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ABSTRACT: The sunlight-driven reduction of CO2 into fuels and platform chemicals
is a promising approach to enable a circular economy. However, established
optimization approaches are poorly suited to multivariable multimetric photocatalytic
systems because they aim to optimize one performance metric while sacrificing the
others and thereby limit overall system performance. Herein, we address this
multimetric challenge by defining a metric for holistic system performance that takes
multiple figures of merit into account, and employ a machine learning algorithm to
efficiently guide our experiments through the large parameter matrix to make holistic
optimization accessible for human experimentalists. As a test platform, we employ a
five-component system that self-assembles into photocatalytic micelles for CO2-to-CO
reduction, which we experimentally optimized to simultaneously improve yield, quantum yield, turnover number, and frequency
while maintaining high selectivity. Leveraging the data set with machine learning algorithms allows quantification of each parameter’s
effect on overall system performance. The buffer concentration is unexpectedly revealed as the dominating parameter for optimal
photocatalytic activity, and is nearly four times more important than the catalyst concentration. The expanded use and
standardization of this methodology to define and optimize holistic performance will accelerate progress in different areas of catalysis
by providing unprecedented insights into performance bottlenecks, enhancing comparability, and taking results beyond comparison
of subjective figures of merit.

■ INTRODUCTION
Catalysis relies on a complex interplay of interdependent
variables that must be optimized to meet a set of performance
metrics. The challenge is exemplified by multicomponent
photocatalytic systems where the parameter space is
increasingly difficult to navigate due to the increasing number
of variables required to provide supramolecular control (e.g.,
concentrations of reagents, additives, experimental variables).
The optimization target is also unclear as there is limited
standardization and a multitude of metrics to optimize (e.g.,
yield, quantum yield, selectivity, turnover number and
frequency).1,2 Crucially, established and intuitive heuristic/
human optimization approaches can only maximize 1 or 2
performance metrics simultaneously. This situation has led to
selective optimizations where some metrics are prioritized in
ways that have limited meaning to overall system performance
because they use conditions that sacrifice other metrics; such
as using a very low catalyst loading to reach a high turnover
frequency (TOF) but having negligible product yield.1 The
fundamental problem is that optimization to improve all
figures of merit (holistic optimization) is not feasible with
established protocols. The parameter space is too large to
evaluate, the interactions of variables that affect multiple
metrics are too complex, and no holistic figure of merit has

been defined.1,2 New strategies are required to navigate the
large parameter space and extract deeper understanding into
how multiple variables interact and affect each metric to
control overall system performance.3−5

Holistic optimization first requires all figures of merit to be
connected via a mathematical description (an objective
function) that evaluates to a single scalar value representing
overall system performance. Iteratively varying parameters
changes the value of each figure of merit, and thereby enables
the objective function to quantify the change in overall
performance. However, a complex system has too many
combinatorial possibilities to test them all manually; for
example, testing 10 concentrations of just 5 components gives
105 possibilities. Finding the maximum in such a large
parameter matrix could be addressed with “brute force” high-
throughput approaches to rapidly screen all possibilities until a
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positive result is found.6−9 Alternatively, a learning algorithm
can use Bayesian optimization to decipher how each variable
affects overall system performance and vastly reduce the
number of experiments required to maximize the objective
function.3,4,10−12 Because learning algorithms change multiple
parameters simultaneously and capture the relationships
between variables,3,4,10−12 they can reduce the number of
experiments required to optimize a complex system into range
for human experimentalists. Thereby, use of learning
algorithms enables all laboratories to holistically optimize
their systems without expensive robotic systems. When robotic
systems become more commonplace in the future, they will be
guided by learning algorithms to further enhance the rate of
scientific discovery.5,13

Supramolecular assembly is a frontier in molecular photo-
catalysis and biomimicry as it can accelerate charge transfer
processes and eliminate diffusion limitations by providing
optimal environments for reactions, in particular photocatalytic
CO2 reduction.14,15 While judicial design of molecular
components can enable self-assembly such as through
amphiphilicity as used herein,7,16,14,15 the dependence of
assembly on the components and environment results in a
wide parameter space to explore and provides ideal systems to
demonstrate holistic optimization of complex systems.

Herein we employ Bayesian optimization to steer an
experimental campaign toward the simultaneous improvement
of all key metrics for a five-component self-assembled
photocatalytic molecular CO2 reduction system. This system
was selected because the interdependent variables that control
supramolecular structure make it challenging to optimize and
representative of complex photocatalytic systems. Defining an
objective function allowed simultaneous improvement of
performance metrics, namely catalyst turnover number,
turnover frequency, quantum yield and moles of product,
without loss of selectivity. Concurrently, the use of Bayesian
optimization reduced the number of experiments required to
optimize the system from a theoretical 105 down to ∼100 and
made the work accessible for a human experimentalist with
standard laboratory equipment. Acquiring a systematic data set
that maps the parameter space then enabled the application of
machine learning algorithms to extract relationships between
the dependent and the independent variables. Furthermore,
the role and importance of different parameters on the overall
performance was revealed using Shapley additive explanations
(SHAP).17−19 Finally, the problem dimensionality was reduced
and parameter regions likely to further enhance system
performance are exposed by controlling feature grouping.20

Thereby, the system was holistically optimized and deeper
insight into the ruling parameters for each figure of merit was
extracted.

