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ABSTRACT In the rapidly evolving domain of brain-to-brain communication, safeguarding the transmission
of information against adversarial threats is paramount. This study introduces an advanced approach to
enhance the resilience and security of brain-to-brain communication systems utilizing electroencephalogram
data against such threats through adversarial neural network training. Concentrating on event-related
potentials and employing a diverse collection of eight datasets, our research rigorously evaluates and
optimizes the system’s defense mechanisms against adversarial manipulations. We specifically target the
optimization of trial durations and sampling rates to bolster system security. Our findings reveal a marked
improvement in the system’s defensive capabilities, demonstrated by a significant increase in adversarial
accuracy by 17% and enhancement in the area under the receiver operating characteristic curve by
0.12 points. These results underscore the efficacy of our approach in fortifying brain-to-brain communication
systems against sophisticated cyber threats, marking a significant step forward in the secure and robust
transmission of neural signals.

INDEX TERMS Adversarial accuracy, adversarial attacks, adversarial neural network training, brain-
to-brain communication, electroencephalogram, event-related potentials, neuro-engineering, security
enhancement.

I. INTRODUCTION
Brain-to-Brain Communication (B2B-C) represents a
paradigm shift in neuroscience and neuro-engineering, with
the potential to redefine our understanding of cognitive pro-
cesses and interpersonal communication [1]. While various
methods exist for facilitating B2B-C, this study focuses on
Electroencephalogram (EEG)–based systems due to their
unique noise sensitivity and security challenges. However,
the sensitivity of EEG signals to noise and distortion
presents significant challenges, especially when considering
the security implications of such a communication [2].
Machine learning (ML), particularly neural networks and

Deep Learning (DL), has shown promise in handling the
complexities of high-dimensional, noisy EEG data [3]. Yet,
adversarial attacks, characterized by subtle perturbations,
can lead traditional machine learning models astray [4].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ghulam Muhammad .

The advent of adversarial attacks presents a formidable
challenge to the security of B2B-C systems, emphasizing
the need for robust defense mechanisms. As highlighted
in [5], adversarial examples can significantly compromise the
integrity of EEG-based Brain-Computer Interfaces (BCIs),
undermining their reliability and safety. The comprehensive
review by [6] highlights significant security challenges
facing physiological computing systems, including B2B-C
networks, underscoring the urgent need for robust adversarial
training and defense mechanisms. The burgeoning field of
adversarial machine learning offers promising avenues for
securing complex communication systems against sophis-
ticated cyber threats. As explored in [7], implementing
adversarial ML techniques within the consumer Internet of
Things (IoT) landscape, particularly in smart healthcare,
underscores the effectiveness of these methods in enhancing
security measures. Recent advancements in adversarial ML
have illuminated the susceptibility of EEG-based BCIs to
adversarial attacks, a vulnerability that extends to the broader
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domain of B2B-C systems. The work of Jung et al. [8] on
Generative Perturbation Networks (GPN) underscores the
critical necessity for incorporating adversarial robustness into
developing these systems.

Wireless communication, integral to the practical imple-
mentation of B2B-C, introduces another layer of complexity.
The transmission of EEG data over wireless channels can
be susceptible to noise, interference, and potential security
breaches, emphasizing the need for robust and secure
communication methodologies [9].

While there is extensive literature on EEG analysis and
wireless communication individually, few works explore
the intersection of the two, and the domain of B2B-C
remains in its infancy. A conspicuous gap emerges when
considering the intersection of Adversarial Neural Networks
Training (ANNT), EEG analysis, wireless communication,
and B2B-C. This paper ventures into this relatively uncharted
territory, aiming to fortify B2B-C systems against adversarial
threats using ANNT. Table 1 underscores this observation,
highlighting that while some exploration of B2B-C exists,
its convergence with ANNT and wireless communication
remains untouched.

For instance, works by Grau et al. [1] and Rao et al.
[10] have laid foundational concepts in B2B-C but did not
delve into the security aspects. On the other hand, studies
like those by Rajesh et al. [11] and Ajmeria et al. [12] have
emphasized the need for security but have not ventured into
the application of ANNT, particularly in conjunction with
EEG, for fortifying B2B-C systems.

Interestingly, the work of Brocal et al. [13] stands as
the only example in the surveyed literature where ANNT
is utilized. However, their study diverges significantly from
our work. In their approach, ANNT is deployed primarily
to enhance a neurohaptic interface through Generative
Adversarial Networks (GANs), aiming to create tangible
patterns for transmitting emotions and thoughts.

By preparing our system to resist adversarial threats,
we aim to ensure the integrity and reliability of communica-
tions across varying environments. This distinct application
of adversarial training highlights the versatility and expansive
potential of ANNT in neural network research.

In this study, we significantly advance the security
and robustness of B2B-C systems through the innovative
application of ANNT. Our contributions are twofold: First,
we demonstrate the critical role of Sampling Rate over
Trial Duration in enhancing ANNT’s effectiveness, offering
a novel insight into optimizing B2B-C systems against
adversarial threats. Second, we propose a framework for
future research directions, emphasizing the need to explore a
wider range of adversarial scenarios and their implications for
neural signal processing and cognitive tasks. The remainder
of this paper is organized as follows: Section II details our
methodology and experimental design, Section III presents
our results, Section IV discusses the implications of our
findings, and we conclude in Section V with a summary and
future research directions.

II. METHODOLOGY AND EXPERIMENT DESIGN
A. PROBLEM DEFINITION
This study uses EEG data capturing Event-Related Potential
(ERP), specifically focusing on the P300 paradigm. The
primary goal is to classify EEG samples into Non-target
events (class 1) and Target events (class 2). The P300
signal is particularly pivotal in cognitive neuroscience
due to its pronounced neural response, occurring approx-
imately 300 milliseconds after stimulus onset [14]. This
response is robust and reliable across different subjects and
uniquely representative of cognitive processes like attention
and decision-making, which renders it highly suitable for
B2B-C [15].

The choice of the P300 paradigm over other EEG
signals stems from several key advantages. Firstly, the P300
signal’s distinctiveness lies in its clear and measurable
response, which is less susceptible to variability and noise
than other EEG components [16]. This makes it an ideal
candidate for accurate and efficient B2B-C systems. Sec-
ondly, its association with communication-related cognitive
processes - such as target recognition and differentiation
- makes it inherently suited for transmitting meaningful
information in a B2B-C setup [17]. Finally, the practi-
cal aspects of using P300, including its non-invasiveness
and minimal requirement for subject training, further add
to its feasibility and applicability in real-world B2B-C
scenarios [46].

