
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DeX: Deep learning-based throughput prediction for real-time communications with emphasis on traffic eXtremes / Song,
Tailai; Garza, Paolo; Meo, Michela; Munafo, Maurizio Matteo. - In: COMPUTER NETWORKS. - ISSN 1389-1286. -
ELETTRONICO. - 249:(2024), p. 110507. [10.1016/j.comnet.2024.110507]

Original

DeX: Deep learning-based throughput prediction for real-time communications with emphasis on traffic
eXtremes

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.comnet.2024.110507

Terms of use:

Publisher copyright

© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.comnet.2024.110507

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989246 since: 2024-06-03T10:27:23Z

Elsevier

DeX: Deep Learning-based Throughput Prediction for Real-Time Communications with
Emphasis on Traffic eXtremes

Tailai Songa,∗, Paolo Garzaa, Michela Meoa, Maurizio M. Munafòa

aPolitecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 TO, Torino, Italy

Abstract

Recent years have witnessed a remarkable upsurge in the global proliferation of Real-Time Communications (RTC) applications, a
trend propelled by the flourishing advancement of network technologies and further amplified by the COVID-19 pandemic. Within
this context, there is a burgeoning interest in the innovation of sophisticated and intelligent network infrastructures and technologies.
Positioned as a promising candidate for this purpose, real-time throughput prediction emerges as a key enabler to foster network
observability and offer proactive functions, upholding advanced system management, including but not limited to, bandwidth
allocation and adaptive streaming. Nonetheless, existing methodologies struggle with predicting extreme conditions of throughput,
notably peaks, valleys, and abrupt changes, that are critical in RTC traffic. To surmount these obstacles, we introduce DeX, a Deep
Learning (DL)-based framework, designed to predict short-term throughput, with a dexterous proficiency and dedicated focus on
navigating the complexities of traffic eXtremes.
In particular, DeX leverages solely packet-level information as features and is composed of three integral components: a packet se-
lection module that opts for an optimal subset of input features, a feature extraction block that partially incorporates the Transformer
architecture, and a multi-task learning pipeline that improves the proficiency in handling traffic extremes. Moreover, our work is
anchored in extensive traffic traces garnered during actual video-teleconferencing calls, and we formulate a time-series regression
problem, rigorously evaluating a spectrum of technologies ranging from an adaptive filter to diverse Machine Learning (ML) and
DL approaches. Initially, we aim at predicting throughput within 500-ms time windows using historical 1024 packets out of 2048,
and consequently, our methodology exhibits exceptional efficacy, especially in forecasting traffic extremities. Conclusively, we
conduct a series of ablation experiments and thorough analyses to showcase the enhanced performance of various scenarios, further
validating the effectiveness and robustness of DeX.

Keywords: Real-time communications, RTP, throughput prediction, packet level, machine learning, deep learning.

1. Introduction

In the modern era, Real-Time Transport Protocol (RTP) [1]-
based Real-Time Communications (RTC) have entrenched
themselves as indispensable instruments across both profes-
sional and recreational domains, ushering in a suite of appli-
cations such as video-teleconferencing, online gaming, stream-
ing, etc. The unprecedented popularity of RTC applications
throughout recent years can be attributable to the heightened
demand for entertainment and enhanced lifestyles in the post-
pandemic period, in tandem with the global shift towards re-
mote work practices [2]. Presently, consumers are confronted
with an abundance of rival applications [3] driven by perpet-
ual enrichment of RTC services, which can be ascribed to the
augmented accessibility of bandwidth, the extensive growth of
network infrastructures, and the advent of cutting-edge 5G tech-
nologies. This expansion leads to a diversification of user pref-
erences and expectations, necessitating the implementation of

∗Corresponding author
Email addresses: tailai.song@polito.it (Tailai Song),

paolo.garza@polito.it (Paolo Garza), michela.meo@polito.it
(Michela Meo), maurizio.munafo@polito.it (Maurizio M. Munafò)

advanced and efficacious optimizations in RTC systems to de-
liver an unparalleled user experience in various contexts. Con-
temporary users seek not only high-quality audio and video but
also a seamless and fluid overall communication experience.
Catering to these intensified expectations requires multifaceted
and innovative approaches that transcend the scope of tradi-
tional solutions.