■ RESULTS AND DISCUSSION
Assembly of photocatalytic micelles. Systems that self-

assemble into functional supramolecular structures are
attractive targets, but they are also hard to optimize due to
the numerous interdependent variables. This is exemplified
herein with amphiphilic self-assembly of molecular compo-
nents for photocatalytic CO2 reduction. The system exploits
the tuneability of molecular components to functionalize a
CO2 reduction catalyst and photosensitizer with alkyl tails and
enable supramolecular assembly into micelles. The catalyst and
photosensitizer are cationic complexes, to which alkyl tails
were added to the periphery to render them amphiphilic while

preserving the metal coordination environment and function-
ality.16 For the catalyst, cobalt tetra-methylpyridinium
porphyrin (CoPyPC1) is an active catalyst for CO2-to-CO
conversion in aqueous media,21,22 and was made amphiphilic
by replacing the methyl groups with hexadecyl groups
(CoPyPC16; Figure 1).14 A ruthenium tris-bipyridine was

selected as it is a prototypical photosensitizer previously used
for photocatalytic CO2 reduction with cobalt porphyrins and
amphiphilic variants are known.14,16,23 To minimize additional
functional groups, one bipyridine ligand was functionalized
with two heptadecyl groups (RubpyC17; Figure 1).23 In both
cases, characterization of the complexes was consistent with
previous reports and the UV−vis spectra showed minimal
changes to λmax to indicate that the coordination environment
was preserved (details in Experimental Section). For photo-
catalytic studies, the water-insoluble [CoPyPC16](PF6)4 was
solubilized in micelles from a MeCN stock solution into
aqueous CO2-saturated phosphate solution (pH 6.3; MeCN
removed in CO2 purging step). The solution also contained
the RubpyC17 photosensitizer and sodium ascorbate as a
sacrificial electron donor (reductive quencher of the photo-
sensitizer14,21,24); test conditions were 15 min illumination of 1
mL solution at λ = 447 nm using a 2.3 W LED at 25 °C with
orbital convection.

Figure 1. (A) Molecular components of photocatalytic system and
reaction scheme; (B) photocatalytic test results with 1.5 μM
CoPyPC16, 30 μM RubpyC17 or [Ru(bpy)3]Cl2 (Rubpy), including
or excluding 225 μM C12E6 (∼3 CMC), 100 mM NaHAsc, phosphate
(0.1 M), CO2-sat. (pH 6.3) after 15 min 447 nm illumination with 2.3
W LED at 25 °C with 250 rpm orbital shaking, 1 mL reaction volume.
Product detection by GC, 3 replicates except RubpyC17 + C12E6 where
n = 21 over 8 batches. Tabulated values in Table S1.
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The photosensitizer commonly serves as a single electron
donor while two electrons are required for CO2-to-CO
conversion, which has led to the established practice to have
excess photosensitizer in photocatalytic tests, with 20−50
times excess previously used.14,21,24 Initial photocatalytic tests
herein used 20:1 RubpyC17 to CoPyPC16, which resulted in 52
± 2 catalyst turnovers for CO formation (TONCO) to give a
turnover frequency (TOFCO) of 3.4 ± 0.1 min−1 with
selectivity for CO over H2 (SelCO) of 84 ± 3% (Figure 1,
Table S1; see SI Note 1 for list of metrics and definitions).
This is more selective than literature values for the water-
soluble catalyst variant (CoPyPC1) in aqueous phosphate
buffer (SelCO 11%, 89% H2 formation),14 and comparable to a
self-assembled liposome system (SelCO 77%).14 Ru photo-
sensitizers are known to self-quench at high concentrations,
which was mitigated herein by including the charge-neutral
photocatalytically inactive surfactant hexaethylene glycol
monododecyl ether (C12E6; critical micelle concentration,
CMC, in H2O = 75 μM;25 Figure 1). The inclusion of the
nominally inactive C12E6 surfactant increased the TONCO 5-
fold to 249 ± 38 for a TOFCO of 17 ± 2 min−1 and SelCO of 87
± 2% (Figure 1), thereby demonstrating the importance of
dispersing the photosensitizers in micelles to minimize self-
quenching.

Comparing this result to other self-assembled systems that
use alkylated Ru polypyridyl photosensitizers, the TOFCO
exceeds that of Lehn-type Re based systems ([ReI(bpy)-
(CO)3Cl]) in liposomes (17 ± 2 vs 0.08 or 1.1 min−1),26,27

and the CoPyPC16 catalyst in liposomes (0.8 min−1 at 0.5 μM
or 6.1 min−1 at 0.02 μM).14 The micelle system also shows a
comparable TOFCO to a state-of-the-art quantum dot
sensitized system that electrostatically assembles with a Co
porphyrin in aqueous medium (13 min−1).28

Isotopic labeling with 13CO2 reveals that only 13CO is
formed, confirming that all CO is formed from CO2 (Figure
S1). Exclusion controls show that the system is inactive if any
of CO2, catalyst, photosensitizer, reductant or light are
removed (Figure S2). Amphiphilic RubpyC17 results in a 2.4-
fold higher TOFCO and 30% higher CO selectivity than using
its water-soluble hydrophilic analogue [Ru(bpy)3]Cl2 (Rubpy
hereinafter, TOFCO of 6.8 ± 0.8 min−1; Figure 1),
demonstrating the activity enhancement enabled by supra-
molecular self-assembly of the micellar system. This self-
assembly benefit is also observed when comparing to
homogeneous photocatalytic systems in the literature using
Co porphyrins in water, which reach comparable TOFCO
values (17 and 20 min−1) but use a 17-fold higher Ru
photosensitizer concentration (30 vs 500 μM).21,24 This is
likely due to higher local concentrations of photosensitizer in
the micelle, thereby facilitating better use of the system
components.

