
12 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automating VPN Configuration in Computer Networks / Bringhenti, Daniele; Sisto, Riccardo; Valenza, Fulvio. - In: IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING. - ISSN 1545-5971. - ELETTRONICO. - (In corso di
stampa). [10.1109/TDSC.2024.3409073]

Original

Automating VPN Configuration in Computer Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TDSC.2024.3409073

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989330 since: 2024-06-05T06:41:01Z

IEEE

1

Automating VPN configuration
in computer networks

Daniele Bringhenti, Riccardo Sisto, Fulvio Valenza

Abstract—The configuration of security systems for commu-
nication protection, such as VPNs, is traditionally performed
manually by human beings. However, because the complexity
of this task becomes soon difficult to manage when its size
increases, critical errors that may open the door to cyberattacks
may be introduced. Moreover, even when a solution is computed
correctly, sub-optimizations that may afflict the performance
of the configured VPNs may be introduced. Unfortunately, the
possible solution that consists in automating the definition of
VPN configurations has been scarcely studied in literature so
far. Therefore, this paper proposes an automatic approach to
compute the configuration of VPN systems. Both the allocation
scheme of VPN systems in the network and their protection
rules are computed automatically. This result is achieved through
the formulation of a Maximum Satisfiability Modulo Theories
problem, which provides both formal correctness-by-construction
and optimization of the result. A framework implementing this
approach has been developed, and its experimental validation
showed that it is a valid alternative for replacing time-consuming
and error-prone human operations for significant problem sizes.

Index Terms—VPN, network security, policy-based manage-
ment

I. INTRODUCTION

Recently, preventing network traffic from undesired inspec-
tions and alterations has become a crucial security require-
ment, due to higher privacy needs and the incessant growth
of hijacking attacks. The main mechanism for performing this
task is the creation of Virtual Private Networks (VPNs). The
traffic crossing VPNs is protected by systems located at the
VPN’s border, also called Communication Protection Systems
(CPSs), which may be VPN gateways or the end points of
the communication. Of course, a correct configuration of
CPSs is required to guarantee an effective protection from
cyber attacks, e.g., to avoid that a certain traffic can cross an
untrustworthy part of the network without encryption. At the
same time, there may be requirements to have a certain traffic
unencrypted in some nodes of the network, e.g., for monitoring
purposes.

Unfortunately, critical errors and sub-optimizations often
afflict the configuration of these systems [1]. These issues are
mainly originated by the traditional practice of configuring
CPSs manually. The complexity and variety of communication
protection solutions make this task error prone even with
relatively small sizes of the problem. As evidence, an empirical
assessment of the problem [2] showed that more than 90%

D. Bringhenti, R. Sisto, and F. Valenza are with the Politecnico di Torino,
Dip. Automatica e Informatica; e-mail: {first.last}@polito.it.

of the security administrators participating in the study intro-
duced at least one anomaly in the communication protection
configuration of a relatively small network. Additionally, the
most worrisome concern deriving from this study is that even
people with a high expertise in the security field were involved
and still introduced anomalies.

The anomalies deriving from a manual VPN configuration
may afflict two different aspects: the allocation of CPSs in the
network topology, and the definition of their protection rules.

About allocation, deciding the correct and best positions in
the network topology where CPSs should be allocated is quite
challenging for humans, because of the large variety of usage
modes for VPNs (e.g., securing a traffic with an end-to-end
VPN, creating a tunnel with a site-to-site VPN, or allowing
secure accesses with a remote-access VPN). Therefore, a
manually defined allocation scheme may result incorrect or
sub-optimized. For instance, if a CPS is allocated too far
from the source of a communication that must be protected,
it is possible that in the path from that source to the CPS
the traffic can be inspected or modified. Sub-optimizations,
instead, may occur when a redundant number of CPSs is
allocated in the topology, which may lead to a larger amount
of traffic subject to encryption or hashing algorithms, and,
consequently, a decreased global efficiency of the network
forwarding operations.

About protection rule definition, the large variety of avail-
able cipher suites for protecting communications is a reason
why anomalies are often introduced when defining such rules.
These anomalies can be classified as errors, sub-optimizations
and conflicts, and they can arise among the rules of a single
CPS (intra-function anomaly) or among rules of different
CPSs (inter-function anomaly) [2]. All such anomalies can
be exploited by attackers to undermine the communication
protection in the network or decrease network efficiency. For
example, an incorrect rule definition may lead to problems
such as the skewed channel, where traffic that is expected to
be encrypted is actually plain, or the creation of site-to-site
VPNs whose traffic crosses untrusted network areas.

Guaranteeing that the results of both operations are error-
free and optimized would be a benefit for a large variety of
different scenarios. For example, service providers would like
to design their own physical networks, deciding where CPSs
should be positioned and how they should be configured to
satisfy their communication protection requirements. A similar
problem may occur with virtualized networks [3] [4], where
network functions can be deployed dynamically on general-
purpose servers. In this case, service providers may want to
dynamically define the position and configuration of CPSs in

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

2

their virtual network so as to satisfy security requirements
requested by their customers.

In view of all these considerations, this paper focuses on the
problem of automating VPN configuration. In order to address
all the main issues illustrated above, a security automation
approach should be able to compute both the allocation scheme
and the rule sets of the necessary CPSs, through an automatic
policy refinement process, in which security administrators
just have to provide information about the network itself
(without CPSs) and the security policies to be enforced.
Other two desirable requirements are the achievement of a
formal correctness assurance about the refinement result and
the selection of the optimal (e.g., the most efficient) solution
among all the correct ones. Our proposal aims to fill this gap
focusing on VPNs based on the TLS and IPSec protocols.
To the best of our knowledge, VPN configuration automation
has been scarcely studied so far, and only in the context
of the IPSec protocol. Moreover, even in this context, no
solution is available that solves the problem of automatic
CPSs configuration considering all these features together (i.e.,
automatic computation of both CPS allocation scheme and
CPS configuration rules, formal correctness guarantee, and
optimization). Therefore, the proposed approach represents a
significant step ahead in literature.

In order to achieve our goal, we define a formal model
that captures all the information required for communication
protection, and we use it for the definition of the configu-
ration problem as a Maximum Satisfiability Modulo Theories
(MaxSMT) problem. This formulation also lets us introduce
some optimization goals that will drive the MaxSMT solver in
finding the best solution. The main challenge to address when
adopting this approach is to keep the formal model and the
corresponding MaxSMT formulation simple enough to obtain
a refinement process that is efficient in practice. In order to
test the practical applicability and efficiency of the proposed
method, we also present a proof-of-concept implementation,
and we evaluate it experimentally.

The rest of this paper is structured as follows. Section II
dissects the related work to show the novelty of the proposed
methodology. Section III provides a high-level overview of the
approach that we propose for automating CPSs configuration.
Sections IV and V present the formal models defined respec-
tively for network components and communication protection
policies and systems. Section VI shows how these models are
used for the formulation of the MaxSMT problem. Section
VII describes the implementation of the proposed approach
and its validation. Finally, Section VIII concludes the paper
and discusses future work.

II. RELATED WORK

The automation of network security configuration is widely
covered in literature [5]. Several solutions have been pro-
posed that try to minimize, if not completely remove, human
interventions in establishing the configuration of network
security functions, through automated processes such as policy
refinement [6].

However, most of these studies do not target VPNs. Instead,
they mainly focus on packet filtering firewalls, which can

enforce connectivity policies specifying what traffic flows
must be blocked or allowed in a network. The automatic
configuration of packet filtering firewalls has been studied in
many papers, some also including the use of formal methods
[7]–[17]. Even though all these ideas are interesting and useful
for automating security configuration, they cannot be directly
applied to VPN configuration because CPSs are quite different
from firewalls. In particular, filtering operations performed
by firewalls only impact the forwarding behavior, whereas
encryption and authentication mechanisms employed by VPN
gateways may modify the traffic. Besides, deciding the allo-
cation scheme of VPN gateways also requires an analysis of
the trustworthiness of the neighboring network nodes, so it is
a more complex operation.

The few studies that cover automatic configuration of com-
munication protection via VPNs provide just a few of the
features we aim at. Originally, four automated algorithms
were proposed for the creation of IPSec-based VPN tunnels,
in intra-administration domain scenarios. The first three ones
were proposed in [18]: 1) in the “direct” approach, a VPN tun-
nel is generated to enforce a single policy; 2) in the “bundle”
approach, there is an attempt at creating a single tunnel for
multiple flows, but the approach does not guarantee the solu-
tion optimality; 3) the third approach, called “combined”, is a
simple combination of the previous ones, to achieve a trade-off
between completeness and speed. The fourth algorithm [19],
based on the “ordered-split” approach, pursues optimization,
aiming to minimize the number of tunnels required to enforce
all the policies. All these approaches consider simplified
network topologies, i.e. chains where only two CPSs, in known
positions, have to be configured. Moreover, they do not use
formal models at all.

From these initial ideas, some improvements were made
later in a second group of studies [20]–[24]. Specifically, [20]
extends the previously proposed approaches to inter-domain
environments, where VPN tunnels cross multiple Autonomous
Systems, defining a negotiation protocol, through which each
Autonomous System can negotiate the VPN configurations
with the others. Both [21] and [22] aim to reduce further the
number of tunnels required to enforce the requested policies.
The former uses an iterative algorithm to remove overlapping
or redundancy anomalies among the VPN rules and conse-
quently to reduce their total number, while the latter employs
recursive binary trees to reuse already generated VPN rules
to satisfy new requirements by only adjusting their selectors,
thus avoiding the creation of additional specific rules. Instead,
[23] designs an algorithm that provides higher robustness
against potential failures and the agility needed by mobile
IPsec devices. Finally, [24] introduces support for hybrid SDN
architectures, where multiple network devices belonging to
different providers should be connected through VPN tunnels.

A third group of studies combines automatic CPSs config-
uration with automatic configuration of other function types
(e.g., firewalls, and intrusion detection systems) [25]–[27],
even though their description for the CPSs auto-configuration
problem is not as sufficiently detailed as for the other security
functions.

The studies of such second and third groups still have

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

3

𝑓7

𝑝10

𝑒1

𝑝11

𝑒2

𝑝12

𝑓8

𝑝15

𝑓9

𝑝16

𝑝17

𝑒5

𝑒6

𝑝13 𝑝14

𝑒3 𝑒4

Fig. 1: Example of Allocation Graph

strong limitations with respect to our approach. First, most
of them still consider only chain topologies without using
formal methods. The only exceptions are [20] and [26]. In
particular, [20] considers more general network topologies,
but with a fixed set of already positioned CPSs and no formal
model at all, while [26] addresses only the allocation problem,
without automatic generation of CPS rules. Although [26] uses
a formal approach, it is based on an iterative SMT formula-
tion, which is quite different from our MaxSMT formulation.
Besides, these studies do not model some aspects, such as
how traffic is forwarded in the network, that are necessary
to define a correct positioning and configuration of CPSs in
the network. Finally, all the existing approaches mentioned
above only support IPSec and not TLS, while TLS is becoming
another common VPN technology.

From this analysis, it follows that our proposal is the first
one that addresses the problem of automatically defining both
the allocation scheme and the protection rules of CPSs in
a computer network topology, i.e., not necessarily a chain,
starting from a set of communication protection policies. Even
restricting attention only to the case of chains, our solution is
the first one combining automation, formal verification and
optimization to solve the CPS allocation and configuration
problem.

III. APPROACH

This section presents the approach proposed in this paper
to automatically compute the allocation scheme and protection
rules of distributed CPSs.

Specifically, Subsection III-A describes the inputs a user
should provide to the proposed approach, whereas Subsection
III-B describes the methodology followed for the computation
of the output CPS allocation scheme and configuration. In both
cases, our objective is to discuss the main ideas behind our
proposal at a high level, independently of the actual models
and mathematical problem constraints. This description may
thus be helpful in understanding the formalization of the inputs
and of the methodology presented in next sections.

A. Inputs

The proposed methodology requires three inputs for CPS
configuration: (i) an Allocation Graph (AG); (ii) a set of Com-
munication Protection Policies (CPPs); (iii) an optimization
profile.

Allocation Graph
The first input is a graph representing the physical topology

of the computer network for which CPSs must be configured.

An example of AG is shown in Fig. 1. An AG includes
different types of nodes, with different functionalities and roles
for communication protection. Each node can have associated
configuration parameters (e.g. IP addresses). End points may
be single devices (𝑒1, 𝑒2, 𝑒5, 𝑒6 in Fig. 1) or subnetworks
(𝑒3, 𝑒4 in Fig. 1), and they may contribute or not to the
generation of VPNs, according to whether they support the
required VPN protocol and cipher suites to generate them
(the supported features are configuration parameters associated
with each node).

The AG includes special nodes (𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15,
𝑝16, 𝑝17 in Fig. 1), called Allocation Places (AP), representing
placeholder positions where CPSs may be allocated. These
nodes may be present or absent in the output allocation
scheme, and their configuration parameters (i.e. their rules) are
not yet specified in the AG. Some VPN gateways (𝑓9 in Fig. 1)
may already be present in the AG, and they may be employed
for the creation of VPNs, jointly with other CPSs hosted by
end points or allocated by the configuration procedure. These
gateways are in fixed positions, and they are already part of the
allocation scheme to be computed, but their protection rules
are not yet specified.

All the other nodes (𝑓7, 𝑓8 in Fig. 1) that are not end points,
APs, or VPN gateways, represent service functions performing
other types of operations, such as firewalling, network address
translation and load balancing. As the methodology focuses on
the configuration of CPSs only, these functions are assumed
to be already configured (e.g., firewalls already have their own
filtering rules). Their behavior and configuration must be taken
into account, as they may impact the resolution of the auto-
configuration problem. For example, the filtering rules of a
firewall establish what traffic flows are blocked or allowed in
a network. Therefore, VPNs must be configured so as to ensure
that the traffic crossing them is not dropped by firewalls.
Besides, some middleboxes can also support VPN capabilities
(e.g., they can support some encryption algorithms) and they
can also be considered part of the CPS allocation scheme.

