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Abstract: Comprehending the regulatory mechanisms influencing blood pressure control is pivotal
for continuous monitoring of this parameter. Implementing a personalized machine learning model,
utilizing data-driven features, presents an opportunity to facilitate tracking blood pressure fluctua-
tions in various conditions. In this work, data-driven photoplethysmograph features extracted from
the brachial and digital arteries of 28 healthy subjects were used to feed a random forest classifier in
an attempt to develop a system capable of tracking blood pressure. We evaluated the behavior of this
latter classifier according to the different sizes of the training set and degrees of personalization used.
Aggregated accuracy, precision, recall, and F1-score were equal to 95.1%, 95.2%, 95%, and 95.4% when
30% of a target subject’s pulse waveforms were combined with five randomly selected source subjects
available in the dataset. Experimental findings illustrated that incorporating a pre-training stage with
data from different subjects made it viable to discern morphological distinctions in beat-to-beat pulse
waveforms under conditions of cognitive or physical workload.

Keywords: cuffless blood pressure; personalized health; photoplethysmogram; pulse transit time;
pulse wave analysis

1. Introduction

Population growth and the aging demographic are recognized as predominant factors
linked to the rise in the incidence of cardiovascular diseases (CVDs) [1]. The estimated
increment in the number of adults aged 30 to 79 ranged from approximately 650 million
to 1.28 billion between 1990 and 2019 [2,3]. Hypertension, also known as elevated blood
pressure (BP), is a medical condition that promotes the insurgence of coronary diseases and
different pathologies impacting vital organs, such as the brain and kidneys [4–7].

Noninvasive BP measurement systems have emerged to overcome the mentioned lim-
itation of the invasive approach [8]. These devices employ multi-modal sensors that exploit
diverse physical principles to extract information regarding the status of the cardiovascular
system [9–13]. Continuous arterial BP measurement has been widely acknowledged as a
more accurate determinant of cardiovascular risks since alterations in systolic or diastolic
BP, along with changes in the shape of BP waveforms over time, reflect the progression of
arterial and arteriolar modifications [14,15]. Moreover, by analyzing the arterial pressure
waveforms, the cardiovascular status can be assessed through the estimation of physiologi-
cal parameters [16,17]. A promising approach for continuous BP measurement is through
computational modeling of the circulatory system [18–20]. These models integrate nonin-
vasive data, like aortic flow and peripheral readings, to estimate BP. Parallelly, calibrated
methods for cuffless BP, including Pulse Transit Time (PTT) and pulse wave analysis (PWA),
stand out as viable solutions for BP assessment [21]. PTT is the time delay for the pressure
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wave to travel between proximal and distal arterial sites [22]. As defined in different arterial
stiffness studies, PTT is conventionally identified as the foot-to-foot time delay between
proximal and distal arterial BP waveforms [23,24]. PWA relies on extracting features from
an arterial waveform and associating them with BP units through a calibration model. This
approach offers greater convenience compared to the PTT method, as it necessitates only
a single sensor [25] or can be employed in conjunction with PTT to enhance its accuracy.
PWA employs data-driven feature extraction to extrapolate relevant information for the BP
assessment. Numerous features have been investigated to analyze the morphology of the
arterial pulse waves captured by photoplethysmography (PPG) sensors [26–28].

Several machine learning (ML) algorithms, including Support Vector Machines (SVM),
random forests (RF), and feedforward neural networks (NN), have been employed in BP
assessment [29–31]. In many instances, nonlinear models have demonstrated superior
performance compared to linear models, although this outcome is contingent on the spe-
cific dataset and approach utilized, i.e., PTT, Pulse Arrival Time (PAT), or PWA using only
PPG data. Additionally, more advanced methods, such as Recurrent Neural Networks
(RNN) [32] and Long Short-Term Memory (LSTM) networks [33], have also been proposed.
Although these models may offer a significant advantage over previously mentioned
models by incorporating the ability to capture variations in extracted features over time,
Deep Learning (DL) models require a large number of data samples to provide reason-
ably accurate BP values. Although DL and ML have found extensive application in BP
assessment, the considerable inter-subject variability has posed challenges in formulating
a sufficiently generalized model whose performance could also be maintained outside of
the initial dataset. Therefore, drawing inspiration from established practices in the field of
human activity recognition [34,35], numerous studies have suggested the formulation of
person-specific models for the examination of this clinical parameter [36–39].

This paper presents a personalized ML model designed to detect BP changes in
response to various stimuli. For this specific application, we developed a customized
acquisition system to perform real-time acquisition and visualization of raw PPG pulse
waveforms at the level of brachial (elbow) [10] and digital (thumb) [40] arteries. A specific
data collection protocol was deployed to perform an accurate assessment and to induce a
BP variation owing to the execution of both physical and cognitive tasks [41,42].

Our contributions in this application are as follows: (1) we propose ten pre-training
strategies to calibrate an RF model based on individual physiological characteristics; (2) pre-
training improves blood pressure classification accuracy on beat-to-beat pulse waveforms
by up to 60% compared to a generalized model; (3) overfitting is mitigated by expanding
the number of source subjects, reducing the need for additional target subject data; (4) we
cut the data required to personalize the model by up to 30% while maintaining evaluation
metrics above 95%. The structure of this article is as follows. Section 2 guides the reader
through a detailed description of the hardware design of the device developed to retrieve
the PPG raw data used in this work. Then, the data capture protocol and the data process-
ing pipeline are presented, along with the description of the training strategies and the
evaluation metrics employed to quantify the performance of the ML model. In Section 3,
the results of the processing stage are reported, followed by the results retrieved for each
subject in the dataset. Section 4 details the discussion and limitations of the proposed
analysis. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Hardware Device

In this work, a custom-designed data acquisition system was employed to collect the
arterial pulse waveforms between the brachial artery and the digital artery [43]. Figure 1
illustrates the fabricated supports and their positioning on the subject during data collection.
The thumb-mounted holder (Figure 1, center) mimics a standard pulse oximeter design,
featuring an elastic spring for sensor adherence to the finger. On the top left side of Figure 1,
the sensor holder is seen to be positioned on the elbow, with mechanical fixtures that allow
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the operator to regulate arm pressure, making it steady during the data acquisition process
as recommended in [21,44,45]. Each enclosure was designed to guarantee that the sensor
maintains firm contact with the sample site, applying steady pressure and avoiding the
need for the operator to hold it in its position. This feature enhances the replicability of
the acquisition setup for any specific subject, thereby improving measurement consistency.
Further information on the developed hardware device is available in [43].

Figure 1. System employed to collect PPG raw data from the selected sites, elbow (brachial artery)
and thumb (digital artery).

2.2. Data Collection Protocol

A pre-clinical trial was carried out at the Tyndall National Institute in University
College Cork (UCC), Cork, Ireland, to study the blood pressure variations related to the
execution of cognitive and physical tasks. In this experiment, approved by the UCC Clinical
Research Ethics Committee of the Cork Teaching Hospitals, a cohort of 31 healthy volunteers
ranging from 21 to 34 years was recruited. Table 1 details the physiological parameters
of the people involved. In accordance with the guidelines established for accurate BP
measurement [46], every participant included in this study did not have any pre-existing
cardiovascular condition and was not undergoing treatment with medications that could
influence BP readings. Moreover, every individual was asked to refrain from smoking
or consuming coffee in the 60 min before the session. The first step in the data capture
consisted of the individual reclining in a supine position for 10 min to ensure that their
hemodynamic conditions and vasomotor tone returned to a baseline level. Subsequently,
the subject received instructions regarding the prescribed posture for data capture, which
included sitting with back support, both feet flat on the floor, and hands resting on the
table at a height equivalent to that of the heart.

