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ABSTRACT The shift towards agile microservice architecture has enabled significant benefits for IT
companies but has also resulted in increased complexity for Cloud orchestration tools. Traditional tools
were designed for centralized data centers and are ineffective for locating microservices in geographically-
distributed edge-like infrastructures. This paper presents Phare, a decentralized scheduling algorithm
designed to optimize the placement of microservices by satisfying their computing and communication
demands while minimizing deployment costs. Phare employs a heuristic-based approach to solve the
NP-Hard scheduling problem, prioritizing the microservices with the more stringent requirements and
placing them on the most convenient computing facilities, based on the concept of affinity, contributing
to the field by providing a more holistic approach to resource scheduling in edge computing. We validate
our approach against Firmament, the state-of-the-art workload scheduling algorithm for component-based
applications, on simulated edge infrastructures with hundreds of clusters. Phare achieves up to a 10×
reduction in terms of deployment costs compared to Firmament while providing a much lower scheduling
latency.

INDEX TERMS Resource sharing, cloud-to-edge, service allocation.

I. INTRODUCTION

IN THE last decade, we experienced a paradigm shift in
Web application development patterns, moving from huge

monolithic frameworks to the agile microservice approach.
The strict decoupling of application logic into small, dedicated
components enabled substantial benefits for IT companies
both in terms of quality of experience provided to the end-
user (QoE), and cost savings for DevOps practices. Although
providing enhanced scalability and resiliency upon unexpected
disruptive events, such application decoupling also resulted
in increased complexity for traditional Cloud orchestration
tools like Kubernetes [1] and Hadoop [2], [3]. Specifically,
data center scheduling algorithms must ensure at any time to
match microservice specifications in terms of SLOs, reserving
computing and networking resources for their execution.
Customers will then be charged based on the requested amount
of resources (CPU, memory, disk, bandwidth, etc.) and the
related guarantees in terms of service availability.

The complexity of the scheduling process lies (i) in the
heterogeneity of microservice resource requirements, and (ii)
in the additional limitation derived from modern data center
architectures. In fact, until recently, major Cloud providers
scaled up their computing facilities by building “mega-DCs”
with hundreds of thousands of servers and interconnecting
them into a wide-area backbone. However, a different scaling
strategy has quickly become standard, shifting from “mega-
DCs” to using a collection of smaller DCs located within
close proximity. This shift is driven by two pressures: (i)
the difficulty of siting and provisioning large facilities; and
(ii) the desire for fault tolerance to survive an outage in a
single location [4], [5].
Additionally, recent trends towards Edge, Fog, and

Liquid [6] computing solutions favored, even more, the geo-
distribution of computing facilities [7], [8] in the attempt
to guarantee the most appropriate hosting infrastructure
for latency-sensitive applications. With the advent of Edge
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computing, telecommunication networks, IoT systems, and
Smart City/Grid technologies have significantly enhanced
their operational efficiency and resilience. These advance-
ments may leverage thousands of distributed computing
resources, markedly improving the Quality of Experience
(QoE) and system robustness [9].

We argue that such Cloud solutions are far from
behaving effectively when trivially adapted to the Edge
scenario. Indeed, these solutions have been designed for
centralized data centers, with guarantees of computing and
network resources, and are not designed to identify suitable
microservice placement considering their communication
patterns. Therefore, they fail to scale on geographically
distributed edge-like infrastructures seamlessly, specifically
when dealing with nodes that are geographically spread over
high-latency WANs [10], [11], [12].
Furthermore, the extreme dynamicity of microservice

resource usage patterns drastically increases the complexity
of the scheduling process (e.g., the workload may vary
depending on the number of users connecting to the Web
application). Nevertheless, it is still possible to roughly
differentiate them based on their expected execution time:
production clusters deploy a huge variety of long-running
applications (LRAs), long-lived microservices that continue
execution for days to months. LRAs are commonly used
for stream processing [13], [14], [15], Web services [16]
and machine learning tasks [17], [18], [19], and recent work
estimated that a substantial portion of production cluster –
ranging from 10% up to 50% – is entirely dedicated to LRAs
workloads [20], [21]. In comparison, conventional offline
batch processing workloads (e.g., Spark and MapReduce
jobs) run short-lived tasks that typically finish within
minutes or shorter. Long-running applications can typically
withstand longer scheduling times, but they require optimal
placement, whereas short-running applications are latency-
sensitive. Scheduling algorithms must then be able to handle
both LRAs and SRAs, trading off between the different
requirements. The scheduling process of such heterogeneous
workloads, accounting not only their computing requirements
(i.e., CPU, RAM, GPU share, and more) but also the
networking requirements (i.e., communication bandwidth),
while minimizing the deployment cost is — to the best of
our knowledge — still unexplored.
In this paper, we argue that adapting Cloud scheduling

solutions to the Edge case is not effective and leads to
suboptimality in practice. To this end, we present Phare,
a decentralized scheduling algorithm that places microser-
vices on geographically distributed infrastructures. Such
distributed computing facilities constitute what we refer to
as a federation. Each constituent part of the federation (i.e.,
a cluster) offers (a subset of) its computing resources to the
other members of the federation, allowing each individual
and possibly autonomous entity to purchase resources when
needed, creating a continuum of heterogeneous computing
resources [6]. The primary objective of Phare is to optimize
the execution of microservices by meeting their computing

and communication needs while minimizing deployment
costs. To accomplish this, we design a heuristic-based
algorithm to solve the NP-Hard scheduling problem, and we
evaluate the performance of Phare against Firmament [22],
the Kubernetes state-of-the-art scheduling algorithm, on
simulated federated infrastructures with hundreds of clusters.
Our approach achieves almost a 10× reduction in terms
of deployment costs compared to Firmament while always
guaranteeing a lower scheduling latency.
The rest of the paper is organized as follows. Section II

summarizes related work, Section III formalizes the cost
minimization problem and Section IV proposes the heuristic-
based algorithm Phare. Finally Section V extensively
evaluates the performance of Phare on simulated environ-
ments and Section VI concludes the paper.