Communication Protection Policies
The second input is a set of CPPs, specifying the com-

munication protection properties that must be enforced in the
AG. An example of CPP set is shown in TABLE I. CPPs
are expressed with a medium-level language [27], which is at
the same time user-friendly and implementation agnostic. We
assume that the CPPs, defined by the security administrator, do
not overlap with or contradict each other, i.e., they are disjoint.
About this aspect, several approaches exist in literature [1],
[2], [28] to avoid such anomalies in the policy definition.
Moreover, in literature there are also methods to define policies
with higher abstractions levels, and to translate them into
medium-level languages [29].

Each CPP is characterized by the following pieces of
information: 1) policy conditions, used to identify the com-
munications the policy refers to (column 1 of TABLE I);
2) information about how confidentiality and integrity must
be enforced for the identified communications (columns 2,
3 and 4 of TABLE I); 3) information about VPN protocols
that must be used (column 5 of TABLE I); 4) information
about the VPN enforcement modes (column 6 of TABLE I); 5)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

4

TABLE I: Examples of Communication Protection Policies

Policy conditions Algorithms for
confidentiality

Algorithms for
integrity

Algorithms for
authentication VPN protocols Enforcement modes Trustworthiness and

Inspection

IPSrc = 192.174.1.∗,
IPDst = 144.14.2.∗,

pSrc = ∗, pDst = 80,
tProto = ∗

{3DES-CBC} ★ {NULL} {TLS, IPSec}
(false, true, d.c.,

true, d.c.,
false, false)

𝑁𝑈 = {125.22.2.2},
𝑁 𝐼 = {128.28.8.5},

𝐿𝑇 = ∗

IPSrc = 122.33.33.3,
IPDst = 12.67.84.2,

pSrc = 110, pDst = ∗,
tProto = ∗

{AES-GCM-256,
3DES-CBC} {HMAC-SHA-512} {RSA} {TLS}

(true, d.c., true,
true, d.c.,

true, false)

𝑁𝑇 = ∗,
𝐿𝑈 = {link between

55.44.33.22 and
55.44.33.27}

information about the trustworthiness and inspection needs of
AG nodes and links for the identified communication (column
7 of TABLE I). By communication we mean a flow of packets
intended to go from a source node to a destination node,
crossing a number of intermediate nodes that may possibly
drop them (e.g. firewalls) or modify them (e.g. NATs).

1) Policy conditions: They are expressed as predicates on
the fields of the IP 5-tuple1. The conditions on source IP
address and port (IPSrc, pSrc) identify the source of the com-
munication, and refer to the packets sent by the source, while
the conditions on destination IP address, port and transport-
layer protocol (IPDst, pDst, tProto) identify the destination of
the communication and refer to the packets received by the
destination. The symbol ∗ can be associated to each field of
the IP 5-tuple to specify that all the possibles values must be
considered for that packet field for the identification of the
communications which are subject to the policy.

2) Information about how confidentiality and integrity must
be enforced: The way confidentiality and integrity must be en-
forced is specified by three sets of algorithms (for confidential-
ity, integrity and client/server authentication, respectively) that
are acceptable. In case a security property is not wanted (e.g.,
a communication should not be encrypted for confidentiality),
the only element composing the algorithm set for that property
is the NULL algorithm. Besides, the user may decide not to
request a specific algorithm. In that case, the special symbol
★ is used to indicate that any algorithm can be employed for
the security property enforcement.

3) Information about VPN protocols: Each policy may
require the use of a specific VPN protocol for its enforcement.
In particular, all the models discussed in this paper have been
defined to be compliant with the two main VPN protocols, i.e.,
TLS and IPSec. As for the algorithms, the user may decide
not to request a specific VPN protocol. The special symbol ★
is then used to indicate that any protocol can be used. In that
case, the protocol will be actually chosen depending on the
available algorithms.

4) Information about the VPN enforcement modes: This
is expressed through seven Boolean values, specifying the
following choices: 1) whether confidentiality must be enforced
on the header of the original packet, 2) whether integrity must

1For simplicity, we identify communications on the basis of the IP 5-tuple,
but, without loss of generality, other fields (e.g., MAC addresses or URL) can
be easily introduced without significant impact on the models that are later
defined.

be enforced on the header of the original packet, 3) whether
confidentiality must be enforced on the packet payload, 4)
whether integrity must be enforced on the packet payload,
5) whether integrity must be enforced on the header of the
encapsulating packet (if any), 6) whether server authentication
is requested, and 7) whether client authentication is requested.
These seven values are joined into a tuple, and they can take
ternary values: true, false, don’t care (d.c.). The d.c. value
means that the specific enforcement mode is irrelevant for the
user.

5) Information about the trustworthiness of AG nodes and
links: The user must specify in which network sections the
communication protection must be enforced, and in which
ones it is not required. In particular, some AG nodes are
defined “untrustworthy” (𝑁𝑈) for a policy when every packet
belonging to the communication identified by that policy and
crossing those nodes must be strengthened with the requested
security properties. VPN gateways and APs can themselves
be untrustworthy for a policy. In that case, they cannot be
used to enforce security properties for the communications
identified by the policy. Instead, the AG nodes that are
defined “trustworthy” (𝑁𝑇) for a policy are nodes which the
communication packets can cross in plain or strengthened with
the requested security properties. The user must specify either
the 𝑁𝑈 set of untrustworthy nodes or the 𝑁𝑇 set of trustworthy
nodes, because the other set can be automatically derived
by our approach by using the AG topological information.
Similar definitions apply to “untrustworthy” links (𝐿𝑈) and
“trustworthy” links (𝐿𝑇), and again the user must specify only
one of these two sets. Moreover, for what concerns inspection
needs, some AG node are defined “inspector” nodes (𝑁 𝐼)
for a policy if it is required that all the packets belonging
to the communication identified by that policy cross those
nodes without encryption. The reason is that the node should
be allowed to inspect those packets (e.g., because it is an
intrusion prevention system or the inspection is required to
avoid disclosure of business information). In view of this
definition, inspector nodes must also be trustworthy nodes.
The specification of the 𝑁 𝐼 set is optional for the user. Finally,
for each one of these sets related to trustworthiness and
inspection, the special set denoted by ∗ represents all the
possible elements that may be included in those sets. Note
that the trustworthiness information is per-policy, e.g., different
CPPs might define different untrustworthy nodes (for different

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

5

communications).
Optimization profile
The third input is an optimization profile, specifying the cri-

terion to be used for optimization. For this parameter, different
choices may be offered to the user. Here, for simplicity we
consider just the following two possible profiles, both referred
to network efficiency2.

The min-allocation profile aims to allocate the least num-
ber of VPN gateways. This achievement would be useful
in both traditional and virtualized networks. In the former,
less middleboxes would be bought and manually installed.
In the latter, less resources of the general-purpose servers
would be used for deploying virtual functions. This objective
can be achieved by promoting the generation of end-to-end
VPNs where end points make their communications secure
by themselves, instead of site-to-site VPNs. The counterbal-
ance of optimizing allocation is that in end-to-end VPNs the
bandwidth consumption is higher, as the communications that
are identified by the security policies are reinforced with the
requested properties for their whole paths, even if it was not
strictly necessary.

The min-bandwidth profile aims to improve the performance
of network communications in terms of bandwidth. This
objective consists in generating an allocation scheme where
VPN gateways are preferred than end points for covering the
role of CPSs. This preference causes protection to be enforced
for as short as possible paths, therefore saving bandwidth.
The counterbalance of optimizing bandwidth is that resource
consumption may result higher, as it may be necessary to
install a higher number of middleboxes for VPN generation
than what would be strictly necessary.

As it is evident, the two profiles have opposite optimization
criteria, and they cannot be enforced together.

These two optimization profiles are just demonstrative ex-
amples for showing the capabilities of the methodology. On
the one hand, if we consider scenarios where optimization
goals are not clearly defined or are highly variable, a user
may decide to use no optimization profile at all, because an
optimization profile is not mandatory for the effectiveness of
the overall methodology, or simply select the one of the two
that is expected to fit best. It is important to note that even
a human network administrator would not be able to keep
up with the variability of those scenarios and, consequently,
would not be able to find optimized solutions effectively and
quickly. Finally, we remark that the proposed approach is
flexible enough to support other optimization profiles, which
the users may personally define without the need of modifying
the overall configuration methodology. If new optimization
goals can be quantified, the user may consider them, or a
combination of them, in the definition of a new profile3.

2The motivation of this choice is that it would be debatable to define profiles
that optimize security parameters, as it is difficult to quantify and estimate the
contribution that each VPN solution provides to the security of a computer
network.

3Even if quantifying the security contribution of VPN solutions is difficult
and open to multiple interpretations, if the users can actually quantify them in
specific scenarios related to their networks, they may introduce new profiles
focused on them, and they would be supported by our methodology.

B. Methodology

The core of the methodology consists of formulating the
auto-configuration problem as a MaxSMT problem, and solv-
ing it by means of an off-the-shelf solver. A MaxSMT problem
enriches and extends a traditional SAT problem, which consists
of determining if there exists an interpretation of a set of
Boolean formulas that satisfies them all, from two points of
view. On one side, while in a SAT problem only Boolean for-
mulas are considered, in a MaxSMT problem logical formulas
based on a variety of theories (e.g., integers, strings, bit arrays)
can be used, so enabling the modeling of complex problems
in a way that is closer to reality. On the other side, a SAT
problem is only composed of hard constraints, i.e., a valid
interpretation must necessarily satisfy all formulas. Instead, a
MaxSMT problem can have not only hard constraints, but also
weighted soft constraints. The latter are assigned with weights,
and the goal is to maximize the sum of the weights that are
assigned to the satisfied soft constrains. Therefore, there is
not a strict requirement of satisfaction for these clauses. Soft
constraints enable the achievement of optimization objectives.
Instead, hard constraints enable the achievement of formal
correctness by construction, provided that the properties that
must be formally guaranteed in the solution are modeled as
hard constraints. For these reasons, formulating our problem
as a MaxSMT problem lets us achieve all the three stated
objectives, i.e. full automation, optimization, and formal cor-
rectness.

The MaxSMT formulation has been chosen also because
the resolution of MaxSMT problems has a good scalability on
average, and efficient state-of-the-art solvers such as [30] exist.
It is indeed necessary to accurately tune the definition of the
formulas on which a MaxSMT problem leans, as the way they
are defined may impact both the possibility to find solutions
and the performance of the problem resolution significantly.
This is the main challenge that we had to address to develop
our solution using this technique.

According to this approach, we define formal models,
based on first-order logic formulas, to model the network
components in the AG, and for the CPPs and the CPSs. Such
models (respectively described in Sections IV and V) capture
all the information that must be considered for the computation
of the CPSs configuration. Then, the MaxSMT problem is for-
mulated, by defining both hard and soft constraints (illustrated
in Section VI) based on the formal models, and the MaxSMT
solver is executed for solving the resulting problem instance.
In case at least a hard constraint cannot be fulfilled (i.e., the
CPPs are not all feasible), then a non-enforceability report
is produced to inform the user that the auto-configuration
problem has no solution. Otherwise, the output is composed of
the CPSs allocation scheme (i.e., it shows on which APs and
other nodes a CPS must be allocated), and the protection rules
for each allocated CPS. This information will be exploited by
the user to create and configure the security service.

IV. NETWORK MODEL

This section presents the formal model of the relevant
network components: the AG model in Subsection IV-A, the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

6

TABLE II: Notation

Symbol Definition
B = {true, false} Boolean set
𝐺 = (𝑁, 𝐿) Allocation Graph (AG)
𝑁 node set of the AG
𝑁𝐸 endpoints
𝑁𝑉 VPN gateways
𝑁𝐴 Allocation Places (APs)
𝑁𝐹 other middleboxes
𝑛𝑘 ∈ 𝑁 the element of 𝑁 identified by 𝑘

𝑛𝑠 , 𝑛𝑑 ∈ 𝑁𝐴 source/destination endpoint
𝐿 edge set of the AG
𝑙𝑖, 𝑗 ∈ 𝐿 the edge from 𝑛𝑖 to 𝑛 𝑗
𝑡 = (𝑝𝑖 , ℎ𝑖 , ℎ𝑎) a class of packets
𝑡0 the empty set of packets
𝑡𝑖, 𝑗 the traffic transmitted from 𝑛𝑖 to 𝑛 𝑗
ℎ𝑥 a 5-tuple header
𝑝𝑖 the internal payload
ℎ𝑖 the original initial header
ℎ𝑎 the additional header
𝐹 flow set
𝑓 a flow, i.e., class of packets
𝑃 set of CPPs
𝑝 a CPP
𝐶 condition set of a CPP
𝐴𝑐 , 𝐴𝑖 , 𝐴𝑎 cipher algorithms

accepted by a CPP
𝑉 VPN protocols

accepted by a CPP
𝑆 information about CPP

security properties
𝑠𝑐𝑖 information about the

confidentiality of 𝑡.ℎ𝑖
𝑠𝑖𝑖 information about the

integrity of 𝑡.ℎ𝑖
𝑠𝑐𝑖𝑝 information about the

confidentiality of 𝑡.𝑝𝑖
𝑠𝑖𝑖 𝑝 information about the

integrity of 𝑡.𝑝𝑖
𝑠𝑖𝑎 information about the

integrity of 𝑡.ℎ𝑎
𝑠𝑠𝑎 information about

server authentication
𝑠𝑐𝑎 information about

client authentication
𝑊 information about

network trustworthiness
𝑁𝑈 ⊆ 𝑁 untrustworthy nodes
𝑁𝑇 ⊆ 𝑁 trustworthy nodes
𝑁 𝐼 ⊆ 𝑁 inspector nodes
𝐿𝑈 ⊆ 𝐿 untrustworthy links
𝐿𝑇 ⊆ 𝑁 trustworthy links
𝐹 𝑝 ⊆ 𝐹 flows that satisfy the

the conditions of CPP 𝑝

𝑅𝑛 set of all the placeholder
rules of 𝑛

𝑟 a placeholder rule
𝐶 condition set of a CPS rule
𝑎𝑐 , 𝑎𝑖 , 𝑎𝑎 cipher algorithms enforced

by the CPS rule
𝑐 VPN protocol used

by the CPS rule

Symbol Definition
𝑆 information about the security

properties enforced by the CPS rule
𝑚 Boolean value that expresses if

the traffic satisfying 𝐶 must be
encapsulated through a tunnel

act action of the CPS rule
index𝑁 : 𝑁 → N0 maps 𝑛 ∈ 𝑁 to its

non-negative integer index
address: 𝑁 → 2𝐼 maps 𝑛 ∈ 𝑁 to its

set of IP addresses
𝜂: 𝑇 → 𝐻 maps a packet class 𝑡 to

its most external header ℎ

𝜋: 𝐹 → (𝑁)∗ maps a flow to the ordered
list of nodes that are crossed
by that flow