To this end, there is a compelling necessity to develop and
refine robust, intelligent, and scalable technologies aimed at
augmenting network performance and Quality of Experience
(QoE). Notably, bandwidth management assumes a pivotal role
in RTC, incorporating essential functionalities such as through-
put measurement, bandwidth allocation, dynamic transmission
adjustments, and traffic prioritization [4, 5, 6, 7]. In light of
this, the prediction of traffic throughput holds immense po-
tential, proffering a preemptive mechanism that confers man-
ifold advantages: i) Optimized bandwidth allocation and uti-
lization are attainable through accurate throughput estimations,
thereby avoiding both underutilization and over-provisioning of
network resources; ii) Adaptive streaming and transcoding can
increase QoE by dynamically modifying media quality, reso-
lution, or encoding settings in alignment with the anticipated

Preprint submitted to Computer Networks June 3, 2024

bitrate, ensuring optimal content dissemination; iii) Network
congestion management can be effectively executed through
the forecasting of bandwidth requirements, facilitating proac-
tive countermeasures such as traffic shaping, prioritization, or
rerouting to alleviate or avert congestion issues; iv) Resource
planning becomes more efficient as service providers and net-
work operators utilize predicted throughput information to as-
sess and strategically allocate the required network resources,
guaranteeing scalability and consistent levels of service quality
to accommodate the anticipated communication demands. Nev-
ertheless, throughput prediction poses formidable challenges,
particularly within the context of RTC, owing to dynamic,
ever-changing, and heterogeneous nature of networks, con-
strained computational capacity, and possible temporal limita-
tions. Compounding this, existing solutions for common time-
series problems often struggle with the prediction of extreme
conditions, which are of critical significance in RTC traffic.

In this paper, we present DeX, an innovative Deep Learning
(DL) Neural Network (NN), meticulously tailored to predict the
throughput of RTC traffic, with emphasis on traffic eXtremes,
namely peak values, valley values, and abrupt changes. DeX
strategically and exclusively capitalizes on packet-level infor-
mation, providing the benefit of minimal extraction efforts
while endeavoring to address inherent challenges in the prob-
lem. Specifically, DeX is characterized by a tripartite structure,
comprising three multifunctional and synergistic components:
a packet selection module that autonomously and intelligently
filters an optimal subset of input packets, aiming to curtail fea-
ture quantity and model complexity; a Transformer [8]-based
feature extraction block that employs the multi-head attention
mechanism to discern the dynamic and intrinsic network traf-
fic patterns; and a multi-task learning pipeline with various
weights that enhances the regression problem by integrating
two supplementary tasks to effectively adapt to traffic extremi-
ties.

Our work is underpinned by a substantial collection of real
videoconferencing traffic, collected from client sides across
various network environments, and the dataset is curated with
both historical throughput time series and packet-level features.
We articulate a regression problem and benchmark our model
against a simple baseline and an array of prevalent techniques,
spanning from an adaptive filter to conventional ML and DL
approaches. Initially, we select 1024 packets from a set of
2048 to predict short-term throughput in forthcoming time win-
dows of 500 ms, and subsequently, we undertake a series of
ablation studies to ascertain the importance of different com-
ponents, accompanied by comprehensive analyses to explore
diverse scenarios and expatiate the operational mechanics of
DeX. Moreover, our proposed solution with a streamlined ar-
chitecture is envisioned to achieve computational efficiency and
reduce processing time consumption, and to be integrated as a
software module for end-users or network equipment such as
media servers, establishing an AI-based, RTC-aware, compre-
hensive, and proactive system for traffic monitoring and man-
agement. It facilitates application-level observability within the
network control plane, thus empowering efficient and informed
decision-making processes, and incorporates a feedback mech-

anism to rapidly respond to fluctuating network conditions. To
summarize, our contribution is characterized by the following
key aspects:

• A three-component DL framework, named DeX, op-
timized for accurate throughput forecasting, especially
suited for handling traffic extremes.

• A dataset encompassing packet-level details of RTP-based
traffic traces, collected from real video calls utilizing com-
mon RTC applications.

• A series of analyses coupled with model interpretation for
our proposed solution that justifies the model’s effective-
ness and generalizability.

The remainder of this paper is organized as follows. Sec-
tion 2 provides the motivation and formulates the problem,
while Section 3 describes the dataset employed in our work.
Afterwards, we delineate the architecture and functionalities of
DeX in Section 4, and present the experimental outcomes in
Section 5. Moreover, we perform five ablation tests in Sec-
tion 6, followed by experimenting various parameter configura-
tions and elucidating the model’s operational logic in Section 7.
Finally, Section 8 discusses relevant literature, and Section 9 of-
fers concluding remarks. Additionally, in light of the research
reproducibility, we make both the dataset and the model pub-
licly available1.

2. Problem statement

This section starts with a brief introduction to the necessary
background, followed by a detailed exposition of the motiva-
tion driving our work, and culminates in an expression of the
problem formulation.

