may be able
to propagate through FFs and reach the output, as the FFs
may still be sampling. We’ll have another uncertainty, this
time during the current clock cycle.

Ideally SPICE should highlight such uncertainties on the
outputs. However, simulations show that each output converges
to either ’1’ or ’0’, though this doesn’t mean that we’ll reliably

obtain the same results every time, as long as we keep violating
these timing constraints.

To solve the above-mentioned limitations, Virtual Proto-
types (VPs) at the Electronic System Level (ESL) of abstrac-
tion emerged as a viable and estabilished industrial practice.
VPs leverage SystemC (and its extensions, e.g. SystemC-
AMS) to describe the functional level of the AMS circuit
offering faster simulations, design reuse, and early stage
abstract models of the AMS device to support preliminary
analysis and novel design concepts [3], [4]. However, current
virtual prototyping methodologies work at high level, thus
offering behavioral circuit models without accurate timing
checks. Moreover, to the best of our knowledge, there is
no methodology allowing to automatically abstract a SPICE
level component into a VP, thus preventing the full reuse
of production-grade intellectual properties (IPs) to shape new
device concepts.

Contributions - This work presents a novel virtual proto-
typing design methodology for AMS circuits with four main
contributions to the state of the art:

• Automatic SystemC accurate models for digital SPICE-
level netlists. Starting from the Liberty timing specifica-
tion file (Lib) of the technology library and the SPICE
netlist of the AMS circuits, the methodology creates a
timing accurate SystemC model for each digital block
of the AMS circuit, plus the top level SystemC code
instantiating and binding them.

• Accurate timing checks for digital element. For each
SystemC model of the digital part, the methodology
automatically creates timing checks, leveraging the in-
formation in the Liberty timing specification file.

• Accurate co-simulation of AMS circuits. The AMS cir-
cuits are co-simulated by using SPICE and SystemC
simulators for the analog and the digital parts, respec-
tively. This solution supports accurate timing checks for
the digital elements, while still ensuring SPICE-level
accuracy for the analog parts of the circuit.

• Reproducible results. The entire methodology and the
related test-cases are publicly available for repeatability
and to foster further investigations and extensions.

Structure of the manuscript - The paper is organized in four
parts. Section II reviews the state of the art targeting the virtual
prototyping methodologies to improve the accurate evaluation
at early stage of analog and mixed signal circuits. Section III
discussed the proposed virtual prototyping methodology. Sec-
tion IV presents the experimental results. Conclusions and
future works are drawn in Section V.

II. STATE OF THE ART

The state of the art contains several contributions to improve
the standard AMS design flow targeting specific and difficult
design steps, e.g., verification, circuit abstraction, and auto-
matic place and route. However, to the best of our knowledge,
none of the proposed solutions targets a SystemC-SPICE
co-simulation framework where the automatically generated

SystemC models of the digital parts of the circuit implement
accurate timing checks.

[5] presents an automated place and route flow for analog-
mixed signal designs that leverages the standard digital layout
tools. Each atomic analog cell is wrapped to be used within
the digital design flow to automatically generate the place and
route for the AMS circuit. The experimental results, which
include a VCO and a strongARM comparator, demonstrated
that the solution allows to speed up the early stage layout eval-
uation for AMS circuits with relaxed constraints. [6] proposes
a solution to automatically generate the top-level for AMS
circuits. Starting from a list of fully characterized cells, the
engineer declares the interconnections. Then, the methodology
automatically generates the netlist for the circuit’s top-level.
[7] and [8] propose a reinforcement learning-based algorithm
to synthesize analog IC topologies. Similarly to the RTL syn-
thesis in digital circuits, the methodologies create the topology
of the AMS circuits starting from the design constraints and
the target AMS technology library. [9] presents a machine
learning algorithm that receives a generic AMS circuit and
the corresponding technology library to deliver a feasible set
of parameters for the circuit fulfilling its design constraints in
terms of area and performance.

[10] presents a system-level verification methodology for
AMS circuits. To enhance the predictability of the functional
verification, the methodology performs a sensitivity analysis
considering different corners.