II. RELATED WORK
The problem of scheduling in Cloud computing has been
deeply addressed in the last two decades, while only a
few, more recent, solutions address the additional challenges
that arise in Edge computing. The most adopted solutions
for container orchestration, such as Kubernetes [1] and
YARN [3], provide generic scheduling algorithms, respon-
sible for placing jobs on the available machines, and have
been designed to address a large portion of common use
cases while balancing complexity, scheduling latency, and
optimality. While such algorithms may effectively solve
the scheduling problem in a traditional Cloud environment,
characterized by homogeneous resources, adapting them to
distributed Edge infrastructures may not be trivial.
In literature, jobs are typically classified based on the

expected execution time: long jobs (LRA, Long Running
Application) tend to be latency-insensitive and require near-
optimal placement, as they are expected to run for days
or even months, whereas short jobs (SRA, Short Running
Application) are latency-sensitive, and typically finish within
minutes or less. Consequently, especially in production
environments, scheduling algorithms must deal with both
SRAs and LRAs, providing a trade-off among the above
requirements.
The problem of scheduling SRAs has been widely

addressed in the literature, leveraging task reordering tech-
niques to prevent head of line blocking [23], [24], and
introducing also task bandwidth requirements to cope with
the most network demanding tasks [25], [26], [27]. Still,
inaccurate estimates of job completion time can be difficult
to mitigate due to external factors such as data size, network
congestion, and resource contention which make expected
completion time highly variable.
While most relevant and recent works on Edge Computing

focus on SRA scheduling, the problem of scheduling LRA,
such as micro-service based applications, is still overlooked
to the best of our knowledge. For this kind of problem, the
focus moves from completion time to deployment optimality
in terms of the final deployment cost and the efficient
usage of both computing and networking resources. The
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problem has been however widely addressed in the context
of data centers since public Cloud computing has emerged
as the most promising solution to host companies’ IT
services. A simple and flexible family of algorithms handles
the problem one job per time, i.e., each unscheduled job
is first retrieved from a queue and then assigned to a
computation unit regardless of the other jobs that are still
in the queue [23], [28]. This approach has the limitation of
committing early to suboptimal decisions that can prevent the
placement of subsequent jobs. To overcome such limitations,
some solutions jointly process batches of tasks. For instance,
Stratus [29] proposes an algorithm that targets the IaaS
(Infrastructure as a Service) scenario; specifically, it aims to
maximize the use of the purchased resources by co-allocating
tasks onto the same VMs. Quincy [30] introduces the concept
of flow scheduling, where the problem of job scheduling is
converted to an equivalent min-cost max-flow problem. Such
an approach is further improved by Firmament [22], which
achieves the same high-quality deployments but at a much
faster scheduling time. Firmament is currently adopted in
widespread Kubernetes clusters and can efficiently minimize
the overall application deployment cost while horizontally
scaling up to thousands of servers.
Although very promising, all the solutions above have

been designed to address a Cloud-like environment and
do not account for the additional challenges of an edge
infrastructure. In particular, inter-job communication may
feature bandwidth requirements that are not trivial to satisfy:
a series of new constraints can make such models ineffective,
and, nonetheless, the communication requirements may lead
to additional inter-cluster network costs based on the final job
placement. Aswewill show in SectionV, it can be hard to cope
with such additional problems by simply extending/adapting
well-established cloud scheduling algorithms.
Motivated by the heterogeneity of resources and, therefore,

of constraints that may affect the job placement at the edge
of the network, a set of recent works addresses the problem
in terms of inter-job dependencies, proposing the so-called
rule-based scheduling [1], [3], [31]. Domain experts provide
a qualitative representation of the interferences between
jobs, which can be in terms of reciprocal affinity and anti-
affinity. Then, the scheduling decision takes into account
such information and places jobs accordingly. However, these
approaches only take into account qualitative information,
failing to capture and optimize quantitative effects on the
cluster performance. Medea [20] tries to overcome such
limitations by providing a highly expressive model to
describe the job requirements; such an algorithm ensures low
latency placements and enables cluster owners to specify
enhanced placement constraints for long-running containers.
Although the improved expressiveness guarantees better
scheduling modeling, it still relies on experts to summarize
the sophisticated interference.
As a further optimization, network-aware resource man-

agement strategies integrate data center topology information
and/or application characteristics. [32], [33], [34], [35] focus

FIGURE 1. High level overview of the Phare architecture.

on Integer (Non) Linear Programming (ILP/INLP) models to
find the optimal allocation scheme based on an optimization
objective. Although able to identify optimal placements,
these solutions cannot find a feasible solution within an
acceptable time, thus limiting their applicability in production
environments. The computational complexity can be reduced
by either decomposing the optimization problem into parallel
tractable INLP subproblems [36] or limiting the search space
to a subset of compute nodes, based on the concept of open
subscriber group mode [37] to balance quality of allocation
and convergence time. The high-dimensional search space can
be further reduced considering only a subset of the possible
requirements, allocating MapReduce tasks [38] or data-
parallel distributing deep learning jobs [39] based solely on the
network topology, selecting the most promising SmartNIC-
Accelerated Server based on the compute demand (i.e.,
CPU and memory) of microservice-based applications [40],
or allocating network intensive tasks on geographically
distributed edge-to-cloud infrastructures [41], [42]. Still, few
approaches effectively account for computing and networking
resources, while minimizing the application deployment cost
within a reasonable time.
Finally, in the last couple of years, researchers

proposed various approaches to address the various
challenges that arise in the Edge computing scenario,
such as joint scheduling of computing and networking
resources [43], [44], distributed scheduling in multi-provider
environments [45], [46], support for mobility [47] and
energy efficiency [48]. However, proposed solutions are
still in an embryonal stage and far from guaranteeing
the same scalability properties as cloud-oriented solutions
(e.g., as Firmament does). In our work, we provide an
enhanced scheduling model that (i) overcomes the limitation
of cloud-based approaches by providing both qualitative
and quantitative measures of inter-job interactions, and (ii)
enables a highly scalable algorithm that can quickly schedule
complex applications on thousands of nodes.