In contrast to nonionic C12E6, the use of cationic
cetrimonium bromide (CTAB) and anionic sodium dodecyl
sulfate (SDS) surfactants inhibited catalytic turnover, with no
CO detected after equivalent measurements screening from 1
to 18-fold their nominal CMCs of 1.0 and 7.8 mM for CTAB
and SDS in pure water,29 respectively (Figure S3 incl. chemical
structures). UV−vis spectra measured before and after
photocatalytic tests with and without C12E6 show the
RubpyC17-band intensity (λmax 456 nm) decreases over time
and correlates with decreasing catalytic turnover (Figure S4),
indicating that the intrinsic instability of Rubpy complexes
through photobleaching limits long-term performance and

highlights the need to move beyond Ru-polypyridyl based
photosensitizers.21,22,28 In contrast to using C12E6, no
degradation of RubpyC17 is observed when using CTAB or
SDS surfactants within the time scale of the experiments
(Figure S3), indicating that the ionic surfactants are inhibiting
catalysis by preventing formation of long-lived reduced Ru
states that are the most vulnerable to degradation.21,30,31

Photoluminescence (PL) and Transient Absorption
Spectroscopy (TAS). PL and TAS were employed to
understand the charge-transfer processes of the self-assembled
system and lifetime of transient photosensitizer states. Visible
excitation of Rubpy complexes results in a metal-to-ligand
charge transfer (MLCT) to give the charge-separated excited
state [RuIII(bpy•−)(bpy)2]2+ (Ru*).14 Tracking the Ru* PL at
620 nm shows that C12E6 increases the RubpyC17* lifetime, but
does not affect the hydrophilic Rubpy* (Figure 2A, S5−6 and
Table S2−3). This longer RubpyC17* lifetime is attributed to
C12E6 decreasing the local RubpyC17 concentration in micelles
and thereby limiting self-quenching and allowing more time for
reductive quenching by ascorbate, which reduces the RuIII

center of Ru* to form [RuII(bpy•−)(bpy)2]+ (denoted Ru−).14

Tracking Ru− formation with TAS (510 nm probe) shows
that adding C12E6 increases the RubpyC17

− yield by 50%,
resulting in a quenched photosensitizer yield that is only 25%
lower than diffusionally free Rubpy− (17 to 30 vs 40 ΔmOD
for RubpyC17, RubpyC17+C12E6 vs Rubpy; Figure S7 and Table
S4). The RubpyC17

− lifetime is then 18-fold longer than
Rubpy− with C12E6 and phosphate buffer (282 vs 16 μs; Figure
2B, Figures S8 and S9 and Table S5), allowing more time for
electron transfer to the catalyst.

Adding CoPyPC16 results in deeper absorbance bleaching
because its Soret band (λmax 440 nm; Figure S10) is
convoluted with Rubpy (λmax 456 nm). However, CoPyPC16
increases the RubpyC17

− lifetime by 33% rather than oxidizing
it (282 to 375 μs at 510 nm and lack of bpy•− decay at 366
nm; Figure 2C and Figure S11). The rapid formation of
CoPyPC16

− (broad response at 550−750 nm within 10 μs),14

the longer RubpyC17
− lifetime, and the relevant redox

potentials indicates that HAsc− is oxidized by RubpyC17* to
form Asc•, which then reduces CoPyPC16 and forms
dehydroascorbate.32 This pathway prevents charge recombi-
nation between Asc• and RubpyC17

− by forming CoPyPC16
−. It

also suggests that the system extracts two electrons from the
donor per photon, with the process enabled by the high local
concentrations inside the micelles. Further TAS analysis
including for the ionic surfactants is provided in the
Supporting Information (SI Note 2).

Heuristic human optimization. The photocatalytic
system has categorical variables (variables that are divided
into groups, often non-numerical such as the molecular
structures) and continuous variables (a quantitative variable
that can be any value with a fixed range, e.g., concentrations).
Five continuous variables were sequentially varied in the
system, namely, concentrations of catalyst, photosensitizer,
surfactant, reductant and buffer, while the performance was
quantified with five figures of merit, namely, YieldCO (moles of
CO formed), QYCO (percentage of incident photons forming
CO), TONCO (the number of catalyst turnovers forming CO),
TOFCO (TONCO over time), and SelCO (the percentage of CO
formed from the sum of CO and H2 formed) to determine the
sensitivity of each metric to the variables and start building the
algorithm training set (Figure 3 and Table S6). Because the
experiment time is fixed, YieldCO and QYCO must follow the
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same trends, as must TONCO and TOFCO. Varying the catalyst
concentration shows that lower catalyst concentrations allow
observation of higher TOFCO (∼86 ± 8, 11 ± 2, 2.5 ± 0.1
min−1 at 0.01, 0.1, and 10 μM, respectively; Figure 3A); a
trend that is consistent with general observations in the
literature.14,21,22,24 However, the high TON and TOF come at
a cost of selectivity and product yield (25, 50 and 89% CO and
0.05, 0.07, and 1.5 μmol CO h−1), emphasizing the importance
of considering the system holistically rather than focusing on
individual figures of merit.

Figure 2. (A) Photoluminescence decay showing lifetime of excited
photosensitizer in absence of reductant (excitation 460 nm, detection
620 nm); (B) transient absorption spectroscopy (pump 460 nm,
probe 510 nm) measuring lifetime of reductively quenched photo-
sensitizer in the presence of reductant; and (C) transient absorption
spectroscopy (pump 460 nm) measuring spectral changes after 10 and
1000 μs delay. Thirty μM photosensitizer in phosphate buffer (PB, 0.1
M, pH 7.0), Ar purged. Five μM CoPyPC16, 225 μM C12E6 and/or
100 mM NaHAsc as indicated. Dashed lines show data fitting to
determine lifetimes.