Our methodology comprises four main components.
• Utilising a Convolutional Neural Network (CNN).
Our approach employs CNNs to extract spatial features
from multi-channel EEG data, which is pivotal in
analyzing ERP signals. In the P300 paradigm, the
differentiation between Target and Non-target events is
significantly based on the spatial distribution of brain
activity. Target events typically elicit distinct spatial
patterns in EEG signals, characterized by notable acti-
vations in specific brain regions. CNNs are particularly
adept at capturing these unique spatial signatures due to
their ability to process and learn frommulti-dimensional
data [18].

• Employing Temporal Convolutional Networks
(TCN). To capture the temporal dependencies in
EEG signals, we utilize TCNs. These are preferred
over traditional Long Short-Term Memory (LSTM)
models owing to their parallel processing capabilities
and stable gradient flow, both crucial for managing
the time-sensitive nature of ERP data [19]. The
P300 component’s identification heavily relies on
its timing post-stimulus. TCNs, with their efficient
handling of sequential data, can precisely track and
learn these time-dependent patterns, ensuring a more
accurate and temporally coherent analysis of the P300
signals. Additionally, TCNs reduce the likelihood of
overfitting and speed up the training process, making
our model more efficient and robust in real-time B2B-C
applications.

VOLUME 12, 2024 39451



H. Ahmadi et al.: Adversarial Neural Network Training for Secure and Robust B2B-C

TABLE 1. Summary of reviewed references.
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• Simulating Adversarial Attack on the Wireless
Channel. We simulate an adversarial attack using
the Fast Gradient Sign Method (FGSM) to test the
robustness of our model against potential security
threats. FGSM, known for its efficiency in generating
adversarial examples, helps us understand how subtle
perturbations can mislead the model.

• Applying ANNT. To fortify our model against adversar-
ial threats, we integrate ANNT. This approach involves
training the model on both original and adversarially
perturbed data. By doing so, the model learns to
recognize and resist adversarial patterns, enhancing its
ability to maintain high accuracy and reliability, even in
adversarial perturbations.

B. SYSTEM MODEL
Figure 1 delineates the architecture of our CNN-TCNmodel,
charting the journey from EEG data acquisition to adversarial
resilience training. At the outset, our model harnesses
multi-dimensional EEGdata, capturing the nuanced electrical
activities of the brain. This data undergoes meticulous
preprocessing, a step crucial for isolating the P300 signal—a
marker of cognitive acuity and focus.

Our architecture’s ingenuity lies in its dual-layered
approach to feature extraction. The CNN layer adeptly
isolates spatial features, those distinct neural fingerprints
indicative of target or non-target responses. Simultaneously,
the TCN layer tracks the temporal evolution of the EEG
signals, capturing the precise timing of the P300 wave’s
emergence post-stimulus.

To assess the robustness of our model against digital
adversaries, we inject the system with adversarially modified
data via the FGSM technique, thereby mimicking potential
security breaches. The incorporation of ANNT is a strategic
counter, training the model to recognize and resist these
perturbations, thereby bolstering its defense mechanisms.

Evaluative measures are then rigorously applied across
three distinct scenarios: unaltered data classification, adver-
sarially attacked data classification, and attacked data
classification post-ANNT integration. These scenarios test
the model’s accuracy and resilience, ensuring the integrity of
B2B-C in the face of adversarial onslaughts.

C. DATA COLLECTION AND PREPROCESSING
We used various ERP EEG datasets, each with varying
characteristics regarding the number of subjects, channels,
trials per class, trial durations, sampling rates, and sessions.
The datasets employed are summarised in Table 2.

The raw EEG signals from these datasets underwent
preprocessing, including applying a band-pass filter within
the 0.1-30 Hz range to effectively isolate the ERP signals’
relevant features, especially the P300 component. Following
filtering, the EEG signals were segmented into epochs, with
each epoch’s duration precisely matching the trial durations
listed for each dataset in Table 2. This alignment ensures
comprehensive capture of the ERP responses, particularly

the P300 component, across all datasets. The epoch lengths
thus directly correspond to the trials’ durations, ranging
from 0.8 seconds to 1.2 seconds, depending on the dataset
specifics. This methodological choice underpins our data’s
consistency and accuracy in capturing the essential ERP
features for analysis. In parallel, we utilized a K-fold
cross-validation strategy for data splitting in our exper-
iments, selecting K=10 as the optimal balance between
computational efficiency and model accuracy after testing
ranges from 5 to 15 folds. This approach ensures rigorous
evaluation and utilization of each data point for training
and validation, minimizing the risk of overfitting while
maintaining computational manageability.

D. MATHEMATICAL FORMULATION
The methods employed in this study are mathematically rep-
resented, elucidating the interplay between neural networks,
adversarial perturbation, training, and model evaluation.

• Transmitter (Clean Data). The clean EEG data is
represented as a 3D tensor:

X ∈ Rntrials×nchannels×ntime points (1)

where ntrials represents number of ERP trials, nchannels
the EEG channels, and ntime points the time samples in
each trial. The corresponding labels are represented as
a vector y ∈ {1, 2}ntrials , with 1 and 2 denoting the two
classes in our binary classification problem (Target and
Non-target, respectively).

• Wireless Channel (Adversarial Perturbation). The
EEG data, segmented into epochs, is subjected to
adversarial perturbations using the FGSM, resulting
in adversarial noise N , to simulate an attacked wire-
less channel, reflecting realistic adversarial conditions
in EEG data transmission. The attacked data X ′ is
represented as:

X ′
= X + N (2)

where

N = ε · sign(∇XJ (θ,X , y)) (3)

ε being a small constant set to 0.05 in our imple-
mentation of FGSM, ∇X represents the gradient with
respect to X , θ indicates the current parameters of the
model used in the generation of adversarial noise, and
J is the categorical cross-entropy loss function chosen
for its effectiveness in handling classification tasks
with one-hot encoded labels. Categorical cross-entropy
loss measures the discrepancy between the predicted
probabilities and the actual class labels. It is particularly
suitable for our ERP signal classification task, where
accurate probability estimation for each class (Target
and Non-Target) is crucial.
While our experiment specifically employs the FGSM
to generate an adversarial attack, the represented
mathematical formulation of N in Equation (3) can
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FIGURE 1. CNN-TCN Model Architecture and Evaluation Scenarios in our B2B-C system. This schematic illustrates the data flow from EEG signal
acquisition through preprocessing, feature extraction with CNN and TCN, and classification, highlighting the robustness afforded by ANNT.