[11] aims to optimize the leakage power due to spare
cells. Starting from the technology library, the methodology
leverages the state-dependent information of such cells to
determine the set of input values which lead to the lowest
dissipation. [12] proposes a static timing analysis (STA) tool
for specific quantum digital circuits starting from a SPICE
topology and the timing information from the library. [13]
presents a methodology to characterize full custom cells
considering the size of the transistors in each cell. The tool
works at SPICE level by extracting the equivalent RC network
for each cell.

Several state-of-the-art contributions highlight the impor-
tance of using virtual prototypes to model AMS circuits [3],
[14]–[16]. However, all the works aims to use SystemC-AMS
to deliver a high-level abstraction of complex AMS circuits for
early stage evaluation, design concept creation and evaluation
without considering the possibility of automatically abstracting
complex SPICE-level netlists in SystemC to support advanced
verification techniques.

III. METHODOLOGY

Fig. 2 outlines the proposed methodology. The starting point
(left) are a netlist description of an AMS system and a library
of Liberty files, i.e., files describing standard cell libraries. The
inputs are processed as follows:

1) the Liberty files and the netlist are used to generate the
SystemC implementation of the digital part, made of:

Fig. 2. Proposed flow.

• cells instantiation as automatically generated Sys-
temC modules, extended with timing checks to
identify timing violations;

• automatically generated SystemC top level, repro-
ducing the block’s topology;

• a simulation testbench, generated by the user
through a manually configured GUI;

2) the SystemC code is either simulated by itself, in case
we’re only interested in analyzing the digital part, or
co-simulated with SPICE, used for the analog portion,
through state-of-the-art solutions;

3) the simulation generates behavioral simulation results,
augmented with a timing violations report.

A. Input files

The first input to the methodology is a library of Liberty
files describing the characterization of the standard cells [17].
An example of Liberty file is sketched in Fig. 3.b. Each Liberty
file describes a specific PVT (Process, Voltage, Temperature)
corner of operation, to test and simulate the circuits both in
nominal conditions and under the most extreme application-
specific circumstances (lines 4-5).

The file contains general information, such as the units
of measurement of the cells’ parameters (line 3), as well as
the standard cells’ descriptions. Each cell is organized in a
hierarchical structure, including both general information, like
area occupation, and pin-specific data like equivalent capac-
itance values or the output’s boolean function. In addition,
we also have multi-dimensional matrices describing relevant
parameters, like power and timing, based on other variables
in the circuit, such as the output capacitive load (e.g., a 2-D
matrix for fall transition times, lines 12-13). This allows us to
better reflect the actual post-silicon implementation compared
to having a singular scalar value. Fig. 3.a shows the schematic
of the cell described at lines 6-13 of Fig. 3.b.

The second input is a netlist file (Fig. 4.a), that contains a
high-level view with one or multiple connected blocks. The
file begins with transistor-level descriptions for the standard
cells (lines 1-5), and continues with the blocks’ gate-level
topologies, i.e. the delineation of how the instantiated cells
are connected within the block itself (lines 7-8).

B. SystemC code generation

1) Cell instantiation as SystemC modules: Given the initial
Liberty library, the user chooses the Liberty file of interest,
reflecting the desired operating conditions. The chosen Liberty
file is split into sections, each corresponding to the description
of a standard cell. Such sections are then used to generate one
SystemC module per cell (Fig. 3.c) as follows:

• the cell name becomes the name of the SC MODULE,
to maintain a tight correspondence (line 1);

• cell pins become input ports (sc in) or output ports
(sc out), depending on their direction tag. The name
of the pin is used as name of the corresponding port.
Any parameter of a pin is used in the constructor of the
SC MODULE, e.g., to keep track of port capacitance
(lines 2-6);

• the logic function associated to each output port is
used to populate a corresponding logic fun() function,
by converting pin expressions into operations on input
and output ports (line 10). The logic fun() function is
executed as a method in case of any update of the input
pins of the SC MODULE (i.e., A, B or C).

In order to preserve timing information on the signals, the
logic fun() function does not write directly on the cell output
ports, but rather on internal signals (i.e., out, line 10). The
value written on such signals is then propagated to the output
port (i.e., Y) by respecting the rise and fall delays specified
in the Liberty file (lines 11-12), through the activation of a
second SystemC process (omitted in the figure). This allows
to keep track of the timing information also in the higher level
SystemC code.