Table 1. Overview of the characteristics of the study populations.

Characteristics µ ± σ Range

Number of Subjects 31 -
Male 20 (64%) -

Smokers 4 (13%) -
Age (years) 27.77 ± 3.70 21–34
Height (cm) 172.74 ± 9.27 158–92
Weight (kg) 69.52 ± 12.72 53–99

BMI (kg m−2) 23.22 ± 3.30 18.16–31.24
Abbreviations: BMI, body mass index, µ, mean value, σ, standard deviation.
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In accordance with the study protocol reported in Figure 2, after obtaining the anam-
nesis information, the operator identified the best location for the brachial artery through
tactile arterial palpation. Once located, the spot was marked with ink to be sure that the
acquisition site did not change over the duration of the data capture. Each data collection
session was divided into three principal sections, denoted as follows: the resting phase
(REST), the phase dedicated to cognitive testing (CT), and the after-exercise phase (AE).
During each phase, a series of three data acquisitions, each one lasting one minute, was
performed using the presented device. Then, the commercial cuff-based device BPM Con-
nect [47] (Withings, Issy-les-Moulineaux, France) was used as a gold standard to measure
the reference BP values for each specific section. In total, a set of three reference mea-
surements was collected throughout the entire data collection. To prevent any potential
recovery effects between measurements using both devices, we conducted the reference
assessment immediately after completing the three acquisitions. Each phase was designed
to induce changes in both blood pressure and PPG data collected from each participant.
The resulting alterations in the PPG pulse waveforms are illustrated in the bottom section
of Figure 2.

Figure 2. Data collection protocol followed in this study along with the evolution of the averaged
pulse waveforms morphology according to each section of the data capture.

In the CT section, the subject was cognitively stimulated through two cognitive tests:
the Stroop test [48] and the n-back test [49,50]. Both tests were executed through a custom-
designed graphical user interface (GUI) structured to make a gradual augmentation in the
level of complexity. Prior to commencing the actual measurement, the operator provided
the participant with detailed instructions regarding the tests to be undertaken. Additionally,
the participants had the opportunity to familiarize themselves with the GUI through the
execution of a short demonstration. Then, the device was positioned on the subject. The
last three minutes of this section were recorded during the execution of the n-back test and
later subdivided into the three acquisitions related to the CT part. Hence, the reference
BP measurement was taken again with the Withings device. Finally, the AE section of the
data capture was performed. During this stage, each subject was engaged in a 10-minute
walking session on a calibrated treadmill. The treadmill’s configuration was kept uniform
across all data collection sessions. The speed was configured at 8 km/h, and the inclination
was adjusted to its maximum level to induce BP variation even in trained subjects. Then,
the last three acquisitions with the proposed device were carried out along with the last
reference BP measurement.

2.3. Data Processing

The data processing pipeline designed for this application can be divided into three
major sections: pre-processing, pulse wave quality assessment (PWQA), and lastly, the
identification of specific fiducial points employed to derive the features for data analysis.
Thumb and elbow PPG measurements were processed following the same procedure within
the MATLAB (Natick, MA, USA) environment. Each acquisition was band-pass filtered
between 0.3 Hz and 15 Hz [51], to remove the DC offset and the high-frequency noise.
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Time series segmentation and labeling remain challenging areas of study, with researchers
exploring various methods to improve accuracy and efficiency [52,53].

This study addressed this challenge by segmenting our collected data into 3-second,
consecutive, non-overlapping windows. This initial segmentation was used to identify and
remove portions of the signal possibly corrupted by the presence of motion artifacts [54].
Subsequently, every single pulse wave within the acquisition was identified through the
localization of the pulse onset, known in the literature as the beginning of the systolic phase
within the cardiac cycle. The template matching approach was selected to perform the
PWQA [55]. As the first step, a reference template was computed from all the available
epochs. Then, Pearson’s correlation coefficient was used as the signal quality index (SQI)
between the ith pulse and the template. All the pulses showing an indicator below the
defined acceptance threshold (i.e., 0.95, 0.95, 0.9, respectively, for REST, CT, and AE) were
marked as unacceptable and discarded. Feature measurements were obtained from the
PPG pulse wave through the identification of key reference points on the pulse wave and
its derivatives, which were then used to compute a variety of characteristics. The identified
fiducial points included the systolic peak (sys), dicrotic notch (dic), and diastolic peak (dia)
on the pulse wave, as well as the point of maximum upslope on the first derivative (ms).
Additionally, the a, b, c, d, e, and f waves on the second derivative were detected [56–59].
These reference points are visually represented in Figure 3 for the baseline radial artery PPG
pulse wave. Detailed criteria for identifying these fiducial points and features extracted are
provided in Tables 2 and 3, respectively.

Figure 3. (a) Feature extracted from a PPG waveform. (b) Maximum of the first derivative (ms)
detected on the velocity plethysmography (VPG). (c) Fiducial points detected on the acceleration
plethysmography (APG).

Table 2. Criteria for identifying fiducial points on PPG pulse waves.

Signal Fiducial Point Description

PPG, s
Sys Maximum of the pulse waveform
Dic First local minimum after the systolic peak or coincident with e
Dia First local maximum after dic and before 0.8 T (where T is the duration of the cardiac cycle)

VPG, s′ ms Maximum of the first derivative, s′

APG, s′′

a The maximum of s′′ preceding the maximum of the first derivative ms
b First local minimum following a
c The greatest maximum of s′′ between b and e (or, if no maxima, then the first maximum on x′ after e
d The lowest minimum on s′′ after c and before e (or, if no minima, then coincident with c).

e The second maximum of s′′ after ms and before 0.6 T (unless the c wave is an inflection point, in
which case take the first maximum).

f The first local minimum of s′′ after e and before 0.8 T.

Abbreviations: PPG, photoplethysmogram; VPG velocity plethysmography; APG, acceleration plethysmogram;
s, original pulse; s’, first derivative of the original pulse; s”, second derivative of the original pulse.
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Table 3. Definition of the extracted features from PPG pulse wave and its derivatives.

