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Abstract
The study of rock slope stability and evolution suffers from many uncertainty factors related to block size and shape, and 
slope morphology. While nothing can be done to remove the aleatory component of these uncertainties, efforts in reducing 
the epistemic ones are desirable. This research aims to propose a new analytical solution for calculating rock block volume 
in the case of three discontinuity sets whose orientation and true spacing are known. Researchers and practitioners can take 
advantage of such a correct analytical formula thanks to its easiness of use: guidelines based on stereogram are provided in 
order to explain how to obtain the required input data. The correctness of the equation is demonstrated by comparing the 
results of the new solution applied to 12 theoretical blocks with those obtained with 3DEC (Itasca Consulting Group). Also, 
the differences with respect to results obtained with the well-known Palmstrøm’s formula are reported. The new methodol-
ogy is applied to the case study of Elva valley road (Northern Italy), which is overhung by steep rocky cliffs and is subject 
to the consequences of frequent rockfall phenomena. The results are used to discuss the proposed method’s applicability: 
while it is evident that such a formula is not able to compete with the great potentiality of DFNs, this user-friendly tool can 
quickly and at no cost assess rock block volume in rockfall or rock slope stability studies.
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•	 The correct analytical solution for calculating rock block volume is demonstrated.
•	 The formula is valid in the case of three discontinuity sets.
•	 Orientation and true spacing of the three sets are the input of the formula.
•	 Validation is performed through a Discrete Fracture Network generator.
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1  Introduction

The intersections among discontinuity planes delimit rock 
blocks; the shape and orientation of the discontinuities deter-
mine whether the block is finite, removable and possibly 
unstable, and its volume (Goodman and Shi 1985). Estimat-
ing the block’s volume is not trivial, and many attempts have 

been made to propose simple analytical methods (Hoek and 
Bray 1981; Warburton 1981; Palmstrøm, 1996, 2001, 2005). 
Block volume estimation is fundamental for many different 
rock engineering applications and, particularly in the study 
of rockfall phenomena, for the design of barriers in terms of 
energy absorption capacity and location, where the deter-
mination of the so-called “design block” is required (Spa-
dari et al. 2013; Ferrero et al. 2016; Vagnon et al. 2020). In 
this case, the determination of the design block can be done 
based on the blocks observed at the slope toe or based on 
the rock structure determined by geo-structural surveys. The 
block determination based on measuring the block volumes 
at the slope toe suffers from a possible major bias error. 
During their path along the slopes, the blocks can break and 
reduce their volume significantly, leading to a dangerous 
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underestimation (Corominas et al. 2017; Ruiz-Carulla et al. 
2017; Giacomini et al. 2009). On the other hand, a method 
that can compute volumes from discontinuity spacing and 
orientation is needed if geo-structural data are utilized. In 
the literature, the first analytical formulations based on geo-
structural data date back to the eighties (Hoek and Bray 
1981; Warburton 1981). Methods for modeling polyhedral 
rock blocks with general shapes were then developed, but 
only in the form of algorithms capable of identifying rock 
blocks generated from the intersection of discontinuities 
(Lin et al. 1987; Jing 2000; Lu 2002; Elmouttie et al. 2010). 
More recently, the advent of the Discrete Fracture Network 
(DFN) generators made it convenient to generate 3D models 
of rock mass portions from which to obtain single block vol-
umes (Xu and Dowd 2010; Lambert et al. 2012; Francioni 
et al. 2020). This research aims instead to propose a new 
analytical solution for calculating rock block volume in the 
case of three discontinuity sets whose orientation and true 
spacing are known. Only the effect of the geometrical prop-
erties of the discontinuities within a rock mass is consid-
ered, although realistically, slope morphology plays a crucial 
role in defining detachable blocks. The new formula shall be 
considered the correct way to calculate the volume delim-
ited by three discontinuity planes, and therefore it should be 
intended as a fast tool researchers and practitioners can take 
advantage of, thanks to its easiness of use, while being aware 
of its limitations with respect to DFN generators. In fact, the 
average users of the volume analytical formula generally 
do not have access to sophisticated numerical codes such 
as DFNs, or to the resources they might require: both eco-
nomically and in terms of expertise and skill required to use 
them properly. They usually need a quick method to assess a 
design block for performing rockfall simulations rather than 
simulating the structure of an entire rock mass. The results 
of the new solution applied to 12 theoretical blocks are com-
pared with those obtained from the traditional Palmstrøm’s 
formulation and those produced by a DFN generator, such 
as 3DEC (Itasca Consulting Group). Finally, the applica-
tion to the case study of Elva valley road (Northern Italy), 
which is overhung by steep rocky cliffs and is subject to the 
consequences of frequent rockfall phenomena, is analyzed 
to discuss the implications of adopting the proposed method 
in a real case.

2 � State‑of‑the‑Art on Analytical Solutions 
for Calculating Block Volume

The first attempt to estimate the volume defined by a sub-
division of the rock due to discontinuity planes was pro-
posed by Miles (1972). Blocks were assumed to be created 
either by three discontinuity sets with a negative exponen-
tial spacing probability distribution (regular subdivision) 

or by a random space partition with planes placed by a 
Poisson process with uniform density (random subdivi-
sion) (Ross 2009).

Hoek and Bray (1981) proposed an analytical solu-
tion for calculating the volume of a wedge generated by 
two intersecting discontinuity planes, the upper ground 
surface, the slope face and, if present, a tension crack. 
The aim of this calculation is to obtain the weight of the 
wedge, in order to compute the factor of safety associated 
with the wedge sliding. The block volume is calculated 
based on the orientation of the planes, the slope height 
referred to the first discontinuity plane and, if tension 
crack exists, its distance from the crest, measured along 
the trace of the first discontinuity plane. A certain number 
of calculation steps are required to complete the process. 
While this procedure is rigorous, it is only suitable for a 
very specific object such as a wedge, formed by four or 
five planes. Therefore, for using this procedure in a general 
case, one must trace everything back to the wedge case, 
namely associate to each block surface a defined role.