III. SYSTEM MODEL
We consider a distributed edge infrastructure where resources
are grouped into clusters. Potentially, each cluster v ∈ N
is owned by a different edge provider and participates in
what we call cluster federation (see Fig. 1). Clusters are het-
erogeneous and may provide different resource capabilities
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(e.g., centralized data centers, network access base stations,
central offices, but also isolated user devices). In this work,
we consider capabilities in terms of computing resources
(e.g., the total amount of CPU and memory available in
the cluster), and communication resources (i.e., amount of
network bandwidth used to communicate with other clusters).
Since different types of computing resources experience
similarities in terms of provisioning and cost evaluation, we
define � as the set of all computing resources (e.g., CPU
and RAM), and treat every r ∈ � jointly, as the subsequent
steps need to be evaluated for each one of them. On the
other hand, we differentiate the notation for communication
resources, as we need to treat them separately in our model.
In particular, on cluster v ∈ N , we denote with Crv ∈ R+ the
budget of computing resource of type r, and with Nv ∈ R+
the budget of communication resources.
Requests for deploying applications are issued to edge

providers. Each application i ∈ I consists of a set of
components Mi ⊆M, where M is the set of all possible
components. Each component j ∈ Mi features resource
demands both in terms of computing ρrj ∈ R+ (required
amount of computing r-resource) and communication with
other components σj,k ∈ R+ (bandwidth required by j to
communicate with component k from the same application).
Edge providers jointly deploy applications across their

clusters, thus forming a federated edge infrastructure. Upon
receiving the request for deploying an application, the
concerned edge provider decides which of the application
components should be executed locally (i.e., on its own
cluster) and which of them will instead be offloaded to
foreign clusters across the federation.
Each type of resource r that is available on a certain

cluster features a given price per unit. To preserve generality,
we assume that resources may be exposed with different
prices to different partners of the federation. We denote with
prv,v′ ∈ R+ and bv,v′ ∈ R+ respectively the unitary price
of computing resource r and communication resources on
cluster v as seen by the provider of cluster v′. We denote by

xij,v ∈ {0, 1}, for i ∈ I, j ∈Mi, v ∈ N , (1)

the decision variable that indicates if component j from
application i has been scheduled on cluster v for deployment.
When deploying a certain component j ∈Mi on cluster v,
edge provider v′ experiences a cost given by multiplying
the amount of each demanded resource for the unitary price
seen on the hosting cluster:

Cv′(j, v) =
∑

r∈�
ρrj p

r
v,v′ +

∑

k∈Mi

σj,kbv,v′1{xik,v �=1}. (2)

Note that the cost σj,kbv,v′ due to the communication
between components j and k is accounted only if j and k
are not deployed on the same cluster.
When scheduling components of application i on available

clusters, the Edge Provider seeks cost minimization of the
overall deployment, and its decision is subject to the resource

constraints of the federated edge infrastructure. We formulate
such optimization problem for Edge Provider1 v′ as follows:

min
∑

j∈Mi

∑

v∈N
xij,vC(j, v) (3a)

s.t.
∑

j∈Mi

xij,vρ
r
j ≤ Crv ∀v ∈ N ,∀r ∈ � (3b)

∑

j∈Mi

∑

k∈Mi

xij,vσj,k1{xik,v �=1} ≤ Nv ∀v ∈ N (3c)

∑

v∈N
xj,v = 1∀j ∈Mi (3d)

where constraint (3b) ensures that the computing budget
of every cluster is not exceeded by deployed com-
ponents, (3c) enforces the communication budget over
networking demands between components that are deployed
on different clusters, while (3d) ensures that all components
are deployed.
Note that Problem (3) is a variant of the |�|-dimensional

multi-Knapsack problem with bin packing [49], that is, all
items must be assigned minimizing a cost function.
Lemma 1: Problem (3) is NP-Hard.
Proof: To demonstrate the complexity of Problem (3), we

show that it can be reduced from the Partition Problem [50],
which is known to be NP-hard. Given a set of positive inte-
gers a1, a2, . . . , an, the Partition Problem consists of dividing
them into two subsets such that the sum of the integers
in each subset is equal. We create a simplified instance of
Problem (3) as follows: consider only two identical clusters
v′ and v′′, each featuring the same budget Cv′ = Cv′′ =
1
2

∑n
j=1 aj of a single resource type; assume the unitary price

of such resource is 1, i.e., pv′ = pv′′ = 1; consider an
application with n components, where component j has a
1-dimensional computing demand ρj = aj and no demands
in terms of networking. Therefore, the deployment cost of
component j numerically coincides with its demand, i.e.,
C(j, v′) = C(j, v′′) = aj. Note that, if there exists a partition of
integers a1, a2, . . . , an into two equal-sum subsets {S1, S2},
then there exists a solution to Problem (3) (i.e., assign the
components corresponding to S1 to one cluster and those
corresponding to S2 to the other). This solution is also
optimal since all the unitary prices are the same. Conversely,
solving Problem (3) leads to a valid solution to the Partition
Problem. Hence solving Problem (3) is at least as hard as
solving the Partition Problem.

IV. PHARE ALGORITHM
This section describes a heuristic we designed to solve the
NP-hard Problem (3a). We first provide some intuitions of
what are the main challenges when scheduling components
in distributed constrained infrastructure, and of the main
concepts behind the algorithm logic. Then, we describe the
algorithm and detail its steps.

1 Since our algorithm operates in a decentralized fashion, we formulate
the problem from the point of view of a certain edge provider v′ and omit
the under script ·v′ for simplicity.
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A. MAIN CHALLENGE
Decentralized allocation policies distribute decision-making
among multiple agents, which improves scalability and
resilience compared to centralized allocation. However,
coordination and achieving global optimization can be
challenging; the quality of the allocation will be discussed in
the evaluation section, but it is important to note that coor-
dination among agents plays a crucial role in the scalability
of the solution. When an agent receives a request to deploy
an application, it can independently perform the allocation
process without exchanging information with other agents,
which drastically reduces the need for synchronization.
However, for informed decisions to be made, clusters must
share their status with other members of the federation. A
detailed description of the real-world implications of this
will be discussed in Section V-G after the evaluation.