Signal Type Feature Definition Formula

PPG, s

Time

∆T Time delay between systolic and diastolic peaks tdia − tsys
SI Stiffness index, h is the subject’s height h/(tdia − tsys)

CT Crest time: time occurring between pulse onset e of sys-
tolic peak tsys − t0

w Pulse width at 50% of systolic peak amplitude, Asys -
IPR Instantaneous pulse rate 60/T
T Period of the cardiac cycle -
tdia Duration of the diastole T − tdic
tdic Time to dicrotic notch tdic − t0

Amplitude

A0 Amplitude of pulse onset s(t0)
Asys Amplitude of the systolic peak s(tsys)
Adic Amplitude of the dicrotic notch s(tdic)
Adia Amplitude of the diastolic peak s(tdia)
RI Reflection index (s(tdia)− s(t0))/(s(tsys)− s(t0))
K Pulse waveform characteristic value (sµ − A0)/(Asys − A0)
K1 Systolic characteristic value (sµ,sys − A0)/(Asys − A0)
K2 Diastolic characteristic value (sµ,dia − A0)/(Asys − A0)
sµ,sys Mean value of the systolic phase of the pulse waveform -
sµ,dia Mean value of the diastolic phase of the pulse waveform -
sµ Mean value of pulse waveform -
sσ Standard deviation of pulse waveform -
sskewness Skewness of pulse waveform -
skurtosis Kurtosis of pulse waveform -

Area

A1
Area under the curve between the pulse onset (t0) and
the dicrotic notch (tdia) -

A2
Area under the curve between the dicrotic notch (tdia) and
the end of the pulse (tend) -

IPA Inflection point area A2/A1

VPG, s′
Time tms

Time to the maximum slope computed on the first deriva-
tive of the pulse tms − t0

Amplitude Ams Amplitude of the maximum slope s′(tms)

APG, s′′

Time tbd Time elapsing between b and d td − tb
tbc Time elapsing between b and c td − tc

Amplitude

b/a Amplitude ratio of early systolic negative wave over early
systolic positive wave s′′(tb)/s′′(ta)

c/a Amplitude ratio of late systolic re-increasing wave over
early systolic positive wave s′′(tc)/s′′(ta)

d/a Amplitude ratio of late systolic decreasing wave over
early systolic positive wave s′′(td)/s′′(ta)

e/a Amplitude ratio of early diastolic positive wave over early
systolic positive wave s′′(te)/s′′(ta)

AGI Aging index (s′′(tb)− s′′(tc)− s′′(td)−
s′′(te))/s′′(ta)

Combined
IPAD Inflection point area combined with d-peak A2/A1 + s′′(td)/s′′(ta)

k Elasticity constant s′′(tsys)

((s(tsys)−s(tms))/(s(tsys)−s(t0)))

2.4. Model Training

This study examined the efficacy of personalized against generalized training strate-
gies to identify significant alterations in blood pressure levels. As delineated in section II-B,
the data collection protocol was meticulously structured to induce BP variations through
the execution of both physical and cognitive tasks. This setup enabled a thorough inves-
tigation of BP fluctuations in individuals subjected to diverse stimuli. In this context, a
macroscopic variation in BP was defined as the difference between the reference values
measured throughout the data collection procedure, regardless of the magnitude. Conse-
quently, the phases of the data capture process (e.g., REST, CT, AE) were used as target
labels for the analysis, as they inherently reflected BP changes.

Our investigation compared the outcomes derived from applying ten different person-
specific models (PSM) against those obtained by a person-independent model (PIM) when
applied to the identical dataset, utilizing an RF classifier. Although features were extracted
from signals at both sites, only those from the thumb were utilized. Pulse waves collected
from the elbow were used to calculate the PTT, which was then used as a feature. Figure 4



Sensors 2024, 24, 3697 7 of 22

(left branch) shows the workflow for our generalized approach. To optimize the model’s
performance, we used a Leave-One-Subject-Out strategy across all users in the dataset. The
optimization process involved the following parameters: the number of trees in each forest,
which ranged from 50 to 100; the maximum depth of each tree in the forest, which ranged
from 10 to 50; and the number of features used in the training process, which ranged from
3 to 25. The feature selection process was applied only at the training stages by ranking the
first n features according to the mutual information between each feature and the target
label. The right branch, highlighted in red, summarizes the ten personalized strategies.

Figure 4. Overview of the tested training strategies. (Left) Workflow employed for the generalized
approach (PIM). (Center) Tested combinations for person-specific strategies (PSMs). (Right) Workflow
adopted by every PSMi,j.

The tested PSMs differed in the quantity of data used during the training phase and
the fraction of the target subject data employed to personalize the model. Starting from
PSMSD, in which we used 50% of the data from the kth subject for training, data from
randomly selected individuals were gradually added to the training set. Specifically, the
number of source subjects varied across 5, 10, and 15 individuals. Different fractions of the
target subject data were also tested to customize the model. This feature was progressively
expanded, beginning from an initial value of 15%, and subsequently increased to 30%
and 50%. Each combination of these parameters, when applied to the RF, was labeled as
PSMi,j where i identifies the number of source individuals, i ∈ 5, 10, 15, and j refers to the
percentage of data belonging to the kth target subject j ∈ 15%, 30%, 50%. The right side
of Figure 4 details the workflow followed by each PSMi,j before applying the RF model.
The initial step involved randomly selecting a portion of data samples from each class. To
avoid class imbalance, we made sure that each class was equally represented by selecting
15%, 30%, or 50% of pulse waveforms from each class. Following this, pulse waveforms
from different source subjects (5, 10, or 15) were included.

Then, unlike the generalized approach, the PSM method incorporated a 10-fold cross-
validation to fine-tune the model’s hyperparameters and identify the most informative
subset of features. Finally, all the mentioned solutions applied the RF model to predict
the actual class of the input pulses. The output from each subgroup was merged for
visualization purposes, although each PSM was tested individually.
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2.5. Evaluation Metrics

As described in the previous subsection, the ten presented models were trained and
tested for each subject in the dataset. Therefore, metrics such as accuracy, precision, recall,
and F1-score were computed to evaluate the fluctuations in classification performance from
subject to subject. Finally, an average of all indexes was computed along with its standard
deviation to summarize the performance of each model. In a multiclass classification
problem with three classes (REST, CT, and AE), the definitions are as follows:

• True positives (TP): correctly predicted instances of a class.
• False positives (FP): instances incorrectly predicted as a certain class.
• False negatives (FN): instances of a class that are incorrectly predicted as another class.
• True negatives (TN): all instances that are correctly not classified as the class un-

der evaluation.

Figure 5 clarifies how TP, FP, FN, and TN are identified respectively for each class.

Figure 5. Definition of true positives (TP), false positives (FP), false negatives (FN), and true negatives
(TN) instances in a multiclass problem. (a) REST class. (b) Cognitive task (CT) class. (c) After-exercise
(AE) class.

The accuracy score, computed as the ratio of correctly predicted instances over of
the total number of instances, was used to quantify the correctness of the predicted labels
compared to the actual labels Equation (1).

Accuracy =
∑ True Positives for All Classes

Total Instances
(1)

Given these definitions, the evaluation metrics such as precision and recall scores were
computed individually for each of the three classes referring to different sections of the
data capture (α ∈ REST, CT, AE) as specified in Equations (2) and (3).

Precisionα =
TPα

TPα + FPα
(2)

Recallα =
TPα

TPα + FNα
(3)

where FPα and FNα are the overall numbers of false positives and false negatives referred
to the target class α ∈ REST, CT, and AE under evaluation.

Then, for every tested subject subi, the macro-averaged value of precision and recall,
Equations (4) and (5), was calculated according to the following:

Precisionsubi
=

1
N

N

∑
α=1

Precisionα (4)
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Recallsubi
=

1
N

N

∑
α=1

Recallα (5)

where N is the number of classes occurring in this study.
Finally, the the macro-averaged F1-score was computed as reported in Equation (6):

F1subi
=

1
N

N

∑
α=1

2 × Precisionα × Recallα
Precisionα + Recallα

(6)

3. Results
3.1. Data Processing

Table 4 shows the results of the three processing stages described divided per section
of the data capture (REST, CT, AE), for a single site.

Table 4. Data processing results.