Warburton (1981) proposed a method to perform the 
vector stability analysis of a rock block in a constrained 
geometrical configuration. Within the calculation process, 
one can find a method for calculating areas of block faces, 
together with the block’s volume and center of mass of an 
arbitrary polyhedral rock block with any number of free 
faces. However, this method employs the 3D coordinates 
of the points belonging to the block’s edges, which derive 
from previous calculation steps. Furthermore, the volume 
is not calculated through an analytical formula: the block 
is discretized into pyramids whose volume is calculated 
and summed.

Palmstrøm (1996, 2005) produced simple analytical solu-
tions for estimating block volume from various types of joint 
density measurements. His well-known equation in the case 
of three discontinuity sets generating a block is:

where S1, S2, and S3 are the spacing of the three sets of 
discontinuities; γ12 is the angle between set 1 and set 2, and 
similarly for γ23 and γ13. Equation 1 became a cornerstone 
in volume estimation, and many academics and profession-
als adopted it.

Recently, Lopes and Lana (2017) proposed an analytical 
solution able to overcome the need for measuring mutual 
angles among sets. The solution is based on linear algebra 
and vectorial analysis concepts. Volume depends on dis-
continuity orientations, spacing, and block shape, and the 
solution is developed for tabular, prismatic, and tetrahedral 
blocks. Lopes and Lana affirm that a discontinuity plane 

(1)VB =
S1S2S3

sin �12 sin �23 sin �13
,
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with dip ϕn, dip direction θn, and spacing Sn can be repre-
sented by its director vector ���⃗𝜇�

n
=
(
An,Bn,Cn

)
 , where

They stated that the volume V of a block created by three 
discontinuity sets could be calculated as:

where

Equation 3 is based on the so-called scalar triple product, 
namely the dot product of one of the vectors with the cross 
product of the other two. The absolute value of the scalar 
triple product represents the parallelepiped volume because, 
basically, it consists of the product of the area of the basis 
(calculated by the cross product) for the height (calculated 
by the dot product). Equation 3 gives the volume of a six-
face solid. Still, spatially these direction vectors may also 
define a solid with a different number of faces; therefore, the 
result could need to be multiplied by a constant, depending 
on the actually considered shape of the block.

3 � Proposal of a New Formula

Even if the geometrical approach based on the triple prod-
uct is correct, the solution described by Eq. 3 cannot prop-
erly consider true spacing. In fact, considering the definition 

(2)
⎡
⎢⎢⎣

An

Bn

Cn

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

Snsin
�
�n

�
cos

�
�n
�

Snsin
�
�n

�
sin

�
�n
�

Sncos
�
�n

�
⎤
⎥⎥⎦
.

(3)V =
||||
(
���⃗𝜇�
1
× ���⃗𝜇�

2

)
⋅
���⃗𝜇�
3

|||| = |det(M)|,

M =

⎡
⎢⎢⎣

A1 A2 A3

B1 B2 B3

C1 C2 C3

⎤
⎥⎥⎦
.

given by Palmstrøm (2001), the discontinuity set spacing is the 
normal or minimum distance between individual discontinui-
ties within a discontinuity set. Focusing on the geometrical 
meaning of the definition, normal set spacing is the distance 
between a pair of adjacent discontinuities from the same set, 
perpendicular to the average orientation in that set (Riquelme 
et al. 2015). From this definition, a new method is proposed 
in the following.

Considering the coordinate system represented in Fig. 1, the 
components of the three director vectors ���⃗𝜇n =

(
an, bn, cn

)
 are:

Then, reasoning about the relation among discontinuity 
planes is made to understand the role of spacing. Let us con-
sider three discontinuity sets whose director vectors are called 
���⃗𝜇1, ���⃗𝜇2, ���⃗𝜇3 . The cross product of the vectors ���⃗𝜇1, ���⃗𝜇2 gives the 
normal �����⃗m12 to both vectors. In the general case, it does not 
correspond to the normal to the third vector:

considering the three combinations of indices (i, j, 
k) = (1,2,3), (2,3,1), (3,1,2). Therefore, the spacing of the 
third set S3 must not be considered as if it developed along 
�����⃗m12 . Similarly, S1 and S2 must not be considered as if they 
developed along �����⃗m23 and �����⃗m31 , respectively. From Eq. 4, it is 
possible to define spacing as follows:

(4)
⎡
⎢⎢⎣

a
n

b
n

c
n

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

S
n
sin

�
�
n

�
sin

�
�
n

�
S
n
sin

�
�
n

�
cos

�
�
n

�
S
n
cos

�
�
n

�
⎤
⎥⎥⎦
n = 1, 2, 3.

(5)����⃗mij =
(
��⃗μi × ��⃗𝜇j

)
≠ ���⃗μk,

(6)

⎧⎪⎨⎪⎩

S1 =
�����⃗𝜇1

��
S2 =

��������⃗��𝜇2
��

S3 =
�����⃗𝜇3

��
.

Fig. 1   Coordinate system and discontinuity plane
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Following the reasoning, the length of the block’s edges 
is not equal to spacing. In fact, spacing Sk develops along ���⃗μk , 
while each edge connecting the two faces perpendicular to ���⃗μk 
develops along ����⃗mij.

Therefore, to use spacing values in volume calculation, it is 
necessary to consider the real direction along with it devel-
ops. The orthogonal projection of a vector along the direc-
tion ���⃗μk can be expressed as:

where

It is possible to demonstrate that Eq. 7 involves all the three 
director vectors. Let us call γij, γjk, γki the angles between 
pairs of sets, according to the terminology used by Palmstrom 
(1996). Moreover, let us call δk-ij the angle between the direc-
tor vector ���⃗μk and the direction of the normal to the other two 
director vectors ��⃗lij . Similarly, δi-jk is the angle between ��⃗μi and 
����⃗mjk , δj-ki is the angle between ��⃗μj and ����⃗mki.