When deciding to schedule a particular component on a
given cluster, a key role is played both by how big the
component is (i.e., how many cluster resources it demands)
and by how much it communicates with other components
of the same application. A component that requires a lot
of computational resources will be harder to schedule (it
has less feasible matches) compared to small components,
but this is also true for small components that feature
intensive mutual communication (e.g., if the chosen host
cluster has not enough bandwidth, the communication with
any component placed outside will not occur properly).
Since edge infrastructures are highly scattered and con-

strained, we argue that it is particularly challenging to
jointly satisfy the communication and computational require-
ments of all application components. Intuitively, the more
components are scheduled on available clusters, the harder
it becomes to schedule the remaining ones. Therefore, to
quickly converge to a feasible placement, the algorithm
should prioritize “harder” components, i.e., the ones featur-
ing more stringent constraints (both in terms of computing
and communication). With this intuition, we design our
algorithm with the idea of guessing a convenient order for
placing components, which would (i) minimize the chances
of unfeasible deployments (quick convergence), and (ii) seek
cost minimization.

B. ALGORITHM OVERVIEW
Our heuristic performs the steps in Algorithm 1.

When a request for deploying a new application i ∈ I
is received, we first evaluate every component j ∈ Mi of
application i and assign an importance metric zj to each of
them (Algorithm 1, line 3).2 The higher the importance, the
more the component is considered “hard to schedule”, hence
it will get a higher priority in the scheduling process. Details
of how we estimate the importance of each component are
provided in Section IV-C

2In practice, we compute separate values of importance zrj for each
computing resource r, and then combine them back in Algorithm 1, line 10.

Algorithm 1 PHARE Scheduling for Application i
Require: Mi, ρrj ∀j ∈Mi, σj,k ∀j, k ∈Mi

1: for j ∈Mi do
2: for r ∈ � do
3: Compute importance zrj of component j through (5)

4: for v ∈ N do
5: Estimate computing affinity �r

j,v through (7)
6: Compute coefficient arj,v through (9)
7: Use ar to estimate comm. affinity �r

j,v through (8)

8: end for
9: end for

10: Combine per-resource importance into zj through (6)
11: Take �j,v ← minr∈�(�r

j,v), and �j,v ← minr∈�(�r
j,v) (6)

12: end for
13: JS ← sort Mi by importance zj descending
14: for j ∈ JS do
15: Schedule j to cluster v∗ ← arg minv∈N (C(j, v)/(�j,v�j,v))

16: end for

After evaluating the importance of a component j, an
affinity score is computed for each pair (j, v) of component
j and feasible cluster v ∈ N . The affinity provides an
indication of how convenient it is to assign component j to
cluster v, with respect to a trade-off between convergence
speed and optimality of the final scheduling decision. In
particular, two separate affinities �j,v ∈ [0, 1] (computing
affinity – Section IV-D) and �j,v ∈ [0, 1] (communica-
tion affinity – Section IV-E) are estimated and combined
(Algorithm 1, lines 5 - 7). We detail how we estimate
computing and communication affinities in Sections IV-D
and IV-E respectively.
We then compute costs C(j, v) for every component j

and feasible cluster v, i.e., the marginal cost that would be
required if j is scheduled on v. Such raw costs are adjusted
using the affinity values computed at the previous step, thus
obtaining the so-called perceived cost C(j, v)/(�j,v�j,v): the
less the affinity between component j and cluster v, the
higher the perceived cost of scheduling j on v.
Finally, the algorithm iterates over components sorted by

their importance zj (descending), i.e., prioritizing those that
feature stricter requirements, and assigns each component to
the cluster v∗ providing the less perceived cost (Algorithm 1,
line 15), evaluated as

v∗ = arg min
v∈N

(
C(j, v)/�j,v�j,v

)
. (4)

In the remainder of this section, we complement the
algorithm description by providing details for the missing
pieces, namely, how we estimate components importance
zj, computing and communication affinities between compo-
nents and clusters. Finally, we describe how we deal with
multiple computing resources.

C. SORTING COMPONENTS BY IMPORTANCE
For each computing resource r ∈ �, we evaluate the
importance of a component j mainly based on its demand
ρrj . This value is combined with the demands ρrk of
each “neighbor” component k, i.e., all those components
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that feature some communication constraint with j. By
prioritizing components with “heavy” neighbors we increase
the probability that such neighbors are scheduled on the
same clusters.
Before describing how we compute the importance zrj of

a component j with respect to resource r, we provide the
following definition of communication factor.
Definition 1 (Communication factor θj,k): Given an appli-

cation i ∈ I and two of its components j, k ∈ Mi, we
define θj,k = σj,k/ maxj′,k′∈Mi(σj′,k′) the communication
factor between components j and k of application i.
The communication factor θj,k is an indicator of how

intense is the communication demand between components
j and k. We use this value to weight the contribution of each
neighbor of j when estimating the importance zrj , as defined
below.
Definition 2 (Importance zrj ): Given component j ∈Mi of

an application i ∈ I, we define the importance of component
j with respect to resource r as

zrj = ρrj +
∑

k∈Mi\{j}
θj,kρ

r
k . (5)

Algorithm 1 uses zrj to sort the application compo-
nents so that those featuring more stringent deployment
constraints are scheduled first. Specifically, given the multi-
dimensionality of computing resources, the different values
of resource importance are then combined as follows:

zj =
∑

r∈�

zrj

maxr∈�
(
ρrj

) . (6)

Intuitively, components that feature (i) high computing
demands, (ii) neighbors with high computing demands, and
(iii) high communication demands will be characterized
by high importance values. Aside from determining the
scheduling order, value zrj is also used to compute the affinity
between component j and the available clusters, as described
in the next section.

D. AFFINITY BETWEEN COMPONENTS AND CLUSTERS:
COMPUTING
The first affinity factor we estimate only takes into account
the computing resources of the target cluster, without
considering its communication capabilities. To estimate the
affinity between component j and cluster v, we first evaluate
the quantity yrj − δrv, where δrv is the residual computing
resource r on cluster v, while yrj is the amount of overall
computing resource of type r required by j and all its
neighbors, i.e., yrj = ρrj +

∑
k∈Mi\{j} ρ

r
k1{σj,k>0}. We provide

an intuitive definition of quantity yrj − δrv:
Definition 3 (Resource scarcity yrj − δrv): Let us assume

component j is considered for deployment on cluster v. We
define the difference between the amount of r-type resource
required by j and all its neighbors and those still available
on cluster v as resource scarcity yrj − δrv.