2) Top level generation: The subsequent step is the gener-
ation of the top-level SystemC equivalent view, in charge of
instantiating the cells and of reproducing their topology. An
excerpt is reported in Fig. 4.b.

The necessary information is extrapolated from the netlist
file. The methodology performs an initial filtering action to
consider only blocks made entirely from cells contained in
the Liberty file: any other component, such as a resistance, a
capacitance or a transistor, would be translatable to SystemC,
but it would not allow to perform a proper timing analysis.

The netlist provides the topology of the blocks, in terms
of instantiated cells and their connection through nets. This
allows to generate the SystemC top level as a number of
SystemC modules (i.e., the used standard cells) connected via
signals (i.e., the network connections described by the netlist).

In detail, the terminals of the selected block are used to
generate the input and output ports of the SystemC top level:
this allows to receive stimuli from a testbench and simulate the
system. Then, for each cell used in the block’s section of the
netlist, the top level instantiates the corresponding SystemC
module (lines 2-3). In the netlist file, the connections (nets)
between ports of different cells are described using a position-
based system: the first net/pin in an instantiated cell will be
connected to the first pin that was stated in the cell declaration
(e.g., in Fig. 4.a, net 235 is associated to pin B of the

Fig. 3. Schematic (a), excerpt of Liberty file (b) and corresponding generated SystemC module (c) for cell sky130 fd sc hs nor3 1.

Fig. 4. Excerpt of netlist file (a) and corresponding generated top level
SystemC code (b).

standard cell sky130 fd sc hs nor3 1). To reproduce such
binding, the nets used for pin connection are instantiated as
SystemC signals (sc signal, line 5), and used for port binding
of the corresponding SystemC modules (lines 7-8).

3) Timing checks generation: The flexibility and modularity
of SystemC is exploited to insert timing checks in the stardard
cells. The SystemC modules of specific standard cells, e.g.,
flip flops, are extended to collect the time of reception of any
update on each input to detect timing violations. In the case
of flip flops, this allows us to check, e.g., whether the data
input D toggled too close to the sensitive clock edge, thus not
being stable for a sufficient duration before being sampled.

4) Testbench generation: The last step to allow simulation
of the SystemC code is the generation of a testbench, providing
stimuli to the overall topology. The testbench consists of a
sc main file used to instantiate the top level and to run the
simulation. The testbench declares one signal per each port of
the top level, to have a complete binding of the ports of the
latter. Then, it starts the simulation and changes the values of
the top level input ports over time.

The generation of such stimuli can be hand-written by the
designer. However, to ease simulation setup, we provide a
support GUI that allows the designer to describe the inputs
as bit-toggles described as:

• for non-periodic signals, couples of (time, value);
• for periodic signals, as four parameters: first edge, num-

ber of periods, time at 1, time at 0.

The GUI is supported by an automatic tool, that generates the
corresponding SystemC code. The output SystemC code is a
sequence of invocations of sc start, that starts simulation for
a given amount of time until the next bit toggle, followed by
updates of the top level inputs.

In parallel to this, the script will also generate the equivalent
testbench in SPICE, where instead the inputs are considered as
separate flows and where each time instance refers to the start
of simulation, unlike SystemC-based testbenches. This allows
to easily compare the results and highlight the differences
between the two solutions.

C. SystemC-SPICE cosimulation results

The cosimulation of SystemC and SPICE is a problem
that has been discussed and resolved in research with the
integration of the SystemC solver with SPICE-based tools
[18], [19]. Thus, we do not propose any novel integration flow,
but rather rely on available co-simulation support.

The result of the co-simulation are traces of the signal
of interest in a Value Change Dump (.vcd) file format. The
identified timing violations are then annotated in a report that
displays which signals and which cells are involved in each
issue, as well as the total slack of the operation and the type
of violation: an example of both results is portrayed in Fig. 5,
which replicates the same function as Fig. 1 in a SystemC
environment. The red arrows in the traces (top of the figure)
represent timing violations, that are detailed in the timing
violation report (bottom).