Recalling the definition of cross product, it is possible to 
write Eq. 8 as:

Also, recalling the definition of the dot product, it is pos-
sible to explicit the numerator of Eq. 7 as:

By substituting Eq. 9 in Eq. 10, we obtain:

Therefore, substituting Eq. 11 in Eq. 7 and reordering fac-
tors, we obtain:

which can be simplified in:

where �⃗μk
‖ �⃗μk‖

 represents the direction of ���⃗μk.

(7)��⃗pk =
���⃗lij⋅ ���⃗μk

‖‖���⃗μk‖‖2
���⃗μk,

(8)��⃗lij =

⎛
⎜⎜⎝

��⃗μi
����⃗μi��

×
��⃗μj

�����⃗μj
���

⎞⎟⎟⎠
.

(9)
‖‖‖��⃗lij

‖‖‖ = sin𝛾ij.

(10)��⃗lij ⋅ ���⃗𝜇k =
‖‖‖��⃗lij

‖‖‖‖‖���⃗𝜇k
‖‖cos𝛿k−ij.

(11)��⃗lij ⋅ ���⃗𝜇k = sin𝛾ij
‖‖���⃗𝜇k

‖‖cos𝛿k−ij.

(12)��⃗pk =
‖‖���⃗μk‖‖sin𝛾ijcos𝛿k−ij

‖‖���⃗μk‖‖2
���⃗μk,

(13)��⃗pk =
���⃗μk

‖‖���⃗μk‖‖
sin𝛾ijcos𝛿k−ij,

Let us call qk the norm of ��⃗pk:

Considering again the three combinations of indices (i, j, 
k) = (1,2,3), (2,3,1), (3,1,2), which respect the circular shift, 
one can observe that:

Therefore,

q is a dimensionless number that depends only on the rela-
tive orientation of the three joint sets defining the block, 
namely the angles among director vectors.

The correct volume of the parallelepiped can be calcu-
lated as the triple product of vectors as suggested by Lopes 
and Lana. Still, Eq. 3 must be modified as follows for con-
sidering spacing correctly:

This means that ���⃗μ1 is taken as a reference direction, while 
���⃗μ2 and ���⃗μ3 are projected following the considerations made 
on Eq. 5. Making explicit Eq. 17 and substituting Eq. 14 in 
Eq. 17, one obtains:

which can be simplified as:

And can be expressed as follows by substituting Eq. 14 in 
Eq. 19 and remembering Eq. 6:

Finally, Eq. 19 can be simply expressed as:

Equation 17 can be thus written as:

where

(14)qk =
‖‖ ��⃗pk‖‖ = sin𝛾ijcos𝛿k−ij.

(15)sin�12cos�3−12 = sin�23cos�1−23 = sin�31cos�2−31.

(16)q1 = q2 = q3 = q.

(17)V =
|||||

(
���⃗μ1 ×

���⃗μ2

���⃗p2

)
⋅

���⃗μ3

���⃗p3

|||||
.

(18)

V = ‖‖���⃗𝜇1
‖‖

‖‖���⃗𝜇2
‖‖

||sin 𝛾13||||cos 𝛿2−13||
||sin𝛾12||

‖‖���⃗𝜇3
‖‖

||sin 𝛾12||||cos 𝛿3−12||
||cos𝛿3−12||,

(19)V = ‖‖���⃗𝜇1
‖‖

‖‖���⃗𝜇2
‖‖‖‖���⃗𝜇3

‖‖
||sin 𝛾13||||cos 𝛿2−13||

.

(20)V = ‖‖���⃗𝜇1
‖‖

‖‖���⃗𝜇2
‖‖‖‖���⃗𝜇3

‖‖
||sin 𝛾13||||cos 𝛿2−13||

=
S1S2S3

q2
.

(21)V =
S1S2S3

q
.

(22)V =
|||||

(
���⃗μ1 ×

���⃗μ2

���⃗p2

)
⋅

���⃗μ3

���⃗p3

|||||
=

|det(M)|
q2

,
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The proposed formula requires input, for each of the three 
discontinuity sets, true spacing Sn and orientation expressed 
as dip ϕn and dip direction θn; q must be calculated as one of 
the terms of Eq. 15. It is fundamental to remember that the 
scalar triple product is unchanged under a circular shift of its 
three operands: the three combinations of indices (i, j, k) = (1, 
2, 3), (2, 3, 1), (3, 1, 2), which respect the circular shift, give 
exactly the same result. In this analytical solution, q represents 
a non-orthogonality coefficient, while spacing values S1, S2, 
and S3 represent scale coefficients.

4 � Calculation of q

The above demonstrated equations can be practically used to 
calculate q. Considering Eqs. 14 and 15, it is possible to write:

Two alternative methods can be used to calculate q: the 
first one is purely analytical, the second one is based on the 
stereogram representing the three discontinuity sets orien-
tation. These methods are illustrated in Sects. 4.1 and 4.2, 
respectively.

4.1 � Analytical Calculation of q

In the following, we show how one can simply calculate q 
based on the orientation and spacing of the three discontinuity 
planes. The orientation of plane K1 is expressed by dip ϕ1 and 
dip direction θ1, and its spacing is S1. Similarly, the orientation 
of plane K2 is defined by dip ϕ2 and dip direction θ2, and its 
spacing is S2; the orientation of plane K3 is expressed by dip 
ϕ3 and dip direction θ3, and its spacing is S3.

By replacing these values in Eq. 4, one can write:

Then, the angles γ among the pair of sets can be calcu-
lated as follows:

M =

⎡
⎢⎢⎣

S1sin
�
�1

�
sin

�
�1
�

S2sin
�
�2

�
sin

�
�2
�

S3sin
�
�3

�
sin

�
�3
�

S1sin
�
�1

�
cos

�
�1
�
S2sin

�
�2

�
cos

�
�2
�
S3sin

�
�3

�
cos

�
�3
�

S1cos
�
�1

�
S2cos

�
�2

�
S3cos

�
�3

�
⎤
⎥⎥⎦
.

(23)q = sin�12cos�3−12 = sin�23cos�1−23 = sin�31cos�2−31.