FIGURE 2. The computing affinity �r varies with the resource scarcity yr
j − δr

v , i.e.,
the difference between the requirements of j and residual resources on cluster v . The
critical value 0.75 is reached when v has enough resources to host a “significant
portion” of j ’s neighborhood.

Note that when resource scarcity is less than zero, the
cluster has enough type-r resources to accommodate j and
its whole neighborhood.
The computing affinity is then evaluated based on the

resource scarcity yrj − δrv as follows:

�r
j,v =

⎧
⎨

⎩
e
−c y

r
j−δrv

yrj−zrj if yrj − δrv > 0,

1 if yrj − δrv ≤ 0.

(7)

where the coefficient c is used to adjust how fast the affinity
decreases with respect to the lack of resources in the cluster.
To understand the rationale behind Equation (7) it is

helpful to visualize the relationship between �r
j,v and the

quantity yrj − δrv (Fig. 2). We provide an intuition below.
When yrj − δrv ≤ 0, i.e., cluster v has enough resources

to host j and all its neighbors, then the affinity is set to
1 (maximum affinity value). If the resources on v are not
enough for hosting j and its whole neighborhood, the affinity
starts to drop slowly, until the quantity yrj − δrv reaches a
critical value that leads to �r

j,v = 0.75; we set coefficient
c so that this happens when yrj − δrv = yrj − zrj , i.e., when
the residual resources on v are numerically equal to the
importance zrj of component j.3 The importance value here
is used to estimate the portion of the neighborhood that is
more significant for j: if the cluster has enough resources
for hosting j and a significant portion of its neighborhood,
then the affinity �r

j,v will be higher than 0.75. Finally, after
the critical value where yrj − δrv = yrj − zrj is reached, the
affinity �r

j,v starts to drop quickly, with values eventually
approaching 0.

E. AFFINITY BETWEEN COMPONENTS AND CLUSTERS:
COMMUNICATION
To also take into account the networking capabilities of
the target cluster, the computing affinity �r

j,v is used in
combination with a communication affinity. It is important
to note that a task j will consume the communication
capabilities (e.g., bandwidth) of the host cluster v only if its
neighbors have been placed on some external clusters other

3 This is achieved using c = 0.287682.
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FIGURE 3. Bandwidth affinity for different values of the coefficient ar .

than v, since otherwise, j would not need v’s bandwidth to
communicate with them. For this reason, when designing the
communication affinity, we seek a mechanism that reduces
the affinity of component j and cluster v the more it is
difficult to accommodate the communication demands of j,
but that has a lower impact if cluster v is large enough for
potentially hosting a significant portion of j’s neighborhood.
To calculate the communication affinity we first evaluate

the quantity Yj/	v − 1, where 	v is the residual com-
munication capacity on cluster v, while Y is the overall
communication demands for component j towards all its
neighbors, i.e., Yj = ∑

k∈Mi\{j} σj,k. Note that the quantity
Yj/	v − 1 is equal to zero when Yj = 	v.

The communication affinity is evaluated as follows

�r
j,v =

{
e−ar(Yj/	v−1) if Yj/	v − 1 > 0,

1 if Yj/	v − 1 ≤ 0,
(8)

where coefficient ar is used to adjust the weight of the
communication affinity so that it has a lower impact if the
target cluster v has enough r-resources to host a significant
portion of j’s neighborhood: the higher coefficient ar is, the
more the communication affinity will affect the final solution
(see below for details on how we compute coefficient ar).4

The relationship between �r
j,v and the quantity Yj/	v− 1

is visualized in Figure 3. When cluster v has enough com-
munication resources to accommodate all the communication
demands of component j, the communication affinity is set
to its maximum value 1. If the resources are not enough (i.e.,
the residual bandwidth is less compared to what j needs to
communicate with the other components of the application),
�r
j,v drops exponentially with a decreasing factor that is

based on the coefficient ar: for higher values of ar, the value
of �r

j,v drops more quickly.
Coefficient arj,v: We compute the coefficient arj,v so that

�r
j,v decreases more slowly the more cluster v is likely to

host some neighbors of j. The rationale is that if cluster
v has enough computing resources to host a subset of
j’s neighborhood, then it is unfair to decrease the affinity
between v and j based on v’s communication capabilities (as

4Note that arj,v is different for each computing resource r; hence, we
estimate multiple communication affinities �r

j,v, each associated with a
certain computing resource r. Section IV-F describes how we deal with
multiple computing resources.

FIGURE 4. Coefficient ar is determined based on the quantity yr
j − δr

v , i.e., its impact
increases with the resource scarcity.

j will probably not need them). We empirically compute it
as

arj,v = S

(
4
yrj−δrv

yrj−zrj − 2

)
, (9)

where S is the sigmoid function S(x) = 1/(e−x + 1). The
relationship between coefficient arj,v and the quantity yrj − δrv
is visualized in Figure 4. If cluster v has enough r-resource
compared to the demand of j and its neighborhood, then
arj,v � 0, i.e., the communication affinity will have a
negligible impact. If residual resources are not enough for
hosting j and a significant portion of its neighborhood
(estimated with zrj ), then arj,v � 1 and the communication
affinity will have maximum impact.

F. DEALING WITH MULTIPLE COMPUTING RESOURCES
Until now, we generalized the concept of computing
resources since they experience similarities both in terms
of provisioning and cost modeling. Nevertheless, realistic
application deployments often feature two or even more
conjoined computational constraints; we now describe how
multiple resource constraints can be combined within our
heuristic.
The values of computing and communication affinity

defined respectively at 7 and 8 indicate the confidence
in scheduling a component on a given cluster. Multiple
computational constraints lead to multiple �r

j,v and �r
j,v per

component j, i.e., one for each type of resource r ∈ �.
We generalize the overall computing and communication
affinities between component j and cluster v as

�j,v = min
r∈�

(
�r
j,v

)
, and �j,v = min

r∈�

(
�r
j,v

)
, (10)

extracting the minimum affinity value among the existing
resources, hence considering the most conservative scenario.