IV. EXPERIMENTAL ANALYSIS

This section discusses the assessment of the proposed
methodology: we will first describe the libraries, benchmarks

Fig. 5. Outputs of the SystemC-SPICE co-simulation: signals traces (top)
and timing violation report (bottom). The red arrows on the traces highlight
the occurred timing violations, that are detailed in the report.

and general setup steps in subsection A, followed by an in-
depth analysis of the results, including a brief description of
each timing scenario in subsection B.

A. Experimental setup

Liberty
Corner

Digital Circuit
(Verilog RTL)

Yosys SPICE Netlist
(Incompatible)

Netlist
Processing

SPICE Netlist
(Compatible)

Fig. 6. Top-level view of the setup flow.

To work correctly, out tool needs a complete standard cells
library (.lib file), either a single one or a collection of corners,
as well as a compatible netlist that includes one or more fully
digital blocks. With compatible we mean that each and every
cell in the netlist must be associated to one of the cells from
the library description, as otherwise we won’t have any way
to generate a timing and functional-accurate model.

We resorted to generating such netlists semi-automatically
starting from high-level behavioral models written in Verilog.
This allowed to map directly each cell to the most appropriate
one from our libraries during the synthesis process.

As cell library we adopted the skywater130 library [20]–
[22], in particular the sky130-fd-sc-hs corner with a voltage
supply of 1.8V measured at a temperature of 25°C. As Verilog
models we used the ISCAS-85 and 74-X series benchmarks

suites, developed in [23], [24]. Table II reports a list of the
circuits that were used, as well as their I/O and the number
of cells included, both pre- and post-synthesis.

As synthesis tool, we used the open-source Yosys tool (OSS
CAD SUITE [25]) to create a full set of SPICE netlists that
were mostly compatible with our tools. The setup flow is
shown in Fig 6, where the additional “processing” step consists
of some slight adjustments to the netlist, such as adding a
transistor-level declaration for each of the standard cells that
were used, to make it fully compatible and ready to be used.

To simulate the SystemC code, we used the COSIDE
[26] environment. The mixed-signal co-simulations were also
performed within COSIDE thanks to the possibility of instanti-
ating an NGSPICE-based netlist within the environment itself.

TABLE I
PRIMARY TIMING CHECKS IN A DIGITAL DESIGN

Scenario Detected timing check Figure no.SystemC Spice

Setup Time ✓ 7
Hold Time ✓ 8
Reset Recovery ✓ 9
Reset Removal ✓ 10
Reset MPW ✓ 11

B. Experimental results

Table I reports the complete taxonomy of the timing checks
that are supported by the proposed methodology and for which
the SPICE simulator does not offer any support. For each
timing check, the corresponding figure indexed in Table I
details a representative example, obtained from the collected
experimental results from the ISCAS-85/74-X benchmarks.
Each example is organized in three vertically stacked timing
diagrams, where each part reports a specific set of signals of
the circuit:

• the Input part reports the signals that provoke the timing
violations;

• the SystemC and the SPICE parts report the timing
diagrams of the signals that exhibit a wrong behavior
due to the timing violation.

The SystemC and the SPICE parts report the same set
of signals. The timing diagrams of the SystemC part are
obtained by means of a SystemC simulation employing the
proposed methodology. In contrast, the timing diagrams of
the SPICE part are obtained by means of classic SPICE
simulations.

In order to highlight the timing violations, we added a chain
of two flip-flops to each output of each circuit, as all circuits
originally were fully combinatorial. We named Q0 the output
of the first FF and Q1 the output of the second FF, whose input
is Q0. The string after the “ ” represents the combinatorial
output, which corresponds to the input of the first FF D.
Setup time - Figure 7. This scenario considers the c432
circuit and the setup timing violation of the synchronous flip-
flop, as shown on its output Q0_PB. At the end of period 11 of

TABLE II
BENCHMARKS

Benchmark Suite ISCAS-85 74-X Series
Benchmark Name c432 c499 c880 c1355 c1908 c2670 c3540 c5315 c6288 c7552 74181 74182 74283 74L85

Inputs [Bits] 36 41 60 41 33 233 50 178 32 207 9 9 14 11
Outputs [Bits] 7 32 26 32 25 140 22 123 32 108 4 5 8 3