2.1. Background

RTC applications are predominantly categorized into two
types: HTTP (Hypertext Transfer Protocol) [9]-based and RTP-
based. The former paradigm, exemplified by commercial
video-streaming services like Netflix, is favored for its state-
less and reliable attributes, making it well-suited for scenar-
ios where delay tolerance is permissible. In contrast, RTP
over User Datagram Protocol (UDP) [10] forms the corner-
stone for a myriad of RTC applications, especially for occa-
sions requiring nearly instantaneous responsiveness with min-
imal latency, such as video-teleconferencing and online gam-
ing. Moreover, a wide range of IoT applications also employ
RTP [11], and web browsers as well as mobile devices (e.g.,
Android) universally hinge on the acclaimed standard, We-
bRTC [12]2, an open-source framework built atop RTP. Tradi-
tionally, Real-Time Transport Control Protocol (RTCP) is im-
plemented alongside RTP as an integral framework for mon-
itoring, reporting, and managing the quality and delivery of

1https://mplanestore.polito.it:5001/sharing/XTiiXJOPM
2https://webrtc.org/

2

https://mplanestore.polito.it:5001/sharing/XTiiXJOPM

Figure 1: Deployment scenario benefiting from DeX.

multimedia data. Nowadays, plenty of innovative technologies
are developed to optimize the performance of RTP-related ap-
plications, such as QoE metrics estimation [13], adaptive bi-
trate control [14, 15], traffic identification [16, 17], congestion
control [18], etc. In many cases of modern optimization ap-
proaches, information retrieved from end-users including traffic
throughput, are frequently used as vital feedback of endpoints
to further enhance performance.

In this context, the predicted throughput transcends the ob-
served value, assuming an instrumental role in preemptively in-
forming network units and enabling proactive reactions, partic-
ularly under resource-constrained circumstances [19, 20]. Gen-
erally, various scenarios are envisaged to benefit from the inte-
gration and utilization of DeX. For instance, dynamic adaptive
streaming/encoding becomes increasingly effective by incorpo-
rating the anticipated throughput as feedback [21, 22], or as
a state for the decision-making agent [23]. Google congestion
control (GCC) [24] could leverage the prediction to supplant the
recorded measurement, intervening beforehand to mitigate the
network congestion. The emerging software-defined network-
ing (SDN) paradigm is able to effectively manage networks by
employing the prediction as a key factor for bandwidth alloca-
tion [25, 26]. Given the diverse latent usages and the compu-
tational requirement of DeX, we postulate a scenario involving
multiple entities wherein our model can contribute, as depicted
in Figure 1. DeX could be deployed in end-users’ devices (e.g.,
PC), with swift access to and processing of network packets
through existing technologies [27, 28, 29, 30]. The predicted
throughput information serves as supportive feedback for the
traffic sender, the network controller (or orchestrator), and the
receiver itself, facilitating system management in an indepen-
dent or cooperative manner. For example, the controller could
accurately and promptly allocate more bandwidth in advance
upon notification of predicted peaks or abrupt increases, poten-
tially ensuring the consistent QoE for content delivery. Addi-
tionally, apart from functions provided by external actors, the
receiver per se could also utilize the prediction to manage local
resources through integrated tools [31, 32].

2.2. Underlying motivations

In alignment with the three components of DeX, we hereby
elucidate the motivation behind our work.

2.2.1. Why packet-level information
The packet selection module operates on packet-level infor-

mation as its features, with the primary objective of optimally
selecting a subset from the entire pool of considered packets.

The rationale underpinning the utilization of packet-level in-
formation is threefold: i) Packets constitute the most funda-
mental and granular entities within networks, encapsulating the
rapidly changing dynamics and inherent characteristics of net-
work traffic [33]. Models sculpted around such meticulous fea-
tures are intrinsically poised to effectively discern underlying
traffic patterns, leading to enhanced prediction accuracy. ii)
The acquisition of packet-level data requires minimal effort in
terms of feature extraction, an aspect particularly advantageous
in the realm of RTC, where temporal and computational con-
straints are common. Importantly, packet encryption is becom-
ing prevalent [34, 35], rendering the acquirement and compu-
tation of intricate features not only arduous but also, at times,
entirely unfeasible. Our model exclusively depends on elemen-
tary and unencrypted IP/UDP header attributes, circumventing
potential complexities associated with packet encryption, and
thus facilitating a more streamlined workflow with expeditious
access to pertinent information. iii) Packets are ubiquitously
available across the network, extending beyond the confines of
client sides, and thus affording a more holistic network observ-
ability. This broader vantage point enables the prospect of per-
forming throughput prediction within the network, contributing
to the improvement of overall network performance.

Crucially, RTC services often encounter computational and
temporal limitations, and the demand for low-latency commu-
nication necessitates a delicate equilibrium between real-time
response and consumed computational resources. On the one
hand, RTC applications need swift as well as recurrent process-
ing of media data and execution of various algorithms. This in-
tensifies the computational demand, especially on devices with
constrained processing capabilities, such as mobile phones and
embedded systems. On the other hand, the natural pursuit of
low latency in RTC inherently calls for minimal time consump-
tion of any intermediate process. Absent this, elevated commu-
nication delays and synchronization discrepancies may emerge,
impacting the overall QoE. Hence, we endeavor to decrease
the total volume of input packets to downsize the model com-
plexity, ultimately improving memory efficiency and fostering
a more computationally and temporally effective paradigm.