𝜏: 𝐹 × 𝑁 → 𝑇 maps a flow and a node to
the ingress traffic

𝜈: 𝑁 × 𝐹 → maps a network node 𝑛 and a
𝑁𝐴 + {𝑛0} flow 𝑓 to the next node

crossed by 𝑓 after 𝑛

transform: 𝑁 → 𝑇 maps a node and an input traffic
to the corresponding output traffic

𝜙: 𝑃 → P(FP) maps a policy to the
set of traffic flows
computed for it

𝜌: 𝐹𝑃 → 𝑃 maps a traffic flow to the
policy for which it has
been computed

allocated: 𝑁 → B true ⇔ a CPS is allocated in 𝑛 ∈ 𝑁

tunneled: 𝑇 → B true ⇔ the traffic 𝑡 has an external
header that has been added by a CPS

deny: 𝑁 → 𝑇→B true ⇔ 𝑛 drops all the packets in 𝑡

protect𝑥 : true ⇔ a CPS allocated on 𝑛

𝑁 × 𝐹 → B adds a protection to 𝜏(𝑓 , 𝑛) for
the corresponding security property
(confidentiality when 𝑥 = 𝑐,
integrity when 𝑥 = 𝑖), or if
it starts an authentication
procedure (when 𝑥 = 𝑎)

unprotect𝑥 : true ⇔ a CPS allocated on 𝑛

𝑁 × 𝐹 → B removes a protection from 𝜏(𝑓 , 𝑛) for
the corresponding security property
(confidentiality when 𝑥 = 𝑐,
integrity when 𝑥 = 𝑖), or if
it completes an authentication
procedure (when 𝑥 = 𝑎)

supported : 𝑁 × A𝑐× true ⇔ the three cypher algorithms
A𝑖 × A𝑎 → B are supported by the node

delimiters : 𝑁 × 𝑁 true ⇔ the two nodes delimit
× 𝐹 → B a VPN for the flow

match : 𝑅filt
𝑛 × 𝑇 → B true ⇔ the rule

conditions match the traffic
configured: 𝑅𝑛 → B true ⇔ the placeholder rule

is configured
𝑡1 ⊆ 𝑡2 ∈ 𝑇 𝑡1 is a sub-traffic of 𝑡2
∧, ∨, ¬ used for conjunction,

disjunction, negation
. used to denote a specific tuple

element (e.g., given a tuple 𝑡 =

(𝑎, 𝑏, 𝑐), 𝑡.𝑎 identifies element
𝑎 of tuple 𝑡)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

7

traffic flows model in Subsection IV-B and the network func-
tions model in IV-C. The network model is partially mutated
from the modeling approach described in [12]. However, some
changes were introduced to make it compliant with some
exclusive characteristics of CPPs, as that modeling approach
was designed to work with packet filtering firewalls.

TABLE II includes the main formal notation (symbols,
functions, predicates, operators) used in this section, and in
all the next sections related to models. Many components
are modeled as tuples, composed of sub-components. The “.”
operator will be used to access a single named sub-component
of a tuple in the remainder of this paper. For instance, for
a tuple 𝑡 = (𝑎, 𝑏, 𝑐), the notation 𝑡.𝑎 denotes the 𝑎 sub-
component of 𝑡.

A. Allocation Graph model

The formal model for the AG is a directed graph, repre-
sented by the tuple 𝐺 = (𝑁, 𝐿).

On one side, 𝑁 is the set of vertices representing the
network nodes, and it is composed of four disjoint subsets,
i.e., 𝑁 = 𝑁𝐸 ∪ 𝑁𝑉 ∪ 𝑁𝐴 ∪ 𝑁𝐹 . Subset 𝑁𝐸 includes all
the end points which can be the source or destination of
a network communication (they may be single devices or
full subnetworks, e.g., a branch of a network company). 𝑁𝑉

includes all the VPN gateways that are already present in
the network topology, whereas 𝑁𝐴 is the set of all the APs
where new CPSs may be allocated. Instead, 𝑁𝐹 consists of
all the other network functions (e.g., load balancers, network
address translators, packet filtering firewalls) that are present
in the network. Some of them may be enabled to host CPS
functionalities as well.

Two utility functions are defined on the 𝑁 set:
• the index𝑁: 𝑁 → N0 function maps each node to a unique

non-negative integer number;
• the address: 𝑁 → 2𝐼 function maps each node to the set

of its IP addresses.
Instead, the allocated: 𝑁 → B predicate maps a node 𝑛 ∈ 𝑁

to true if 𝑛 has a CPS capability allocated in the solution
(of course, for each VPN gateway 𝑛 ∈ 𝑁𝑉 , which is already
present in the AG, allocated(n) = true).

On the other side, 𝐿 is the set of links, i.e. directed arcs in-
terconnecting the nodes of 𝐺. Each link is uniquely identified
by two non-negative integers, respectively the indexes of the
source and destination nodes. Each link is mapped to these
integers through the index𝐿: 𝐿 → N2

0 function.

B. Traffic flows model

A traffic 𝑡 represents a packet class and it is defined as a
tuple 𝑡 = (𝑝𝑖 , ℎ𝑖 , ℎ𝑎), where 𝑝𝑖 models the internal payload,
ℎ𝑖 models the original initial header, while ℎ𝑎 models the
additional header that may be added by a VPN4. Each ℎ𝑥 ,
with 𝑥 = {𝑖, 𝑎}, is a conjunction of five predicates, one
for each field of the IP 5-tuple. For simplicity, we write

4In the proposed model, we chose to avoid the generation of VPNs based on
multiply nested tunnels, because those solutions would have highly degraded
performance.

ℎ𝑥 as a tuple, composed of the five predicates, i.e., ℎ𝑥 =

(IPSrc, IPDst, pSrc, pDst, tProto).
IPSrc and IPDst are predicates that express conditions on

the source IP address and on the destination IP address,
respectively. These conditions may impose a specific value for
the IP address, or specify that it can take a range of values.
Each predicate is defined over four integer variables, each
one representing a byte of the corresponding IP address. For
example, the predicate imposing that the source IP address is
equal to 127.0.10.1 is “𝑥1 = 127 ∧ 𝑥2 = 0 ∧ 𝑥3 = 10 ∧ 𝑥4 = 1”,
where each 𝑥𝑖 , with 𝑖 ∈ {1, 2, 3, 4}, is an integer variable
that can take values from 0 to 255. For simplicity, we use
the following sugared syntax for expressing this predicate
in a more concise way: “IPSrc = 127.0.10.1”. Similarly,
“𝑥1 = 127 ∧ 𝑥2 = 0 ∧ 𝑥3 = 10 ∧ 𝑥4 >= 0 ∧ 𝑥4 <= 255”
can be concisely written as “IPSrc = 127.0.10.∗”.

pSrc and pDst are predicates that express conditions on the
source transport-layer port and on the destination transport-
layer port, respectively. As for the predicates on the IP
addresses, they can define a single value or a range of values.
However, they are defined over a single integer variable.
For example, a possible pSrc predicate is “𝑥 = 80”, with 𝑥

an integer variable, and the corresponding sugared syntax is
“pSrc = 80”. Finally, tProto expresses a condition about which
transport-layer protocol is used. This predicate is defined over
a single variable too. A possible example is “𝑥 = TCP”, whose
corresponding sugared syntax is “tProto = TCP”.

Each predicate 𝑝 out of these five ones can have a special
formulation, i.e., “𝑝 = ∗”. This means that any possible value
is acceptable and the predicate is always true (e.g., “IPSrc = ∗”
means that this predicate returns true for any possible value
of the four variables on which it is defined).

Denoting the set of all the possible traffics with 𝑇 , and
the set of all the possible 5-tuple-based headers with 𝐻, the
𝜂: 𝑇 → 𝐻 function maps a packet class 𝑡 to its most external
header ℎ, among the headers that really exist in the real traffic
represented by 𝑡. This function works on 𝑡 ∈ 𝑇 as shown in
(1): it maps 𝑡 to 𝑡.ℎ𝑖 if the external 5-tuple-based header is
totally absent from the traffic, to 𝑡.ℎ𝑎 otherwise.

𝜂 (𝑡) =
{
𝑡 .ℎ𝑎 if tunneled(𝑡) = true
𝑡 .ℎ𝑖 otherwise

(1)

In this definition, the tunneled: 𝑇 → B predicate maps a traffic
𝑡 to true if 𝑡 has an external header that has been added by a
CPS.

Another definition useful for our model is the definition of
sub-traffic. Considering two packet classes 𝑡1, 𝑡2 ∈ 𝑇 , we say
𝑡1 is a sub-traffic of 𝑡2, written 𝑡1 ⊆ 𝑡2, if 𝑡1 represents a subset
of the packets represented by 𝑡2 (i.e., 𝜂(𝑡2) ⇒ 𝜂(𝑡1)).

After having defined the traffic model, let us introduce the
traffic flow model, which is a concept related to what we
called informally a communication. Denoting the set of all
traffic flows with 𝐹, a traffic flow 𝑓 ∈ 𝐹 represents how a
specific packet class would be transformed when crossing a
list of nodes in 𝑁 . As such, 𝑓 is formally represented as a
list 𝑓 = [𝑛𝑠 , 𝑡𝑠𝑎, 𝑛𝑎, 𝑡𝑎𝑏, 𝑛𝑏, ..., 𝑛 𝑗 , 𝑡 𝑗𝑘 , 𝑛𝑘 , ..., 𝑛𝑝 , 𝑡𝑝𝑑 , 𝑛𝑑], with
alternating node and traffic elements. In this model, the traffic
𝑡𝑠𝑎 represents a set of packets that node 𝑛𝑠 may generate and

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

8

send to 𝑛𝑎, while 𝑡𝑎𝑏 represents the packets that 𝑛𝑎 could
send to 𝑛𝑏 and that would result from the transformation of
the packets in 𝑡𝑠𝑎 (as a special case, traffic may be forwarded
without transformation), and so on. Another property of a flow
is that the packets expressed by 𝑡 𝑗𝑘 are all managed in the same
way by the receiving node 𝑛𝑘 , i.e. the decision taken by 𝑛𝑘 on
each one of them is the same. In other words, packets that are
discriminated by the receiving node belong to different flows.
A flow 𝑓 just represents how packets would be transformed
if they were forwarded, not the forwarding decisions, i.e. a
flow may be interrupted, meaning its packets cannot reach
the intended destination because an intermediate node (e.g. a
firewall) blocks them.

Three utility functions are defined over domain 𝐹:
• 𝜋: 𝐹 → (𝑁)∗ maps a flow 𝑓 to the ordered list of nodes

that are crossed by 𝑓 :

𝜋 ([𝑛𝑠 , 𝑡𝑠𝑎 , 𝑛𝑎 , 𝑡𝑎𝑏 , ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑]) = [𝑛𝑠 , 𝑛𝑎 , ..., 𝑛𝑘 , 𝑛𝑑] (2)

For two nodes 𝑛𝑖 and 𝑛 𝑗 belonging to the same node list,
𝑛𝑖 ≺ 𝑛 𝑗 means that 𝑛𝑖 precedes 𝑛 𝑗 in that list. Similarly,
𝑛𝑖 ⪯ 𝑛 𝑗 means that 𝑛𝑖 precedes 𝑛 𝑗 , or it is 𝑛 𝑗 itself.

• 𝜏: 𝐹 × 𝑁 → 𝑇 maps a flow 𝑓 and a node 𝑛 to the traffic
that precedes 𝑛 in the definition of 𝑓 . In case 𝑛 is not
crossed by f, i.e., 𝑛 ∉ 𝜋(𝑓), 𝜏(𝑓 , 𝑛) = 𝑡0, where 𝑡0 is
the element of 𝑇 that symbolizes absence of traffic. For
example:

𝜏 ([𝑛𝑠 , 𝑡𝑠𝑎 , 𝑛𝑎 , 𝑡𝑎𝑏 , 𝑛𝑏 , ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑], 𝑛𝑏) = 𝑡𝑎𝑏 (3)

• 𝜈: 𝐹 × 𝑁 → 𝑁 maps a flow 𝑓 and a node 𝑛 to the node
that follows 𝑛 in 𝜋(𝑓). If no node that follows 𝑛 exists,
then 𝜈(𝑓 , 𝑛) = 𝑛0, where 𝑛0 is the element of 𝑁 that
symbolizes absence of node. For example:

𝜈 ([𝑛𝑠 , 𝑡𝑠𝑎 , 𝑛𝑎 , 𝑡𝑎𝑏 , 𝑛𝑏 , ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑], 𝑛𝑎) = 𝑛𝑏 (4)

C. Network functions model

The behavior of a network function is defined as a combina-
tion of a forwarding behavior and a transformation behavior.