Gates (Pre-Yosys) [#] 160 202 383 546 880 1,193 1,669 2,406 2,406 3,512 19 36 61 33
Gates (Post-Yosys) [#] 89 149 147 154 161 232 438 640 838 727 12 12 37 19

Flip Flops [#] 7 32 26 32 25 140 22 123 32 108 4 5 8 3

the CLK signal, the input to the sequential element violates the
setup time (see D_PB). The timing violation impacts the value
stored in the flip-flop and, consequently, its output for which
the proposed methodology drives an X value (see Q0_PB
of the Output(SystemC) section). The undefined value is
shown to flow from Q0_PB to Q1_PB in the clock cycle 13.
In contrast, the timing diagrams obtained by means of the
classic SPICE simulation do not highlight the violation (see
Q0_PB and Q1_PB of the Output(SPICE) section).

CLK

Reset

D_PB

Q0_PB

Q1_PB

Q0_PB

Q1_PB

X

X

FF Outputs (SystemC)

FF Outputs (SPICE)

11 12 13

FF Inputs c432

Fig. 7. Circuit c432 from ISCAS-85 benchmark suite with a setup time
violation of the signal D_PB. Simulations obtained through COSIDE co-
simulation (section FF Outputs (SystemC)) and through a pure SPICE
solution (section FF Outputs(SPICE)).

Hold time - Figure 8. This scenario considers the c880 cir-
cuit and the hold timing violation of the synchronous flip-flop,
as shown on its output Q0_F[5]. At the beginning of period
75 of the CLK signal, the input to the sequential element
violates the hold time (see D_F[5]). The timing violation
impacts the value stored in the flip-flop and, consequently,
its output for which the proposed methodology drives an X
value (see Q0_F[5] of the Output(SystemC) section).
Similarly to the setup timing violation, the undefined value
for Q0_F[5] propagates into Q1_F[5] in clock cycle 76.
In contrast, the timing diagrams obtained by means of the
classic SPICE simulation do not highlight the violation (see
Q0_F[5] and Q1_F[5] of the Output(SPICE) section).
Reset recovery - Figure 9. This scenario considers the
c5315 circuit and the reset recovery timing violation of the
synchronous flip-flops, as shown on their outputs Q0_OP4

CLK

Reset

D_F[5]

Q0_F[5]

Q1_F[5]

Q0_F[5]

Q1_F[5]

X

X

74 75 76

FF Inputs c880

FF Outputs (SystemC)

FF Outputs (SPICE)

Fig. 8. Circuit c880 from ISCAS-85 benchmark suite, hold time violation
of the signal D_PB. Simulations obtained through COSIDE co-simulation
(section FF Outputs (SystemC)) and through a pure SPICE solution
(section FF Outputs(SPICE)).

and Q1_OP4. The reset signal changes changes at the end of
period 33 of the CLK signal, thus violating recovery time (see
Reset). The timing violation impacts the values stored in every
flip-flop connected to the same clock and reset signals and,
consequently, it impacts their outputs for which the proposed
methodology drives an X value (see Q0_OP4 and Q1_OP4 of
the Output(SystemC) section). The undefined value driven
by Q0_OP4 propagates into Q1_OP4 in the clock cycle 35. In
contrast, the timing diagrams obtained by means of the classic
SPICE simulation do not highlight the violation (see Q0_OP4
and Q1_OP4 of the Output(SPICE) section).
Reset removal - Figure 10. This scenario considers the
74181 circuit and the reset removal timing violation of the
synchronous flip-flops, as shown on their outputs Q0_Y and
Q1_Y. The reset signal changes at the beginning of period
21 of the CLK signal, thus violating the removal time (see
Reset). The timing violation impacts the values stored in every
flip-flop connected to the same clock and reset signals and,
consequently, it impacts their outputs for which the proposed
methodology drives an X value (see Q0_Y and Q1_Y of the
Output(SystemC) section). The undefined value driven by
Q0_Y propagates into Q1_Y in the clock cycle 22. In contrast,
the timing diagrams obtained by means of the classic SPICE
simulation do not highlight the violation (see Q0_Y and Q1_Y
of the Output(SPICE) section in Figure 10).