2.2.2. Why Transformer
The feature extraction block partially incorporates a Trans-

former architecture to systematically condense packet series.
Particularly, the sequential composition of packet flows shares
affinities with problems in the domain of Natural Language Pro-
cessing (NLP), which has been revolutionized by the ground-
breaking game changer – Transformer. It equips our proposed
model with the potential to demonstrate robust proficiency in

3

0 50 100 150 200
Time [s]

1.5

2.0

T
hr

ou
gh

pu
t

[M
bp

s]

Abrupt changes

Valleys

Peaks

Figure 2: Throughput time series of sample traffic.

learning the nuanced and inherent network patterns. Our ob-
jective is to harness the innate capabilities of the multi-head
attention mechanism, to autonomously and intuitively discern
the endogenous correlations interlacing the packet-level fea-
tures and target traffic throughput.

2.2.3. Why traffic extremes
We implement the last component, a multi-task learning

pipeline, aimed to improve the performance concerning traffic
extremes, which constitute critical facets in RTC traffic, rep-
resent the intricate nuances of network dynamics, and exert a
profound influence on prediction accuracy. To provide context,
the time series throughput of an example traffic is presented in
Figure 2, where extremities are highlighted. More specifically,
we underscore the prediction of extreme values for the sake of
several reasons: i) Peak values of transmission rates often co-
incide with network bottlenecks, providing invaluable insights
into the prospective bandwidth availability. The precise pre-
diction of peaks facilitate optimal resource allocation, which in
turn averts potential pitfalls such as packet loss, compromised
audio/video quality, diminished QoE, and more. ii) Valley val-
ues denote periods of relative network idleness, where net-
work resources remain underutilized, unveiling opportunities
for energy-conservation strategies, resource redistribution, and
load balancing. Moreover, certain unexpected valleys might
herald network irregularities, bolstering the detection of traffic
anomalies. iii) The ability to anticipate abrupt changes, which
signal sudden and transient network fluctuations, could signifi-
cantly enhance adaptive streaming agility and expedited band-
width allocation, ensuring a prompt adaptation to rapid transi-
tions of network environment.

2.3. Problem formulation
The objective entails the prediction of traffic throughput in an

upcoming time window with a duration of ∆t. In order to com-
prehensively evaluate the performance, we approach the prob-
lem in a dual manner with distinct features but a shared target:
i) a conventional univariate time series problem with historical
samples as features, and ii) an irregular multivariate one with
prior packet-level features. Assuming a given time instant t, we
formulate a regression problem as follows:

• Problem i — univariate time series prediction:

R̂t = f (X)
with X = [rt−∆t, rt−2∆t, ..., rt−m∆t, ...],

m ∈ [1,M],
(1)

Table 1: Summary of the collected traffic.

Total number of pcap files 71

Total duration of traffic [h] 69.13

Average duration per pcap [min] 58.42

Period of collection Apr, 2020 - Jan, 2021

Total number of collected packets 66,327,753

Total number of throughput samples (500 ms) 482,905

• Problem ii — multivariate packet-level prediction:

R̂t = f (X)
with X = [..., xt,n, ...,︸ ︷︷ ︸

W

],

n ∈ [1,N],

(2)

where R̂t is the predicted throughput in the ensuing time win-
dow spanning from time t to t + ∆t, and the input feature ma-
trix X varies between the two problems. For the conventional
time series problem i, M historical samples are considered, and
rt−m×∆t denotes the previous throughput within the time win-
dow of duration ∆t that commences at t − m × ∆t. In the case
of the multivariate packet-level problem ii, we factor in the past
records of N packets in total, while selecting a subset of W < N
packets as features. Notably, only the W chosen packets are fea-
tures fed to the following prediction components, and they do
not need to be contiguous. The remaining N −W non-selected
packets are simply unused and discarded. Should the nth pre-
ceding packet antecedent to time t be designated as one of the
selected packets, xt,n represents its corresponding feature vec-
tor, which is constituted by a tuple of the packet attributes (ex-
plained in the next section). The model learns a function f (·),
undertaking the regression task and mapping the input feature
matrix X into the estimated throughput that converges closely
with the actual value, R. Additionally, we define the three ex-
treme conditions for all throughput samples observed during
each video-teleconferencing session as follows:

• Peak values: the throughput samples associated to the up-
permost αp (percentage) values;

• Valley values: the throughput samples associated to the
lowest αv (percentage) values;

• Abrupt changes: the throughput samples with inter-
variations compared to their respective preceding samples
exceeding a specific threshold (percentage) β:

|Rt − Rt−∆t |

Rt−∆t
> β. (3)

3. Dataset

Herein, we introduce the details of the dataset employed in
our work, presenting the data source, dataset construction, fea-
ture selection, and related characteristics.