Data Capture Phase Segmented Pulses PWQA Fiducial Points Validation

REST 6348 6074 5935
CT 6213 5849 5630
AE 6713 6620 6321

Total Pulses 19,724 18,543 (96.8%) 17,886 (92.8%)
Abbreviations: REST, measurements at rest; CT, cognitive task section; AE, measurements after physical tasks;
PWQA, pulse wave quality assessment

After eliminating epochs corrupted by motion artifacts, the total number of segmented
waveforms amounted to 19,274, distributed as follows: 6348 for the resting phase (REST),
6213 during cognitive testing (CT), and 6713 after the physical exercise phase (AE). Data
collected from subject #26 were discarded due to corruption of the recording on both sites
during the CT section. The variance in the number of detected waves aligned with the
execution of the scheduled tasks during the data capture. Specifically, the approximately
400-wave difference between the REST section and the measurement following treadmill
walking could be attributed to the observed increases in heart rate (HR) and BP in the
measurements conducted with the reference device. Regarding the CT section, although
there was an increase in SBP and DBP values (Table 5), the heart rate remained essentially
constant compared with the resting value. This phenomenon was reflected in the number
of waves detected (6213, CT vs. 6348, REST).

Table 5. Averaged reference blood pressure values.

Data Capture Phase SBP (mmHg) DBP (mmHg) HR (bpm)

REST 109 ± 11.6 67.8 ± 6.7 71.7 ± 8.3
CT 114.5 ± 3 71.2 ± 8.2 70 ± 8.7
AE 115.4 ± 12.2 72.9 ± 7.3 77.3 ± 11.9

REST, measurements at rest; CT, cognitive task section; AE, measurements after physical tasks; SBP, systolic blood
pressure; DBP, diastolic blood pressure; HR, heart rate

As a result of the PWQA, approximately 3.2% of the total pulses were excluded due to
their insufficient similarity to the reference template. Due to the low data quality found
in the CT section, data from subjects #17 and #29 were discarded from the dataset used
for data analysis. Finally, following the validation of the fiducial points, an additional 4%
of data points were discarded for a total of 17,886 pulse waves used in the analysis phase
collected from 28 out of 31 subjects.

3.2. Model Evaluation

Table 6 compares the aggregated BP classification performance between ten different
PSMs with the results achieved using a generalized approach. The results were expressed
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in terms of mean value and related standard deviation using the scoring criteria (accuracy,
precision, recall, and F1-score) mentioned in Section 2.5. The evaluation metrics computed for
each subject according to the training strategy are reported in Tables A1–A8 in Appendix A.
The person-independent model, denoted as PIM, was trained across the complete dataset
employing a Leave-One-Subject-Out cross-validation. Subsequently, performance evaluation
was conducted by aggregating the outcomes obtained for each individual. No personalization
was applied in this case. The low scores retrieved for each metric (0.36, 0.36, 0.31, and 0.37)
suggest the requirement for personalization to model the PPG-BP relationship effectively.

Table 6. Macro-averaged evaluation metrics computed for each model.

MLA Training
Strategy

Training Set Test Set

Accuracy * Precision * Recall * F1-Score * Accuracy * Precision * Recall * F1-Score *

RF

PIM 0.99 0.99 0.99 0.99 0.360 ± 0.200 0.360 ± 0.180 0.310 ± 0.180 0.370 ± 0.180
PSMSD 1 1 1 1 0.925 ± 0.117 0.912 ± 0.165 0.926 ± 0.113 0.912 ± 0.147

PSM5,50% 1 1 1 1 0.964 ± 0.041 0.964 ± 0.040 0.963 ± 0.038 0.962 ± 0.042
PSM10,50% 1 1 1 1 0.957 ± 0.030 0.958 ± 0.028 0.955 ± 0.030 0.956 ± 0.028
PSM15,50% 1 1 1 1 0.945 ± 0.028 0.947 ± 0.028 0.945 ± 0.026 0.944 ± 0.027
PSM5,30% 1 1 1 1 0.951 ± 0.039 0.952 ± 0.037 0.950 ± 0.038 0.950 ± 0.037
PSM10,30% 1 1 1 1 0.926 ± 0.051 0.930 ± 0.044 0.922 ± 0.052 0.923 ± 0.051
PSM15,30% 1 1 1 1 0.916 ± 0.045 0.918 ± 0.043 0.914 ± 0.045 0.914 ± 0.045
PSM5,15% 1 1 1 1 0.914 ± 0.043 0.916 ± 0.043 0.913 ± 0.042 0.913 ± 0.042
PSM10,15% 1 1 1 1 0.874 ± 0.069 0.885 ± 0.061 0.872 ± 0.072 0.871 ± 0.072
PSM15,15% 1 1 1 1 0.860 ± 0.083 0.867 ± 0.083 0.852 ± 0.091 0.853 ± 0.091

Abbreviations: MLA, machine learning algorithm; PIM, person independent model; PSMSD , person-specific
model with 50% of data from kth subject for training set, 25% as validation set, and 25% as test set; PSMi,j, person-
specific model where i identifies the number of source individuals, i ∈ 5, 10, 15, and j refers to the percentage of
data belonging to the kth target subject j ∈ 15%, 30%, 50%. Note: * macro-averaged values computed on the 28
subjects employed for the analysis.

Figure 6 displays the results gathered using the RF trained using 50% of the data of the
target subject under investigation (PSMSD). In this case, subjects #2, #14, #21, #25, and #28
displayed a marked decrease in classification performance, showcasing accuracy values
of 0.63, 0.67, 0.75, 0.78, and 0.67, alongside precision values of 0.43, 0.5, 0.8, 0.8, and 0.5.
Through a systematic assessment using the proposed training approaches, we examined
how an alteration in the number of subjects and the percentage of data used for model
customization impacted the classification performance. The evaluation metrics computed
for each personalized model (PSMi,j) are reported in Table 6, and the average accuracy
score is represented in Figure 7.

In the latter figure, two discernible trends can be identified. Specifically, the average
accuracy is directly correlated with the increase in the percentage of data utilized during
the pre-training phase and inversely correlated with an augmentation in the number
of subjects. The observed accuracy values of 96.4% , 95.7%, and 94.5% in the first set
(e.g., PSM5,50% PSM10,50% PSM15,50%) declined to 95.1%, 92.6%, and 91.6% in the second
set (e.g., PSM5,30%, PSM10,30%, PSM15,30%), and further decreased to 91.4%, 87.4%, and 86%
in the third set (e.g., PSM5,15%, PSM10,15%, PSM15,15%). We excluded combinations that
demonstrated overfitting across multiple subjects by discarding those with accuracy and
F1 values below 0.95. Therefore, PSM5,30%, PSM5,50%, and PSM10,50% were selected. Given
the comparable overall performances across subjects for these combinations, our choice
for the best combination was guided by a balance between performance metrics and the
minimized data requirement for model customization. This led us to favor PSM5,30%.
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Figure 6. Values of evaluation metrics (accuracy, precision, recall, and F1-score) according to the
training strategy denoted as PSMSD. A 90% threshold (indicated by the gray dashed line) is used to
identify subjects whose performance drops by more than 10% compared to the training phase.

Figure 7. Averaged values of accuracy score according to different combinations of number of source
subjects and diverse fractions of data employed to personalize the RF model.