Figure 3. Heuristic optimization of photocatalytic system showing
catalyst turnover frequency (TOF) and Yield of CO as a function of
catalyst (A), photosensitizer (B), surfactant (C), reductant (D) and
buffer (E) concentration. Unless specified, 1.5 μM CoPyPC16, 30 μM
RubpyC17, 225 μM C12E6 (∼3 CMC), 100 mM NaHAsc, phosphate
(0.1 M), CO2-sat. (pH 6.3) after 15 min (60 min for catalyst series)
447 nm illumination with 2.3 W LED at 25 °C with 250 rpm orbital
shaking, 1 mL volume, GC quantification, 3 replicates.
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Variation of the photosensitizer concentration shows a peak
TOFCO at 17 ± 2 min−1 for 30 μM with clear decays at higher
or lower concentration (2.0 ± 0.7 at 3 μM and 3.4 ± 0.2 at 200
μM; Figure 3B) with constant CO selectivity (88 ± 1%). The
peak performance occurs with concentrations able to
effectively absorb light but is far below full absorption (A456
= 0.39), which may be due to a lack of surfactant to prevent
self-quenching, lack of catalyst or reductant or a combination
thereof. Keeping the photosensitizer concentration constant
and increasing the C12E6 surfactant concentration from 0 to
225 μM (3 CMC) increases the TOFCO followed by a plateau
with constant 89 ± 1% selectivity (Figure 3C). TOFCO
increases with the concentration of the ascorbate reductant
(0.6 ± 0.1, 17 ± 2, 11 ± 3 min−1 at 1, 100, 1000 mM,
respectively; Figure 3D), with the lowest concentrations
limiting photosensitizer quenching whereas the highest likely
increase back-reactions.33 With these fixed concentrations of
the other components, the phosphate concentration had a
minimal effect until performance decreased as surfactant
solubility was visibly lowered (TOFCO 12.8 ± 0.7, 17 ± 2, 7
min−1 at 1, 100, 1000 mM respectively. Figure 3E). In contrast
to the catalyst concentration, the trend of the YieldCO follows
the TOFCO for the photosensitizer, surfactant, reductant and
buffer concentrations. However, it is not clear how to best
increase both the YieldCO and TOFCO for the system. Notably,
the reductant and buffer concentrations significantly affect the
solution ionic strength to indirectly influence micelle size and
shape, as does the loading of catalyst and photosensitizer, yet
varying the concentrations individually cannot capture these
effects. Fully exploring the parameter space with 10
concentrations of each of the 5 variables would require a
humanly impractical 105 experiments (SI Note 3). Thus, we
employed Bayesian statistics to bring the number of experi-
ments to an actionable number for a human experimentalist.

Learning algorithm (Bayesian) optimization. Our
approach enables variation of >3 parameters simultaneously
to increase optimization speed and find relationships between
interdependent parameters, thereby allowing rapid and
simultaneous optimization of multiple performance metrics.
Our objective function (eq 1 and Figure 4) provides a single
metric that incorporates key figures of merit to quantify overall
system performance (holistic performance) and is defined as
the sum of the weighted natural logarithms of QYCO, TOFCO,
and TOFPS to balance a high product yield against high
efficiency. SelCO is indirectly considered by the QYCO and
TOFCO. w1, w2 and w3 are weighting coefficients to define the
relative importance of each metric.

y w w wln(QY ) ln(TOF ) ln(TOF )obj
1 CO 2 CO 3 PS= + + (1)

The workflow comprised iterative experimental testing, from
which the algorithm learnt and predicted new conditions
(Figure 4A or Figure S12 for a more technical description).
The aim was to maximize the objective function (eq 1), which
represents overall performance. The process is (i) the
algorithm learns from the initial data set pool (subset of
heuristic optimization data, Table S7); (ii) the algorithm
predicts the next values to test; (iii) the data set pool is
enlarged with new results; (iv) new predictions and iteration.34

Two Bayesian optimization methodologies (GpyOpt35 and
Gryffin36) were used with multiple acquisition functions to
control paths through promising regions of the parameter
space and exploit known peaks, while balancing the need to

explore new regions (exploitation vs exploration; see
Experimental Section). GpyOpt and Gryffin were selected as
they have shown excellent performance in reaching the global
optimum among Bayesian Optimization methods,36 which are
already superior to optimizations based on local gradient and
Hessian approximations.34 Holistic optimization proceeded
through 10 iterations with each iteration providing five
concentrations of catalyst, photosensitizer, surfactant, reduc-
tant, and buffer to test (Figure 4; each prediction is the mean
of 5 replicate algorithm runs which are shown with their
standard deviations in Figure S13; the mean prediction values
and experimental results are shown in Table S7). Two
optimizations were conducted in parallel by using different
weightings of the objective function components, where yobj1

considered all components with weighting coefficients w1 =
0.4, w2 = 0.4, w3 = 0.2; while yobj2 excluded the TOFCO of
photosensitizer (TOFPS) with w1 = 0.5, w2 = 0.5, w3 = 0. Equal
weighting was given to the QYCO and TOFCO to prioritize
maximization of both metrics simultaneously (the selection of
weights is subjective as it depends on the prioritization of

Figure 4. Holistic optimization using learning algorithms. Overview of
the workflow (A); sorted data to show holistic improvement
measured by objective function (eq 1 with w1 = 0.4, w2 = 0.4, w3 =
0.2) alongside improvement of both YieldCO and TOFCO (B); and
sorted data showing ascending YieldCO and corresponding TOFCO
(C). The data in B and C are sorted and not in chronological order.
Full experimental results tabulated in Table S7. Experimental
conditions: various concentrations of CoPyPC16, RubpyC17, C12E6,
NaHAsc and phosphate buffer, CO2-sat. (pH 6.3) under 447 nm
illumination with 2.3 W LED at 25 °C with 250 rpm orbital shaking, 1
mL reaction volume for 15 min, GC quantification.
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metrics meaning there is no mathematically correct choice). By
optimizing the two objective functions simultaneously, this
provides 10 sets of conditions (optimization paths) each
iteration, which matches the capacity of the experimental
equipment. The results were then all added into the data set
pool to provide all possible information to all algorithms
(largest possible data set pool at each iteration).