4

P P P P P P P P

Unchosen packet Selected packet

Extraction
for each file

Contains

pcap files Raw traffic data

Timestamp Frame length
Packet 1
Packet 2

......
Packet n

Derive

Contains

 Data processing

Processed data with
prediction target and features

Construct

P P P ... P PP P

N packets

P PP P

P P

Throughput
sample

Time

Throughput
sample

Packet 1 in the past
Packet 2 ... Packet N

Frame length Inter-arrival time Timestamp
Sample 1 ...

......
Sample n ...

Figure 3: The process of data preprocessing.

Our work is founded on abundant traffic traces collected dur-
ing multiple real video-teleconferencing calls, each involving 2
to 6 participants, connected via WiFi, mobile networks, or Eth-
ernet cables. We employ two RTC applications, Jitsi Meet3 and
Webex4, and gather traffic from client sides, dumping packet
captures and archiving data in pcap format. By laying focus on
incoming streams, we aim at forecasting the traffic throughput
of RTP packet flows during a session, sourcing from all senders
and traversing through the network. A summary of the traffic
characteristics is provided in Table 1. To streamline the dataset
construction process, we parse each pcap file, extracting the raw
traffic data to create a datasheet, in which each entry represents
the corresponding packet information, such as timestamp and
packet size. Figure 3 graphically depicts the entire procedure.

In accordance with the problem formulation, we construct
the dataset by generating the time series of throughput samples
for each individual video-call. Starting from the initial N pack-
ets in the traffic from a certain call, we establish a following
∆t-long time window adjacent to the last packet. Afterwards,
we progress forward by ∆t, assimilating new packets while dis-
carding old ones to maintain a consistent count of N packets in
the past, and we iterate this procedure until consuming the en-
tire traffic. On top of that, the traffic throughput are calculated in
successive time windows following chronological order, by ag-
gregating the frame length of all packets contained within each
window. Simply put, the throughput is basically the amount of

3An open source platform, https://meet.jit.si/.
4A commercial application, https://www.webex.com/.

traffic per unit time, whose value is computed as Rt =
∑

li/∆t,
where li is the frame length of the ith packet in the time window
starting from time t. In this context, we select 3 elements (i.e.,
xt,n = [xFL

t,n, x
IAT
t,n , x

TS
t,n]) of the RTP packet to serve as features:

• Frame length (xFL
t,n) is the packet total length including

both its header and data, which directly represents the im-
pact of packet size and transmitted bits in the past, endow-
ing the model with the capability to operate in an autore-
gressive manner.

• Inter-arrival time (xIAT
t,n) is the temporal gap between the

arrival of the current packet and its previous packet, and
it serves as a local granularity indicator for assessing the
frequency of packet flows, even when the preceding packet
in the consecutive pair is not selected.

• Timestamp (xTS
t,n) denotes the relative timestamp at which

the packet is received by the end-user. It is the absolute
timestamp of the current packet subtracted by the times-
tamp of the start of the session and it introduces global
timing patterns from previously considered packets.

With these features, we intend to encompass potential influ-
ence arising from both spatial and temporal patterns, and we
extract information directly from RTP packets, thereby obviat-
ing the necessity for resource-intensive feature engineering. As
a consequence, each time window, i.e., a data sample of target
throughput, is accompanied with the historical throughput sam-
ples from the previous M time windows for problem i, and the

5

https://meet.jit.si/
https://www.webex.com/

10−2 10−1 100

Normalized throughput

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(a) Throughput values for
individual sessions.

0.1 1 1020
Inter-variation [%]

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(b) Percentage change of a throughput
sample comparing to its preceding sample.

0 5 10 15 20
Duration [s]

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(c) Time span of
2048 packets.

Figure 4: Traffic patterns of 20 randomly selected video-teleconferencing sessions.

0 50 100 150 200
Number of packets

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(a) Total quantity of packets
per second.

0 20 50 100 150 200
Inter-arrival time [ms]

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(b) Average inter-arrival time
of all packets per second.

0 1000 3000 6000 9000
Inter-RTP timestamp

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(c) Average difference between RTP
timestamps of all packets per second.

Figure 5: Traffic patterns of individual RTP flows (this is not the pattern of the entire dataset with mixed flows).

aforementioned packet-level features of each of the preceding
N packets for problem ii.

In our initial setting, we compute and predict the throughput
within time windows of ∆t = 500 ms, and resort to the previous
N = 2048 packets, with the goal of selecting half of them, i.e.,
W = 1024 packets, as features for problem ii. In our dataset,
2048 packets correspond to an average duration of roughly 7.6
s, and thus, a comparable time span of 8 s, equivalent to M = 16
(16 × 500 ms) prior windows is considered for problem i. Fur-
thermore, we devise that αp = 10%, αv = 10%, and β = 20%,
i.e., the highest and lowest 10% throughput samples during a
session are specified as peaks and valleys, respectively, and a
sample with an inter-variation surpassing 20% when compared
to its previous and neighbouring sample is regarded as an abrupt
change. Notice that all these selections are modifiable parame-
ters, and we delve into alternative scenarios in Section 7.