(24)���⃗μ1 =

⎡⎢⎢⎣

S1sin
�
𝜙1

�
sin

�
𝜃1
�

S1sin
�
𝜙1

�
cos

�
𝜃1
�

S1cos
�
𝜙1

�
⎤⎥⎥⎦
,

(25)���⃗μ2 =

⎡⎢⎢⎣

S2sin
�
𝜙2

�
sin

�
𝜃2
�

S2sin
�
𝜙2

�
cos

�
𝜃2
�

S2cos
�
𝜙2

�
⎤⎥⎥⎦
,

(26)���⃗μ3 =

⎡⎢⎢⎣

S3sin
�
𝜙3

�
sin

�
𝜃3
�

S3sin
�
𝜙3

�
cos

�
𝜃3
�

S3cos
�
𝜙3

�
⎤⎥⎥⎦
.

Then, the angles δ among the considered director vector 
and the direction of the normal to the other two director vec-
tors can be calculated as follows:

where vectors l are calculated according to Eq. 8:

Thanks to the circular shift of the three indices, it is suf-
ficient to calculate only one angle γ and the corresponding 
angle δ (i.e., Eqs. 27 and 30, or Eqs. 28 and 31, or Eqs. 29 
and 32) to solve Eq. 23 and obtain q. The above-listed equa-
tions can be easily implemented in a Matlab script to autom-
atize the calculation.

Basically, q is a dimensionless number that depends only 
on the shape of the block, namely the angles among sets 
(Umili et al. 2023). The angles γij among sets range between 
0° and 180°, while δk-ij range between 0° and 90°: therefore, 
sine and cosine functions are both limited between 0 and 
1. Furthermore, q implies a relative orientation among the 
sets able to physically produce a closed shape. As a result, q 
ranges between 0 and 1 with a non-linear trend. If the block 

(27)𝛾12 = cos−1
(
���⃗𝜇1 ⋅ ���⃗𝜇2

���⃗𝜇1 ���⃗𝜇2

)
,

(28)𝛾23 = cos−1
(
���⃗𝜇2 ⋅ ���⃗𝜇3

���⃗𝜇2 ���⃗𝜇3

)
,

(29)𝛾13 = cos−1
(
���⃗𝜇1 ⋅ ���⃗𝜇3

���⃗𝜇1 ���⃗𝜇3

)
.

(30)𝛿3−12 = cos−1
⎛
⎜⎜⎝

������⃗𝜇3 ⋅
���⃗l12
���

�����⃗𝜇3
����� ���⃗l12

���

⎞
⎟⎟⎠
,

(31)𝛿1−23 = cos−1
⎛⎜⎜⎝

������⃗𝜇1 ⋅
���⃗l23
���

�����⃗𝜇1
����� ���⃗l23

���

⎞⎟⎟⎠
,

(32)𝛿2−31 = cos−1
⎛⎜⎜⎝

������⃗𝜇2 ⋅
���⃗l31
���

�����⃗𝜇2
����� ���⃗l31

���

⎞⎟⎟⎠
,

(33)���⃗l12 =

(
���⃗μ1

‖‖���⃗μ1‖‖
×

���⃗𝜇2

‖‖���⃗μ2‖‖

)
,

(34)���⃗l31 =

(
���⃗μ3

‖‖���⃗μ3‖‖
×

���⃗𝜇1

‖‖���⃗μ1‖‖

)
,

(35)���⃗l23 =

(
���⃗μ2

‖‖���⃗μ2‖‖
×

���⃗𝜇3

‖‖���⃗μ3‖‖

)
.
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is a regular prism whose angles among sets are all equal to 
90°, q is equal to 1. For values of q < 1, the volume increases 
due to the progressively more skewed shape of the block. For 
q = 0, the fraction defining the volume (Eq. 21) is undefined: 
geometrically, this means that the angle between at least two 
of the joints is 0°, and they are, therefore, coplanar. In other 
words, the block is a degenerate polyhedron and infinitely 
extended. For these reasons, q can be intended as a non-
orthogonality coefficient, or rather a polyhedron skewness 
factor.

Figure 2 shows q values by varying K1 orientation, while 
the orientation of K2 and K3 is kept constant. In Fig. 2a, the 
dip of K1 varies between 0° and 90°, the dip direction of K1 
varies between 0° and 360°, K2 is 90/090, and K3 is 00/000. 
As expected, in the cases of perpendicular sets (K1 equal to 
90/000, 90/180, and 90/360), q is equal to 1. In Fig. 2b, the 
dip of K1 varies between 0° and 90°, the dip direction of K1 
varies between 0° and 360°, K2 is 61/210, and K3 is 82/100. 
In Fig. 2c, the dip of K1 varies between 0° and 90°, the dip 
direction of K1 varies between 0° and 360°, K2 is 53/077, 

and K3 is 73/185. In Fig. 2d, the dip of K1 varies between 0° 
and 90°, the dip direction of K1 varies between 0° and 360°, 
K2 is 66/224, and K3 is 70/307. It is evident that the possible 
trends of q are many, depending on the relative orientation 
of the three sets.

4.2 � Calculation of q Based on the Stereogram

To illustrate the practical calculation of q, let us consider 
for example the case in which K1 is 86/180, K2 is 24/185 
and K3 is 70/120 (id 5 in Table 1): their orientation can be 
graphically represented on a stereogram (Fig. 3), on which 
one can measure the angles required to solve Eq. 23. The 
first angle required to calculate q is �12 , which is the angle 
between K1 and K2: it can be measured along the great cir-
cle passing through the poles of K1 and K2 (I12 in Fig. 3). 
In this example �12 is equal to 62.1°. The pole of the plane 
I12 represents the intersection of planes K1 and K2. The 
second angle required to calculate q is �3−12 , which is the 
angle between K3 and I12: it can be measured along the 

Fig. 2   Values of q by varying dip and dip direction of set K1, while K2 and K3 are kept constant and equal to a) 90/090 and 00/000; b) 61/210 
and 82/100; c) 53/077 and 73/185; d) 66/224 and 70/307. The contour step is 0.1
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great circle passing through the poles of K3 and I12. In this 
example �3−12 is equal to 34.36°. By substituting in Eq. 23, 
q results equal to 0.7296. Proceeding in the same manner, 
it is possible to measure �23 and �1−23 , which are equal to 
60.49° and 34.05°, respectively; similarly, �31 and �2−31 are 
equal to 61.71° and33.04°, respectively. Inputting these two 
other pairs of angles the value of q is again equal to 0.7296, 
as stated in Eq. 23.