TABLE 2. Overview of the datasets employed in this study.

conceptually be extended to encompass a variety of
noises and perturbations, including different adversarial
attack strategies. This extension is grounded in the
general concept that adversarial attacks, regardless of
their specific type, introduce perturbations to the input
data intended tomislead themodel. Thus, while equation
(3) is derived from the FGSM approach, it can be seen
as a broader representation of adversarial perturbations.
The mathematical representation of our adversarial
approach culminates in creating perturbed data that
challenges the model’s robustness. Figure 2 provides a
comparative analysis of EEG signals before and after
applying an FGSM attack to demonstrate the effect of
such perturbations visually.
Upon examining Figure 2, one might be deceived by the
seemingly identical nature of the clean and perturbed
EEG signals. Although visually minimal and repre-
sented by a power value substantially lower than the
original signal, the perturbation seriously threatens the
classification performance. This discrepancy highlights
the attack’s potency: a minute alteration in the input can

lead to a disproportionate degradation in the model’s
performance.

• ANNT (Robustness Improvement). The ANNTmodel
is trained also on the perturbed data X ′, where X ′

has been modified with adversarial noise N . This
training process can be mathematically framed as an
optimization problem:

θ∗ = arg minθE[J (θ,X
′, y)] (4)

where E[·] denotes the expectation (i.e., average over
the training samples), and θ∗ represents the optimized
vector parameters of the model after training.

• Receiver (Model Evaluation). The model’s perfor-
mance is evaluated using both clean test data Xtest and
adversarially attacked data X ′

test, with corresponding
labels ytest. The evaluation metrics include Accuracy
and Area Under the Curve (AUC). The Accuracy is
calculated as:

Accuracy =
1
ntest

ntest∑
i=1

I (ytest[i] = ypred[i]) (5)
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FIGURE 2. Example of the effect of the FGSM adversarial attack on EEG signals. A) The original EEG signal was without any perturbation. B) Adversarial
perturbations generated by the FGSM attack. C) EEG signal after being subjected to the FGSM attack. D) Comparison of the clean original EEG and the
signal post-attack.

where ntest is the number of test samples, ypred is
the vector of the model’s predictions on the test data,
and I (.) is the indicator function, which equals 1 if
ytest[i] = ypred[i] and 0 otherwise. Additionally, the
Receiver Operating Characteristic (ROC) curves are
plotted for clean and attacked scenarios to understand
the model’s performance across different threshold
settings comprehensively.

E. WIRELESS CHANNEL SIMULATION AND
EXPERIMENTAL DESIGN
This subsection outlines the simulation of a wireless channel
for a B2B-C system and the experimental design, focusing
on using adversarial attacks to evaluate and enhance model
robustness.

Model Robustness. A key objective is to assess the
robustness of our CNN-TCN model against adversarial
attacks. These attacks are simulated to reflect potential
real-world threats to the B2B-C system, testing the model’s
robustness under adversarial conditions.

Realistic Assessment. The simulation aims to understand
the impact of adversarial attacks on B2B-C systems in
real-world scenarios. We focus on the implications these

attacks could have on the integrity and performance of such
systems.

The experimental structure addresses these objectives
through the following components:

• Baseline Experiment. This experiment is a control
by evaluating the CNN-TCN model’s performance on
clean, unperturbed EEG data. It establishes a baseline
for comparison with adversarially challenged scenarios.

• Adversarial Attack Simulation.We simulate adversar-
ial conditions using the FGSM to create perturbed EEG
data. This approach mimics potential adversarial attacks
the system might encounter, allowing us to assess how
the CNN-TCN model copes with such perturbations.

• ANNTExperiment.Themodel undergoesANNTusing
clean and FGSM-perturbed EEG data. This process aims
to improve the model’s ability to withstand adversarial
attacks, enhancing the security and robustness of the
B2B-C system.

The experiments utilize the previously described data split,
training on designated sets, and evaluation on testing sets. The
adversarial training involves multiple iterations, refining the
model’s performance against adversarial examples generated
by FGSM until satisfactory robustness is achieved.
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Upon delving into our approach’s theoretical and mathe-
matical underpinnings, Figure 3 illustrates a comprehensive
workflow mapping the experimental journey from EEG data
acquisition to the nuanced application of ANNT. This figure
captures the intricate process beginning with EEG data
collection from ‘Brain 1’, meticulously transitioning through
stages of systematic preprocessing to optimize the data for
analysis. A significant emphasis is placed on introducing
adversarial perturbations via the FGSM attack, a method
chosen for its effectiveness in challenging the model’s
resilience, thereby evaluating its robustness against potential
threats. This is followed by the dual-path processing of data
through CNN and TCN networks, which are instrumental in
feature extraction, laying the groundwork for the robustness
enhancement provided by ANNT.

Each phase of the workflow is delineated by distinctive
color codes, illustrating the transition from preprocessing
(highlighted in purple) to adversarial example generation
and evaluation (in red) and from training with clean data
(in yellow) to the comprehensive evaluation of the model
performance with ANNT (in green). This visual demarcation
aids in understanding the workflow’s complexity and the
strategic interplay of various components aimed at securing
a robust B2B-C framework. Furthermore, using dashed and
straight lines distinguishes between the flow of evaluation and
training labels and the progression of data processing steps.

An extensive evaluation phase quantitatively assesses the
model’s performance through accuracy, ROC, and AUC
metrics, facilitating a direct comparison across clean and
adversarially attacked scenarios. This meticulous evaluation
underscores the effectiveness of our workflow in enhancing
security and reliability in the B2B-C systems, acting not only
as a procedural guide for replication but also highlighting
the critical interplay among the various stages in fostering a
secure framework.

F. ADVERSARIAL DATA INTEGRATION AND BIAS
MITIGATION IN ANNT
Addressing the critical aspects of model evaluation, our
strategic approach distributes the attacked dataset between
the training and evaluation phases while mitigating bias
towards specific adversarial attacks. Our methodology rec-
ognizes the importance of robust and generalizable models
in B2B-C systems and ensures balanced exposure to clean
and adversarially perturbed data. Through a meticulously
designed alternating training regime, the model encounters
various adversarial examples generated using the FGSMwith
a predetermined epsilon value. This enhances the model’s
resilience to adversarial perturbations, preventing overfitting
clean data or developing a bias towards specific adversarial
attacks. Incorporating adversarial examples in the training
and testing phases allows for a rigorous assessment of the
model’s performance under realistic adversarial conditions.
This ensures its effectiveness and security in real-world
applications, underlining our commitment to advancing the

security and reliability of B2B-C systems and addressing
potential vulnerabilities in the face of adversarial threats.

G. STATISTICAL ANALYSIS OF MODEL PERFORMANCE
Our study used advanced statistical methods to evaluate the
ANNT model’s performance rigorously. A key component of
our analysis was an Analysis of Variance (ANOVA), which
aimed to assess the influence of several factors, including
‘Condition’, on model performance metrics such as Accuracy
and AUC.