V. EXPERIMENTAL RESULTS
In this section, we demonstrate the experimental validation
of Phare. First, we aim to comprehend the impact of
each mechanism composing Phare on job scheduling time
and bandwidth usage. Second, we evaluate the scalability
properties concerning infrastructure size (Section V-D) and
the number of deployed applications (Section V-E). We
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consider success rate, scheduling time, and the solution cost
as key metrics for the subsequent evaluation. Ultimately,
our assessment centers on the impact of Phare placement
on network congestion within the infrastructure. This is
achieved through a thorough analysis of the bandwidth
consumption of scheduling solutions (Section V-F). We
compare our results against Firmament, the state-of-the-art
for microservice placement in cloud infrastructures.

A. IMPLEMENTATION OF THE SCHEDULING
FRAMEWORK
We implemented a prototype version of Phare using the
Golang language.5 We designed the framework to be
easily extensible to integrate and test additional scheduling
algorithms in the same conditions.
The scheduling framework operates on a simulated

environment in which both the infrastructures and the
component-based applications are represented as data struc-
tures stored in memory. These can be either imported,
to replicate specific scenarios, or be randomly generated
for testing purposes. Particularly, the random generation is
performed through configuration files that define boundaries
for each type of resource both for application demands and
for infrastructure availability.
The implementation of the scheduler interface for Phare

relies on recursion to replicate the algorithm described
in Section IV. Specifically, the recursive implementation
extends the core algorithm, allowing it to probe multiple
search paths, until a feasible solution is found, or a
predefined timeout is triggered. Due to the design of Phare,
the recursion tends to prioritize those initial placements that
are more likely to lead to a feasible allocation, while jointly
minimizing costs.
Using this framework, we also implement Firmament [22],

a state-of-the-art scheduler and one of the few ones available
in Kubernetes [51]. We aim to demonstrate that well-
established Cloud solutions are far from behaving effectively
when trivially adapted to the Edge scenario. Firmament
exploits flow network representation of the scheduling
problem to identify suitable placements by means of
Flowlessly,6 an efficient minimum-cost-maximum-flow deci-
sion problem solver. Our implementation of Firmament first
translates the internal representation of both the infrastructure
and the applications to the corresponding flow network
(according to the specification provided in [22], [52], [53]),
then calls the Flowlessly C++ library to solve the associated
minimization problem.
Performance enhancement and additional features: Phare

has been designed to seek early the most promising steps
in the recursive process, but still the worst-case complexity
can be estimated as O(N ∗ J), where N is the number of
clusters and J the number of components of the application
to be scheduled. Such a worst-case scenario requires the

5The code is available at https://github.com/liqotech/scheduling.
6https://github.com/ICGog/Flowlessly

TABLE 1. Infrastructure setup.

simultaneous occurrence of numerous factors including huge
application size and massive, almost-saturated, infrastruc-
tures. Although such a scenario is theoretically possible,
providers usually prevent the saturation of their infrastructure
for resilience reasons; still, the worst-case complexity can
be reduced to O(M ∗ J), with M being only some of the N
feasible clusters, as empirical evaluations have shown that the
scheduling solution is always found within the first M = 10
clusters, or not found at all. Consequently, we improve the
sorting algorithm used to rank the most promising clusters
accordingly: in particular, we use a modified version of Heap
Sort that runs the Selection Sort only for the first M clusters.
This reduces its complexity from O(N logN) to O(N) as
M << N.
Additional implemented features target the deployment on

real systems: (i) define thresholds both for computational and
network resource usage to prevent saturation, (ii) constraint
the placement of a subset of the application components onto
specific clusters to replicate given execution requirements,
and (iii) define shared network links between clusters.

B. EXPERIMENT SETUP
In our tests, we simulate random edge infrastructure topolo-
gies of different sizes, with the number of clusters ranging
between 50 and 1000. Each cluster in the infrastructure
features a predetermined random amount of CPU cores and
available memory. These clusters are linked together with
virtual connections, i.e., they logically form a full mesh
topology. Each connection is characterized by the avail-
able network bandwidth for inter-cluster communication.
Moreover, each resource features a given cost expressed
in $/unit, properly sized to match major Cloud Provider
resource costs (TABLE 1 summarizes the main values
concerning the infrastructure configuration).7

We use a sample 10-tier microservices application called
Online Boutique8 for our simulated workload. The workload
reflects common patterns and challenges in distributed
systems, thereby providing a credible and realistic bench-
mark for the use case applications in edge computing
environments. To define our workload accurately, we first
monitored the CPU, RAM, and bandwidth usage of the
microservices and recorded the resource demands (our
findings are detailed in TABLE 2). To account for the unpre-
dictable randomness of the infrastructures and simulated

7https://cloud.google.com/compute/all-pricing
8https://github.com/GoogleCloudPlatform/microservices-demo
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FIGURE 5. (a) Impact of heuristics used in Phare on the reduction of the scheduling time, with respect to simple Cost-based Scheduling (CS), namely Cost-based Scheduling
with Microservice Sort (CSMS) and Cost-based Scheduling with Microservice Sort and Affinities (CSMSA). (b) Breakdown of the scheduling time for the 50-cluster infrastructure.
(c) Average bandwidth occupancy of the links connecting the clusters.

TABLE 2. Workload setup.

workload, for each of our tests, we run multiple simulations
(referred to as simulation samples) with varying random
configurations. This was necessary to obtain statistically
significant data.

C. EVALUATION OF THE HEURISTIC COMPONENTS
In this section, we assess the effectiveness of the intu-
itions behind the proposed algorithm in determining proper
placement for microservice-based applications. In practice,
we evaluate the benefits that each main building block
pieces of Phare bring to the scheduling tasks. We deploy
500 applications (modeled based on TABLE 2) to random
infrastructures, with the number of clusters ranging between
50 and 350 (each modeled based on TABLE 1, column B).