5 � Verification of the Formula

A cubic model, affected by the presence of three disconti-
nuities sets with orientation reported in Table 1 and spac-
ing equal to 1 m for all the three sets, was generated with 
3DEC; null standard deviation was assigned to orientation 
and spacing values (Fig. 4). As a result, the model contains 
many blocks generated by the intersection of discontinuities. 
In general, blocks do not have the same volume. In fact, in 
close proximity to the model faces, one can find a certain 
number of smaller blocks produced by the intersection of the 
discontinuity planes with the boundary surfaces. Representa-
tive elementary volume (REV) of the model was investigated 
to minimize the effect of the smaller blocks on identifying 
the true block volume. Considering a REV reached if at least 
80% of the volume of the blocks falls into the same modal 
class, a dimension of the virtual rock mass of 35 m was cho-
sen for the following analyses (Carriero et al. 2021). Blocks 
generated by 12 triples of sets were considered: results of 
the calculation with the proposed formula (Eq. 21), with 
Palmstrøm’s formula (Eq. 1), and those obtained from 3DEC 
are reported in Table 1. Cases 1 to 4 are the same used to 
plot q values in Fig. 2. Then, spacing values were made 
vary for completing the test: a range between 0 and 3.5 m 
was considered in order not to change the dimensions of 
the 3DEC model. Results are reported in Table 2. In all the 
tests, the perfect agreement of analytical and 3DEC results 
is obtained, proving the correctness of the proposed solution. 
Volumes calculated with Palmstrøm’s formula show a dif-
ference variable from  – 11% (id = 7) to + 20% (id = 12) with 
respect to those calculated with Eq. 21.

6 � Case Study

The Elva valley road (Northern Italy) is here considered 
as a case study for discussing the implications of adopt-
ing the proposed method. The Elva valley road (“Strada 
del Vallone” in Italian) is located in the orographic left of 
the Maira Valley (Piedmont, Northern-western Italy) and 
directly connects the village of Elva (1637 m a.s.l.) and 
the Maira Valley. The road stretches for about 9 km along 
a deep gorge, carved within limestones and dolomitic Ta
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limestones. Steep rocky cliffs overhang almost the entirety 
of the road: this configuration has produced over the years 
a large number of rockfall phenomena and rock slides 
events distributed over a wide area, making it a suitable 
case study (Fig. 5). Due to the logistical difficulties in 

assessing the features of the entire rock mass employing 
direct measures, which can only be used at the road level, 
non-contact techniques were applied (Migliazza et  al. 
2021): from the data gathered in this manner, the geo-
metrical features of the rock mass (i.e., orientation and 

Fig. 3   Calculation of q based on the measurement of angles on a stereogram

Fig. 4   (Left) Three-dimensional model generated with 3DEC considering the case id 5 (Table 1): K1 86/180; K2 24/185; K3 70/120; (right) 
detail of one of the model faces
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spacing of the discontinuities) were assessed. Because 
of the significant length and surface of the rock faces, 
it became necessary to split the area into sub-domains, 
where the mechanical and geometrical properties of the 
rock mass appeared regular enough to be assumed homo-
geneous (Fig. 6).

In general, the area is characterized by three main dis-
continuity sets, persistent and identifiable in all the sub-
domains: the bedding surface of the limestones (BP) and 
two conjugated joint sets (K1 and K2). The orientation of the 
three joint sets changes significantly across the 19 different 
domains (Table 3). The mean spacing values for the three 
sets obtained for each sector are reported in Table 4.

For each of the sectors identified in the study area, block 
volumes were calculated by applying Palmstrøm’s formula 
(Eq. 1). Then, the proposed method for calculating block 
volume (Eq. 21) was applied, and the results were compared. 
From the results, visible in Table 4 alongside the input data, 
it is possible to appreciate how Palmstrøm’s formulation is 
precise and accurate only when the three sets appear to be 
either orthogonal to each other or very close to orthogo-
nal; in all the other configurations, the block volume can 
be overestimated (up to 8%) or, more importantly, highly 
underestimated (up to 56%).

It is interesting to note that if one would choose the 
global average block volume value as a descriptor of the 

Table 2   Orientation of the three sets considered for the test, spacing, q value and volume of the block calculated with Eqs. 1 and 21 and 3DEC

Id K1 [dip/dip dir] K2 [dip/dip dir] K3 [dip/dip dir] S1 [m] S2 [m] S3 [m] q [–] V
Equation 21 [m3]

V
Equation 1 [m3]

V 3DEC [m3]

1 90/000 90/090 00/000 0.9 1.1 1.5 1 1.485 1.485 1.485
2 36/352 61/210 82/100 2 1.5 0.7 0.9709 2.163 2.162 2.163
3 63/261 53/077 73/185 1.3 0.5 2.1 0.8418 1.621 1.616 1.621
4 15/112 66/224 70/307 3.2 0.7 1.2 0.9236 2.910 3.273 2.910
5 86/180 24/185 70/120 2 0.8 1.3 0.7296 2.851 3.071 2.851
6 57/312 44/246 46/112 3.1 1.3 0.7 0.7139 3.951 3.738 3.951
7 35/045 74/277 74/338 3.5 2.0 0.4 0.6821 4.105 3.687 4.105
8 14/301 70/098 35/211 0.6 3 0.9 0.6016 2.693 2.696 2.693
9 36/277 52/136 18/049 1.2 0.9 1.3 0.5571 2.520 2.322 2.520
10 52/290 22/084 19/205 0.2 1 1.6 0.4237 0.755 0.726 0.755
11 32/120 26/289 33/073 0.6 1.4 0.5 0.3459 1.214 1.433 1.214
12 08/312 15/153 47/079 0.7 0.7 0.9 0.2675 1.649 2.064 1.649

Fig. 5   Photographs of the rocky 
cliffs along the Elva valley road
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general situation along the entire 9 km long road, then by 
using Eq. 1 that value would be 0.161 m3; on the other 
hand, by employing Eq. 21, the global average block vol-
ume would be 0.193 m3. The difference between the two 
results is in favor of the new equation presented here, as 
the original formulation provided by Palmstrøm underes-
timates block volume by 16%. Therefore, the design of any 
protection work relying on Eq. 1 would provide an under-
effective service. The results depicted in Table 4 show that 
Eq. 1 does not always underestimate block volume, but it 
is also worth noting that the largest difference between 

Eq. 1 results and Eq. 21 results (56.6%) is once again an 
underestimation.