• ANOVA Analysis. The ANOVA, with Accuracy and
AUC as dependent variables, examined factors such as
‘Condition,’ ’Trials Duration (s),’ and ‘Sampling Rate
(Hz),’ along with their interaction effects. The ‘Con-
dition’ factor encapsulates different scenarios under
which the data was analyzed, including ‘Accuracy
w/o ANNT (Clean),’ ’Accuracy w/ ANNT (Clean),’
‘Accuracy w/o ANNT (Attacked),’ and ‘Accuracy w/
ANNT (Attacked).’ This analysis aimed to quantify each
factor’s impact on model performance.

• Residual Analysis. Residuals from the models were
evaluated through Q-Q plots to verify the normality
assumption, a critical aspect of ANOVA.

• Variance Homogeneity. To ensure the reliability of our
ANOVA results, a Breusch-Pagan test was conducted to
confirm variance homogeneity.

H. GENERALISING MODEL ROBUSTNESS THROUGH
DIVERSE ADVERSARIAL ATTACKS
Following the initial evaluation phase, we enhanced our
model’s generalizability by subjecting it to three additional
types of attacks. This approach affirms the model’s security
and robustness, ensuring its resilience across diverse scenar-
ios. Given the multitude of potential attacks, our selection
process prioritized those compatible with our unique context:
the ERP EEG signal analysis in a simulated wireless B2B-C
setup.

For instance, the Carlini & Wagner (CW) attack, despite
its sophistication in minimizing detectable perturbations,
may not be ideally suited due to its computational demand
and lesser relevance to the specific robustness requirements
of ERP EEG signals. Similarly, Universal Adversarial
Perturbations (UAP), while revealing systemic weaknesses,
could overlook the intricacies of B2B-C signals.

Thus, we meticulously selected attacks that align with both
our data characteristics and model requirements:

• Projected Gradient Descent (PGD): This iterative
enhancement of the FGSM introduces small, strategic
perturbations over multiple steps. It offers a comprehen-
sive assessment by fine-tuning the perturbations, making
it particularly effective for mimicking real-world disrup-
tions in B2B-C.

• DeepFool:By iteratively identifying theminimal pertur-
bation needed to alter the model’s prediction, DeepFool
provides precise insights into model robustness. Its
emphasis on minimal interference is congruent with the
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FIGURE 3. Comprehensive Workflow of Data Processing and Model Evaluation: systematic progression from EEG data acquisition to model assessment.
The workflow includes preprocessing (purple), the generation of adversarial examples and their evaluation (red), training with clean data (yellow), and
the evaluation of model performance with ANNT (green). Each color highlights a specific phase in the process, detailing steps such as adversarial
perturbation, feature extraction, classification, and the robustness conferred by ANNT. Dashed lines represent the flow of evaluation and training labels,
while straight lines indicate the progression of data processing steps. The workflow compares clean vs attacked performance metrics with and without
ANNT (blue).

subtle nature of ERP EEG signal variations, making it
highly relevant for our analysis.

• Jacobian Saliency Map Attack (JSMA): Focusing on
the input’s most impactful features for misclassification,
JSMA tailors adversarial examples by altering specific
features. While its precision is valuable for pinpointing

critical signal components, the method’s computational
intensity could pose challenges for high-dimensional
EEG data analysis.

These selected attacks are tailored to evaluate and enhance
our model’s resilience effectively, considering the specific
nuances of our data and the simulated B2B-C environment.
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In testing our model against these new attacks, we have
broadened our evaluation metrics to include accuracy and
AUC,whichwere used for assessing themodel’s performance
against FGSM attacks, and precision, F1 Score, and Kappa
metrics. This expanded set of metrics provides a more
nuanced and generalized understanding of our findings,
ensuring a comprehensive evaluation of the model’s robust-
ness across different adversarial scenarios.

III. RESULTS
This section delineates the empirical findings of our exper-
iments, which focus on assessing the efficacy of ANNT
on different EEG datasets under clean and adversarial
conditions.

The model’s performance was first evaluated across
various datasets. As illustrated in Figure 4, the results provide
a comparative analysis of accuracy and AUC metrics on
clean and attacked data, with and without ANNT, indicating
the general enhancement of model robustness by ANNT
application.

The key observations and their interpretations are as fol-
lows. The datasets exhibited varied responses to adversarial
attacks, with ANNT generally leading to an improvement in
the robustness of the model as indicated by both accuracy
and AUC values. Notably, dataset BI2013a demonstrated
the most significant improvement in adversarial accuracy
with the application of ANNT, while BNCI2014_009 showed
the most substantial enhancement in AUC. These variations
suggest that certain characteristics intrinsic to each dataset
may differentially influence the effectiveness of ANNT (as
detailed in the Discussion section).

While ROC curves were generated for all datasets to
assess the model’s discriminative ability, Figure 5 selectively
showcases the curves for four datasets that highlight the
differential impact of ANNT. The top row with ROC curves
for BNCI2014_009 and BI2015a demonstrates ANNT’s
significant positive effect, manifesting in notable AUC
improvements and suggesting enhanced defense capabilities
in B2B-C systems. In contrast, the bottom row with BI2012
and BNCI2014_008 shows less pronounced improvements,
indicating that the efficacy of ANNT may be contingent on
specific dataset characteristics. This disparity emphasizes the
need for tailored adversarial training approaches to optimize
the robustness of B2B-C systems against adversarial threats.

To further dissect the influence of individual dataset
characteristics on model performance, we conducted a
normalized association analysis between performance met-
rics and dataset attributes, as depicted in Figure 6. This
analysis revealed that Trial Duration and Sampling Rate
are particularly impactful characteristics. To elucidate their
specific effects, we performed a scatter analysis for both
Trial Duration and Sampling Rate under various conditions,
demonstrated in Figure 7. This granular view decisively
illustrates how ANNT influences accuracy and AUC in the
presence of both clean and adversarial data, underscoring

the nuanced interplay between dataset features and model
robustness.

The visual analyses presented in the preceding figures
suggest a tangible influence of Trial Duration and Sampling
Rate on model performance. To substantiate these observa-
tions with statistical evidence, we conducted an ANOVA,
presented in Table 3. This statistical test quantifies the
contribution of these dataset characteristics to the variance
in performance metrics. The F-statistic and p-values, detailed
in the table, provide a preliminary indication of the factors’
impact.

Following the ANOVA, we conducted the Breusch-Pagan
test to evaluate the residuals’ homoscedasticity for accuracy
and AUC metrics under various conditions. This step was
crucial to ensure that the variance of the residuals met the
assumptions required for the validity of the ANOVA analysis.
The results of this test, detailed in Table 4, indicate that
the variance across different groups remained consistent,
supporting the reliability of our ANOVA findings.