CLK

Reset

D_OP4

Q0_OP4

Q1_OP4

Q0_OP4

Q1_OP4

X

33 34 35

X

FF Inputs c5315

FF Outputs (SystemC)

FF Outputs (SPICE)

Fig. 9. Circuit c5315 from ISCAS-85 benchmark suite, reset recovery
time violation of the signal Reset. Simulations obtained through COSIDE co-
simulation (section FF Outputs (SystemC)) and through a pure SPICE
solution (section FF Outputs(SPICE)).

CLK

Reset

D_Y

Q0_Y

Q1_Y

Q0_Y

Q1_Y

X

20 21 22

X

FF Inputs 74181

FF Outputs (SystemC)

FF Outputs (SPICE)

Fig. 10. Circuit 74181 from 74-X series benchmark suite, reset
removal time violation of the signal Reset. Simulations obtained through
COSIDE co-simulation (section FF Outputs (SystemC)) and through a
pure SPICE solution (section FF Outputs(SPICE)).

Reset minimum pulse width (MPW) - Figure 11. This
scenario considers the 74L85 circuit and the MPW timing
violation of the synchronous flip-flops, as shown on their
outputs Q0_A>B and Q1_A>B. Considering period 731 of
the CLK signal, the pulse on the reset signal violates the
MPW (see Reset). The timing violation impacts the values
stored in every flip-flop connected to the same reset signal and,
consequently, it impacts their output for which the proposed
methodology drives an X value (see Q0_A>B and Q1_A>B
of the Output(SystemC) section). Notably, the output of
the flip-flops changes immediately after the MPW timing
violation. The undefined value driven by Q0_A>B propagates
into Q1_A>B in the clock cycle 732. In contrast, the timing
diagrams obtained by means of the classic SPICE simulation

do not highlight the violation (see Q0_A>B and Q1_A>B of
the Output(SPICE) section in Figure 11).

c

CLK

Reset

D_A>B

Q0_A>B

Q1_A>B

Q0_A>B

Q1_A>B

X

730 731 732

X X

FF Inputs 74L85

FF Outputs (SystemC)

FF Outputs (SPICE)

Fig. 11. Circuit 74L85 from 74-X series benchmark suite, reset MPW
time violation of the signal Reset. Simulations obtained through COSIDE co-
simulation (section FF Outputs (SystemC)) and through a pure SPICE
solution (section FF Outputs(SPICE)).

V. CONCLUSIONS

This paper presented a novel virtual prototyping method-
ology to support the design and simulation of AMS cir-
cuits. Starting from the description of the target technology
library and the SPICE-level netlist of the design, the pro-
posed methodology automatically generates timing-accurate
SystemC models for the digital parts of the circuit. In addition,
specific SystemC timing checks are generated as in traditional
digital design methodologies. A complete virtual prototyping
platform is created to deliver a timing-accurate simulation of
the AMS design where the digital and the analog parts are
executed at SystemC and SPICE-level, respectively.

The experimental results demonstrated the validity of the
proposed solution, both in generating simulatable SystemC
code and in identifying timing violations that were not de-
tected by the SPICE simulations, where no timing checks are
available for the digital elements.

Notably, we make the entire methodology and the related
test cases available to support its adoption while also fostering
further investigation and improvements, some of which may
include:

• an early stage power consumption analysis of the digital
blocks based on the Liberty data;

• even more accurate cell models that keep track of addi-
tional topological information (e.g., input transition time,
output capacitive load) to determine the most precise
values for the signal delays.

REFERENCES

[1] J. Scheible, “Optimized is not always optimal - the dilemma of analog
design automation,” in Proc. of ISPD, 2022, p. 151–158.

[2] P. B. Rock Z. Shi and, P. Birdsong, G. Chaitanya, and K. Jani, “Mixed-
signal design verification: Leveraging the best of AMS and DMS,” Proc.
of DVCON, 2022.

[3] F. Pêcheux, C. Grimm, T. Maehne, M. Barnasconi, and K. Einwich,
“SystemC AMS based frameworks for virtual prototyping of heteroge-
neous systems,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), 2018, pp. 1–4.

[4] M. Lora, S. Vinco, E. Fraccaroli, D. Quaglia, and F. Fummi, “Analog
models manipulation for effective integration in smart system virtual
platforms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 2, pp. 378–391, 2018.