The optimizations including and ignoring the photo-
sensitizer (yobj1 and yobj2) both reached maxima with the
same conditions in iteration 8/10, and displayed improvement
in all figures of merit included in the objective function.
Compared to the intuitively selected and literature supported
starting conditions that appeared high performing based on
initial tests and heuristic optimization (Table 1), the

holistically optimized conditions displayed 4.2-fold higher
YieldCO (5.7 ± 0.1 vs 1.5 ± 0.2 μmol h−1), 57% higher TONCO
(368 ± 8 vs 249 ± 38), 47% higher TOFCO (25 ± 1 vs 17 ± 2
min−1) and 3.8-fold higher QYCO (0.15 ± 0.01 vs 0.04 ±
0.01%) while SelCO was unchanged (88 vs 87 ± 2%). This
shows that systems can be optimized for high Yield, TON,
TOF and QY rather than focusing on a single metric. These
values are exceptional for photocatalytic CO2-to-CO reduction
in aqueous media with a far higher TOFCO than Lehn-type Re
complexes in liposomes,26,27 higher TOFCO and SelCO than
high performing homogeneous Co porphyrin systems that use
17-fold higher photosensitizer concentration,21,22,24 and higher
TOFCO than even a high performing quantum dot sensitized
Co porphyrin system (Table S8).28 Expectedly, the objective
function (overall system performance metric) is not linearly
correlated with any of the system components (r2 < 0.27 in all
cases; full linear correlation plots and correlation coefficient
matrix in Figure S14 and S15). The highest correlation
coefficient of a parameter with the objective function is 0.27
for [photosensitizer] and 0.17 for [surfactant], while

correlations of the objective function with other parameters
have coefficients <0.05. This confirms that increasing all
parameters would not result in the observed performance
improvement. TAS reveals that these conditions coincide with
the RubpyC17

− lifetime shortening from 375 to 190 μs in the
optimized system, suggesting more efficient electron transfer to
the catalyst (Figure S16).

Sorting the experiments shows that all the performance
metrics improved as the objective function was maximized
(Figure 4B), thereby validating the way the objective function
was defined and showing a stark contrast to the response from
heuristically varying the catalyst concentration (Figure 3A).
However, neither the highest YieldCO and QYCO nor highest
TONCO and TOFCO were obtained at the holistic optimum
because a compromise in conditions is required (Table 1). To
reiterate, YieldCO and QYCO are linearly correlated (Figure S14
and S15), as are TONCO and TOFCO, because QY is Yield over
a constant and TOF is TON over a constant (with reaction
time and photon flux being constant), hence they are
maximized under the same conditions. At conditions for the
highest YieldCO and QYCO (7.20 ± 0.04 μmol h−1 and 0.19 ±
0.01%), the TONCO and TOFCO are ∼50% lower than the
holistic maximum (184 ± 8 and 12 ± 1 min−1; Figure 4C).
Coherently, conditions displaying the highest TONCO and
TOFCO (422 ± 8 and 28 ± 1 min−1) result in YieldCO and
QYCO being ∼50% lower (3.72 ± 0.08 μmol h−1 and 0.10 ±
0.01%) than their ideal conditions. In other words, TOFCO and
YieldCO are not linearly correlated, especially at high values,
meaning that these maxima cannot be reached by maximizing
only one metric. This demonstrates how objective functions
enable holistic optimization and highlights the limitations in
focusing on individual figures of merit as remains prevalent in
the literature.

Post-Optimization Machine Learning Analysis. The
internally consistent data set produced during the optimization
was then exploited to determine the ruling parameters for each
metric with machine learning algorithms, i.e., the quantitative
importance of each parameter to overall system performance
and to individual figures of merit was extracted. The full data
set was split into two sections, with 70% used to train/cross-
validate the regression model while the model predicted results
for the remaining 30%, thereby allowing the model to be tested
against experimental results (Random Forest with k-fold cross-
validation was employed to identify the most effective
hyperparameters for the regression models; see SI Note
4).37,38 The number of data points is low by machine learning
standards with only 72 experiments for training/cross-
validation and 31 experiments for testing, yet the consistency
of the data set means the regression model is accurately
predictive of how the concentration of each component will
affect holistic system performance (R2 = 0.71 is suitable for a
predictive model trained on experimental data;10,39 Figure 5A).

Shapley additive explanations (SHAP) were then employed
to quantify the importance of each parameter (system
component) on the system performance (Figure 5A),17−19

revealing the buffer concentration as the parameter with
dominating importance (61%), far more than the catalyst or
photosensitizer concentrations (16 and 12%, respectively; note
the 4% difference may not be statistically significant). The
nonlinear effect of the buffer concentration is also visible in the
correlation pair-plot while other parameters show more
stochastic scatter plots (Figure S14). While the buffer
concentration allows the ionic strength to be varied and

Table 1. Original and optimized figures of merit for
photocatalytic system composed of CoPyPC16, RubpyC17,
C12E6, NaHAsc, phosphate buffer, CO2-sat. (pH 6.3) under
447 nm illumination with 2.3 W LED at 25 °C with 250 rpm
orbital shaking, 1 mL reaction volume for 15 min, GC
quantificationa

original holistic opt.
max YieldCO
& QYCO

b
max TONCO
& TOFCO

b

YieldCO/
μmol h−1

1.5 ± 0.2 5.7 ± 0.1 7.20 ± 0.04 3.72 ± 0.08

TONCO 249 ± 38 368 ± 8 184 ± 8 422 ± 8
TOFCO/
min−1

17 ± 2 25 ± 1 12 ± 1 28 ± 1

QYCO 0.04 ± 0.01 0.15 ± 0.01 0.19 ± 0.01 0.10 ± 0.01
[Cat]/μM 1.5 3.9 9.8 2.2
[PS]/μM 30 112 98 109
[Surf.]/
CMC