The forwarding behavior of a network function in 𝑛𝑘 ∈ 𝑁

establishes if a class of packets 𝑡 𝑗𝑘 belonging to a flow 𝑓 =

[𝑛𝑠 , 𝑡𝑠𝑎, ...,𝑛 𝑗 , 𝑡 𝑗𝑘 , 𝑛𝑘 , 𝑡𝑘𝑖 , 𝑛𝑖 , ..., 𝑛𝑝 , 𝑡𝑝𝑑 , 𝑛𝑑] is discarded
by 𝑛𝑘 or it is forwarded to the next hop 𝑛𝑖 . This behavior is
modeled by the deny: 𝑁×𝑇→B predicate, which maps a node
𝑛𝑘 and a traffic 𝑡 to true if 𝑛𝑘 blocks all the packets expressed
by 𝑡, to false otherwise.

Instead, the transformation behavior of a network function
in 𝑛𝑘 ∈ 𝑁 establishes how a traffic 𝑡𝑘𝑖 belonging to a flow
𝑓 = [𝑛𝑠 , 𝑡𝑠𝑎, ...,𝑛 𝑗 , 𝑡 𝑗𝑘 , 𝑛𝑘 , 𝑡𝑘𝑖 , 𝑛𝑖 , ..., 𝑛𝑝 , 𝑡𝑝𝑑 , 𝑛𝑑] is modified
by 𝑛𝑘 . This behavior is modeled by the transform: 𝑁 ×𝑇→𝑇

function, which maps a node 𝑛𝑘 and an input traffic 𝑡 to the
traffic that may be produced by 𝑛𝑘 as output.

These two behaviors have been modeled separately, because
their roles in achieving a solution for the configuration prob-
lem are different. The transformation behavior is useful to
identify how a packet class changes when crossing a chain
of nodes, whereas the forwarding behavior defines whether a
traffic flow is stopped at a certain point of its path because

of a node that drops the input packet class. Thanks to this
separation of duties, it is possible to first compute how traffic
is transformed when crossing the network, i.e. the transform
predicate, and later reason about VPN configuration using this
information. The deny predicate, instead, cannot be computed
in advance, because it may depend on how traffic is modified
by CPSs.

V. COMMUNICATION PROTECTION MODELS

This section illustrates the models for the CPPs in Subsec-
tion V-A, and the models for the CPSs in Subsection V-B.

A. Communication Protection Policies model
Let 𝑃 be the set of the CPPs that must be enforced

on AG 𝐺𝐴. Each 𝑝 ∈ 𝑃 is modeled as a tuple 𝑝 =

(𝐶, 𝐴𝑐, 𝐴𝑖 , 𝐴𝑎, 𝑉, 𝑆,𝑊).
𝐶 is the condition set, which identifies the communications

for which the policy must be enforced. As 𝐶 takes the same
form as the header model 𝐻, it is formalized in the same
way, as a conjunction of five predicates on the fields of the
IP 5-tuple, written as 𝐶 = (IPSrc, IPDst, pSrc, pDst, tProto).
However, as already mentioned, the predicates 𝐶.IPSrc and
𝐶.pSrc refer to the traffic generated by flow sources, whereas
𝐶.IPDst, 𝐶.pDst and 𝐶.tProto refer to the traffic received by
flow destinations.

𝐴𝑐, 𝐴𝑖 and 𝐴𝑎 represent the cipher algorithms that may
be used to respectively enforce confidentiality, integrity and
client/server authentication, among all the possible algorithms
represented by the A𝑐, A𝑖 and A𝑎 sets. Each 𝐴𝑥 , with 𝑥 =

{𝑐, 𝑖}, is modeled as a set of algorithms 𝐴𝑥 = {𝑎1, 𝑎2, ..., 𝑎𝑙}
that are acceptable for the communication protection requested
by 𝑝.
𝑉 represents the protocols that can be used for VPN

creation. In particular, 𝑉 is modeled as a set of protocols
𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑚}. In this study, the protocols that can
be introduced in this set are TLS and IPSec. However, the
model of 𝑉 has been defined as general as possible, to allow
future extensions to other protocols, such as MPLS. Each
VPN protocol 𝑣𝑦 is characterized by a set of cipher suites
that can be used for protection enforcement, i.e., 𝑣𝑦 .𝐶𝑆 =

{𝑐𝑠1, 𝑐𝑠2, ..., 𝑐𝑠𝑞}, where each cipher suite is a tuple composed
of three algorithms 𝑐𝑠𝑧 = (𝑎𝑐, 𝑎𝑖 , 𝑎𝑎) for confidentiality,
integrity and client/server authentication, respectively.

𝑆 represents the information about how the security prop-
erties must be applied on the traffic. It is modeled as a tuple
𝑆 = (𝑠𝑐𝑖 , 𝑠𝑖𝑖 , 𝑠𝑐𝑖𝑝 , 𝑠𝑖𝑖 𝑝 , 𝑠𝑖𝑎, 𝑠𝑠𝑎, 𝑠𝑐𝑎), where each component
can be a ternary value: true, false, or d.c. (i.e., “don’t care”).
For traffic 𝑡, 𝑠𝑐𝑖 states if confidentiality must be enforced on
the original internal header 𝑡.ℎ𝑖 , 𝑠𝑖𝑖 states if integrity must be
enforced on 𝑡.ℎ𝑖 , 𝑠𝑐𝑖𝑝 states if confidentiality must be enforced
on the internal payload 𝑡.𝑝𝑖 , 𝑠𝑖𝑖 𝑝 states if integrity must be
enforced on the internal payload 𝑡.𝑝𝑖 , and 𝑠𝑖𝑎 states if integrity
must be enforced on the additional header 𝑡.ℎ𝑎 if present.
Instead, 𝑠𝑠𝑎 states if server authentication must be enforced,
and 𝑠𝑐𝑎 states if client authentication must be enforced.
𝑊 represents the information about the trustworthiness of

network nodes and links. Specifically, 𝑊 is a tuple 𝑊 =

(𝑁𝑈 , 𝑁𝑇 , 𝑁 𝐼 , 𝐿𝑈 , 𝐿𝑇), where:

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

9

• 𝑁𝑈 ⊆ 𝑁 is the set of untrustworthy nodes;
• 𝑁𝑇 ⊆ 𝑁 is the set of trustworthy nodes;
• 𝑁 𝐼 ⊆ 𝑁𝑇 ⊆ 𝑁 is the set of inspector nodes;
• 𝐿𝑈 ⊆ 𝐿 is the set of untrustworthy links;
• 𝐿𝑇 ⊆ 𝐿 is the set of trustworthy links.

As the user can only specify either 𝑁𝑈 or 𝑁𝑇 , the other set
is automatically derived in view of the knowledge of the 𝑁

set of the AG. In particular, if the user specifies the 𝑁𝑈 set,
then 𝑁𝑇 is computed as 𝑁𝑇 = 𝑁 \ 𝑁𝑈 . Instead, if the user
specifies the 𝑁𝑇 set, then 𝑁𝑈 is computed as 𝑁𝑈 = 𝑁 \ 𝑁𝑇 .
Similar considerations apply to the 𝐿𝑈 and 𝐿𝑇 sets, because
the user can specify only one of them.

Given a policy 𝑝 ∈ 𝑃, it is possible to identify all the flows
of the 𝐹 set for which the security properties requested by 𝑝

must be enforced. Specifically, a flow 𝑓 = [𝑒𝑠 , 𝑡𝑠𝑎, ..., 𝑡𝑘𝑑 , 𝑒𝑑]
satisfies 𝑝.𝐶 if the following two conditions are true:

• 𝑡𝑠𝑎 satisfies predicates 𝑝.𝐶.IPSrc and 𝑝.𝐶.pSrc, i.e.,

𝜂 (𝑡𝑠𝑎) =⇒ (𝑝.𝐶.IPSrc, ∗, 𝑝.𝐶.pSrc, ∗, ∗) (5)

• 𝑡𝑘𝑑 satisfies predicates 𝑝.𝐶.IPDst, 𝑝.𝐶.pDst and
𝑝.𝐶.tProto, i.e.,

𝜂 (𝑡𝑘𝑑) =⇒ (∗, 𝑝.𝐶.IPDst, ∗, 𝑝.𝐶.pDst, 𝑝.𝐶.tProto) (6)

Moreover, in case a flow 𝑓 satisfies the conditions of multiple
policies, as the input policies are disjoint, 𝑓 is divided into
sub-flows, so that each one of them satisfies the condition of
a single policy.

The set of all the flows that satisfy the conditions of an
element of 𝑃 is denoted 𝐹𝑃 ⊆ 𝐹. These flows are identified
and computed before the formulation of the MaxSMT prob-
lem, and then used for the definition of the hard constraints
corresponding to the CPPs. In particular, in our methodology,
for each policy specified by the user, multiple traffic flows
may be computed. In this way, we can handle the existence
of multiple paths and other dynamic traffic aspects introduced
by functions like load balancers, NATs, etc. In greater detail,
for each policy, all the possible network paths (i.e., sequences
of nodes) that may be crossed by the flows related to that
policy are identified. For example, if a load balancer is present
in the network, all the possible forwarding directions are
considered, as it is not possible to know how traffic will
be actually forwarded a-priori. Then, for each policy, all the
possible related flows are computed, considering all paths and
all possible transformations of intermediate functions in those
paths. For example, if in a path a NAT is the only function that
can modify packets and it can change the source IP address
into ten different addresses, then ten different flows may be
computed for that path, one for each possible transformation.
The wildcard ∗ and the address ranges introduced in the
traffic model can help in expressing a set of traffic elements
compactly, when it is not possible to know beforehand how the
packets will be dynamically modified. In this way, dynamic
aspects are taken into account.

After the computation of these flows, two utility functions
can be employed to relate policies and flows:

• 𝜙: 𝑃 → P(FP) maps a policy 𝑝 to the set of traffic flows
computed for 𝑝;

• 𝜌 : 𝐹𝑃 → 𝑃 maps a traffic flow 𝑓 to the policy 𝑝 for
which it has been computed.

B. Communication Protection Systems model

In the output produced by the MaxSMT solver, each al-
located CPS is characterized by a set of rules, establishing
which actions the CPS must perform on which packet classes.
In order to request the MaxSMT solver to compute this output,
the rules of each possible CPS with all their details are
represented by a set of free variables for which the MaxSMT
solver must find the actual values. More precisely, a set of
such variables is associated to each 𝑛 ∈ 𝑁 where a CPS may
be allocated, and the rules represented by these sets are called
“placeholder rules”, as when the problem is formulated it is
not yet known whether they will be used or not.

Denoting the set of the placeholder rules of 𝑛 ∈ 𝑁 with
𝑅𝑛, each rule 𝑟 ∈ 𝑅𝑛 is modeled as a tuple 𝑟 = (𝐶,
𝑎𝑐, 𝑎𝑖 , 𝑎𝑎, 𝑣, 𝑆, 𝑚, act), , which is an abstract model
that can be mapped onto the most common secure VPN
solutions, such as Azure VPN Gateway and Strongswan. In
particular, 𝐶 = (IPSrc, IPDst, pSrc, pDst, tProto) expresses
the conditions that identify the traffic that rule 𝑟 refers to,
while 𝑎𝑐, 𝑎𝑖 and 𝑎𝑎 respectively specify the confidentiality,
integrity and client/server authentication algorithms5 that are
used to enforce protection properties on the traffic identified
by 𝐶. 𝑣 specifies the employed VPN protocol (i.e., IPSec or
TLS). 𝑆 specifies how the security properties must be enforced
by the CPS on the same traffic, and it is modeled as the 𝑆

element of a 𝑝 ∈ 𝑃. 𝑚 is a Boolean value that expresses
if the traffic satisfying 𝐶 must be encapsulated through a
tunnel-based VPN (i.e., when 𝑚 = true) or if communication
protection is enforced without an additional header (i.e., when
𝑚 = false). Finally, act specifies the action the CPS must
apply on the traffic that crosses it, i.e., whether the protection
required by the security policies must be applied to the traffic
that crosses the CPS (i.e., when act = protect), or whether it
must be removed from it because not necessary anymore (i.e.,
when act = unprotect).

For each node 𝑛, and for each policy 𝑝 and flow 𝑓 that
crosses 𝑛 , a placeholder rule denoted 𝑟𝑝, 𝑓 is generated, as
formally expressed in (7).

∀𝑝 ∈ 𝑃. ∀ 𝑓 ∈ 𝐹𝑃 . (𝑛 ∈ 𝜋 (𝑓) =⇒ 𝑟𝑝, 𝑓 ∈ 𝑅𝑛) (7)

In this way, after the computation of the flows, the cardinality
of each 𝑅𝑛 can be determined.

Six main predicates, named protect𝑐, protect𝑖 , unprotect𝑎,
unprotect𝑐, unprotect𝑖 , and unprotect𝑎 are introduced for ex-
pressing the security properties enforced by CPSs, where:

• protect𝑥 : 𝑁 × 𝐹 → B, with 𝑥 ∈ {𝑐, 𝑖, 𝑎}, maps a
node 𝑛 and a flow 𝑓 to true if a CPS allocated on 𝑛

adds a protection for the corresponding security property
(confidentiality when 𝑥 = 𝑐, integrity when 𝑥 = 𝑖) to
𝜏(𝑓 , 𝑛), or if it starts an authentication procedure (when
𝑥 = 𝑎);

• unprotect𝑥 : 𝑁 × 𝐹 → B, with 𝑥 ∈ {𝑐, 𝑖, 𝑎}, maps a node
𝑛 and a flow 𝑓 to true if a CPS allocated on 𝑛 removes

5The NULL algorithm may be specified for each of them.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

10

a protection for the corresponding security property from
𝜏(𝑓 , 𝑛) when 𝑥 = 𝑐 or 𝑥 = 𝑖, or if the CPS must participate
to a requested authentication procedure and complete it
when 𝑥 = 𝑎.

These six predicates, which are related to the free variables
representing the placeholder rules, will be heavily used for
the MaxSMT problem formulation. The values taken by such
predicates are left free as well in the MaxSMT problem
formulation.