To provide contextual insight, we illustrate traffic patterns
from 20 randomly selected sessions in Figure 4, which depicts
3 sets of Empirical Cumulative Distribution Function (ECDF)
plots5. On the one hand, the leftmost figure (4a), which shows

5Notes: i) The display of only 20 traffic samples is for the sake of a relatively
lucid visualization, and we can confirm a similar pattern across the dataset.
ii) Rather than amalgamating all the traffic to generate a ECDF for the entire
dataset, we choose to construct individual ECDFs, in order to illustrate and
compare the pattern of each individual traffic trace separately.

the ECDF of throughput values, demonstrates that nearly all
values exhibit a steep ascent in the middle, gradually tapering
into narrower tails for both ultra-low and high values, despite
quantitative differences among traffic. On the other hand, the
middle figure (4b) showcases the percentage variations (inter-
variation) between successive throughput samples, revealing
that the majority of inter-variations remain below 20%. In fact,
64.9% of inter-variations are smaller than 10%, and 84.2% are
smaller than 20% for all traffic. Both of the previous obser-
vations suggest that the traffic throughput generally undergoes
a globally stationary evolution, which underlines the signifi-
cance of comprehending and forecasting traffic extremes, fur-
ther rendering their prediction an intriguing and substantial en-
deavor. Furthermore, we also investigate the duration of each
set of 2048 packets for separate sessions in the rightmost figure
(4c). Although the average elapse is 7.6 s as mentioned earlier,
different traffic exhibit various characteristics, where multiple
traffic sessions share a similar pattern with a majority of cases
covering a duration ranging from 3 to 10 s, as indicated by the
rapid ascent in the ECDF, and several sessions manifest peculiar
patterns, characterized by either relatively uniform or irregular
distributions of elapsed duration. Such phenomena are actually
common in reality, given that a video-call could be either ac-
tive with frequent data packets exchanged or quiescent with a
few transmitted packets. The aforementioned aspects provide

6

Packet flow (forward)

Transformer Encoder

Throughput

Regression Block
(FNN)

Time

Sequence of embedded features
Trainable Positional Encoding

 Packet-level features

Classification Block
(FNN)

Multiply regression output,

Trainable Multiplier
(FNN)

Weighted MAE Loss

Final Loss,

Weighted BCE LossMean

Sequence of encoded features

Layer Normalization

Abrupt change or not?

RTC Traffic - RTP packet flow

Packet flow (N packets)P P ...

Frame length Inter-arrival time Timestamp

Packet selection module Feature extraction block Multi-task learning pipeline

Sequence of selected packets,

Sequence of all packets,

 N packets

 N probabilities
 (N scores) 0.1 0.2 0.05 0.15 0.3 0.2

 N trainable
 parameters

Softmax

Packet Embedding Layer (Linear Layer)

, Predicted throughput

MAE Loss weighted by

Combined Loss with
Learnable Weights,

...

Original Positional Encoding

Packet
Embedding

Layer

Q

K

V

A
dd &

 N
orm

FN
N

A
dd &

 N
orm

Original
positional
encoding

Trainable
positional
encoding

Raw
features

of selected
packets

Embedded
packet

features

Embedded
features with

positional info

Transformer encoder
(multi-head attention)

Encoded
features

Mean Layer
norm

Feedforward
neural

network

Task 1

Task 2

Task 3

Figure 6: Workflow, model architecture, and training strategy of DeX

rationality for choosing N = 2048 packets to encompass the
multifarious facets of traffic transmitted in RTC, regardless of
the degree of activity. This leads to a judicious trade-off be-
tween including extraneous and excessive information beyond
the target and having insufficient packets.

Moreover, we also provide insights into the actual mul-
timedia data being transmitted by analyzing the statistics
of individual RTP traffic flows. A single RTP flow, re-
sponsible for conveying particular content, such as audio
or video, is uniquely determined by a tuple composed of
(IPsrc, IPdst, portsrc, portdst, S S RC, typepayload)6. For the
traffic of each session, we segregate and extract data on a
per-flow basis, and then for each flow, we aggregate packets

6IPsrc and IPdst are the IP addresses of the traffic source and destination,
respectively, portsrc and portdst are the ports of source and destination, S S RC
is the synchronization source identifier that uniquely identifies the source of a
stream, and typepayload is dynamically assigned to represent the format of the
payload.

into consecutive 1-s time bins, calculating 3 types of statis-
tics for each bin, i.e., the total number of packets, the aver-
age inter-arrival time, and the average inter-difference between
RTP timestamps, whose ECDFs are presented separately in Fig-
ure 5. Importantly, all 3 plots indicate a notable degree of statis-
tical similarity, featuring a pronounced increase to above 50%
in the ECDFs around either 50 packets/s (Figure 5a), an inter-
arrival time of 20 ms (Figure 5b), or an inter-RTP timestamp
of 1000 (Figure 5c). Such a trend is due to the presence of au-
dio flows that are typically packetized adhering to the protocol
RTP RFC 3550 [36]. For example, given that the most common
audio packetization implementation employs a 20-ms interval,
and the widely-used codecs like Opus operates at a frequency
of 48 kHz [37, 38], the difference in RTP timestamp between
two consecutive audio packets is 960 (48kHz × 20ms ≈ 1000).
Building upon these observations, coupled with other distinct
sudden rises in the ECDFs that potentially indicate various pay-
load types, we can reasonably infer that our dataset is composed