7 � Conclusions

A correct calculation method reduces epistemic uncer-
tainty: this is particularly important in studying rockfall 
phenomena. In fact, when selecting the possible barriers 
based on their structural capacity of absorbing the design 
block kinetic energy, it is evident that block volume plays 

Fig. 6   Non-contact survey of discontinuity orientations and associated stereogram for subarea A2_b

Table 3   Orientation of the three discontinuity sets in the 19 sectors, and calculated angles to be used in Eqs. 1 and 21

Sector BP [Dip/Dip Dir] K1 [Dip/Dip Dir] K2 [Dip/Dip Dir] γ12 [°] δ3–12 [°] γ23 [°] δ1–23 [°] γ31 [°] δ2–31 [°]

B1 70/228 32/073 73/314 99.3 9.5 80.6 9.4 89.9 13.3
B2 33/222 84/257 86/113 57.9 60.8 96.8 65.4 142.7 47.0
B3 28/062 81/293 71/256 98.8 52.8 98.2 52.9 37.2 9.1
B4 28/077 63/299 68/240 84.8 37.7 94.9 37.7 53.4 11.3
B5 19/083 89/124 87/268 74.8 54.0 105.9 53.9 143.8 16.4
B6 35/185 85/197 85/248 50.9 39.7 70.7 50.7 50.8 39.5
B7 24/205 64/078 84/114 79.6 50.4 84.9 51.0 39.7 11.4
B8 43/212 54/330 68/082 80.2 7.9 97.6 10.1 93.5 12.1
A1_a 56/234 61/081 84/200 112.0 48.5 42.1 23.6 111.8 48.6
A1_b 63/261 53/077 73/185 115.9 20.7 70.2 26.5 93.4 32.5
A2_a 68/243 88/217 89/325 32.2 53.5 82.2 71.3 107.9 70.5
A2_b 77/216 88/186 54/064 31.7 35.5 124.3 58.8 114.1 62.1
A2_c 67/092 87/208 90/159 111.6 68.9 68.9 69.0 48.1 63.3
A3_a 69/254 29/086 10/079 97.4 85.1 79.0 85.1 19.1 75.1
A3_b 64/249 87/208 12/078 45.5 25.5 75.9 48.4 94.7 49.7
A4_a 71/281 84/202 88/240 77.7 76.3 43.6 70.3 38.1 67.9
A4_b 66/243 54/195 66/299 42.8 60.1 50.8 64.1 86.5 70.2
A5 60/256 47/068 83/297 106.6 47.5 44.8 23.2 113.1 45.2
A6 86/212 86/338 80/077 125.5 71.7 133.0 69.5 98.1 75.0
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a fundamental role, together with the slope morphology. In 
the case of naturally occurring rock slopes or rock faces, the 
morphology of the topographic surface is the product of the 
detachment of unstable portions of the rock mass, i.e., rock 
blocks. In other words, the rock face morphology is heavily 
influenced by the geometrical and geomechanical properties 
of the discontinuities within the rock mass. The formulation 
introduced in the present work can, in any case, account 
for the morphology of the slope, as it can be inputted into 
the equations as any other plane. In fact, the method relies 
on spacing and orientation of generic geometric surfaces, 
whatever thei nature. For instance, it is possible to quantify 
the volume of an unstable rock wedge referring to the geo-
metrical features of the two joints and those of the slope 
itself. This could be useful also when dealing with artificial 
slopes, for calculating volumes defined by benches of known 
orientation and spacing. This research work demonstrates 
that in the simple case of a rock block generated by three 
discontinuity sets with known orientation and true spacing, 
the proposed analytical solution is correct and produces the 
same value as a DFN code. Moreover, as it has been shown 
for the case of the Elva valley road, the original Palmstrøm’s 
formula tends to overestimate or underestimate block vol-
ume, due to the fact that the assumptions it relays on are 
true only in the case of three joint sets orthogonal or close 
to orthogonal among each other. From a practical point of 
view, an overestimation of the volume, if reasonable, can 
lead to a more conservative design of protective measures, 

but an underestimation always represents a significant prob-
lem. Therefore, the use of the proposed calculation method 
of block volume provides a significantly safer approach to 
the problem.

Moreover, the new method proposed in this paper has an 
advantage over DFN modeling, which would be the only 
other methodology providing a correct and precise evalu-
ation of block volume within a rock mass: employing an 
analytic equation is much simpler, quick, and cheaper than 
performing DFN modeling. The analytical method to calcu-
late denominator q of Eq. 21 and, most of all, the practical 
method based on the stereogram, highlight the easiness of 
use of the formula for calculating the block volume. This 
point represents a great advantage for practitioners in the 
sector of rockfall protection works and rock slope stability, 
who generally need a quick method to assess a design block 
for performing rockfall simulations, rather than simulating 
the structure of an entire rock mass through sophisticated 
and expensive numerical codes such as DFNs.