For this set of experiments, we use a Cost-based
Scheduling (CS) algorithm as our baseline. This algorithm
ranks clusters based on their unitary resource costs and
places the i-th microservice on the cluster with the lowest
cost. We assess the effectiveness of sorting microservice
based on component importance z (Definition 2) comparing
CS with an extended version named Cost-based Scheduling
with Microservice Sort (CSMS) that implements the sorting
mechanism described in Section IV-C. Additionally, we
evaluate the impact of introducing our affinity mechanism
(described in Section IV-D, Section IV-E by means of the
Cost-based Scheduling with Microservice Sort and Affinities
(CSMSA). Notice that CSMSA is equivalent to our final
proposed heuristic Phare. Fig. 5(a) shows the scheduling
time reduction of the proposed enhancements against the
baseline. Specifically, sorting based on importance z enables
the scheduling algorithm to first place the most demanding

microservices (i.e., the ones with the most stringent require-
ments), moving to the less demanding ones afterward. Such
an approach leads to a significant reduction in the average
scheduling time (between 65% and 78%), also shortening
the time required to identify unfeasible placements. The
affinity mechanism further improves the scheduling time:
according to resource availability, it effectively weights inter-
component dependencies and leads to better mapping of
application components onto infrastructure clusters. Indeed,
CSMSA features a scheduling time reduction between 76%
and 88% in our experiments. Additionally, Fig. 5(b) shows
in which condition the proposed enhancements contribute the
most to the reduction of the scheduling time. It details the
measured scheduling time for each of the 500 applications
in the 50-cluster infrastructure. It is important to note that
the 50-cluster infrastructure cannot accommodate all the
applications that have been submitted (only around 150
applications will be scheduled successfully, while the rest
will not be scheduled due to insufficient resources). The
plot shows that in situations where there is a shortage of
resources, both CSMS and CSMSA introduce huge improve-
ments on the baseline, visibly reducing the scheduling time
by effectively identifying unfeasible placements quickly;
moreover when there are enough resources to accommodate
all the applications (i.e., less than 150 applications), the
proposed scheduling mechanisms leads to faster scheduling
times on average (spikes of 100 ms are less frequent when
using CSMS, and even almost disappear with CSMSA).
Finally, the proposed mechanisms improve not only in terms
of scheduling time but also in the quality of the final
placement. We evaluate this in terms of bandwidth occupancy
of the links connecting the clusters: Fig. 5(C) shows that
the full algorithm (CSMSA) consistently outperforms other
configurations and never exceeds 15% of bandwidth usage.

D. SCALABILITY ON INFRASTRUCTURE SIZE
We now compare our algorithm against Firmament [22].
First, we evaluate the behavior of the two algorithms when
scaling horizontally on the infrastructure size. Specifically,
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FIGURE 6. Respectively, scheduling success rate (Fig. 6a), scheduling time (Fig. 6b)
and experienced costs for the computing resources reserved for the applications
(Fig. 6c) for Phare and Firmament with infrastructures of variable sizes.

we run Phare and Firmament with infrastructures of multiple
sizes, in order to study how the algorithms behave (i) when
few (possibly saturated) clusters are available, i.e., limited
scheduling options, and (ii) when many clusters are available
(up to 1000 for our study case), with a large number of
scheduling options to be evaluated.
Fig. 6a shows the fraction of successfully scheduled

applications out of the complete set. An application is
accounted as scheduled only if all its microservices have
been successfully placed. Small infrastructures do not have
enough resources to accommodate all the applications,
hence infrastructures with less than 150 clusters experience
a success rate lower than 1. On the other hand, larger
infrastructures can host all the applications, hence a success
rate is always equal to 1.

Results report a similar success rate for Phare and
Firmament, i.e., both approaches consolidate almost the same
amount of applications for each topology configuration.
However, we experience a huge difference between the two
algorithms in terms of both scheduling time and deployment
cost. Fig. 6b represents the average time needed to fully
schedule each of the 10K applications (the time needed to
determine any unfeasible placement is accounted for as well).
Phare largely outperforms Firmament, featuring less than 70
ms average scheduling time in large infrastructures, and even
sub-millisecond scheduling time when operating on con-
strained topologies with few clusters. Conversely, Firmament

experiences very high scheduling delays, especially on small
infrastructures. This is because of its inability to quickly
identify unfeasible application deployments, which is rare in
cloud environments: by design, it accounts for scheduling
only a subset of microservices per application at a time
when the infrastructure is resource-constrained; this leads to
multiple calls to the underlying solving algorithm.
Interestingly, the small scheduling time required by Phare

w.r.t. Firmament does not have a negative impact on the
experienced scheduling cost. Fig. 6c depicts the cumulative
deployment cost of all the applications; not-scheduled
applications contribute with a cost of 0 to the deployment
cost. We can identify two trends throughout the test: (i) when
considering small infrastructures with few federated clusters
(less than 150), introducing additional clusters leads to a
huge growth in the total deployment cost, as a considerable
amount of new applications can be accommodated (as seen
in Fig. 6a); (ii) infrastructure with more than 150 clusters
have enough resources to host all the applications, hence the
total deployment cost slightly decreases as the number of
clusters — and the placement options — grow. In practice,
the huge deployment cost gap between Phare and Firmament
(up to 10×) is related to the cost of inter-microservice com-
munication. Specifically, Firmament accounts for network
bandwidth dependencies between application components
but fails to correctly weight their cost effectively w.r.t.
computing costs in a highly scattered topology. On the other
hand, the network-aware placement of Phare can drastically
reduce the bandwidth occupancy among different clusters
and the associated networking costs. As a reference, the two
algorithms experience similar costs for computing resources
in this setting (result not shown). This result highlights the
difficulties of adapting a Cloud-based algorithm to the Edge
scenario, where network resources are far as uniform and
optimally sized as they are in data centers.