Additionally, the predicate supported : 𝑁×A𝑐×A𝑖×A𝑎 → B
maps a node in 𝑁 and a triad of algorithms in A𝑐, A𝑖 and
A𝑎 to true if those cipher algorithms are supported by that
node, i.e., it has the capabilities required to apply them to
network packets. For example, if an end point or network
function 𝑛 ∈ 𝑁𝐸 ∪ 𝑁𝑂 can enforce communication protection
properties with a cipher suite composed of AES-128-CBC,
HMAC-SHA-256 and RSA, then supported(𝑛,AES-128-CBC,
HMAC-SHA-256, RSA) = true. Of course, the NULL algo-
rithm is always supported by any node, as using that algorithm
means not enforcing the corresponding communication protec-
tion property.

Finally, the delimiters : 𝑁 ×𝑁 × 𝐹 → B predicate is defined
to express when two nodes 𝑛𝑖 and 𝑛 𝑗 delimit a VPN for a flow
𝑓 in order to enforce policy 𝜌(𝑓). As expressed by (8), 𝑛𝑖 and
𝑛 𝑗 delimit a VPN for a flow 𝑓 and policy 𝜌(𝑓) if they belong
to the path 𝜋(𝑓) crossed by 𝑓 , 𝑛𝑖 precedes 𝑛 𝑗 , 𝑛𝑖 enforces
the protection required by 𝜌(𝑓) while 𝑛 𝑗 removes it, and in-
between them there exists no any other node that enforces or
removes protection on 𝑓 for satisfying 𝜌(𝑓).

delimiters(𝑛𝑖 , 𝑛 𝑗 , 𝑓) = 𝑛𝑖 ∈ 𝜋 (𝑓) ∧ 𝑛 𝑗 ∈ 𝜋 (𝑓) ∧ 𝑛𝑖 ≺ 𝑛 𝑗∧
protect𝑥 (𝑛𝑖 , 𝑓) ∧ unprotect𝑥 (𝑛 𝑗 , 𝑓) ∧ (∀𝑛𝑘 ∈ 𝜋 (𝑓) |𝑛𝑖 ≺ 𝑛𝑘 ≺ 𝑛 𝑗 .

¬(protect𝑥 (𝑛𝑘 , 𝑓) ∨ unprotect𝑥 (𝑛𝑘 , 𝑓)))
(8)

VI. MAXSMT PROBLEM FORMULATION

This section presents how the hard and soft constraints have
been defined for the formulation of the MaxSMT problem.

A. Constraints on CPPs enforcement

Hard constraints are required for expressing the CPPs en-
forcement, as all of them must be satisfied to achieve any
correct solution.

First, the following hard constraints are formulated to
express the requirements deriving from the trustworthiness
information specified by each CPP 𝑝 ∈ 𝑃.
i) If a node 𝑛𝑖 crossed by a flow 𝑓 satisfying 𝑝.𝐶 is classified
as untrustworthy, then it is necessary that at least a node
𝑛 𝑗 preceding 𝑛𝑖 in 𝜋(𝑓) enforces the required protection on
𝜏(𝑓 , 𝑛 𝑗), and this protection is not removed by any node 𝑛𝑘
in-between 𝑛 𝑗 and 𝑛𝑖:6

∀ 𝑓 ∈ 𝜙 (𝑝) . ∀𝑛𝑖 ∈ 𝜋 (𝑓) | 𝑛𝑖 ∈ 𝑝.𝑊.𝑁𝑈 .

∃𝑛 𝑗 ∈ 𝜋 (𝑓) | 𝑛 𝑗 ≺ 𝑛𝑖 .(protect𝑥 (𝑛 𝑗 , 𝑓) ∧
(∀𝑛𝑘 ∈ 𝜋 (𝑓) | 𝑛 𝑗 ≺ 𝑛𝑘 ≺ 𝑛𝑖 .¬unprotect𝑥 (𝑛𝑘 , 𝑓)))

(9)

6When a formula appearing in this subsection contains the notation protect𝑥
or unprotect𝑥 , it means that the formula is valid when 𝑥 is equal to 𝑐, 𝑖, or
𝑎.

ii) If a link 𝑙𝑎𝑏 such that nodes 𝑛𝑎 and 𝑛𝑏 are crossed by a
flow 𝑓 satisfying 𝑝.𝐶 is classified as untrustworthy, then it is
necessary that at least a node 𝑛 𝑗 preceding 𝑛𝑏 in 𝜋(𝑓) enforces
the required protection on 𝜏(𝑓 , 𝑛 𝑗), and this protection is not
removed by any node 𝑛𝑘 in-between 𝑛 𝑗 and 𝑛𝑏:

∀ 𝑓 ∈ 𝜙 (𝑝) . ∀𝑙𝑎𝑏 ∈ 𝑝.𝑊.𝐿𝑈 | 𝑛𝑎 , 𝑛𝑏 ∈ 𝜋 (𝑓) .
∃𝑛 𝑗 ∈ 𝜋 (𝑓) | 𝑛 𝑗 ≺ 𝑛𝑏 .(protect𝑥 (𝑛 𝑗 , 𝑓) ∧

(∀𝑛𝑘 ∈ 𝜋 (𝑓) | 𝑛 𝑗 ≺ 𝑛𝑘 ≺ 𝑛𝑏 .¬unprotect𝑥 (𝑛𝑘 , 𝑓)))
(10)

iii) If a node 𝑛𝑖 crossed by a flow 𝑓 satisfying 𝑝.𝐶 is
classified as inspector, then it is necessary that 𝑓 does not
have confidentiality protection when crossing 𝑛𝑖 . Therefore, in
case a node 𝑛 𝑗 preceding 𝑛𝑖 in 𝜋(𝑓) enforces confidentiality
on 𝜏(𝑓 , 𝑛 𝑗), this protection must be removed by a node 𝑛𝑘
in-between 𝑛 𝑗 and 𝑛𝑖:

∀ 𝑓 ∈ 𝜙 (𝑝) . ∀𝑛𝑖 ∈ 𝜋 (𝑓) | 𝑛𝑖 ∈ 𝑝.𝑊.𝑁 𝐼 .

∀𝑛 𝑗 ∈ 𝜋 (𝑓) | 𝑛 𝑗 ≺ 𝑛𝑖 . (protect𝑐 (𝑛 𝑗 , 𝑓) =⇒
(∃𝑛𝑘 ∈ 𝜋 (𝑓) | 𝑛 𝑗 ≺ 𝑛𝑘 ≺ 𝑛𝑖 . unprotect𝑐 (𝑛𝑘 , 𝑓)))

(11)

Then, the following additional hard constraints are for-
mulated to guarantee that the protected traffic can reach its
destination, and that it is finally plain.
i) If a node 𝑛𝑖 adds protection to a flow 𝑓 (e.g., because of
the previous constraints related to the trustworthiness of nodes
and links), then this protection must be removed by a node 𝑛 𝑗
following 𝑛𝑖 in the path followed by 𝑓 (node 𝑛 𝑗 can also be
the destination end-point of the communication):

∀ 𝑓 ∈ 𝜙 (𝑝) . (∃𝑛𝑖 ∈ 𝜋 (𝑓) . protect𝑥 (𝑛𝑖 , 𝑓)) =⇒
(∃𝑛 𝑗 ∈ 𝜋 (𝑓) |𝑛𝑖 ≺ 𝑛 𝑗 . unprotect𝑥 (𝑛 𝑗 , 𝑓))

(12)

ii) In order to allow a flow 𝑓 satisfying 𝑝.𝐶 to reach its
destination, it is necessary that none of the nodes in 𝜋(𝑓)
blocks it:

∀ 𝑓 ∈ 𝜙 (𝑝) . ∀𝑛𝑖 ∈ 𝜋 (𝑓) . ¬deny(𝑛𝑖 , 𝜏 (𝑓 , 𝑛)) (13)

Other hard constraints are finally necessary to express the
conditions under which a traffic is tunneled by a CPS. In
particular, in this model, if the two CPSs 𝑛𝑖 and 𝑛 𝑗 that delimit
a VPN for a flow 𝑓 are end points, then this means that the
traffic is not tunneled. Otherwise, an additional header has to
be added, with source and destination IP addresses set to those
of the CPSs:

delimiters(𝑛𝑖 , 𝑛 𝑗 , 𝑓) ∧ 𝑛𝑖 ∈ 𝑁𝐸 ∧ 𝑛 𝑗 ∈ 𝑁𝐸 =⇒
∀𝑛𝑘 ∈ 𝜋 (𝑓) |𝑛𝑖 ≺ 𝑛𝑘 ⪯ 𝑛 𝑗 .¬tunneled(𝜏 (𝑓 , 𝑛𝑘))

(14)

delimiters(𝑛𝑖 , 𝑛 𝑗 , 𝑓) ∧ ¬(𝑛𝑖 ∈ 𝑁𝐸 ∧ 𝑛 𝑗 ∈ 𝑁𝐸) =⇒
(∀𝑛𝑘 ∈ 𝜋 (𝑓) |𝑛𝑖 ≺ 𝑛𝑘 ⪯ 𝑛 𝑗 . tunneled(𝜏 (𝑓 , 𝑛𝑘))) ∧

𝜏 (𝑓 , 𝜈 (𝑓 , 𝑛𝑖)) .ℎ𝑎 .IPSrc = address(𝑛𝑖) ∧
𝜏 (𝑓 , 𝑛 𝑗) .ℎ𝑎 .IPDst = address(𝑛 𝑗)

(15)

As a consequence of all these hard constraints, some values
of the protect, unprotect and deny predicates may not be
free anymore, but they may be forced to be true or false.
Of course, these values must be consistent with all the other
hard constraints of the problem (e.g., those related to firewalls’
behavior, or other CPSs configuration, expressed in subsection
VI-B), otherwise the problem is unsolvable.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11

B. Constraints on network functions behavior

As we have seen, some of the hard constraints are built upon
the deny predicate, which models the forwarding behavior
of the network functions in the AG. In order to correctly
model the forwarding behavior of each function in the AG,
specific hard constraints are added for each one of them. These
constraints depend on the type of service function and on
its configuration parameters. For the sake of brevity, here we
show how to define these constraints for just two sample types
of functions. The same approach can be extended to any other
type of function.

The first example we consider is the type of functions that
cannot block any packet. Examples of these functions are
load balancers, but also APs, as they have not any filtering
capability. For a node 𝑛 ∈ 𝑁 that can never block packets, the
deny(n,t) predicate is simply set to false, independently of the
traffic 𝑡 it is applied to. The hard clause stating this constraint
for node 𝑛 is:

∀ 𝑝 ∈ 𝑃. ∀ 𝑓 ∈ 𝜙 (𝑝) . (𝑛 ∈ 𝜋 (𝑓) =⇒ ¬deny(𝑛, 𝜏 (𝑓 , 𝑛))) (16)

The second example we consider is a packet filter firewall,
i.e., a service function that can actively block packets, accord-
ing to its configuration rules. For the sake of simplicity, it is
possible to assume that the configuration of a firewall 𝑛 ∈ 𝑁 is
modeled as the tuple (𝑑filt

𝑛 , 𝑅filt
𝑛), where 𝑑filt

𝑛 is the default action
(“allow” or “deny”), while 𝑅filt

𝑛 is the set of the filtering rules.
Similarly, each 𝑟 ∈ 𝑅filt

𝑛 is defined as 𝑟 = (𝑎filt
𝑟 , 𝐶filt

𝑟), with 𝑎filt
𝑟

as filtering action (it is the inverse of the respective default
action) and 𝐶filt

𝑟 as set of filtering conditions, modeled with
five predicates, one for each IP 5-tuple component. Given this
model7, the hard clause that is defined to constrain the deny
predicate for a firewall is:

deny(𝑛, 𝑡) ⇐⇒ (𝑎) ∨ (𝑏)
(𝑎) := (𝑑filt

𝑛 = deny) ∧ (�𝑟 ∈ 𝑅filt
𝑛 . match(𝑟 , 𝑡))

(𝑏) := (𝑑filt
𝑛 = allow) ∧ (∃𝑟 ∈ 𝑅filt

𝑛 . match(𝑟 , 𝑡))
(17)

In words, the firewall 𝑛 blocks the traffic 𝑡 in two possible
cases. The first is that 𝑛 works in whitelisting mode, and there
is no specific allowing rule matching 𝑡. The second is that 𝑛
works in blacklisting mode, and its configuration has a rule
matching and allowing 𝑡. In this formalization, the match :
𝑅filt
𝑛 ×𝑇 → B predicate is used to check whether the conditions

of a given rule match a given traffic, i.e., match(𝑟, 𝑡) = true if
𝑟.𝐶filt

𝑟 =⇒ 𝜂(𝑡).

C. Constraints on CPSs allocation and configuration

Hard constraints are also necessary to express the CPSs
allocation and configuration decisions for each node 𝑛 ∈ 𝑁 .

We remind that the allocation decision for node 𝑛 is modeled
by the allocated(𝑛) predicate. This value is left free in the
problem formulation, and later decided by the solver at run-
time, except for VPN gateways, i.e., nodes composing the 𝑁𝑉

7This model supports firewall types that do not require order among the
rules except for the default action (i.e., firewalls that work only in blacklisting
or whitelisting mode). Besides, the configuration of a firewall with ordered
rules can be always equivalently expressed in our model, with algorithms such
as the one described in [31].

set, because they already host a CPS functionality. This is
expressed by the following hard constraints:

∀𝑛 ∈ 𝑁𝑉 . allocated(𝑛) (18)

The configuration decision is modeled by the configured :
𝑅𝑛 → B predicate which takes value true for a placeholder rule
𝑟 ∈ 𝑅𝑛 if 𝑟 is actually used, false otherwise. If configured(𝑟)
= true, the actual configuration rule is determined by the
values assigned to the free variables modeling 𝑟 , which are
constrained by the enforcement of the CPPs, i.e., by the
constraints illustrated in Subsection VI-A.