It must be stated, though, that the new formulation still 
suffers from the same limitation the Palmstrøm’s one had: 
the equation is valid only in the case of three joint sets; in 
nature, the likelihood of the occurrence of rock masses with 
a higher number of discontinuity sets is high, and the new 
equation cannot address this issue. A possible way to deal 
with it while still preserving the simplicity of the analytic 
approach consists in identifying triplets of joint sets and, 
for each triplet, evaluating block volume; lastly, the relative 

Table 4   Mean spacing values 
of the three discontinuity sets 
in the 19 sectors, values of q 
and block volumes calculated 
using Eq. 21, compared to 
the denominator of Eq. 1, 
and corresponding volumes 
obtained by employing Eq. 1

Sector SBP [m] S1 [m] S2 [m] q [-] V
Equation 21 [m3]

Denomina-
tor of eq, 
1 [-]

V
Equation 1 [m3]

ΔV [%]

B1 0.14 0.12 0.16 0.973 0.003 0.974 0.003 – 0.1
B2 0.71 0.13 0.43 0.414 0.097 0.510 0.078 – 18.9
B3 0.79 0.18 0.54 0.597 0.128 0.591 0.130 1.0
B4 1.05 0.34 0.72 0.788 0.323 0.797 0.320 – 1.2
B5 1.08 0.77 0.65 0.567 0.958 0.548 0.990 3.3
B6 1.15 0.48 0.54 0.598 0.499 0.568 0.526 5.3
B7 0.51 0.36 0.42 0.627 0.122 0.626 0.122 0.1
B8 0.22 0.18 0.38 0.976 0.016 0.975 0.016 0.1
A1_a 0.18 0.28 0.17 0.615 0.014 0.577 0.015 6.5
A1_b 0.29 0.27 0.36 0.842 0.034 0.845 0.034 – 0.4
A2_a 0.66 0.19 0.37 0.317 0.145 0.503 0.091 – 37.0
A2_b 0.47 0.28 0.31 0.428 0.095 0.396 0.102 8.0
A2_c 0.62 0.53 0.68 0.334 0.671 0.645 0.348 – 48.2
A3_a 0.23 0.24 0.40 0.084 0.258 0.319 0.068 – 73.6
A3_b 0.38 0.46 0.41 0.644 0.114 0.690 0.106 – 6.6
A4_a 0.38 0.16 0.36 0.232 0.095 0.416 0.053 – 44.2
A4_b 0.23 0.12 0.42 0.338 0.035 0.526 0.022 – 35.6
A5 0.17 0.32 0.35 0.648 0.029 0.621 0.031 4.4
A6 0.12 0.20 0.27 0.256 0.026 0.589 0.011 – 56.6
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importance of each triplet can be estimated by observing 
niches created by previously detached blocks (Umili et al. 
2020) or talus deposits at the toe of the rock face. Otherwise, 
the construction of a DFN appears as the only feasible way.

Funding  Open access funding provided by Università degli Studi di 
Torino within the CRUI-CARE Agreement. No funding was received 
for conducting this study.

Declarations 

Conflict of interest  The authors have no relevant financial or non-fi-
nancial interests to disclose.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Carriero MT, Ferrero AM, Migliazza MR, Umili G (2021) Comparison 
between methods for calculating the volume of rock blocks. IOP 
Conf. Ser.: Earth Environ. Sci. 833:012049. https://​doi.​org/​10.​
1088/​1755-​1315/​833/1/​012049

Corominas J, Mavrouli O, Ruiz-Carulla R (2017) Rockfall Occurrence 
and Fragmentation. In: Sassa K, Mikoš M, Yin Y (eds) Advancing 
Culture of Living with Landslides. WLF 2017. Springer, Cham. 
https://​doi.​org/​10.​1007/​978-3-​319-​59469-9_4

Elmouttie M, Poropat G, Krähenbühl G (2010) Polyhedral modelling 
of rock mass structure. Int J Rock Mech Min Sci Geomech Abstr 
47(4):544–552. https://​doi.​org/​10.​1016/j.​ijrmms.​2010.​03.​002

Ferrero AM, Migliazza MR, Pirulli M et al (2016) Some open issues 
on rockfall hazard analysis in fractured rock mass: problems and 
prospects. Rock Mech Rock Eng 49(9):3615–3629. https://​doi.​
org/​10.​1007/​s00603-​016-​1004-2

Francioni M, Antonaci F, Sciarra N, Robiati C, Coggan J, Stead D, 
Calamita F (2020) Application of unmanned aerial vehicle data 
and discrete fracture network models for improved rockfall simu-
lations. Remote Sensing 12:2053. https://​doi.​org/​10.​3390/​rs121​
22053

Giacomini A, Buzzi O, Renard B, Giani GP (2009) Experimental stud-
ies on fragmentation of rock falls on impact with rock surfaces. Int 
J Rock Mech Min Sci 46(4):708–715. https://​doi.​org/​10.​1016/j.​
ijrmms.​2008.​09.​007

Goodman E, Shi, Gen-hua (1985) Block theory and its application 
to rock engineering richard. Berkeley Prentice-Hall, INC., Eng/
ewood Cliffs, New Jersey 07632

Hoek E, Bray JW (1981) Rock slope engineering: revised third edition. 
institution of mining and metallurgy, London. 358 pages

Jing L (2000) Block system construction for three-dimensional dis-
crete element models of fractured rocks. Int J Rock Mech Min 
Sci 37:645–659. https://​doi.​org/​10.​1016/​S1365-​1609(00)​00006-X

Lambert C, Thoeni K, Giacomini A, Casagrande D, Sloan S (2012) 
Rockfall hazard analysis from discrete fracture network model-
ling with finite persistence discontinuities. Rock Mech Rock Eng 
45:871–884. https://​doi.​org/​10.​1007/​s00603-​012-​0250-1

Lin D, Fairhurst C, Starfield AM (1987) Geometrical identification 
of three-dimensional rock block systems using topological tech-
niques. Int J Rock Mech Min Sci Geomech Abstr 24(6):331–338. 
https://​doi.​org/​10.​1016/​0148-​9062(87)​92254-6

Lopes P, Lana M (2017) Analytical method for calculating the volume 
of rock blocks using available mapping data field. Math Geosci 
49(2):217–229. https://​doi.​org/​10.​1007/​s11004-​016-​9635-0