To ensure the validity of the ANOVA test, we comple-
mented the analysis with diagnostic checks. A boxplot in
Figure 8 was constructed to visually assess the distribution
of performance metrics, aiding in detecting outliers and
evaluating group variance homogeneity (as supported by the
Breusch-Pagan test in Table 4). Additionally, a Q-Q plot in
Figure 9 was generated to thoroughly examine the residuals’
normality. The Q-Q plot reveals how well the residuals
correspond to a theoretical normal distribution, which is
a central assumption for the validity of ANOVA. In the
plot, the quantiles of the residuals are plotted against the
expected quantiles of a normal distribution. The alignment
of these points with the reference line (red line in Figure 9)
indicates normality. The more closely the points adhere to
this line, particularly in the center of the plot, the more
evidence we have that the residuals are normally distributed.
Minor deviations, especially in the tails of the distribution,
can be acceptable but should not be systematic or extreme,
as this could suggest non-normality and potential violations
of ANOVA assumptions. In our analysis, the residuals largely
conformed to the red line, substantiating the assumption of
normality and thus supporting the validity of our ANOVA
results. These findings, combined with the ANOVA results,
provide a comprehensive understanding of the data and
underscore the reliability of our statistical inferences.

Furthermore, we present the outcomes of applying three
distinct adversarial attacks to ourmodel: DeepFool, PGD, and
JSMA. To ensure a comprehensive yet focused evaluation of
our model’s robustness and security, we strategically selected
two datasets, BI2013a and BI2015b, from the original eight
datasets used for the FGSM attack analysis. The selection
of these datasets was guided by their contrasting complexity
levels, as illustrated in Table 6. BI2013a, with the highest
model complexity among the datasets, provides a rigorous
test environment to evaluate the model’s resilience under
computationally intensive scenarios. On the other hand,
BI2015b, representing one of the datasets with the lowest
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FIGURE 4. Comparative Performance of Datasets with and without ANNT. The top panels display the accuracy for each dataset on clean (left) and
attacked (right) data, while the bottom panels show the AUC for the same conditions.

complexity, allows us to assess the model’s performance
under more lenient conditions. This deliberate choice of
datasets with significantly different complexity levels enables
a nuanced understanding of our model’s robustness and
security across various attack scenarios. As outlined in
Table 5, the results demonstrate the model’s performance
variations under different attack scenarios. By focusing on
two key datasets, this targeted approach enables us to provide
detailed insights into the model’s resilience against a broader
spectrum of adversarial attacks, thereby underscoring its
robustness and security.

Finally, we explore the computational complexity of the
proposed model, with a particular focus on the adversarial
perturbation process, which is implemented using the FGSM.
The computational requirement of FGSM primarily depends

on calculating the derivative of the loss function with respect
to the input data, denoted by X . The complexity of this
process is inherently linked to the model’s architecture,
including the number of layers (L), the number of neurons in
each layer (H ), and the dimensions of the input data (M ). The
computational complexity is thus representedmathematically
as:

O(L · H2
·M ) (6)

highlighting the reliance on gradient computation and matrix
operations, which are fundamental to FGSM’s execution. The
term ‘‘O(.)’’ signifies the Big O notation, which mathemati-
cally expresses the upper limit of an algorithm’s complexity.
This notation is crucial for illustrating the worst-case scenario
regarding execution time or space requirements, functioning
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FIGURE 5. Differential Impact of ANNT on Dataset Performance: ROC curves for datasets where ANNT had a significant positive effect (top row)
contrasted with those where its impact was less pronounced (bottom row), showcasing the varying degrees of enhanced robustness provided by ANNT
under adversarial conditions.

as a comparative measure of algorithm efficiency, especially
for large-scale inputs.

The architecture of our model includes layers such as
Conv2D, MaxPooling2D, Reshape, and TCN, culminating
in a Dense layer, as depicted in Figure 1. Given that the
convolution operations within TCN layers differ from those
in traditional fully connected layers, a non-linear increase
in H mirrors the convolutional operations’ multiplication
activities.

Upon examining the system model illustrated in Figure 1,
we pinpoint essential parameters for complexity analysis,
including the number of computational layers and neurons
per layer.

• L (The number of computational layers): This
includes 2 Conv2D layers, 1 MaxPooling2D layer,

and 1 TCN layer, making a total of 4 computational
layers (excluding the input and reshape layers).

• H (Neurons per layer): This consists of 32 filters in the
first Conv2D layer and 64 filters in both the second
Conv2D layer and the TCN layer. The highest filter
count, 64, is used for H .

Assuming M represents the size of the input data, its
dimensions are determined by the aggregate product of trials
(ntrials), channels (nchannels), and time points (ntime points) per
trial. These parameters are derived from the dataset details
provided in Table 2, enabling an accurate computation of
the model’s complexity for different datasets, as shown in
Table 6.
This comprehensive analysis highlights the computational

intricacies and paves the way for optimizing neural network
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FIGURE 6. Normalised Association Between Performance Metrics and Dataset Characteristics. The values in this figure are normalized by
subtracting the minimum value of each parameter and dividing by the range (maximum-minimum value), scaling all values to a range of 0-1 for
uniform comparison across datasets. The bold blue line highlights the BNCI2014_009 dataset, demonstrating the most significant positive impact
of ANNT due to its short Trial Duration and relatively lower Sampling Rate. The bold red line represents the Sosulski2019 dataset, indicating a
negligible or non-positive impact of ANNT on improving performance in the presence of adversarial attacks, attributed to its long Trial Duration
and high Sampling Rate.

TABLE 3. ANOVA results showing the influence of conditions and other factors on model performance metrics (Accuracy and AUC). This table compares
performance under different conditions-with and without ANNT in clean and attacked scenarios-and examines how ‘Trials Duration’ and ‘Sampling Rate’
further affect these outcomes.

models by considering computational resource allocation and
the adoption of strategies likemodel pruning and quantization
to mitigate computational burdens.

IV. DISCUSSION
A. EVALUATING METRIC RELEVANCE IN CLASS-
IMBALANCED ERP EEG DATASETS
FOR B2B-C SYSTEMS
In our study employing ERP EEG datasets, we recognize
the inherent class imbalance resulting from the experimental

design favoring less frequent target stimuli for P300
responses. This imbalance significantly impacts our metric
choices.