Those constraints act on the protect and unprotect predi-
cates, but such predicates are bound to the parameters of the
placeholder rules by the following additional hard constraints:

protect𝑥 (𝑛, 𝑓) =⇒ ∃𝑟 ∈ 𝑅𝑛.(configured(𝑟) ∧ 𝜏 (𝑓 , 𝑛) ⊆ 𝑟 .𝐶∧
𝑟 .act = protect ∧ 𝑟 .𝑘 ∈ 𝜌(𝑓) .𝐾 ∧ 𝑟 .𝑎𝑥 ∈ 𝜌(𝑓) .𝐴𝑥 ∧ 𝑟 .𝑆 = 𝜌(𝑓) .𝑆 ∧
𝑟 .𝑚 = tunneled(𝜏 (𝑓 , 𝜈 (𝑓 , 𝑛))) ∧ supported(𝑛, 𝑟 .𝑎𝑐 , 𝑟 .𝑎𝑖 , 𝑟 .𝑎𝑎))

(19)
unprotect𝑥 (𝑛, 𝑓) =⇒ ∃𝑟 ∈ 𝑅𝑛.(configured(𝑟) ∧ 𝜏 (𝑓 , 𝑛) ⊆ 𝑟 .𝐶∧

𝑟 .act = unprotect ∧ 𝑟 .𝑘 ∈ 𝜌(𝑓) .𝐾 ∧ 𝑟 .𝑎𝑥 ∈ 𝜌(𝑓) .𝐴𝑥 ∧ 𝑟 .𝑆 = 𝜌(𝑓) .𝑆 ∧
𝑟 .𝑚 = tunneled(𝜏 (𝑓 , 𝑛))) ∧ supported(𝑛, 𝑟 .𝑎𝑐 , 𝑟 .𝑎𝑖 , 𝑟 .𝑎𝑎))

(20)

(19) requires that if a CPS 𝑛 must enforce a communication
protection property 𝑥 (with 𝑥 = 𝑐 for confidentiality, 𝑥 = 𝑖

for integrity, and 𝑥 = 𝑎 for authentication) on traffic flow
𝑓 due to the requirements of CPP 𝜌(𝑓), then it must have
a configured communication protection rule with a “protect”
action, that can enforce the specified protection on 𝜏(𝑓 , 𝑛), and
it must also support the configured technology and algorithm.
Similarly, (20) requires that if a CPS 𝑛 must remove a
communication protection property 𝑥 on the traffic flow 𝑓 due
to CPP 𝜌(𝑓), then it must have a configured communication
protection rule with an “unprotect” action, that can remove the
specified protection from 𝜏(𝑓 , 𝑛), and it must also support the
configured technology and algorithm, as shown in (20).

Some additional constraints related to CPSs configuration
pertain the selection of the VPN protocol (i.e., TLS or
IPSec) to be used for the protection enforcement. For exam-
ple, the triad of algorithms for confidentiality, integrity and
client/server authentication that are configured in a communi-
cation protection rule 𝑟 ∈ 𝑅𝑛 must belong to a cypher suite of
the VPN protocol selected for the enforcement of that rule:

∀𝑟 ∈ 𝑅𝑛. configured(r) =⇒ ((𝑟 .𝑎𝑐 , 𝑟 .𝑎𝑖 , 𝑟 .𝑎𝑎) ∈ 𝑟 .𝑣.𝐶𝑆) (21)

Another example is that, supposing that a traffic flow crosses
a NAT for which the IPsec NAT-Traversal cannot be enabled,
then a hard constraint may be introduced to enforce the use
of TLS for the protection of that flow.

Finally, if a node has at least a communication protection
rule configured , this implies that in that node a CPS has to
be allocated, which is expressed by the following additional
hard constraint:

(∃𝑟 ∈ 𝑅𝑛. configured(𝑟)) =⇒ allocated(𝑛) (22)

D. Constraints on the optimization profiles

The criteria expressed through an input optimization profile
are translated into soft constraints. In what follows, the no-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

12

tation Soft(c,w) denotes a soft constraint, expressing clause 𝑐

and having weight 𝑤.
The min-allocation profile requires that the allocation of

CPS functionalities on end points is preferred over their allo-
cation on intermediate graph nodes. This criterion is enforced
via the following soft constraints:

∀𝑒 ∈ 𝑁𝐸 . Soft(¬allocated(𝑒) , 𝑤𝑒) (23)

∀𝑛 ∈ 𝑁\𝑁𝐸 . Soft(¬allocated(𝑛) , 𝑤𝑛) (24)

The first ones correspond to end points, and each one of
them is satisfied if no CPS is allocated in the corresponding
end point. The second ones correspond to the other nodes,
and each one of them is satisfied if no CPS is allocated in
the corresponding node. By properly setting the weights of
these constraints, as expressed in (25), we achieve the desired
optimization goal.

∀𝑛 ∈ 𝑁\𝑁𝐸 .
©­«

∑︁
𝑒∈𝑁𝐸

𝑤𝑒
ª®¬ < 𝑤𝑛 (25)

In fact, setting the weight for (24) greater than the sum of
the weights for (23) means that it is preferable to allocate
CPS functionalities in all the end points (as long as they can
support them) rather than in a single intermediate node.

Instead, the min-bandwidth profile is characterized by an
opposite optimization criterion. In this case it is preferable
to allocate CPS functionalities in intermediate nodes (e.g., in
APs) rather than in end points, thus saving on bandwidth as
communications cross larger network areas without unneeded
protection. This criterion can still be expressed through soft
constraints (23) and (24). However, the relationship between
the weights 𝑤𝑒 and 𝑤𝑛 is opposite in this case. It is shown
in (26), and it states that it is preferable to allocate CPS
functionalities in all intermediate nodes rather than in a single
end point.

∀𝑒 ∈ 𝑁𝐸 .
©­«

∑︁
𝑛∈𝑁\𝑁𝐸

𝑤𝑛
ª®¬ < 𝑤𝑒 (26)

As mentioned in Subsection III-A, the proposed approach is
general enough to be extensible with the support of additional
optimization profiles. To guarantee their compatibility with the
illustrated formalization of the MaxSMT problem, simple soft
constraints similar to the ones shown for the min-allocation
and min-bandwidth profiles can be defined, without impacting
the definition of any hard constraint.

E. Solution computation

A MaxSMT solver is fed with all the formulated hard and
soft constraints, and it searches for the optimal solution that
satisfies all hard constraints. If the solver finds a solution, such
solution is expressed by the values the solver assigns to the
free variables and predicates. In particular, the two outputs,
i.e., allocation scheme and protection rules for the CPSs, can
be easily retrieved by those values.

On one side, for each 𝑛 ∈ 𝑁 , allocated(n) shows if a CPS
has been allocated by the solver in that network position or
not. Therefore, the allocation scheme is defined by all the
output values computed for this predicate. On the other side,

for each 𝑛 ∈ 𝑁 such that allocated(n) = true, the protection
rules that must be configured on the corresponding function
are the placeholder rules configured by the solver. i.e., the
rules 𝑟 ∈ 𝑅𝑛 such that configured(𝑟) = true. For each such
rule 𝑟 , the solver has assigned a specific value for each free
variable modeling 𝑟, e.g., it has determined the rule conditions
through 𝑟.𝐶, and the information about the algorithms to be
applied through 𝑟.𝑎𝑐, 𝑟.𝑎𝑖 and 𝑟.𝑎𝑎.

The MaxSMT problem formulated according to the pro-
posed approach is decidable, i.e., for any instance of the
problem, if all hard constraints can be satisfied, a MaxSMT
solver can find an optimal solution that satisfies them. If,
instead, such a solution does not exist, a solver can report the
unsolvability of the problem. The decidability of the MaxSMT
problem is a consequence of the subsets of theories that we
used to formulate it (i.e., the Boolean and integer theories, in-
cluding only relational operators, without quantifiers). In fact,
pursuing the objective of keeping the models as lightweight
as possible, we avoided more complex integer theories, like
the Peano Arithmetic theory, which includes the multiplication
operation but would make the MaxSMT problem undecidable.
For what concerns quantifiers, which is another possible source
of undecidability, we eliminated them from the formulas
by using semantics-preserving transformations based on the
enumeration of all the limited possible values the quantified
variables can take.

If we assume the MaxSMT solver is correct, if it finds a
solution then all hard constraints are formally guaranteed to
be satisfied, including the ones that represent all the CPPs.
This means we have a formal correctness guarantee without
the need to apply other time-consuming a-posteriori formal
verification steps. Of course, this correctness result holds
provided that the model is a faithful representation of the real
problem, i.e., the model represents all the information that may
influence the solution correctness in a way that is adherent to
reality. In the specific case of the MaxSMT problem defined
for automatic VPN configuration, the models of the problem
inputs must represent all the characteristics of the AG and the
CPPs that are required to find a correct solution. Similarly, all
the hard constraints modeling the possible forwarding behavior
of network functions and the possible traffic flows must be a
correct representation of their actual behavior. The models and
constraints that have been presented in this paper are straight-
forward enough to make their adherence to reality evident.
Moreover, the modeling of the forwarding behavior of network
functions is based on a well-known approach, already used in
literature, for which there are also approaches, such as [32],
that can extract a formal model of the forwarding behavior of a
virtual function automatically from a behavioral representation
expressed in a high-level programming language like Java. By
using these approaches, it is possible to get high confidence
in the adherence of the models to the real function behavior.

Concerning its computational complexity, the MaxSMT
problem is NP-complete, as it is a generalization of the SAT
problem, which is NP-complete likewise [33]. Nevertheless,
many MaxSMT instances can be solved in polynomial time
on average using state-of-the-art solvers, like Z3 [34], thanks
to algorithms and strategies that have been included in them

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

13

𝑓9

𝑝15𝑒2

𝑝14𝑒1

𝑝16
𝑒3

𝑝17

𝑓10

𝑝19

𝑝18

𝑒4

𝑓13

𝑒5

𝑓11

𝑝20𝑒6

𝑝20

𝑓12

𝑝21

𝑝22

𝑒7

𝑒8

Fig. 2: Allocation Graph of the use case

𝑓9

𝑒2

𝑒1

𝑒3

𝑝17 𝑓10

𝑝18

𝑒4

𝑓13

𝑒5

𝑓11
𝑒6

𝑝20

𝑓12

𝑒7

𝑒8

Fig. 3: CPSs allocation scheme of the use case

to reach the best performance. The actual scalability of these
solvers depends on the problem formulation. Keeping the
formulation lightweight is a way to improve scalability. Con-
sequently, the MaxSMT problem we defined for automatic
VPN configuration has been formulated keeping the number
of variables and constraints as low as possible.

It is also worth noting that our modeling approach is
independent of the specific MaxSMT solver used for the
resolution of the formulated problem. State-of-the-art solvers
can include optimizations such as constraint propagation in
different ways internally. However, those details are opaque
from the perspective of the user in charge of defining the
problem to be given as input. Consequently, any solver that
adheres to the semantics of MaxSMT problems can be em-
ployed without altering the problem formulation or producing
different solutions.

VII. IMPLEMENTATION AND VALIDATION

A proof-of-concept framework has been developed in Java
to prove the feasibility of the proposed approach. This frame-
work adopts Z3 (version 4.8.8) [30], an off-the-shelf MaxSMT
solver by Microsoft. A RESTful interface is exposed for
interaction with a human being or orchestration tools, which
may use the information provided about the CPSs allocation
scheme and configuration for deploying the resulting security
service. Data exchanged through this interface can be repre-
sented in XML or JSON embedding.

The developed framework has undergone manual tests to
verify the correctness and optimality of the returned solutions,
and scalability tests, aiming to understand the extent to which
it can be applied and the benefits it can bring over with respect
to an error-prone time-consuming manual configuration. All
the tests have been carried out in a 4-core Intel i7-6700 3.40
GHz workstation, equipped with 32 GB RAM.

A. Optimization and correctness validation

Even though the solution computed by our methodology
is already guaranteed correct and optimal by construction as

𝑓9

𝑝15𝑒2

𝑝14
𝑒1

𝑝16𝑒3

type A

𝑓9𝑝21

𝑓11

𝑝21

𝑝21

𝑓11

𝑓11

𝑒6 𝑝21

type B

Fig. 4: Sub-graph types for the extensions

discussed in Subsection VI-E, we performed some tests to
confirm it. Optimization and correctness have been validated
with use cases like the one represented in Fig. 2. This picture
depicts an AG, inspired by the network topology of our univer-
sity department. In this scenario, there are different communi-
cation protection needs, and due to them, a manual approach
would struggle to correctly manage the VPN configuration.
For example, the traffic between each research lab (i.e., 𝑒4,
𝑒5, 𝑒6, 𝑒7 and 𝑒8) and the data center, composed of multiple
servers (i.e., 𝑒1, 𝑒2, 𝑒3), must be encrypted. Each lab may
also require a different encryption algorithm (e.g., AES-GCM-
128 for 𝑒4, 3DES-CBC for 𝑒5). Besides, the traffic between
each pair of research labs must be protected with integrity
guarantees. The only exception is the pair of subnetworks 𝑒7
and 𝑒8, because they are managed by the same lab member.
For all these policies, 𝑓10 and 𝑓11 are untrustworthy nodes,
because no member of the research labs has control over those
network functions. Instead, 𝑓12 is an inspector node, because it
is an intrusion detection system that must check all the traffic,
according to a binding department rule.

On the basis of these inputs, we have run our framework,
and the output topology is shown in Fig. 3. Both the solution
optimization and correctness have been checked.

For what concerns optimization, we have enumerated all
the possible solutions in configuring VPN gateways for the
network depicted in Fig. 2, given the previously described
policies. We have thus checked that the output of our frame-
work corresponds to the solution that minimizes the VPN
configuration. For example, a single CPS is installed in 𝑝17 on
the right of load balancer 𝑓9, instead of having three separate
CPSs on its left. Similarly, a CPS is allocated in 𝑝20, so
that it can manage communications involving three different
subnetworks (𝑒5, 𝑒7, 𝑒8).