3 19 25 32

[Red.]/
mM

100 220 348 195

[Buf.]/
mM

100 462 323 509

a21 replicates over 8 batches for “original”, 3 replicates for others.
bMaximum values show performance and conditions that resulted in
the highest YieldCO and QYCO or highest TONCO and TOFCO during
the optimization. YieldCO and QYCO are linked, as are TONCO and
TOFCO, because the reaction time is constant meaning they must be
maximized under the same conditions.
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thereby provides control of micelle size, its importance is
seemingly contradictory to the heuristic optimization wherein
the concentration of buffer did not affect the system until it
lowered solubility and hindered performance (Figure 3E).
However, the ubiquitous heuristic optimization did not
consider dependencies between the variables, thereby
exemplifying the value of the statistics driven holistic
optimization demonstrated herein. Consequently, SHAP
analysis can quantitatively identify the cause of improvements
after Bayesian Optimization, which provides insight that
enables rationalization and further system development. It is
especially valuable as the causes identified may not be
immediately visible to the experimentalist.

Machine learning regression and the SHAP routine then
extracted the importance of each parameter to individual
figures of merit (Figure 5B,C), thereby providing insight into
the conditions that favor high YieldCO and QYCO vs those that
favor high TONCO and TOFCO. In all cases the buffer
concentration remains the most important factor, with
comparably dominating importance to TONCO and TOFCO

(64−65%), yet buffer concentration is far less important to
YieldCO and QYCO (42−43%) where the catalyst and
photosensitizer concentrations grow in importance (27 and
22%, respectively). Thereby, the conflicting requirements to
have high YieldCO vs high TOFCO can be quantitatively linked
to different parameter combinations. Consistent with these
results, maximum CO yield is reached with 4.5-fold higher
catalyst concentration than maximum TOFCO (9.8 vs 2.2 μM),
whereas higher buffer concentration is required for maximum
TOFCO (509 vs 323 mM). The holistically optimized results
balance these two requirements, yet a similar photosensitizer
concentration is maintained for all three maxima, presumably
to maximize light absorption and quantum yield.

Control Group Feature Analysis. Further leveraging the
holistic optimization data set, local performance maxima in the
5-dimensional parameter space can be identified to find
conditions that significantly reduce the amount of valuable
components used at a minor cost to system performance.
These fruitful regions of the parameter space can be identified
and visualized by reducing the five variables into a lower
number of features following the recently introduced Control
Group Feature analysis (herein, the two mixed features are
defined as x1 and x2 in Figure S17; details in Experimental
Section).20 The approach is inspired by Buckingham analysis
and based on the principle that variable combinations that
offer the same mixed feature value will offer comparable
performance by exploiting alternate maxima in the parameter
space. This analysis highlights regions of the parameter matrix
containing high performance conditions as clustered high-
performing values in scatter plots.

The Control Group Feature analysis shows clustered regions
for values of the holistically optimized system (objective
function), YieldCO and QYCO, but no clear regions were found
for TONCO and TOFCO (Figure S17). Focusing on the holistic
performance, alternative parameter combinations (component
concentrations) were identified that are predicted to provide
comparable performance while using 30% less catalyst and 16%
less photosensitizer (Catalyst 2.7 vs 3.9 μM; Photosensitizer 94
vs 112 μM; Surfactant 23 vs 19 CMC; Reductant 256 vs 220
mM; Buffer 402 vs 462 mM). Thereby, the data set is further
exploited to minimize the more expensive, metal-containing
components at a minor performance cost, which is a key trade-
off for system commercialization (additional analysis in SI
Note 5).

Wider Implications. Methodology for multivariable multi-
metric optimization is required in many fields to move beyond
the focus on individual figures of merit that drives optimization
away from practical conditions. Overall system development
requires multiple metrics to be improved simultaneously, even
though some metrics initially appear to require opposite
conditions, e.g., high TOF observed at low catalyst loading
while high product yield requires the opposite as initially
observed in this study. Even pioneering high-throughput
robotic approaches have focused on single figures of
merit,6,40 including those employing machine learning.5,13,41

New approaches should minimize expensive and space-
demanding equipment wherever possible to facilitate wide-
spread adoption, which is a barrier that continues to hinder
high-throughput robotic setups. Learning algorithms require
no elaborate equipment and can accelerate multivariable
optimization so effectively that human experimentalists can
complete otherwise insurmountable studies, such as multi-
metric optimization of complex systems. The use of overall

Figure 5. Machine learning analysis showing the normalized
importance of each system component to holistic optimization by
objective function 1 (A), YieldCO and QYCO (B), TONCO and TOFCO
(C); with machine learning predictions with the Random-forest
regression models (inset), where model performance is shown by
coefficient of determination R2, mean absolute error (MAE), and
Root Mean Squared Error (RMSE).
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performance metrics can take into account a variety of factors,
for example, using an expensive component will be justified if
the performance improvement outweighs the cost and leads to
an improvement in the overall metric. Thereby such
comparisons can be objective when comparing systems and
conditions. To fully exploit this approach, each field should
reach a consensus on a standardized metric against which all
systems should be compared. In some ways, this could be a
powerful extension of the approach taken for solar cell
characterization where photon to current efficiency is the
standard metric of comparison.