[5] P.-H. Wei and B. Murmann, “Analog and mixed-signal layout automation
using digital place-and-route tools,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 29, no. 11, pp. 1838–1849, 2021.

[6] J. Wittmann, C. Wegener, and F. Rigoni, “Automatic analog-on-top chip-
level schematic generation based on wire-by-name methodology juergen
wittmann, carsten wegener,,” GMM/ITG ANALOG, pp. 1–5, 2018.

[7] Z. Zhao and L. Zhang, “Analog integrated circuit topology synthesis
with deep reinforcement learning,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 41, no. 12, pp.
5138–5151, 2022.

[8] ——, “Deep reinforcement learning for analog circuit structure synthe-
sis,” Proc. of Design, Automation & Test in Europe Conference, pp.
1157–1160, 2022.

[9] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic,
“AutoCkt: Deep reinforcement learning of analog circuit designs,” Proc.
of Design, Automation & Test in Europe Conference, pp. 490–495, 2020.

[10] C. Zivkovic and C. Grimm, “Verification of analog/mixed-signal systems
with aadd,” GMM/ITG ANALOG, pp. 1–6, 2018.

[11] B. V. P. V. Kumar, N. S. M. Sharma, K. L. Kishore, and N. Goel,
“Leakage power recovery in spare cells by using state dependent
leakage tables from library models,” Proc. of Asia Pacific Conference on
Postgraduate Research in Microelectronics and Electronics, pp. 19–24,
2012.

[12] J. A. Delport and C. J. Fourie, “A static timing analysis tool for
RSFQ and ERSFQ superconducting digital circuit applications,” IEEE
Transactions on Applied Superconductivity, vol. 28, no. 5, pp. 1–5, 2018.

[13] J. Lee, J. Jung, and Y. Shin, “Fast timing analysis of transistor-level
full custom digital circuits,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), 2018, pp. 1–4.

[14] M. Barnasconi and S. Adhikari, “Invited: ESL design in SystemC AMS,”
Proc. of ACM/EDAC/IEEE Design Automation Conference (DAC), pp.
1–5, 2017.

[15] F. Frank and R. Weigel, “Co-simulation of spice netlists and vhdl-ams
models via a simulator interface,” in 2007 International Symposium on
Signals, Systems and Electronics, 2007, pp. 75–78.

[16] M. Hassan, D. Große, T. Vörtler, K. Einwich, and R. Drechsler,
“Functional coverage-driven characterization of rf amplifiers,” Proc. of
Forum for Specification and Design Languages (FDL), pp. 1–8, 2019.

[17] A. Mishchenko, Liberty Reference Manual,
https://people.eecs.berkeley.edu/ alanmi/publications/other/lib-
erty07 03.pdf, 2007.

[18] T. Kirchner, N. Bannow, and C. Grimm, “Analogue mixed signal
simulation using Spice and SystemC,” in Proc. of the DATE 2009, 2009,
p. 284–287.

[19] Y. Zaidi, C. Grimm, and J. Haase, “Analog behavior refinement in
system centric modeling,” in IEEE Behavioral Modeling and Simulation
Workshop 2009, 2009, pp. 31–36.

[20] “Skywater130 library documentation.” [Online]. Available:
https://skywater-pdk.readthedocs.io/en/main/contents/libraries.html

[21] “Skywater130 libraries and netlists.” [Online]. Available:
https://github.com/google/skywater-pdk

[22] “Openroad suite.” [Online]. Available: https://github.com/The-
OpenROAD-Project/OpenROAD

[23] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the ISCAS-85 bench-
marks: a case study in reverse engineering,” IEEE Design & Test of
Computers, vol. 16, no. 3, pp. 72–80, 1999.

[24] “ISCAS 74-x benchmark suites.” [Online]. Available:
https://web.eecs.umich.edu/ jhayes/iscas.restore/benchmark.html

[25] “Yosys suite version 2023-10-06.” [Online]. Available:
https://github.com/YosysHQ/yosys

[26] “Coside environment (version 3.0).” [Online]. Available:
https://www.coseda-tech.com/coside-overview