For what concerns correctness, we executed correctness
tests in both simulated and real networks. On the one hand,
we have simulated the computed VPN configuration with
Mininet, a well-known emulator for rapid prototyping and
testing virtualized networks. After configuring each element
of the network simulated in Mininet, we verified that each
communication had the requested communication protection
properties by analyzing the traffic on the different emulated
nodes. On the other hand, we instantiated the computed
VPN configuration in a real virtual environment managed
by the container orchestration platform Docker Compose.
In this virtual network, each CPS allocated in the solution
produced by our methodology is implemented by a container-
ized Strongswan instance, as Strongswan is one of the most
commonly used open-source solutions for VPN creation. The

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

14

A B C D E F G H I J
0

20

40

60

Use case

M
em

or
y

us
ag

e
(M

B
)

Site-to-site
End-to-end

(a) Memory usage chart

A B C D E F G H I J
0

100

200

300

Use case

C
om

pu
ta

tio
n

tim
e

(s
)

Site-to-site
End-to-end

(b) Computation time chart

A B C D E F G H I J
0

100

200

300

Use case

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Whisker plot (site-to-site)

A B C D E F G H I J
0

100

200

300

Use case

C
om

pu
ta

tio
n

tim
e

(s
)

(d) Whisker plot (end-to-end)

Fig. 5: Scalability for increasing problem size

TABLE III: Characteristics of the use cases for Fig. 5

A B C D E F G H I J
|𝑃| 40 80 120 160 200 240 280 320 360 400
|𝑁 | 35 60 85 110 135 160 185 210 235 260
|𝑁 𝐴| 10 20 30 40 50 60 70 80 90 100
|𝑁𝑈 | 5 8 10 13 15 18 20 23 26 30
|𝐹𝑃 | 40 80 120 160 200 240 280 320 360 400

configuration of each Strongswan instance is easily derived
from the communication protection rules computed by our
framework, with the support of a simple automatic translator
that we have implemented. Indeed, this operation is a mere
syntax conversion, not involving policy refinement. Within
such a configured environment, we used the tcpdump packet
analyzer to analyze the structure and content of the packets
received by different network nodes. In particular, we verified
that packets reaching an untrusted node have the required
communication protection properties requested by the cor-
responding CPP, and we also verified that packets crossing
an inspector node are plain so that they can be analyzed.
These experimental tests allowed us to check the automatically
computed VPN configuration is correct and compliant with the
requested CPPs.

Similar experiments have been done with variations of
this use case. These variations are obtained by adding a
progressively higher number of middleboxes and APs in the
backbone of the initial network example, i.e., in the sequence
of nodes between 𝑓9 and 𝑓12 of Fig. 2, and by attaching
new sub-graphs to them. Specifically, we used the two sub-
graph types depicted in Fig. 4. The sub-graph of type A
represents a group of three servers connected to a load balancer
through three APs, whereas the sub-graph of type B represents
the interconnection of sub-networks with two isolated clients
through a ramified topological structure characterized by four
APs and two middleboxes. In turn, the right-most middleboxes
of the two sub-graph types are used to interconnect recursively
other sub-graphs in further extensions of the use cases. In this
way, it was possible to create networks of extensive size that
were also employed for the scalability tests discussed in the
following subsection.

B. Performance and scalability evaluation

The objectives of performance and scalability evaluation
are: 1) to analyze the behavior of the framework in terms of

memory usage and computation time for increasing problem
size when computing the configuration of different VPN types
(i.e., site-to-site and end-to-end VPNs); 2) to assess the impact
of the two main parameters (i.e., the number of APs and
the number of CPPs) on performance; 3) to compare the
performance results in terms of computation time to those of
the related state of the art approaches and to the time taken
to deploy the computed solutions.

1) Scalability for increasing problem size: Fig. 5 reports
the results obtained for scalability versus problem size. These
tests have been carried out in ten use cases, represented by
network topologies artificially synthesized as extensions of
the one depicted in Fig. 2, as previously described in VII-A.
TABLE III reports the main characteristics of the ten use cases,
in terms of the number of CPPs to be enforced (|𝑃 |), the
number of network nodes (|𝑁 |), the number of APs where
CPSs may be allocated (|𝑁𝐴 |), the number of untrusted nodes
for each single policy (|𝑁𝑈 |), and the number of traffic flows
related to the requested CPPs (|𝐹𝑃 |). The ten use cases are
characterized by increasing values of these parameters, which
implies increasing complexity of the MaxSMT problem to be
solved. The increase of the values is kept proportional so as
to keep a ratio 1:4 between the numbers of APs and CPPs,
because, in realistic scenarios, the number of traffic flows to
be protected is commonly higher than the number of positions
where CPSs can be positioned. Besides, for each use case,
the framework behavior has been analyzed for the creation
of two different VPN types: site-to-site VPNs if the network
endpoints cannot host a VPN capability, and end-to-end VPNs
on the contrary.

On the one hand, Fig. 5a shows the peak memory usage
of the framework, when the value of all the parameters
progressively increases. As it can be seen from the chart,
even in the worst case that has been analyzed (i.e., a scenario
composed of 260 network nodes and 400 CPPs), the peak
memory usage that has been measured is not of concern (61.1
MB).

On the other hand, Fig. 5b shows the computation time
of the framework for the generation of site-to-site and end-to-
end VPNs. Each plotted value represents the average computed
over 50 iterations, where the same network topology and CPPs
are kept, and only the IP addresses of the nodes vary. This
choice is motivated by the fact that the performance of Z3 is
known to vary substantially with the variation of the values of
integer constants, and integers are used in the formulation of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

15

40 80 120 160 200 240 280 320 360 400
0

100

200

300

Number of CPPs

C
om

pu
ta

tio
n

tim
e

(s
)

(a) Computation time chart
(increasing CPP number)

15 30 45 60 75 90 105 120 135 150
0

100

200

300

Number of APs

C
om

pu
ta

tio
n

tim
e

(s
)

(b) Computation time chart
(increasing AP number)

40 80 120 160 200 240 280 320 360 400
0

100

200

300

Number of CPPs

C
om

pu
ta

tio
n

tim
e

(s
)

(c) Whisker plot
(increasing CPP number)

15 30 45 60 75 90 105 120 135 150
0

100

200

300

Number of APs

C
om

pu
ta

tio
n

tim
e

(s
)

(d) Whisker plot
(increasing AP number)

Fig. 6: Scalability for increasing numbers of CPPs and APs

our MaxSMT problem for IP addresses. This time distribution
is also confirmed by the whisker plots depicted in Fig. 5c
and Fig. 5d, showing the value distribution for the two VPN
configuration types.

A first consideration that we can draw from these three
charts is that the computation time does not increase ex-
ponentially, which allows the framework to complete the
computation even on networks with hundreds of nodes and
hundreds of CPPs. This result has been achieved thanks to
the careful modeling choices we made. Another consideration
is that the times for the configuration computation of site-to-
site and end-to-end VPNs are comparable. This result shows
that our approach can manage multiple VPN types, without
relevant differences in performance.

2) Scalability for increasing numbers of CPPs and APs:
Fig. 6 reports the results obtained for scalability versus the
numbers of CPPs and APs. Again, the network topologies used
for these tests are artificially synthesized as extensions of the
one depicted in Fig. 2, and 50 runs of the framework are
performed for each pair of CPP and AP numbers. The results
plotted in Fig. 6a and Fig. 6c are obtained by fixing the AP
number to 20 and varying the CPP number from 40 to 400,
while those plotted in Fig. 6b and Fig. 6d are achieved by
fixing the CPP number to 100 and varying the AP number
from 15 to 150.

From the plotted values, it is possible to underline how
neither of the two parameters has a drastic impact on the per-
formance when the other one is kept fixed. Of course, looking
at the two charts carefully, the ratio between computation time
and the number of considered entities (CPPs and APs) is in
favor of the number of CPPs, which consequently has less
impact than the number of APs. This result is explained by
the fact that for each possible node enforcing communication
protection a certain number of placeholder rules must be
defined, depending on the number of traffic flows related to
the CPPs crossing it. Each rule is composed of free variables,
and for each one of them the solver must decide the optimal
value. Therefore, the number of possible solutions becomes
quite high. Nevertheless, if we consider a topology composed
of over 200 nodes, establishing how to allocate the CPSs on
it and how to establish their rule sets would be an impractical
task for a human being, as it would take hours and probably
would end up with errors or sub-optimizations.

3) Scalability on topologies of real-world networks: The
memory and time scalability of the developed framework
has also been validated on two AGs inspired by real-world
production networks, i.e., APAN8 and GÉANT9, respectively
located in Asia and Europe. The objective of these additional
tests was to assess how the proposed methodology behaves
when applied to real-world network topologies characterized
by a higher degree of complexity and variability.

TABLE IV reports the main characteristics of the two
AGs. In addition to this numerical information, a noteworthy
consideration about these AGs is that they have a much more
complex and ramified structure than the synthetic topology
employed in the previous scalability tests. Consequently, the
number of traffic flows that satisfy the conditions of each CPP
is higher because there are multiple paths interconnecting the
endpoints identified by the CPP itself. The actual numbers of
traffic flows, depending on the number of requested CPPs, is
shown in TABLE V, to highlight the fact that they are higher
than the ones reported in TABLE III. Also, the number of
intermediate nodes crossed by each traffic flow is higher. In
particular, these characteristics, i.e., the number of traffic flows
related to each CPP and the length of their crossed paths, are
higher for the GÉANT topology than for the APAN network,
because the ramification of the former is more pronounced
and produces multiple possible paths to reach any possible
destination.

The scalability tests on these topologies were carried out
by progressively increasing the number of CPPs that must be
enforced on them, measuring how memory and time vary. The
results of these tests are plotted in Fig. 7 and Fig. 8.

On the one hand, Fig. 7a and Fig. 8a show the peak memory
usage of the framework, when applied to the AGs of the
two production network AGs. The achieved results are almost
the same as the ones obtained for synthetic networks and
previously shown in Fig. 5a. From this point of view, the
higher complexity of these AGs, represented by the presence
of more and longer traffic flows, requires the introduction
of some more variables and constraints in the definition of
the MaxSMT problem. Nevertheless, as we tried to keep
all models as lightweight as possible, considering that the
core of the MaxSMT problem remains the same, just a
slightly higher amount of memory is required to manage

8https://apan.net/
9https://network.geant.org/

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

16

40 80 120 160 200
0

20

40

60

80

Number of CPPs

M
em

or
y

us
ag

e
(M

B
)

(a) Memory usage chart

40 80 120 160 200
0

50

100

150

Number of CPPs

C
om

pu
ta

tio
n

tim
e

(s
)

(b) Computation time chart

Fig. 7: Scalability on the APAN topology

TABLE IV: Characteristics of the APAN and GÉANT AGs

APAN AG GÉANT AG

Number of vertices 52 49
Number of end points 25 19

Number of APs 19 11
Number of directed links 104 85

these two networks, because the impact of each new variable
or constraint is limited. This result thus confirms that the
developed framework does not require extensive memory to be
applied successfully to solve the automatic VPN configuration
problem in topologies of real-world networks.

On the other hand, Fig. 7b and Fig. 8b show the average
computation time of the framework over 50 iterations, when
applied to the AGs of the two production networks. Almost
all the execution times are in the same magnitude order as the
ones obtained for synthetic networks, shown in Fig. 5b, and
the trend of the plots is also the same. The only exception
is represented by the time requested by the framework to
solve the MaxSMT problem formulated for the enforcement
of 200 CPPs on the GÉANT topology. However, even in this
case, the increase is only slightly higher, and it is in line
with the trend of the plot for that topology. Besides, from
these two charts, it is possible to notice that the computation
time requested to solve the configuration problem is higher
on GÉANT than on APAN. This is explained by the fact that,
even though the former is characterized by fewer vertices, it
has a more ramified structure, and therefore, the MaxSMT
problem to be solved is more complex. This result shows that
our methodology can be applied successfully to networks with
a complex structure, as the time increase for their management
is not significantly high.

In view of all these considerations, the results achieved from
these tests show that the developed framework works success-
fully on topologies of production networks, with memory and
time requirements that are in line with the ones requested
to manage network topologies artificially synthesized as ex-
tensions of a basic model. Therefore, they confirm that the
proposed methodology is general enough to support the diverse
and complex configurations found in real-world environments.

4) Comparison with state of the art and network deploy
times: As previously discussed in Section II, to the best of
our knowledge, the approach presented in this paper is the first
one in literature to compute both the CPS allocation scheme

40 80 120 160 200
0

20

40

60

80

Number of CPPs

M
em

or
y

us
ag

e
(M

B
)

(a) Memory usage chart

40 80 120 160 200
0

50

100

150

Number of CPPs

C
om

pu
ta

tio
n

tim
e

(s
)

(b) Computation time chart

Fig. 8: Scalability on the GÉANT topology

TABLE V: Number of flows in the APAN and GÉANT AGs,
depending on the number of CPPs

Number of flows
APAN AG GÉANT AG

N
um

be
r

of
C

PP
s

40 61 73
80 127 150

120 197 212
160 265 306
200 331 379

and the related protection rules jointly, achieving, at the same
time, full automation, optimization, and formal correctness.
Therefore, a straight performance comparison of our approach
to the other existing methodologies would be unfair, or even
impossible to some extent, as they either address simpler
problems or provide fewer features. Nevertheless, we present
here a rough comparison with some of the related state-
of-the-art methodologies just to evaluate which impact on
performance derived from introducing the additional features
of our approach.

Unfortunately, most of the papers proposing the approaches
discussed in Section II do not provide an explicit experimental
performance evaluation of the proposed approaches. The only
ones whose performance has been experimentally evaluated
are those described in [18], [27], and [26]. Hence, we can
roughly compare the performance figures of our approach only
to the ones mentioned in those papers.