7

of abundant and different media data rather than monotonous
content. This diversity ensures the datasets’ relevance and rep-
resentativeness in capturing the numerous aspects of RTC traf-
fic, complicating somewhat the problem because of the mixture
of different patterns, but simultaneously consolidating the ver-
satility and comprehensiveness of our model.

4. Methodology

In this section, we describe the architecture of our proposed
model, DeX. Subsequently, other considered approaches for
comparison and the model development as well as evaluation
process are outlined.

4.1. Introduction of the proposed model

Our novel DL framework DeX leverages historical packet-
level features to predict traffic throughput in future time win-
dows. The architecture of DeX comprises three components,
namely, a packet selection module, a feature extraction block,
and a multi-task learning pipeline, as elucidated in Figure 6.
In general, we perform a moving window prediction during
the training phase, taking into account all of the preceding
N = 2048 packets with three RTP elements, as raw input.
Along with the training, DeX learns an optimal subset out of all
available packets, selecting a portion as actual input features.
Following the feature extraction process, we adopt a multi-task
learning paradigm that integrates various loss functions to opti-
mize the performance regarding traffic extremities. Particularly,
each component is detailed in the following.

4.1.1. Packet selection module
This component reduces the input quantity while maintain-

ing the performance by selecting an optimal subset out of all
considered packets. To choose which packets to select, we em-
ploy a straightforward logic, by randomly initializing N = 2048
trainable parameters (Pi), each being assigned to the corre-
sponding packet (Pi). Subsequently, we pass all of these pa-
rameters through a Softmax function to derive 2048 probabil-
ities (psoftmax) to opt for corresponding packets based on their
values, i.e., we select the W = 1024 packets associated to the
highest 1024 probabilities7. It is important to note that the out-
puts of Softmax are called probabilities simply because of the
naming convention, and thus do not imply a stochastic process
but are treated as deterministic scores for packet selection. We
expect the model to learn and refine the trainable parameters in
a way such that the derived probabilities (scores) are optimized
to select the most suitable packets for the regression task.

However, the aforementioned procedure possesses a funda-
mental flaw of not being attached to the computational graph,
given that such a selection, which triggers no computations in
the last step, is not involved in the gradient flow. In order to
tackle the issue, we introduce a predefined distribution of prob-
abilities (ppredefined) to compare the derived probabilities output

7Pselected = {Pi |
∑
i, j

∏
i, j

(psoftmax,i > psoftmax, j) > 1024},∀i, j ∈ [1, 2048].

by Softmax, thereby bringing in computational process. Mean-
while, we postulate that the potentially optimal selections are
the packets closest to the target throughput sample, i.e., the
most recent 1024 packets in the packet sequence. This hypoth-
esis stems from the nature of time series problem, where tem-
porally proximate samples ought to encompass the most salient
features, reflecting the latest trend in evolution. However, un-
like conventional time series problem, the domain-specific ir-
regularity in packet sequence could potentially provide critical
information to various packets other than those proximate to
targets. Therefore, we conceive the preset probabilities (scores)
as a guideline to steer the learning process as well as the selec-
tion towards the hypothetically optimal (closest) packets, while
still permitting a certain degree of freedom to unearth poten-
tially valuable packets located further away from the targets.

To this end, we devise a simple predefined and monotonically
increased linear distribution8 as follows:

ppredefined = [p1, ..., pi, ..., p2048]

s.t. pi < pi+1,∑
pi = 1,

pi = a · i + b,

with i ∈ [1, 2048],

(4)

where pi represents the predefined probability (score) assigned
to the ith packet (the larger indexes are closer to the target), and
the summation of ppredefined equals 1, as the output of Softmax
sums to 1. The term a · i + b indicates a linear relationship9.
A visual example is illustrated in Figure 7, and the parameters,
P, are trained to produce Softmax probabilities that converge
to the predefined ones, accomplished by computing the Mean
Absolute Error (MAE loss function, ℓMAE(·)) between them:

Lprob = ℓMAE(ppredefined, psoftmax)

with psoftmax = Softmax(P1, ...,Pi, ...,P2048),
(5)

in which, Lprob, namely the loss of probability, is one of the
optimized targets subjected to minimization. As a result, the
module operates in a manner that diligently pushes the selec-
tion of packets towards the target. Nevertheless, the procedure