4. Discussion

This study compared the performance of person-dependent and generalized models
adopted to track BP macro-variations associated with physical or cognitive workload using
a random forest classifier. This model was chosen due to its ability to handle the nonlinear
relationships that exist between the extracted features and the variation in BP [57]. In other
studies, RF outperformed other nonlinear models such as SVM adopting a nonlinear kernel
and neural networks [60]. Moreover, RF is less prone to overfitting compared to the other
two mentioned MLAs [29]. Generalized solutions often struggle with the high inter-subject
variability within the dataset, making it challenging to develop a universally applicable
model. The choice between personalized and universal models depends on the specific
context and objectives of the problem being addressed.

Personalized models, finely tuned to individual users’ characteristics, take into ac-
count factors like age, gender, medical history, and lifestyle to provide more accurate and
relevant predictions of BP. This tailored precision proves particularly crucial for individuals
affected by complex health conditions or unique risk factors. Despite these advantages,
the construction and maintenance of personalized models for each user pose challenges.
This process can be resource-intensive, especially in the field of large-scale applications
involving a significant number of subjects. Moreover, privacy and data protection concerns
come to the forefront, as the development of personalized models often necessitates access
to sensitive user data.

Generalized models, in contrast, are crafted to exhibit proficiency across a diverse
spectrum of users without the need for individual customization. This inherent versatility
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makes them more scalable and simpler to implement, eliminating the necessity for tailoring
to each user’s unique attributes. The cost-effectiveness and ease of maintenance associated
with generalized models make them particularly advantageous for applications boasting a
large user base. However, this broad approach comes with a trade-off since generalized
models may fail to capture the distinctive characteristics and preferences of individual
users. Consequently, the predictions generated by these models may result in a lack of
accuracy compared to their personalized counterparts.

This phenomenon, highlighted in [61], is also reflected in our findings where the aver-
aged metrics of the generalized approach (0.36, 0.36, 0.31, 0.37) underline the difficulties in
defining a univocal representative model for subjects with different physiological charac-
teristics. A hybrid approach combining personalized and universal models, as investigated
in this study, may be beneficial for blood pressure monitoring. A universal model could be
used as a baseline to provide initial predictions for all users, and personalized models could
be applied to increase the model’s performance where personalization is deemed critical,
such as users with complex health conditions or unique risk factors accommodating the
inherent diversity in BP patterns among different subjects.

In [62], the authors used a transfer learning technique that personalized specific
layers of a pre-trained network to improve the performance of PPG-based BP estimation,
highlighting the influence of the number of data samples and source subjects used for
training. Our analysis of the results shows that, on average, all the PSMs improved the
performance of the generalized model regardless of the number of source subjects employed
for training. Moreover, by observing the metrics displayed in Table 6, strategies including
data obtained from different individuals demonstrated better performance in comparison
to the model constructed exclusively using data from the tested subject (PSMSD) where, as
reported in Figure 6, the classification performance of eight subjects witnessed a substantial
decline. Subject #2 emerged as the most adversely affected, exhibiting a notable drop
of all metrics up to 0.63, 0.43, 0.67, and 0.52 for accuracy, precision, recall, and F1-score,
respectively. These fluctuations in classification performance are a direct consequence of
the phenomenon of overfitting whereby the model cannot correctly predict data that differ
from the small training set available. To mitigate this issue, we included data from 5, 10,
or 15 randomly selected subjects from the dataset in addition to diverse fractions of the
target subject’s data (15%, 30%, 50%). In this way, we were able to evaluate the behavior
of the model according to different sizes of the training set, degrees of personalization,
and combinations of hyperparameters. Table 6 revealed a distinct inverse correlation
between the classification metrics and the increase in the number of individuals. This
diminishing pattern suggests the potential implications linked to the higher variability
introduced by additional source subjects with respect to the initial quantity of data used to
pre-train the model. Hence, this phenomenon may reduce random forest customization
and consecutively lead to poorer classification performance for the target subject under
evaluation. In fact, as depicted in Figure 7, PSM5,15%, PSM10,15%, and PSM15,15% showed a
more pronounced decrease in accuracy value as the number of subjects increased compared
to the cases with 30% and 50% of the target subject’s data.

This phenomenon is further visible in Figures 8 and 9. Notably, when utilizing only
30% of the data for the pre-training stage, this adverse trend was further accentuated
by a more pronounced variability (Figure 8b,c) compared to the scenario with 50% of
the data (Figure 9b,c), where the standard deviation was progressively reduced. In the
definition of the best solution within the context of our application, we opted to discard
any tested combinations exhibiting aggregated accuracy and F1 values below 0.95. This
approach ensured that combinations displaying overfitting across multiple subjects were
not considered. As result, our selected PSMs were confined to PSM5,30% , PSM5,50%, and
PSM10,50%. Upon analyzing the performance of various combinations across subjects
within the dataset, it is evident that their overall performance values were generally
comparable. However, an exception arose with subject #21, Figures 8a and 9a,b, which
exhibited a drop in performance exceeding 10% compared to the training phase in all three
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combinations, although slightly less evident in PSM10,50%. This trend was attributed to
subject #21 having the lowest number of pulses in the dataset, resulting in a diminished
dataset for personalization compared to other subjects. Notably, the combination PSM15,50%
demonstrated a substantial improvement, utilizing more data for personalization along
with an increased number of individuals. Hence, due to the similarity observed among the
performance metrics, the selection of the best combination was guided by the consideration
of the data required for model customization, leading us to favor PSM5,30%. Employing
30% of the total available data, equivalent to approximately 162 s for the personalization
phase, represents a noteworthy outcome. This achievement is particularly significant as it
reflects a substantial reduction in the time required for this task compared to the approach
outlined in [62], where 250 s of data recording per subject was used for the pre-training
stage. Therefore, combining a subset of source subjects, in conjunction with an adequate
fraction of data for pre-training leads to increased robustness and generalizability of
personalized models across a broader spectrum of cases in BP assessment when compared
to standard generalized models. Despite the mentioned improvements, some limitations of
the proposed study need to be discussed. In this study, the performance of the proposed
approach was evaluated on a limited sample of 28 subjects, falling short of the 85 subjects
required by the AAMI [29]. To enhance model validation and generalization for accurate
BP monitoring, it is crucial to include a diverse range of values that truly represent the
population, including both males and females across different age ranges. In our future
endeavors, we intend to extend the validation process to encompass a larger and more
diverse cohort of individuals, aligning with the standards set by AAMI. Typically, to assess
blood pressure variations, multiple sets of data collection over several days are conducted to
ensure the algorithm’s consistent performance over time for the same individual. However,
it is crucial to note that our data collection protocol was designed to induce short-term
variations in BP linked to diverse stimuli rather than long-term monitoring. Moreover,
increased proficiency in the cognitive tests section would likely result in reduced BP
variation due to heightened familiarity with the tasks.

Figure 8. Evaluation metrics computed for each individual employing a fraction of the target subject
data set equal to 30% and a diverse number of source subjects (N). A 90% threshold (indicated by the
gray dashed line) is used to identify subjects whose performance drops by more than 10% compared
to the training phase. (a) N = 5. (b) N = 10. (c) N = 15.