Lu J (2002) Systematic identification of polyhedral rock blocks with 
arbitrary joints and faults. Comput Geotech 29:49–72. https://​doi.​
org/​10.​1016/​S0266-​352X(01)​00018-0

Migliazza M, Carriero MT, Lingua A, Pontoglio E, Scavia C (2021) 
Rock mass characterization by uav and close-range photogram-
metry: a multiscale approach applied along the Vallone dell’Elva 
Road (Italy). Geosciences 11:436. https://​doi.​org/​10.​3390/​geosc​
ience​s1111​0436

Miles RE (1972) The random division of space. Adv Appl Probab 
4:243–266. https://​doi.​org/​10.​2307/​14259​85

Palmstrøm A (1996) Characterizing rock masses by the RMi for use 
in practical rock engineering. Tunn Undergr Space Technol 
11(2):175–188. https://​doi.​org/​10.​1016/​0886-​7798(96)​00015-6

Palmstrøm A (2005) Measurements of and correlations between block 
size and rock quality designation (RQD). Tunn Undergr Space 
Technol 20(4):362–377. https://​doi.​org/​10.​1016/j.​tust.​2005.​01.​
005

Palmstrøm A (2001) Measurement and characterization of rock mass 
jointing. In: Sharma VM, Saxena KR (Eds.), In Situ Characteriza-
tion of Rocks. A.A. Balkema Publishers, pp. 49–97

Riquelme AJ, Abellán A, Tomás R (2015) Discontinuity spacing analy-
sis in rock masses using 3D point clouds. Eng Geol 195:185–195. 
https://​doi.​org/​10.​1016/j.​enggeo.​2015.​06.​009

Ross SM (2009) Introduction to probability and statistics for engi-
neers and scientists (4th ed.). Associated Press. p. 267. ISBN 
978–0–12–370483–2

Ruiz-Carulla R, Corominas J, Mavrouli O (2017) A fractal fragmenta-
tion model for rockfalls. Landslides 14:875–889. https://​doi.​org/​
10.​1007/​s10346-​016-​0773-8

Spadari M et al (2013) Statistical evaluation of rockfall energy ranges 
for different geological settings of New South Wales, Australia. 
Eng Geol 158:57–65. https://​doi.​org/​10.​1016/j.​enggeo.​2013.​03.​007

Umili G, Bonetto S, Mosca P et al (2020) In situ block size distri-
bution aimed at the choice of the design block for rockfall bar-
riers design: a case study along Gardesana road. Geosciences 
10(6):223. https://​doi.​org/​10.​3390/​geosc​ience​s1006​0223

Umili G, Taboni B, Ferrero A (2023) The influence of uncertainties: 
a focus on block volume and shape assessment aimed at rockfall 
analysis. J Rock Mech Geotech Eng 15(9):2250–2263. https://​doi.​
org/​10.​1016/j.​jrmge.​2023.​03.​016

Vagnon F et al (2020) Eurocode 7 and rock engineering design: The 
case of rockfall protection barriers. Geosciences 10(8):1–16. 
https://​doi.​org/​10.​3390/​geosc​ience​s1008​0305

Warburton PM (1981) Vector stability analysis of an arbitrary polyhe-
dral rock block with any number of free faces. Int J Rock Mech 
Mining Sci Geomech Abstracts 18(5):415–427. https://​doi.​org/​10.​
1016/​0148-​9062(81)​90005-X

Xu C, Dowd P (2010) A new code for discrete fracture network mod-
elling. Comput Geosci 36(3):292–301. https://​doi.​org/​10.​1016/j.​
cageo.​2009.​05.​012

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1755-1315/833/1/012049
https://doi.org/10.1088/1755-1315/833/1/012049
https://doi.org/10.1007/978-3-319-59469-9_4
https://doi.org/10.1016/j.ijrmms.2010.03.002
https://doi.org/10.1007/s00603-016-1004-2
https://doi.org/10.1007/s00603-016-1004-2
https://doi.org/10.3390/rs12122053
https://doi.org/10.3390/rs12122053
https://doi.org/10.1016/j.ijrmms.2008.09.007
https://doi.org/10.1016/j.ijrmms.2008.09.007
https://doi.org/10.1016/S1365-1609(00)00006-X
https://doi.org/10.1007/s00603-012-0250-1
https://doi.org/10.1016/0148-9062(87)92254-6
https://doi.org/10.1007/s11004-016-9635-0
https://doi.org/10.1016/S0266-352X(01)00018-0
https://doi.org/10.1016/S0266-352X(01)00018-0
https://doi.org/10.3390/geosciences11110436
https://doi.org/10.3390/geosciences11110436
https://doi.org/10.2307/1425985
https://doi.org/10.1016/0886-7798(96)00015-6
https://doi.org/10.1016/j.tust.2005.01.005
https://doi.org/10.1016/j.tust.2005.01.005
https://doi.org/10.1016/j.enggeo.2015.06.009
https://doi.org/10.1007/s10346-016-0773-8
https://doi.org/10.1007/s10346-016-0773-8
https://doi.org/10.1016/j.enggeo.2013.03.007
https://doi.org/10.3390/geosciences10060223
https://doi.org/10.1016/j.jrmge.2023.03.016
https://doi.org/10.1016/j.jrmge.2023.03.016
https://doi.org/10.3390/geosciences10080305
https://doi.org/10.1016/0148-9062(81)90005-X
https://doi.org/10.1016/0148-9062(81)90005-X
https://doi.org/10.1016/j.cageo.2009.05.012
https://doi.org/10.1016/j.cageo.2009.05.012

	A New Analytical Solution for Calculating Rock Block Volume
	Abstract
	Highlights
	1 Introduction
	2 State-of-the-Art on Analytical Solutions for Calculating Block Volume
	3 Proposal of a New Formula
	4 Calculation of q
	4.1 Analytical Calculation of q
	4.2 Calculation of q Based on the Stereogram

	5 Verification of the Formula
	6 Case Study
	7 Conclusions
	References