E. SCALABILITY ON NUMBER OF APPLICATIONS
In the previous set of tests, we identified the 100-cluster
infrastructure as one of the most challenging, due to the
limited amount of available resources to fulfill the demands
of all the applications. Analyzing closely such a scenario it
is possible to understand the performance of the algorithms
both when the infrastructure is almost saturated — and
the possible placements are limited — but also when there
are no more available resources in the infrastructure and
the algorithm must quickly detect an unfeasible application
placement.
Fig. 6b breaks down the scheduling success rate for the

complete set of applications. As for the previous case, one
application is accounted for as scheduled only if all its
microservices have been successfully placed. The infrastruc-
ture does not have enough resources to accommodate all
the applications, in fact, only the first 6K applications are
always properly scheduled across all the simulation runs.
Phare achieves a slightly higher success rate in the 7K-set of
applications, scheduling a few more applications with respect
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FIGURE 7. Scheduling success rate (Fig. 6b), scheduling time (Fig. 7b) and solution
costs (Fig. 7c) for Phare and Firmament with infrastructures of 100 clusters.

to Firmament thanks to more accurate management of the
available resources.
As for the previous test, the two algorithms heavily differ

in measured scheduling time: Fig. 7b reports the observed
scheduling time distribution for the ith application. Phare
outperforms Firmament being able not only to converge to
a suitable scheduling solution in almost-saturated infrastruc-
tures but also to quickly detect unfeasible solutions when
the amount of available resources is not enough to host
the remaining applications. Conversely, Firmament experi-
ences some performance drop with saturated infrastructures
because of the same design issue mentioned in the previous
section.
Finally, the two algorithms experience again similar costs

for what concerns computing resources (not shown), but
provide a huge gap when including the cost of networking
resources (Fig. 7c). Indeed, Firmament behaves poorly when
network resources are not uniform and networking costs
become relevant, which is definitely the case in multi-
cloud environments or, in general, for highly distributed
infrastructures. In this case, we observe that Phare reduces
deployment costs by more than 5 times overall compared to
Firmament.

F. BANDWIDTH CONSUMPTION
We now evaluate the benefits of the communication-aware
placement of Phare, thus breaking down the bandwidth
consumption of the links between clusters.

FIGURE 8. Inter-cluster congestion matrix: each cell depicts the percentage of
network bandwidth usage between two clusters

For this specific set of tests, we use a 50-cluster infras-
tructure (dimensioned according to TABLE 1, column A).
Fig. 8 depicts the measured network pressure on the link
between clusters; specifically, they represent the congestion
matrix N ∗ N, where N is the number of clusters of the
federation and each cell (i, j) represents the percentage of
network bandwidth usage between cluster i and j. Moreover,
each cell value is represented on a gray-scale color code,
except the ones in red that exceed 100% network usage
(i.e., the target placement requires more bandwidth than the
available amount). In these extreme settings, Firmament even
fails to find placements that are feasible from a networking
perspective. On the other hand, Phare is able to intelligently
distribute the applications across the federation, properly
aggregating within the same clusters those microservices that
feature mutual dependencies.

G. REVISIONREAL-WORLD IMPLEMENTATION
CONSIDERATIONS
While our evaluation primarily focuses on the algorithm’s
performance within simulated environments, we acknowl-
edge the importance of applicability and challenges in
real-world settings. Besides scalability, there exist several
critical areas to consider, which we briefly analyze below.
Integration with existing systems: Seamless integration

with existing infrastructure and cloud/edge computing plat-
forms is crucial for the adoption of any new technology. To
this end, we anticipate the potential for integrating Phare
in Kubernetes by replacing the default scheduling algorithm
with our solution.
Forming a federation: In a federation, computing resources

are shared between clusters, allowing each entity to access
additional resources if needed. This resource sharing can be
achieved through the multi-cloud functionalities provided by
Liqo,9 which is already being used as an enabling technology
in the European project FLUIDOS10 to create distributed
continuum infrastructures.
Practical performance metrics: Phare requires updated

information on the clusters participating in the federation,
including CPU, memory, and bandwidth usage. A real-world

9https://liqo.io/
10https://www.fluidos.eu/
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implementation should thus carefully balance the resolution
of such data and the additional overhead required to process
it. Specifically, whereas a peer-to-peer interaction to retrieve
cluster usage metrics might be suitable for small federations,
it does not scale with the number of clusters. Therefore, a
central metrics aggregation point might be a suitable solution
for a real implementation.
Privacy and security: Privacy and security are vital

for ensuring that workloads are executed correctly in
a distributed infrastructure. There are two major issues
related to job allocation that must be addressed: First,
the device hosting the container execution must provide
a secure environment. This can be achieved by using the
functionalities offered by the container runtime, Kubernetes,
and Liqo. Second, the allocation process must take into
account customer constraints. It is crucial to ensure that
devices are authenticated through trusted parties to prevent
allocation in insecure sites.
By addressing these considerations, we aim to bridge the

gap between theoretical research and practical application,
ensuring that our algorithm not only excels in simulated tests
but also meets the demands of real-world deployment.

VI. CONCLUSION
Compared to the Cloud scenario, scattered and constrained
clusters in Edge infrastructure pose non-trivial challenges
for computing and bandwidth resource scheduling, which
can be hardly addressed by adapting traditional data center
techniques.
In this paper, we proposed a new approach to multi-

cloud application scheduling, called Phare, that takes into
account the communication and computing requirements of
the entire application graph and leverages the capabilities
of the underlying infrastructure to optimize resource usage.
Phare is based on a heuristic to speed up the placement
of the application while minimizing the overall application
deployment cost. We compared Phare against Firmament, a
state-of-the-art scheduler largely employed in cloud infras-
tructures, performing a series of tests over infrastructures
of various sizes. Our results show that, despite featuring a
similar scheduling success rate, Phare largely outperforms
Firmament in terms of scheduling time, being able to quickly
identify suitable placements even for large infrastructures.
Modeling real major provider resource costs, we show that
networking costs can be a major factor in highly distributed
infrastructures, and assess Phare benefits over Firmament
with up to 10× deployment cost reduction scheduling
10K applications on 1K clusters. Furthermore, our tests on
network congestion show that Phare can effectively reduce
the bandwidth usage between clusters, resulting in more
efficient resource usage and better overall performance.
Overall, our results demonstrate the effectiveness of Phare

in optimizing microservice application scheduling on multi-
cloud highly-distributed infrastructures and suggest that it
can be a valuable tool for organizations that rely on scattered
edge resources to run their applications.
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