Figure 9. Evaluation metrics computed for each individual employing a fraction the target subject
data set equal to 50% and a diverse number of source subjects (N). A 90% threshold (indicated by the
gray dashed line) is used to identify subjects whose performance drops by more than 10% compared
to the training phase. (a) N = 5. (b) N = 10. (c) N = 15.
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5. Conclusions

Cuffless blood pressure measurement has gained attention due to clinical demand
and recent technological advances in the fields of data acquisition systems, embedded
systems, and machine learning techniques. This paper presented a personalized multiclass
classification model aimed at the detection of blood pressure variations associated with
physical or cognitive workload. Several training strategies were implemented, each dif-
fering in the percentages of the dataset and utilizing a diverse subset of individuals as the
training set. Experimental results demonstrated that the inclusion of a pre-training stage
with data from diverse subjects enabled the discernment of morphological distinctions in
beat-to-beat PPG waveforms under various stressors with respect to a generalized model
fitted on the whole dataset. Understanding the regulatory mechanisms influencing blood
pressure, combined with a reduction in the number of sensors employed to track this latter,
constitutes a further step toward unobtrusive cuffless BP monitoring, resulting in better
management of this parameter.
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Appendix A

Table A1. Test set results using the person-independent model (PIM).

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators

1 0.35 0.36 0.28 0.35 20 80
2 0.19 0.22 0.20 0.23 20 80
3 0.38 0.29 0.19 0.28 20 80
4 0.19 0.27 0.19 0.27 20 80
5 0.54 0.36 0.32 0.34 20 80
6 0.43 0.54 0.44 0.51 20 80
7 0.74 0.74 0.74 0.75 20 80
8 0.36 0.40 0.35 0.39 20 80
9 0.35 0.40 0.36 0.42 20 80
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Table A1. Cont.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators

10 0.09 0.27 0.14 0.26 20 80
11 0.41 0.45 0.40 0.53 20 80
12 0.64 0.60 0.60 0.64 20 80
13 0.16 0.16 0.16 0.19 20 80
14 0.77 0.59 0.53 0.60 20 80
15 0.15 0.33 0.21 0.44 20 80
16 0.40 0.19 0.16 0.18 20 80
17 - - - - - -
18 0.30 0.30 0.29 0.30 20 80
19 0.09 0.20 0.12 0.20 20 80
20 0.38 0.45 0.38 0.43 20 80
21 0.36 0.27 0.20 0.29 20 80
22 0.18 0.10 0.11 0.10 20 80
23 0.09 0.20 0.13 0.21 20 80
24 0.46 0.54 0.49 0.56 20 80
25 0.56 0.63 0.52 0.63 20 80
26 - - - - - -
27 0.15 0.34 0.20 0.35 20 80
28 0.72 0.60 0.53 0.59 20 80
29 - - - - - -
30 0.25 0.30 0.20 0.35 20 80
31 0.13 0.24 0.14 0.23 20 80

Table A2. Test set results using person-specific model PSMSD.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators

1 1 1 1 1 50 60
2 0.43 0.67 0.52 0.63 10 60
3 1 1 1 1 10 60
4 1 1 1 1 10 60
5 0.95 0.94 0.94 0.95 10 90
6 0.85 0.85 0.86 0.86 50 100
7 0.99 0.99 0.99 0.99 10 60
8 0.98 0.98 0.98 0.98 10 60
9 1 1 1 1 10 60

10 0.98 0.98 0.98 0.98 10 60
11 0.95 0.97 0.96 0.96 10 60
12 0.99 0.98 0.98 0.99 10 90
13 1 1 1 1 20 70
14 0.5 0.67 0.56 0.68 10 60
15 1 1 1 1 10 60
16 1 1 1 1 10 60
17 - - - - - -
18 1 1 1 1 10 60
19 1 1 1 1 10 80
20 0.99 0.85 0.84 0.84 10 70
21 0.8 0.78 0.77 0.75 20 60
22 1 1 1 1 10 100
23 1 1 1 1 50 60
24 1 1 1 1 10 60
25 0.8 0.78 0.78 0.78 10 60
26 - - - - - -
27 1 1 1 1 10 60
28 0.50 0.67 0.55 0.67 10 90
29 - - - - - -
30 0.98 0.98 0.98 0.98 30 60
31 0.86 0.86 0.86 0.86 10 70
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Table A3. Test set results using person-specific model PSM5,30%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

1 0.97 0.97 0.97 0.97 40 80 2 10 12 13 31
2 0.97 0.97 0.97 0.97 20 70 3 4 7 20 23
3 0.96 0.96 0.96 0.96 20 70 12 21 23 24 30
4 0.97 0.96 0.97 0.97 50 100 5 9 12 15 25
5 0.89 0.89 0.89 0.89 30 70 15 18 20 25 31
6 0.90 0.90 0.90 0.90 20 70 7 8 20 24 28
7 0.94 0.94 0.94 0.94 50 80 3 7 12 13 31
8 0.97 0.97 0.97 0.97 20 70 3 7 12 13 31
9 0.97 0.97 0.97 0.98 50 70 2 12 13 18 19

10 0.95 0.95 0.95 0.94 40 90 4 13 20 21 24
11 0.97 0.96 0.97 0.97 20 90 7 8 14 15 18
12 0.96 0.94 0.95 0.95 10 70 3 4 14 16 22
13 0.92 0.91 0.91 0.93 50 80 3 5 8 12 30
14 0.99 0.99 0.99 0.99 30 90 4 11 12 24 30
15 0.98 0.97 0.97 0.97 20 70 5 11 21 24 31
16 0.97 0.97 0.97 0.97 30 80 1 12 20 25 31
17 - - - - - - -
18 0.96 0.95 0.96 0.96 50 100 11 20 23 27 30
19 1.00 1.00 1.00 1.00 20 100 2 3 14 24 30
20 0.94 0.94 0.94 0.94 30 100 1 5 8 30 31
21 0.82 0.81 0.82 0.81 20 100 3 4 5 19 25
22 0.97 0.97 0.97 0.97 30 80 12 15 27 28 30
23 0.95 0.95 0.95 0.95 30 70 2 10 14 19 21
24 0.99 0.99 0.99 0.99 20 90 13 19 27 30 31
25 0.93 0.93 0.93 0.93 30 90 18 27 28 30 31
26 - - - - - - -
27 1.00 1.00 1.00 1.00 50 70 8 9 16 25 28
28 0.95 0.94 0.94 0.94 30 70 2 6 20 24 31
29 - - - - - - -
30 0.92 0.93 0.93 0.93 50 70 1 8 11 28 31
31 0.94 0.94 0.94 0.94 30 70 3 19 20 22 30

Table A4. Test set results using person-specific model PSM10,30%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

1 0.93 0.93 0.93 0.93 20 100 2 7 8 12 13 14 15 20 22 31
2 0.88 0.88 0.88 0.88 40 90 1 3 7 15 18 21 22 23 28 31
3 0.97 0.97 0.97 0.97 40 90 2 8 9 11 12 13 16 20 25 27
4 0.97 0.96 0.97 0.97 30 80 1 2 10 15 16 21 22 23 27 31
5 0.90 0.90 0.90 0.91 40 100 2 4 6 9 21 22 23 27 28 30
6 0.86 0.85 0.85 0.85 50 80 4 5 7 9 13 19 21 22 27 31
7 0.96 0.96 0.96 0.96 30 100 3 4 5 8 10 14 15 20 22 31
8 0.97 0.97 0.97 0.97 40 90 4 5 6 9 12 13 14 16 23 27
9 0.97 0.97 0.97 0.97 50 100 1 3 4 14 15 18 21 23 24 25