Accuracy, while providing a quick performance overview,
can be misleading due to the class distribution. A model
might seem accurate by correctly predicting the more
numerous non-target classes, but this does not accu-
rately reflect its performance on the crucial target
class.
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FIGURE 7. Impact of Trial Duration and Sampling Rate on the accuracy and AUC metrics in different scenarios, providing a nuanced understanding of how
these dataset characteristics influence the performance of ANNT. The first two subplots (1 and 2) compare the accuracy against trial duration for clean
and attacked data, showcasing the model’s performance without and with ANNT. Subplots 3 and 4 continue this comparison for accuracy against the
Sampling Rate, again for clean and attacked data conditions without and with ANNT application. The second row of plots shifts focus to AUC, with
subplots 5 and 6 examining the relationship between AUC and Trial Duration and subplots 7 and 8 exploring AUC against Sampling Rate. Across all
subplots, the differential effects of ANNT under varying levels of data integrity and attack simulation are visualized, allowing for a detailed assessment of
model robustness.

TABLE 4. Breusch-Pagan test results for assessing homoscedasticity in model performance metrics (Accuracy and AUC).

We thus use AUC alongside accuracy, as it offers a
comprehensive view of the model’s ability to distinguish
between target and non-target classes under varied thresholds.
This is particularly pertinent for datasets with notable class
imbalances. While accuracy gives a preliminary performance
indication, AUC delves deeper, critically assessing the
model’s proficiency in identifying significant target events in
B2B-C systems.

Linking to our study’s aims, AUC’s role becomes even
more pivotal. In enhancing B2B-C systems’ robustness

against adversarial attacks, where precision in signal
interpretation is key, relying solely on accuracy is insufficient
due to the class distribution. AUC’s broader evaluative
scope, analyzing model robustness in differentiating stimuli
under adversarial interference, aligns with our ANNT.
By improving accuracy and adversarial robustness, ANNT
benefits from AUC’s insights into how well the model
maintains communication integrity under threat.

After establishing the importance of selecting appro-
priate metrics for our class-imbalanced datasets, we now
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FIGURE 8. Comparative Distribution of Performance Metrics for ANNT. The left panel displays the range and distribution of accuracy metrics across
different conditions, while the right panel focuses on the AUC metrics. Both panels highlight the variance and central tendencies of the model’s
performance, with and without ANNT, under clean and attacked scenarios.

FIGURE 9. Q-Q Plot of Model Residuals. This quantile-quantile plot compares the distribution of residuals from the ANOVA model against a theoretical
normal distribution. The close alignment of the data points along the red line indicates that the residuals approximate normality, satisfying one of the key
assumptions required for the validity of ANOVA tests.

turn to the rationale behind our strategic dataset selec-
tion, which was instrumental in uncovering the nuanced
impacts of various EEG features on the effectiveness of
ANNT.

B. RATIONALE FOR DATASET SELECTION AND FEATURE
IMPACT
In selecting our datasets, we meticulously assessed the influ-
ence of various EEG characteristics on model performance.
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TABLE 5. Results of other attacks on BI2013a and BI2015b with and without ANNT.

TABLE 6. Model complexity for each dataset.

We commenced with BI2012, distinguished by its low
Sampling Rate. To explore the influence of Sampling Rate,
we then selected BNCI2014_008, which, while similar to
BI2012 in Trial Duration, has a doubled Sampling Rate.
Next, our focus shifted to the Trial Duration’s impact with
BNCI2014_009, which shared BNCI2014_008’s Sampling
Rate but featured shorter trials. We included BI2013a to
investigate the effect of increased trials per class. Despite
sharing channel count with BNCI2014_009, its doubled
Sampling Rate, subject numbers, and trial per class differed,
allowing us to evaluate the impact of more extensive data
per class. Our analysis was further enriched by BI2014b,
which offered a doubled channel count while retaining the
Sampling Rate fromBI2013a, shedding light on the influence
of channel density on model performance. The inclusion of
BI2015a and BI2015b, akin in channel number, trials per
class, and Trial Duration, allowed us to probe deeper into
the effects of these variables. With one matching the session
number of BI2014b and the other having fewer, they provided
a comparative perspective on the role of session frequency.
Lastly, Sosulski2019 was integrated to examine the effects
at the upper extremes of our variables, with a significantly
higher Sampling Rate, equivalent channel and subject count,
the same session numbers, and a moderate trial count, but
notably, the longest Trial Duration.

With a careful selection of datasets designed to scrutinize
the varied influences on model performance, we have laid the
groundwork for a robust evaluation of ANNT’s effectiveness.
The subsequent analysis shifts from these methodological
considerations to the tangible outcomes observed. We now
turn to the critical impact and broader implications of ANNT,
as evidenced by our empirical findings, to understand how
this technique fortifies B2B-C systems against adversarial
threats.

C. ADVERSARIAL NEURAL NETWORK TRAINING: IMPACT
AND IMPLICATIONS
In assessing the robustness afforded by ANNT, we have
refined our analysis to focus on the performance of individual
datasets as depicted in Figure 4. This approach highlights
the variability and dataset-specific effects of ANNT, pro-
viding a detailed view of the model’s performance on
each dataset, underscoring the nuanced nature of ANNT’s
benefits: improvements are evident, yet their magnitude and
significance vary based on the characteristics of each dataset.

• Improved Robustness to Adversarial Attacks.
Figure 4 shows a clear and significant improvement
in accuracy and AUC for all datasets when ANNT
is applied to attacked data, confirming the efficacy
of ANNT in fortifying the model against adversarial
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perturbations. The training with adversarial examples
allows the model to retain its classification capabilities
under adversarial conditions, indicative of a robust
defense mechanism.

• Minimal Impact on Clean Data. The model perfor-
mance on clean data, as inferred from individual dataset
analysis, indicates minimal improvements post-ANNT
application. This is attributed to themodels’ already high
performance on clean data. Since adversarial training is
designed to address perturbations absent in clean data,
the primary advantage of ANNT is its maintenance of
performance under compromised conditions rather than
enhancing it in their absence.

• Technical Explanation for the Observed Effects.
ANNT simulates potential attacks by incorporating
adversarial examples during training, broadening the
model’s exposure to various perturbations that may
otherwise lead to misclassification. This exposure
cultivates a generalized data comprehension, bolstering
the model’s predictive robustness. Under adversarial
attacks, the model leverages ANNT to discern and
rectify disruptions, thus demonstrating its true value.

• Implications for Model Deployment. Our focus on
individual dataset performance rather than averaged
results emphasizes ANNT’s value in practical scenarios
where data integrity is at risk. The necessity of including
ANNT in the training regimen becomes clear for
ensuring model reliability and security in unpredictable
environments. This analysis emphasizes ANNT’s utility
as a protective measure in real-world applications where
data may be intentionally manipulated to provoke
errors.