The highly general methodology for holistic optimization
shown herein can be applied in any chemistry laboratory to
address the inability to complete multivariable multimetric
optimization in many fields beyond photocatalytic CO2
reduction (incl. materials, polymer and organic synthesis).
While the approach is demonstrated with CO2 reduction, a
clear example application is optimizing organic synthesis
reactions so they are high yielding, fast and general (wide
substrate scope), i.e., multivariable multimetric reaction
optimization is required.6 For an organic reaction, post-
optimization machine learning would then quantify the
importance of each variable to each metric and guide
mechanistic understanding; e.g., the importance of the buffer
herein is analogous to additives that unexpectedly enhance
organic reactions, which has been the focus of a prominent
high-throughput study.6

■ CONCLUSIONS
We demonstrate how to optimize multivariable multimetric
systems using five-component self-assembled photocatalytic
micelles for CO2-to-CO reduction as a test platform. Self-
assembly improved the system’s photocatalytic performance
2.4-fold compared to freely diffusing components, with
transient absorption spectroscopy showing this was due to an
18-fold longer reduced photosensitizer lifetime. However,
standard optimization showed that the system could not be
optimized for both high TOFCO and high CO yield as they
appeared to require opposite conditions. Therefore, we
established a novel approach and defined a holistic metric
set that encompasses overall system performance and which
was optimized using machine learning algorithms to
simultaneously improve CO yield (4.2-fold), TONCO (57%),
TOFCO (47%) and quantum yield (3.8-fold), while maintain-
ing 87% CO selectivity over H2. Machine learning enabled this
optimization in 103 tests compared to 105 combinatorial
possibilities, thereby bringing multivariable multimetric opti-
mization into reach for all chemistry laboratories without
expensive robotic or high-throughput setups.

A predictive machine learning model was then trained on
the data set and quantified the effect of each component. This
revealed surprisingly that the buffer has 61% importance to the
holistic performance despite heuristic optimization indicating
the buffer concentration had a marginal effect, thereby
emphasizing the complexity of systems with interdependent
variables. The buffer is 20% more important to TONCO/
TOFCO than it is to yield of CO and quantum yield, which
demonstrates the trade-offs required for holistic optimization
and why maximizing a single metric has limited meaning to
overall system performance.

Future standardization of holistic performance metrics will
enhance comparability and focus research on meaningful
system performance rather than a subjective individual metric

that often relies on impractical conditions. Exploiting develop-
ments in machine learning and data science will concurrently
reveal system limitations and guide the understanding that
underpins progress across research in catalysis.

■ EXPERIMENTAL SECTION
Reagents. Commercial chemicals were used as supplied: hexa-

ethylene glycol monododecyl ether (C12E6; CAS 3055−96−7, Sigma,
≥ 98%); sodium phosphate, dibasic (CAS 7782−85−6, Thermo
Scientific, ≥ 99%); sodium phosphate, monobasic (CAS 10049−21−
5, ACROS, > 99%); sodium dodecyl sulfate (CAS 151−21−3,
ThermoScientific, 99%); hexadecyltrimethylammonium bromide
(CAS 57−09−0, ACROS, ≥ 99%); sodium L-ascorbate (CAS 134−
03−2, Sigma, ≥ 99%); tris(2,2′-bipyridyl)ruthenium(II)dichloride
hexahydrate (CAS 50525−27−4, Sigma, 99.95%); hexadecyltrime-
thylammonium chloride (CAS 112−02−7, Sigma, 25 wt.% aqueous
solution). Deionized water was used throughout (18 MΩ cm, Milli-
Q), MeCN was freshly distilled. All gases were obtained from BOC.

Synthesis. CoPyPC16 was synthesized following reported
procedures;14 briefly, tetrapyridyl-porphyrin (PyP), was reacted with
excess C16H33Br at 130 °C for 16 h in anhydrous DMF under a N2
atmosphere to form the tetraalkylated porphyrin (PyPC16).
Purification was by precipitation from CHCl3:MeOH (85:15) with
acetone and reprecipitation from hot EtOH. EA: C, H, N values from
all batches within 0.5% of calculated for C104H158N8Br4·3H2O (1894.1
g mol−1): C 65.95, H 8.73, N 5.92%. 1H NMR (DMSO-d6) and 13C
NMR (DMSO-d6) as reported.14 Metalation of PyPC16 used excess
Co(OAc)2 at 120 °C for 3 h in anhydrous DMF under a N2
atmosphere followed by precipitation with Et2O. CoPyPC16 was
then precipitated from acetone:MeOH (9:1) with aqueous
NaPF6(sat’d), and reprecipitated from acetone with water. EA: C, H,
N values from all batches within 0.5% of calculated for
CoC104H156N8P4F24·3H2O (2211.3 g mol−1): C 56.59, H 7.38, N
5.07%. RubpyC17 was synthesized following reported procedures from
[Ru(Cl)2(bpy)2] and 4,4′-diheptadecyl-2,2′-bipyridine (bpyC17).27,42

1H and 13C NMR (CH3OD) and UV−vis (CH3OH) as reported. EA:
C, H, N values from all batches within 0.5% of calculated for
RuC64H92N6Cl2·7H2O (1243.6 g mol−1): C 61.81, H 8.59, N 6.76%.

Solution preparation. The water-soluble chloride salts of
photosensitizers [Ru(bpy)2(bpyC17)](Cl)2 or [Ru(bpy)3](Cl)2 were
prepared as aqueous stock solutions and used within 2 days. The PF6

−

salt of CoPyPC16, [CoPyPC16](PF6)4, was prepared as an acetonitrile
solution that was confirmed by UV−vis to be stable for months.
Concentrations of stock solutions were determined by UV−vis
(Agilent Cary 60) and known or determined molar extinction
coefficients rather than relying on weighing small masses. Surfactant
and ascorbate solutions were prepared fresh daily with concentrations
based on weighed mass (excl. CTAC), while phosphate buffer was
prepared as a larger stock from the monobasic and dibasic sodium
salts (H2PO4

−:HPO4
2− as 0.615:0.385 molar ratio to reach pH 7.0 in

the final solution).43 Reaction solutions were prepared by diluting
these stock solutions into water to reach the desired concentrations,
with the minimal volume of organic solvent (MeCN) excluded from
the final volume as it is removed during CO2 purging.