10 0.93 0.93 0.93 0.93 20 100 6 9 12 14 15 16 22 25 28 30
11 0.87 0.85 0.86 0.88 30 100 3 10 12 18 21 23 24 27 28 30
12 0.89 0.86 0.86 0.89 50 100 1 4 6 7 11 18 19 21 23 31
13 0.95 0.92 0.93 0.93 20 90 2 3 6 10 11 14 15 18 20 28
14 0.97 0.97 0.97 0.97 30 80 4 7 9 11 12 16 19 20 23 25
15 0.99 0.99 0.99 0.99 30 100 1 2 4 11 13 20 24 25 27 31
16 0.92 0.92 0.92 0.92 50 100 6 10 12 13 15 19 25 27 28 30
17 - - - - - - -
18 0.93 0.93 0.93 0.94 50 70 1 5 6 10 14 20 21 27 28 30
19 0.98 0.98 0.98 0.98 50 70 6 9 10 14 20 22 23 25 27 28
20 0.94 0.94 0.94 0.94 50 90 1 2 6 7 8 11 19 21 27 31
21 0.82 0.77 0.78 0.76 30 90 2 5 6 10 14 16 22 24 25 31
22 0.88 0.85 0.85 0.86 40 80 4 5 6 7 10 12 18 24 25 30
23 0.95 0.95 0.95 0.95 40 70 8 9 16 19 20 21 24 25 28 31
24 0.99 0.99 0.99 0.99 30 100 1 4 6 8 10 11 14 22 27 30
25 0.92 0.92 0.91 0.92 50 100 1 3 4 12 15 19 21 22 28 31
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Table A4. Cont.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

26 - - - - - - -
27 0.94 0.94 0.94 0.94 40 90 6 7 9 14 16 18 24 28 30 31
28 0.97 0.97 0.97 0.97 40 100 1 4 8 13 14 18 19 23 24 25
29 - - - - - - -
30 0.91 0.88 0.89 0.91 30 90 1 4 6 10 13 18 22 25 27 28
31 0.90 0.90 0.90 0.90 50 80 2 5 10 15 16 19 20 23 24 30

Table A5. Test set results using person-specific model PSM15,30%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

1 0.98 0.98 0.98 0.98 40 90 3 6 9 12 14 18 19 20 22 23 24 27 28 30 31
2 0.91 0.89 0.90 0.89 50 100 1 4 5 7 8 12 13 16 18 19 21 22 27 28 30
3 0.99 0.99 0.99 0.99 40 100 1 2 4 5 6 8 11 13 15 19 22 23 24 27 30
4 0.94 0.92 0.92 0.93 20 100 1 3 5 8 9 11 12 14 15 16 18 20 21 22 27
5 0.89 0.89 0.88 0.89 40 100 3 4 7 11 12 13 15 18 19 20 21 22 24 30 31
6 0.87 0.87 0.87 0.86 40 90 3 5 9 10 15 16 18 19 20 22 23 25 27 28 30
7 0.97 0.96 0.97 0.97 20 70 3 4 5 6 8 11 12 13 16 19 22 23 25 27 31
8 0.95 0.95 0.95 0.95 50 80 1 2 5 6 10 14 15 16 18 19 23 25 27 28 30
9 0.90 0.90 0.90 0.90 30 100 2 6 7 10 11 12 15 16 18 21 22 23 24 28 30
10 0.95 0.95 0.95 0.95 20 100 2 4 6 8 9 15 18 19 22 23 24 27 28 30 31
11 0.92 0.90 0.91 0.92 20 90 2 4 5 6 7 8 12 13 15 16 21 22 27 30 31
12 0.91 0.90 0.90 0.92 40 70 2 3 7 9 10 13 15 18 19 20 21 25 27 30 31
13 0.84 0.86 0.85 0.86 20 70 4 5 6 9 12 14 15 16 20 22 23 24 25 28 31
14 0.96 0.96 0.96 0.96 50 100 1 2 6 8 9 13 16 19 20 21 22 23 24 25 30
15 0.94 0.92 0.93 0.92 20 90 1 2 4 5 8 11 12 13 14 16 19 22 23 28 30
16 0.96 0.95 0.95 0.95 40 90 1 2 3 4 7 8 10 11 12 18 19 20 23 24 25
17 - - - - - - -
18 0.96 0.96 0.96 0.96 40 100 3 6 10 12 13 14 15 16 19 20 21 24 25 27 30
19 0.95 0.94 0.94 0.94 30 90 1 3 5 6 7 11 12 14 18 21 23 24 25 30 31
20 0.92 0.92 0.92 0.92 30 70 1 2 3 5 6 7 9 11 13 14 22 25 27 28 31
21 0.83 0.79 0.80 0.79 50 90 1 2 4 5 6 7 8 9 14 15 20 23 27 28 31
22 0.89 0.89 0.89 0.89 20 80 1 2 5 6 8 10 13 15 16 18 20 24 25 27 31
23 0.90 0.90 0.90 0.90 50 80 4 5 8 10 11 12 14 15 19 21 22 24 25 28 30
24 0.89 0.89 0.88 0.88 30 80 4 5 6 7 9 10 13 18 20 21 23 25 27 28 31
25 0.91 0.91 0.91 0.91 30 90 2 3 4 5 8 9 12 13 16 20 22 24 27 28 31
26 - - - - - - -
27 0.96 0.95 0.95 0.95 20 100 2 3 4 5 7 9 18 19 20 21 22 23 28 30 31
28 0.95 0.95 0.95 0.95 30 80 2 4 5 8 10 11 12 13 14 16 18 19 22 23 25
29 - - - - - - -
30 0.85 0.86 0.85 0.86 50 90 1 2 4 5 7 9 11 13 16 18 19 22 23 27 31
31 0.87 0.85 0.85 0.86 20 90 1 2 4 6 7 8 12 13 16 18 20 23 27 28 30

Table A6. Test set results using person-specific model PSM5,50%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

1 0.98 0.98 0.98 0.98 30 80 10 14 16 27 31
2 0.98 0.98 0.98 0.98 20 60 8 9 22 24 25
3 0.98 0.98 0.98 0.98 20 100 9 10 16 21 25
4 0.98 0.98 0.98 0.98 40 100 13 20 22 30 31
5 0.94 0.94 0.94 0.95 40 80 7 15 22 28 31
6 0.92 0.92 0.92 0.92 50 80 7 8 15 21 22
7 0.96 0.96 0.96 0.96 20 100 1 15 19 28 30
8 0.98 0.98 0.98 0.98 50 70 4 12 20 23 27
9 1 1 1 1 20 90 5 6 8 24 25

10 0.97 0.97 0.97 0.97 20 80 8 9 11 19 23
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Table A6. Cont.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

11 0.98 0.97 0.97 0.98 20 100 2 10 15 19 23
12 0.97 0.95 0.96 0.96 20 60 2 4 15 16 25
13 0.97 0.96 0.96 0.96 30 80 6 10 11 21 27
14 1 1 1 1 40 90 3 7 20 21 27
15 0.98 0.98 0.98 0.98 20 100 6 10 12 16 27
16 0.99 0.99 0.99 0.99 30 70 4 5 9 10 13
17 - - - - - - -
18 0.97 0.98 0.97 0.97 30 90 10 11 14 20 31
19 0.98 0.98 0.98 0.98 20 100 5 6 8 10 13
20 0.97 0.97 0.97 0.97 30 80 6 8 22 23 28
21 0.88 0.88 0.87 0.86 50 80 4 12 14 24 31
22 0.95 0.96 0.95 0.96 50 80 7 15 16 22 28
23 1 1 1 1 40 90 9 11 19 22 27
24 0.99 0.99 0.99 0.99 40 90 7 11 16 18 19
25 0.82 0.81 0.80 0.81 20 80 1 14 15 19 22
26 - - - - - - -
27 1 1 1 1 30 90 1 7 9 12 28
28 0.98 0.98 0.98 0.98 30 70 5 12 21 22 27
29 - - - - - - -
30 0.94 0.95 0.95 0.95 30 60 1 2 5 21 23
31 0.94 0.94 0.94 0.94 40 80 7 22 23 25 30