Thus far, our discussion has centered on the general
efficacy of ANNT, as evidenced by improvements in model
performance across various datasets. Figure 5 provides a
targeted view, spotlighting the top and bottom datasets
regarding ANNT’s impact, as seen in the ROC curves.
We conduct a normalized correlation analysis to deepen our
examination and provide a more granular understanding of
how dataset behaviors relate to specific characteristics. This
allows us to dissect the extent to which individual dataset
features contribute to the performance metrics observed. The
forthcoming subsection delves into these findings, discussing
the interplay between dataset attributes and the model’s
performance under the influence of ANNT.

D. ANALYSIS OF DATASET CHARACTERISTICS IN MODEL
PERFORMANCE
In the realm of B2B-C systems, the diversity of EEG dataset
characteristics can play a pivotal role in the performance
of the models. To unravel the complex dynamics between
these characteristics and the efficacy of ANNT, we conducted
a normalized association analysis, the results of which are
shown in Figure 6. This analysis informs our understanding of
the datasets and sheds light on the implications of designing
and applying robust B2B-C systems.

Figure 6 illustrates a marked variance in responsiveness
to ANNT, with Trial Duration and Sampling Rate emerging
as the most impactful factors. Notably, datasets with shorter
trial durations, such as BNCI2014_009, seem to benefit more
from ANNT, suggesting that the condensation of critical
information within a smaller temporal window enhances
the model’s capability to resist adversarial interference.
In contrast, extended trial durations, like those seen in
Sosulski2019, may dilute the model’s discriminatory power
by providing a broader attack surface for adversarial noise.

Similarly, a higher Sampling Rate could be a double-
edged sword. While it may increase the temporal resolution
of the data, it also potentially introduces more opportunities
for adversarial perturbations to integrate with the genuine
EEG signals. This complexity is visually and quantitatively
captured in Figure 6, where the interplay between Trial Dura-
tion and Sampling Rate significantly influences ANNT’s
effectiveness.

We have conducted a detailed statistical investigation to
elucidate these two critical characteristics’ individual and
combined effects on model performance. We present this as
a scatter plot analysis, referred to as the ‘Performance Impact
Scatter Plot,’ shown in Figure 7. This analysis will allow us to
discern how each characteristic affects the model’s accuracy
and AUC under clean and adversarial conditions.

We have undertaken a rigorous statistical investigation to
elucidate further the individual and combined effects of Trial
Duration and Sampling Rate on model performance in the
following subsection.

E. STATISTICAL ANALYSIS
Figure 7 provides a visual confirmation of the significant
roles that Trial Duration and Sampling Rate play in the
performance of ANNT. Each panel contrasts the effects of
these key characteristics on model accuracy and AUC under
both clean and adversarial conditions.

Subplots 1, 2, 5, and 6 correlating Trial Duration with
model performance metrics reveal that shorter trials generally
correspond with higher accuracy and AUC, particularly when
under adversarial attack. This suggests that shorter trial
durations allow ANNT to effectively enhance the model’s
resistance to such attacks, likely due to a more condensed and
distinct representation of the target stimuli.

Conversely, when examining the impact of the Sampling
Rate as illustrated in subplots 3, 4, 7, and 8, it becomes
evident that while higher rates provide more detail by
capturing finer temporal resolutions, they may also introduce
additional complexity that can be exploited by adversarial
noise. The plots indicate a nuanced balance to be struck;
a higher Sampling Rate does not unilaterally lead to better
performance and may, in some cases, be detrimental when
coupled with longer Trial Durations.

Figure 7 acts as a visual supplement to our normalized
association analysis from Figure 6, supporting the assertion
that Trial Duration and Sampling Rate are predominant
factors affecting ANNT’s performance. To quantify the
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magnitude of their impact, we extended our analysis to
include an ANOVA test. The results of this statistical analysis
are presented in Table 3. The ANOVA test allows us to
discern the individual contributions of each variable to the
performance metrics.

Our statistical examination via ANOVA, presented in
Table 3, underscores the significant influence of the Sampling
Rate on the efficacy of ANNT for accuracy metrics. The
F-statistic for Sampling Rate is substantial (F=33.659,
p=0.000027), confirming its crucial impact on model perfor-
mance under adversarial conditions. However, Trial Duration
shows a less pronounced effect on accuracy (F=4.156,
p=0.058378), suggesting a marginal trend that does not reach
conventional levels of statistical significance.

For AUC metrics, the Sampling Rate again proves to be
a significant factor (F=15.584, p=0.001152), reinforcing
its pivotal role in determining model efficacy. In contrast,
Trial Duration appears to have a minimal impact on AUC
metrics (F=0.495, p=0.491680), suggesting its influence is
not statistically significant in this context.

In the ANOVA table, the interaction effects, such as
C(Condition): Q(Trials Duration (s)) and C(Condition):
Q(Sampling Rate (Hz)), with p-values exceeding the
0.05 threshold, indicate an inconsistent influence of Trial
Duration and Sampling Rate across different conditions.

Upon extending our analysis to examine homoscedasticity
through the Breusch-Pagan test, as shown in Table 4,
we confirmed the uniform variance across different levels of
our independent variables. Our model diagnostics, including
the boxplots in Figure 8, confirm the homogeneity of
variances and provide a visual representation of performance
metric distributions across conditions. The Q-Q plot in
Figure 9 confirms the normality of residuals.
Including the Breusch-Pagan test results complements our

diagnostic checks, the boxplots, and the Q-Q plot, rein-
forcing the robustness of our statistical conclusions. These
checks confirm the assumptions necessary for the validity
of ANOVA, providing a comprehensive understanding of
our data and underlining the reliability of our statistical
inferences.

F. QUANTITATIVE EVALUATION OF MODEL ACCURACY
AND AUC
Our empirical investigation presents a quantitative enhance-
ment in model performance attributable to the application of
ANNT. Table 7 encapsulates this enhancement, delineating
an average accuracy increment of 17% in the face of adver-
sarial attacks and an average AUC increment of 0.12 points.
These increments are not merely numerical improvements;
they substantially enhance the model’s ability to maintain its
integrity under adversarial duress, an increasingly relevant
scenario in deploying B2B-C systems in security-critical
applications.

The application of ANNT, as substantiated by the com-
parative performance metrics, delineates a clear trajectory
towards robustness—a facet of performance that is paramount

TABLE 7. Quantitative evaluation of model accuracy with ANNT
application under clean and adversarial conditions.

in real-world settings. The bolstered accuracy and AUC
under adversarial conditions indicate ANNT’s efficacy in
reinforcing the model’s defense mechanisms. This is partic-
ularly noteworthy in the context of B2B-C systems, where
the accuracy and precision of communication are critical.
The augmented adversarial accuracy suggests a fortified
system that can reliably interpret and transmit neural signals
even under sophisticated electronic attack strategies, thus
mitigating the risk of erroneous interpretations or malicious
signal manipulations.