The approach described in [18] is specific to VPN con-
figuration, but it cannot compute the CPS allocation scheme
automatically. It can only generate the protection rules for
CPSs whose position is already fixed in a network chain,
without being able to solve the same problem for a ramified
topology, and it does not use formal models. In terms of
performance, [18] reports that, to compute the CPS rules in a
small chain whose size is comparable to the smallest number
of APs (i.e., 10) of the networks where our framework has
been validated, that approach takes around one hundred of
seconds to enforce some hundreds of security requirements.
In comparison with that, under similar conditions of input
sizes, the execution time of our framework is one magnitude
order less, despite addressing both the rule computation and
the allocation computation in a ramified graph.

The other two approaches are not specifically designed for
VPNs, but include CPSs as possible functions to work with.
On the one hand, the technique described in [27] has features

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

17

and performance similar to the ones of [18]. In fact, it takes
some seconds just to configure a small number of CPSs in a
simple chain, without addressing the allocation problem, and
without providing any formal correctness for the computed
solution. Besides, it does not fully catch the complexity of
CPS configurations (e.g., it does not take decisions in terms
of VPN protocol or cipher algorithms to be used depending on
untrusted and inspector nodes), because the focus of that study
is not specifically on CPSs. On the other hand, the approach
in [26] only establishes the CPS allocation scheme without
computing protection rules. For a small network with around
20 positions where CPS may be allocated, the computation
time is in the same magnitude order (i.e., tens of seconds) as
with our approach which, however, addresses a more complex
problem, as it also computes the CPS rules.

In summary, although the state-of-the-art related approaches
address simpler or partial problems, the performance of our
methodology is still in line with the state of the art. Of course,
also the scalability of our approach has some limitations, as
the developed framework cannot manage computer networks
composed of thousands of nodes. However, we experimentally
showed that it can solve VPN configuration problems of
significant sizes, i.e., it can automatically enforce hundreds
of CPPs in networks with hundreds of nodes. Therefore, this
result can be considered significant by itself.

Finally, we can also compare the time taken by our frame-
work to the time that is commonly required to set up a net-
work. If we consider networks where functions are virtualized,
i.e., the ones with the fastest setup times, the computation
time of our framework is in the same magnitude order as the
Deployment Process Delay (DPD), i.e., the time needed for
a state-of-the-art NFV orchestrator, Open Source MANO, to
deploy a single virtualized function on a server. The value
of this time is 134s according to [35], and it is plotted as a
red dashed horizontal line in all figures plotting results about
the computation time of our framework. In physical networks,
the difference is even bigger, as the manual installation of a
middlebox requires much more time.

VIII. CONCLUSIONS AND FUTURE WORK

This paper illustrated a novel approach for the automatic
VPN configuration in modern computer networks. The pro-
posed methodology advances the state of the art because, dif-
ferently from previous solutions, it achieves all the following
goals: (i) it computes both the allocation scheme of VPN
terminators and their protection rules in a fully automated way,
(ii) it is based on a formal model that captures all the rele-
vant aspects of the problem, and provides formal correctness
assurance of the solution without requiring a-posteriori formal
verification, (iii) it finds the optimal solution, among all the
correct ones, according to a user-selected optimization goal.

A Java framework has been developed to implement this
approach, and its features (optimization, correctness, scala-
bility) have been validated. From our experiments it results
that the proposed approach is viable and scales up to use
cases with hundreds of possible positions for VPN gateways
and hundreds of protection policies, taking times that, for the

most complex tested scenarios, are in the order of hundreds
of seconds. This approach is surely convenient from all points
of view (correctness assurance and time taken) with respect to
a manual configuration, which is notoriously time consuming
and error prone.

This result is just one step towards security automation.
A possible next future work is to integrate algorithms based
on Artificial Intelligence for policy specification, so that
our proposed configuration mechanism could work not only
on human-specified policies, but also policies automatically
derived from network analysis. Additionally, the presented
approach could be extended to other types of communication
protection policies, so as to support different technologies for
generating secure VPNs (e.g., SSH and WS-Security).

REFERENCES

[1] H. H. Hamed, E. S. Al-Shaer, and W. Marrero, “Modeling and verifi-
cation of ipsec and VPN security policies,” in 13th IEEE International
Conference on Network Protocols (ICNP 2005), 6-9 November 2005,
Boston, MA, USA. IEEE Computer Society, 2005, pp. 259–278.

[2] F. Valenza, C. Basile, D. Canavese, and A. Lioy, “Classification and
analysis of communication protection policy anomalies,” IEEE/ACM
Trans. Netw., vol. 25, no. 5, pp. 2601–2614, Oct 2017.

[3] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys and Tutorials,
vol. 18, no. 1, pp. 236–262, 2016.

[4] D. Kreutz, F. M. V. Ramos, P. J. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[5] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
network security configuration: State of the art and research trends,”
ACM Comput. Surv., vol. 56, no. 3, pp. 57:1–57:37, 2024.

[6] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” J. Netw. Syst. Manag., vol. 15, no. 4, pp. 447–480, 2007.

[7] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool, “Firmato: A novel
firewall management toolkit,” ACM Trans. Comput. Syst., vol. 22, no. 4,
pp. 381–420, 2004.

[8] P. Verma and A. Prakash, “FACE: A firewall analysis and configuration
engine,” in 2005 IEEE/IPSJ International Symposium on Applications
and the Internet (SAINT 2005), 31 January - 4 February 2005, Trento,
Italy, 2005, pp. 74–81.

[9] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The math-
ematical foundations for mapping policies to network devices,” in
Proceedings of the 13th International Joint Conference on e-Business
and Telecommunications (ICETE 2016), Lisbon, Portugal, July 26-28,
2016, 2016, pp. 197–206.

[10] A. El-Hassany, P. Tsankov, L. Vanbever, and M. T. Vechev,
“Netcomplete: Practical network-wide configuration synthesis with
autocompletion,” in 15th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2018, Renton, WA, USA, April 9-11,
2018, 2018, pp. 579–594. [Online]. Available: https://www.usenix.org/
conference/nsdi18/presentation/el-hassany

[11] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtu-
alized networks,” in NOMS 2020 - IEEE/IFIP Network Operations and
Management Symposium, Budapest, Hungary, April 20-24, 2020. IEEE,
2020, pp. 1–7.

[12] ——, “Automated firewall configuration in virtual networks,” IEEE
Trans. Dependable Secur. Comput., vol. 20, no. 2, pp. 1559–1576, 2023.

[13] J. Govaerts, A. K. Bandara, and K. Curran, “A formal logic approach
to firewall packet filtering analysis and generation,” Artif. Intell. Rev.,
vol. 29, no. 3-4, pp. 223–248, 2008.

[14] P. Bera, S. K. Ghosh, and P. Dasgupta, “Policy based security analysis
in enterprise networks: A formal approach,” IEEE Trans. Network and
Service Management, vol. 7, no. 4, pp. 231–243, 2010.

[15] S. Maity, P. Bera, and S. K. Ghosh, “Policy based ACL configuration
synthesis in enterprise networks: A formal approach,” in International
Symposium on Electronic System Design, ISEDs 2012, Kolkata, India,
December 19-22, 2012, 2012, pp. 314–318.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://www.usenix.org/conference/nsdi18/presentation/el-hassany
https://www.usenix.org/conference/nsdi18/presentation/el-hassany

18

[16] N. Stouls and M. Potet, “Security policy enforcement through refinement
process,” in 7th International Conference of B Users, Besançon, France,
January 17-19, 2007, Proceedings, 2007, pp. 216–231.

[17] A. K. Bandara, A. C. Kakas, E. C. Lupu, and A. Russo, “Using argumen-
tation logic for firewall configuration management,” in 11th IFIP/IEEE
International Symposium on Integrated Network Management, Long
Island, NY, USA, June 1-5, 2009, 2009, pp. 180–187.

[18] Z. Fu and S. F. Wu, “Automatic generation of ipsec/vpn security policies
in an intra-domain environment,” in Operations & Management, 12th
International Workshop on Distributed Systems, DSOM 2001, Nancy,
France, October 15-17, 2001. Proceedings, 2001, pp. 279–290.

[19] Y. Yang, C. U. Martel, and S. F. Wu, “On building the minimum number
of tunnels: an ordered-split approach to manage ipsec/vpn policies,” in
IEEE/IFIP Network Operations and Management Symposium, Seoul,
Korea, 19-23 April 2004, 2004, pp. 277–290.

[20] Y. Yang, Z. J. Fu, and S. F. Wu, “BANDS: an inter-domain inter-
net security policy management system for ipsec/vpn,” in IFIP/IEEE
Eighth International Symposium on Integrated Network Management
(IM 2003), March 24-28, 2003, Colorado Springs, USA, 2003, pp. 231–
244.

[21] C. Chang, Y. Chiu, and C. Lei, “Automatic generation of conflict-free
ipsec policies,” in Formal Techniques for Networked and Distributed
Systems - FORTE 2005, 25th IFIP WG 6.1 International Conference,
Taipei, Taiwan, October 2-5, 2005, Proceedings, 2005, pp. 233–246.

[22] M. M. G. Sadeghi, B. M. Ali, H. Pedram, M. Dehghan, and M. Sabaei,
“A new method for creating efficient security policies in virtual private
network,” in Collaborative Computing: Networking, Applications and
Worksharing, 4th International Conference, CollaborateCom 2008, Or-
lando, FL, USA, November 13-16, 2008, Revised Selected Papers, ser.
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 10. Springer / ICST, 2008,
pp. 663–678.

[23] M. Rossberg, G. Schaefer, and T. Strufe, “Distributed automatic con-
figuration of complex ipsec-infrastructures,” J. Network Syst. Manage.,
vol. 18, no. 3, pp. 300–326, 2010.

[24] L. Firdaouss, A. Bahnasse, B. Manal, and Y. Ikrame, “Automated VPN
configuration using devops,” in The 12th International Conference on
Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2021) /
The 11th International Conference on Current and Future Trends of
Information and Communication Technologies in Healthcare (ICTH-
2021), Leuven, Belgium, November 1-4, 2021, ser. Procedia Computer
Science, vol. 198. Elsevier, 2021, pp. 632–637.

[25] J. D. Guttman and A. L. Herzog, “Rigorous automated network security
management,” Int. J. Inf. Sec., vol. 4, no. 1-2, pp. 29–48, 2005.

[26] M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed
network access controls: A formal framework with refinement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 416–430, 2017.

[27] C. Basile, F. Valenza, A. Lioy, D. R. Lopez, and A. P. Perales,
“Adding support for automatic enforcement of security policies in NFV
networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 707–720, 2019.

[28] C. Basile, D. Canavese, A. Lioy, and F. Valenza, “Inter-technology
conflict analysis for communication protection policies,” in Risks and
Security of Internet and Systems - 9th International Conference, CRiSIS
2014, Trento, Italy, August 27-29, 2014, Revised Selected Papers, ser.
Lecture Notes in Computer Science, vol. 8924. Springer, 2014, pp.
148–163.

[29] J. Moffett and M. Sloman, “Policy hierarchies for distributed systems
management,” IEEE Journal on Selected Areas in Communications,
vol. 11, no. 9, pp. 1404–1414, 1993.

[30] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, 2008, pp. 337–340.

[31] H. Hu, G. Ahn, and K. Kulkarni, “Detecting and resolving firewall policy
anomalies,” IEEE Trans. Dependable Secur. Comput., vol. 9, no. 3, pp.
318–331, 2012.

[32] G. Marchetto, R. Sisto, M. Virgilio, and J. Yusupov, “A framework
for user-friendly verification-oriented VNF modeling,” in 41st IEEE
Annual Computer Software and Applications Conference, COMPSAC
2017, Turin, Italy, July 4-8, 2017. Volume 1. IEEE Computer Society,
2017, pp. 517–522.

[33] M. E. Halaby, “On the computational complexity of maxsat,” Electron.
Colloquium Comput. Complex., 2016.

[34] R. Robere, A. Kolokolova, and V. Ganesh, “The proof complexity of
SMT solvers,” in Computer Aided Verification. Springer International
Publishing, 2018.

[35] G. M. Yilma, F. Z. Yousaf, V. Sciancalepore, and X. P. Costa, “Bench-
marking open source NFV MANO systems: OSM and ONAP,” Comput.
Commun., vol. 161, pp. 86–98, 2020.

Daniele Bringhenti received the M.Sc. degree
(summa cum laude) and the Ph.D. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Torino, Italy, in 2019 and 2022
respectively, where he is currently a Postdoctoral
Researcher. His research interests include novel net-
working technologies, automatic orchestration and
configuration of security functions in virtualized
networks, formal verification of network security
policies.

Riccardo Sisto received the Ph.D. degree in Com-
puter Engineering in 1992, from Politecnico di
Torino, Italy. Since 2004, he is Full Professor of
Computer Engineering at Politecnico di Torino. His
main research interests are in the area of formal
methods, applied to distributed software and com-
munication protocol engineering, distributed sys-
tems, and computer security. He has authored and
co-authored more than 100 scientific papers. He is
a Senior Member of the ACM.

Fulvio Valenza received the M.Sc. degree (summa
cum laude) and the Ph.D. degree (summa cum laude)
in computer engineering from the Politecnico di
Torino, Torino, Italy, in 2013 and 2017, respec-
tively, where he is currently a Tenure-Track Assistant
Professor. His research activity focuses on network
security policies, orchestration and management of
network security functions in SDN/NFV-based net-
works, and threat modeling.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3409073

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work
	Approach
	Inputs
	Methodology

	Network Model
	Allocation Graph model
	Traffic flows model
	Network functions model

	Communication Protection Models
	Communication Protection Policies model
	Communication Protection Systems model

	MaxSMT Problem Formulation
	Constraints on CPPs enforcement
	Constraints on network functions behavior
	Constraints on CPSs allocation and configuration
	Constraints on the optimization profiles
	Solution computation

	Implementation and Validation
	Optimization and correctness validation
	Performance and scalability evaluation
	Scalability for increasing problem size
	Scalability for increasing numbers of CPPs and APs
	Scalability on topologies of real-world networks
	Comparison with state of the art and network deploy times

	Conclusions and Future Work
	References
	Biographies
	Daniele Bringhenti
	Riccardo Sisto
	Fulvio Valenza