Table A7. Test set results using person-specific model PSM10,50%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

1 0.97 0.97 0.97 0.97 20 70 2 4 5 11 14 18 19 22 25 27
2 0.94 0.93 0.94 0.94 30 90 1 4 12 16 18 21 22 23 24 28
3 0.99 0.99 0.99 0.99 30 90 1 2 8 12 16 19 21 25 28 30
4 0.99 0.99 0.99 0.99 30 80 8 9 11 12 13 15 18 20 23 30
5 0.91 0.91 0.91 0.91 20 80 7 9 11 20 21 23 24 28 30 31
6 0.91 0.91 0.91 0.91 20 90 2 9 15 19 22 23 27 28 30 31
7 0.99 0.99 0.99 0.99 40 60 3 5 12 13 21 22 23 25 27 30
8 0.98 0.98 0.98 0.98 20 100 1 5 10 11 12 14 18 19 28 31
9 0.96 0.96 0.96 0.96 40 100 2 3 5 14 15 19 21 23 24 28

10 0.95 0.95 0.95 0.95 30 70 2 9 12 15 19 23 24 25 28 30
11 0.97 0.95 0.96 0.96 40 90 3 5 8 10 13 21 25 27 28 30
12 0.98 0.97 0.98 0.98 40 60 1 2 5 6 8 20 21 23 27 31
13 0.95 0.9 0.92 0.93 30 100 3 6 11 15 16 19 21 23 24 28
14 0.98 0.98 0.98 0.98 50 100 6 10 15 18 20 23 25 27 28 30
15 1 0.99 0.99 0.99 30 100 4 6 8 9 10 13 14 16 19 24
16 0.95 0.95 0.95 0.95 20 70 1 4 9 12 15 20 22 23 25 27
17 - - - - - - -
18 0.97 0.96 0.96 0.96 30 90 1 2 6 7 10 13 15 16 21 24
19 0.97 0.97 0.97 0.97 20 100 3 5 6 12 16 18 21 24 25 28
20 0.96 0.96 0.96 0.96 30 80 2 3 5 9 12 15 18 22 24 25
21 0.88 0.87 0.88 0.86 50 100 1 2 3 5 6 8 10 11 15 16
22 0.96 0.97 0.96 0.96 30 90 2 6 8 13 20 21 23 24 27 30
23 0.96 0.96 0.96 0.96 30 90 7 9 11 12 15 19 22 27 28 30
24 0.96 0.95 0.96 0.96 20 100 4 6 7 13 14 18 19 20 27 30
25 0.93 0.94 0.93 0.93 40 60 1 2 3 10 12 14 18 23 28 31
26 - - - - - - -
27 1 1 1 1 40 70 4 5 16 18 20 21 23 25 30 31
28 0.97 0.97 0.97 0.97 30 90 2 3 6 7 10 15 16 18 21 30
29 - - - - - - -
30 0.94 0.95 0.94 0.95 30 90 5 7 9 10 11 21 22 25 27 28
31 0.93 0.93 0.93 0.93 20 90 1 3 9 10 11 12 18 21 22 30
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Table A8. Test set results using person-specific model PSM15,50%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Number of Estimators Subjects for Training

1 0.94 0.94 0.94 0.94 50 90 2 3 5 6 9 10 13 15 16 19 22 23 25 27 31
2 0.95 0.94 0.94 0.94 20 100 3 4 5 9 12 13 14 15 16 18 19 20 21 25 30
3 0.97 0.97 0.97 0.97 20 100 1 2 5 9 10 11 12 15 19 21 22 23 24 25 30
4 0.97 0.96 0.96 0.96 50 80 2 3 7 8 10 12 14 16 18 21 22 23 27 28 30
5 0.92 0.92 0.92 0.92 20 90 1 3 10 12 13 14 15 16 18 19 20 24 25 27 28
6 0.9 0.91 0.9 0.9 30 100 1 3 5 7 8 9 11 12 13 16 20 22 25 27 28
7 0.97 0.97 0.97 0.97 20 80 1 2 4 9 10 13 14 16 21 22 23 24 28 30 31
8 0.97 0.97 0.97 0.97 50 80 2 5 7 10 13 14 18 19 21 22 23 25 27 28 31
9 0.97 0.97 0.97 0.97 50 90 2 5 6 7 8 13 14 15 16 19 20 21 23 30 31
10 0.95 0.96 0.95 0.95 20 100 2 3 8 13 14 15 18 21 22 23 24 25 27 28 30
11 0.97 0.96 0.96 0.97 20 80 2 3 7 9 10 12 13 14 15 16 20 22 24 27 28
12 0.96 0.95 0.96 0.96 30 90 3 5 6 8 10 11 18 19 20 22 23 25 27 30 31
13 0.88 0.91 0.89 0.9 30 90 1 2 8 9 10 11 14 15 19 20 21 22 23 25 30
14 0.96 0.96 0.96 0.96 50 90 1 4 6 9 10 11 12 15 16 18 20 23 24 28 31
15 0.98 0.98 0.98 0.98 20 60 1 2 7 9 12 13 14 20 21 22 23 24 25 27 28
16 0.93 0.92 0.92 0.92 40 80 4 5 8 9 10 12 18 20 21 22 25 28 27 30 31
17 - - - - - - -
18 0.98 0.97 0.97 0.98 30 90 1 3 6 12 13 14 15 16 19 21 22 23 27 28 31
19 0.96 0.96 0.96 0.96 40 100 1 3 4 5 8 10 11 12 13 18 20 21 22 25 27
20 0.94 0.94 0.93 0.93 50 100 2 5 7 8 9 11 12 14 16 18 22 23 25 27 28
21 0.91 0.9 0.9 0.88 20 100 2 4 5 9 10 13 14 16 18 19 20 23 24 27 28
22 0.96 0.96 0.96 0.96 40 100 4 6 7 8 11 13 14 15 19 20 21 23 27 28 30
23 0.97 0.97 0.97 0.97 20 100 1 2 8 9 11 12 14 19 20 21 22 24 27 28 30
24 0.95 0.95 0.95 0.95 40 90 2 3 4 6 8 11 14 16 18 20 21 23 28 30 31
25 0.9 0.9 0.9 0.9 30 80 1 2 3 5 6 7 9 14 16 18 19 21 24 27 28
26 - - - - - - -
27 1 1 1 1 20 90 2 4 8 13 14 15 16 18 19 20 21 23 24 28 30
28 0.96 0.96 0.96 0.96 20 80 2 5 7 8 9 11 12 14 16 18 19 23 24 28 30
29 - - - - - - -
30 0.93 0.94 0.93 0.93 30 90 2 5 8 9 10 11 12 14 16 20 21 22 25 28 31
31 0.91 0.91 0.91 0.91 30 90 1 2 3 6 10 11 12 13 14 15 21 22 25 28 30
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