G. ASSESSING MODEL RESILIENCE: INSIGHTS FROM
DIVERSE ADVERSARIAL ATTACKS
In exploring our model’s robustness against adversarial
attacks, we subjected it to a series of sophisticated threats,
including DeepFool, PGD, and JSMA, each chosen for their
relevance to the nuances of B2B-C signal analysis. The
comparative analysis of these attacks provided a compre-
hensive understanding of our model’s resilience, revealing
notable differences in their impact on model performance,
as presented in Table 5.

DeepFool emerged as the most effective attack in revealing
the model’s vulnerabilities, significantly reducing all metrics
across both BI2013a and BI2015b datasets. Its efficacy can
be attributed to its ability to craft minimal yet impactful
perturbations, which closely mimic potential real-world
signal disruptions. This precision underscores the importance
of designing countermeasures that address subtle adversarial
manipulations, particularly relevant in ERP EEG signals
where minor perturbations can lead to misinterpretations.

The PGD attack, with its iterative approach to applying
perturbations, also posed a substantial threat but was slightly
less impactful than DeepFool. This suggests that while
PGD effectively simulates attack scenarios with incremental
complexity, DeepFool’s minimal perturbation approach is
more aligned with the specific challenges of securing B2B-C
models.

Though computationally intensive, JSMA offered valuable
insights into the model’s sensitivity to feature-specific
alterations, aligning its effectiveness closely with that of
FGSM. This highlights the necessity of understanding and
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mitigating targeted attacks that exploit specific vulnerabilities
within the data or model architecture.

Crucially, the incorporation of ANNT showcases a sig-
nificant advancement in bolstering the model’s defense
mechanisms against the adversarial attacks discussed. The
comparative results with and without ANNT, as detailed
in Table 5, illuminate its profound impact on recovering
model performance metrics to levels near those observed
under clean data conditions. Despite the varying degrees of
threat posed by DeepFool, PGD, and JSMA, ANNT has
consistently mitigated their adverse effects, restoring accu-
racy, precision, F1 score, AUC, and Kappa to substantially
higher values. This resilience is particularly noteworthy in the
face of DeepFool’s sophisticated perturbations, which present
the most considerable challenge to model robustness. The
efficacy of ANNT against such diverse and potent attacks
not only underlines its value as a critical component of
our defense strategy but also reinforces the model’s capa-
bility to maintain high performance in real-world scenarios
where adversarial threats are unpredictable. By effectively
countering these attacks, ANNT contributes to a more gen-
eralized, robust, and secure framework for B2B-C analysis,
ensuring the integrity and reliability of the communication
channel even in the presence of sophisticated adversarial
interventions.

H. COMPUTATIONAL COMPLEXITY ANALYSIS
The analysis of model complexity, as shown in Table 6,
reveals a deep connection between computational demands
and dataset characteristics, setting the stage for optimizing
neural network models more effectively. This analysis
highlights how crucial factors such as sampling rate and
trial count significantly impact computational complexity,
emphasizing their importance in allocating computational
resources. The increase in data processing requirements,
driven by higher sampling rates and larger trial volumes,
necessitates adopting advanced computational strategies to
handle this growth efficiently.

Furthermore, the added complexity from the number of
channels and the variation in trial duration complicates
the computational landscape even further. These elements
collectively influence the model’s data processing efficiency,
underlining the need for adaptive model architectures to meet
the diverse requirements of different datasets.

This insight underpins the necessity to consider compu-
tational limits and optimization opportunities in the model’s
practical application. Employing strategies like model prun-
ing, quantization, and efficient data processing algorithms is
crucial for reducing computational load. These strategies are
instrumental in boosting model performance and ensuring the
sustainability of computational resources.

Additionally, the importance of balancing model com-
plexity with performance, particularly in the context of
adversarial threats, cannot be overstated. This balance
requires fine-tuning model parameters to achieve optimal

efficiency while preserving the integrity of adversarial
defense mechanisms.

I. METHODOLOGICAL CONSIDERATIONS, BROADER
IMPLICATIONS, AND FUTURE DIRECTIONS
Our research on ANNT for B2B-C systems underscores the
potential and limitations of current methodologies and sets
the stage for future explorations with wide-ranging implica-
tions. While we have demonstrated significant advancements
in securing B2B-C systems against adversarial attacks, the
challenges encountered beckon for comprehensive future
research efforts.

Firstly, we propose expanding the scope of adversarial
strategies explored in future studies to account for the unique
perturbations each method introduces, aiming for a more
nuanced understanding of ANNT’s robustness and versatility.
The critical challenge of transmitting EEG data over wireless
channels without compromising its integrity also calls for
advanced encryption and transmission techniques tailored to
neural data.

Moreover, our study’s focus on ERP EEG datasets opens
up avenues for future research to include a broader spectrum
of neural tasks and signals, thereby extending the applica-
bility of our findings. Addressing practical challenges in
real-world scenarios, such as jamming signals and hardware
impairments, remains pivotal for evaluating and enhancing
ANNT’s deployment in operational environments.

Beyond these methodological considerations, our study
hints at broader interdisciplinary research and development
implications. The insights gained from enhancingB2B-C sys-
tem security can inform advancements in smart healthcare,
neurotechnology, and secure communication platforms. This
suggests a future where such technologies aremore integrated
into daily life and healthcare practices.

In summary, our envisioned future direction involves
methodological advancements, tackling practical challenges,
and exploring the transformative potential of ANNT in
B2B-C systems across various domains. This comprehensive
approach aims to advance the efficacy and reliability of
B2B-C systems and contribute to the broader field of secure
and efficient communication technologies.

V. CONCLUSION
Our study underscores the pivotal role of ANNT in bol-
stering the resilience of B2B-C systems against adversarial
interferences. A key finding is the significant influence
of Sampling Rate over Trial Duration on the performance
enhancement through ANNT, pointing towards an optimum
balance that maximizes system robustness. These insights
pave the way for developing more secure and efficient
B2B-C frameworks and hold profound implications for the
biomedical domain. Specifically, the enhanced robustness
against adversarial threats ensures the integrity and reliability
of B2B-C systems, which are crucial for applications such
as remote healthcare monitoring, neurorehabilitation, and
BCIs for assistive technologies. By ensuring the secure and
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effective transmission of EEG signals, our research advances
telemedicine and personalized healthcare, where accurate and
reliable brain signal interpretation can significantly impact
patient outcomes. Future research should expand on these
findings to explore a broader spectrum of adversarial threats
and their countermeasures, further solidifying the foundation
for secure, reliable, and efficient B2B-C in biomedical
applications.
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