Photocatalysis. One mL aliquots of solution, (3 mL for 13CO2
labeling experiment), were delivered into crimp-cap vials sealed with
septa and purged through inlet and outlet needles for 15 min with
CO2 or N2 including 2 vol.% CH4 as an internal standard. CO2
saturation was reached within 10 min and defined by the solution
stabilizing at pH 6.3. The profile of the foam changes during purging
as the MeCN is removed. The vials were then placed in a LED
photoreactor (Treellum Technologies, Patent EP17382313) with a
thermostatically controlled heating block at 25 °C with 250 rpm
orbital convection; wherein the vials were illuminated with 447 nm
LED light (20 nm spectral width) from 2.3 W LEDs (Luxeon Rebel
ES LED “Royal Blue”).44,45 The reaction headspace was sampled via
gastight syringe (100 μL aliquot; Hamilton) and analyzed by gas
chromatography (Shimadzu Tracera GC-2010 Plus with a discharge
ionization detector) using a molecular sieve column (Restek 5A
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PLOT, 0.53 mm ID, 30 m) at 85 °C. H2 and CO peak areas were
converted to moles using calibrated response factors and the 2 vol.%
CH4 internal standard. Quantum yields were calculated based on
photon flux previously determined by actinometry for the photo-
reactor as 2.1 μmol photons s−1.9 Isotopic labeling used 13CO2 for
photocatalysis followed by transferring the vial headspace into an
evacuated gas infrared cell (SpecAc, 10 cm path length, KBr windows)
and collecting a FT-IR transmission spectrum (ThermoScientific
Nicolet iS50). Data processing used MatLab (Mathworks) while
plotting used Igor Pro (Wavemetrics).

Transient Absorption Spectroscopy. Nanosecond optical
excitation (pump) used a Nd:YAG laser/OPO (EKSPLA NT 342)
to deliver 8 mJ pulse−1 at 460 nm. The measurement (probe)
spectrometer (Edinburgh Instruments LP 920-K) was equipped with
a 450 W Xe arc lamp (Osram) and CCD camera (Oxford Instruments
Andor iStar) connected to an oscilloscope (Tektronix TDS3052B).
Measurements were through a 3 mL 10 × 10 mm quartz cuvette at
ambient temperature after purging with Ar or CO2 where specified,
with 20 scans averaged for each spectrum. Data fitting used Igor Pro
(Wavemetrics).

Bayesian Optimization. GpyOpt 1.2.635 and Gryffin36 (dynamic
implementation) methodologies were employed. Three acquisition
functions were employed with GpyOpt: exploitation/exploration
trade-off functions Expected Improvement (EI) and Lower
Confidence Bound (LCB), and exploitation focused Maximum
Probability of Improvement (MPI). Two acquisition functions were
employed with Gryffin: exploitation and exploration (hyperparameter
λ to +1 or −1, respectively). Predictions were made by taking the
mean of 5 repeated queries for the next step, thereby avoiding
limitations in deterministic prediction by GpyOpt and Gryffin.35,36

When the CO yield = 0, the objective function is equal to − ∞ (eq
1); which was replaced with −1000 for compatibility with the
algorithms. Bounds were set for each of the five variables: Catalyst
1.5:10 μM, Photosensitizer 10:180 μM, Surfactant 1:40 CMC,
Reductant 1:500 mM, Buffer 10:1000 mM. Where multiple suggested
points were deemed comparable, they were skipped for the sake of
maximum capitalization of the experimental setup.

Machine Learning Regression and Feature Importance.
Experimental data harvested during the experiments was used to
train/validate five Random Forest regression-based pipelines with
hyperparameter tuning in 5-fold cross-validation. Conditions with no
CO, corresponding to yobj 1 = −1000, were deemed outliers and the
same training/testing sets were used for all the models. Specifically,
the space of hyperparameters is composed by all the possible
combinations of (i) the number of estimators, to be chosen among
[100, 200, 500, 1000, 2000] and (ii) the number of features to keep
when looking for the best split, to be chosen among [’auto’,’sqr-
t’,’log2’]. For the database handling and for the models training/
validation Pandas46 and the Scikit-Learn47 Python packages were
respectively employed. The TreeSHAP algorithm17,18 was used to
identify feature rankings over the corresponding models’ outputs as it
is suitable for tree-based models like Random Forest.

Features grouping. The feature grouping separates values into
classes based on a threshold for the corresponding properties, i.e.,
above (class 1) and below (class 0) the threshold following the
methodology recently introduced by Trezza & Chiavazzo.20 Such
thresholds are −2.2 for yobj 1, 1.3 μmol for CO, 300 for TONCO, 18.5
min−1 for TOFCO, 0.14 for QYCO. In particular, given the original set
of 5 features (x1, ..., x5), the corresponding dimensionless quantities
are denoted (x̃1, ..., x̃5), where x 1i

x x

x x
i i

i i

,min

,max ,min
= + representing the

minimum and the maximum value of the i−th feature over the
training set, respectively. A new set of two mixed features (x1, x2) is
thus defined, where xj = ∏i = 1

5 x̃iαij, with ij
5 2{ } × being a matrix

computed by means of a multiobjective optimization criterion in two
steps. First, the matrix {αij} is the utopia point of the Pareto front
simultaneously attempting (i) the maximization of the distance
between the two classes according to the Bhattacharyya distance,48,49

(ii) the minimization of a norm of the covariance matrix of the first
class distribution, (iii) the minimization of a norm of the covariance

matrix of the second class distribution. Second, the solution of the
first optimization step is used as the input of a nearest neighbor
optimization, to minimize the number of neighbors of class 0 to each
sample of class 1 within a fixed cutoff radius of 10−2. Finally, the new
variables normalized in the interval [0, 1] are computed as x x

x x
i i

i i

,min

,max ,min
.
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