8Superficially, the choice of such a distribution may appear somewhat ar-
bitrary, but, by fine-tuning the hyperparameters, it is possible for the NN to
automatically cherry-pick beneficial packets, reaching optimal performance, ir-
respective of the initial distribution chosen. Therefore, the specific distribution
adopted is inconsequential, as long as it satisfies our requirement, for example,
an exponentially increased distribution of probabilities (scores) could also serve
the purpose, as we elaborate on in Section 6. In other words, the predetermined
probabilities function as a reference, and different predefinitions, i.e., differ-
ent references, will unquestionably influence the learning process, engendering
distinct alterations in the trainable parameters, but the ultimate optimized objec-
tive, that is always the regression task, remains invariant, impelling the model
to eventually ascertain the advantageous packet selection, regardless of the tra-
jectory it follows in relation to the convergence towards various references.

9Details regarding their derivation are in Section 4.2.

8

Packet index
1 2048

Pr
ob

ab
ili

tie
s

Packet index
1 2048

Predefined
probabilities

D
es

ire
d

pr
ob

ab
ili

tie
s

Softmax
probabilities

P P P PP P PP

Initially random selection

PP

P P P P PP PPP P

PPPPPPP P P P

PPPPPPP P P P

PPPPPPP P P P

Tr
ai

ni
ng

 p
ro

ce
ss

1 2048

In
iti

al
is

ed
pr

ob
ab

ili
tie

s

1 2048

U
nc

on
tro

lle
d

pr
ob

ab
ili

tie
s

Example with
relatively exaggerated
visual representation:

High probabilities even for
packets far away from target

Figure 7: How packet selection module works (note that Lreg in the figure is just a nominal representation instead of the actual
regression loss in Equation 6).

encounters another problem — it always ends up with the proxi-
mate packets due to the consistent gravitation towards the hypo-
thetically optimal selection10, deviating from our original goal
of choosing informative packets in distance. To alleviate such
an aggressive outcome, we mitigate the MAE loss, Lprob, by
introducing a weighting factor, λ, to reduce its impact, prevent-
ing from permanently choosing the packets closest to the target.
An illustrative depiction of this concept is presented in the right
part of Figure 7. As the training process unfolds, both losses of
regression and probability decrease synchronously, until reach-
ing a certain point, where the packet selection is deemed non-
optimal, leading to an upswing in the regression loss. Simul-
taneously, the MAE loss of probability continues to decrease,
further abating its influence thanks to the weight, λ, and when
the regression loss escalates because of certain selection, the
selection revisits a prior relatively optimal position, given that
the loss of probability exerts mere impact on the final loss. In
consequence, the selection process stabilizes or hovers around
the optimal locations, primarily due to the dominance of the
regression loss.

Consequently, we optimize the packet selection throughout
the training process, significantly reducing the amount of input
for downstream components. Notice that such a selection mod-
ule will be rendered superfluous and discarded post-training
without continuing to increase the model complexity, since the
optimal position in the packet sequence is already derived, and
from then on, we can directly channel the selected packets into
the next components.

10The solution to minimization of MAE exists, i.e., Lprob = 0, when the
trainable parameters yield Softmax probabilities identical to the predefined
ones.

4.1.2. Feature extraction block

We employ a Transformer-based NN with customized struc-
tures to extract features. Firstly, we inject the sequence of se-
lected packets, i.e., each set of the 3 features (a 1 × 3 vector),
into a packet embedding layer (linear layer) to create embed-
ded features. The NN is anticipated to learn an apt mapping
from the primordial attributes of a packet to its latent embed-
ding, thereby enriching the traffic features and transforming the
dimension of the feature vector to 1 × Nembedding. Secondly,
while each packet has the timestamp indicative of its order,
we still lack of positional information for other packet enti-
ties. To address this, we implement sine/cosine positional en-
coding, following the original Transformer model. On top of
that, we augment the architecture by introducing an additional
trainable positional encoding constituting of learnable param-
eters for two main purposes: i) learning automatically optimal
positional and potentially domain-related patterns during train-
ing to improve the task-specific adaptability, considering that
the original one is fixed and particularly designed for NLP, and
ii) supplementing probably absent insights caused by inconsis-
tent packet selection, since the original one operates on contin-
uous sequence without any interstitial gap in between. With the
same dimension of W × Nembedding, both positional encodings
are superimposed to embedded features, wherein each vector
(1×Nembedding) at the second dimension of the encoding is added
to its corresponding packet embedding. Thirdly, the resultant
sequence of embedded features is fed into a single Transformer
encoder, a component frequently employed for sequence repre-
sentation [39, 40], to generate encoded features. Our objective
is to leverage the multi-head attention mechanism, the core of
the encoder, to unveil latent patterns and apprehend network
fate. Moreover, we opt not to implement the Transformer de-

9

coder or additional stacks of encoders to avoid increasing the
model complexity. Finally, the output encoded features com-
prise a total of W × Nembedding entries. While a straightfor-
ward solution would be to connect all values to each subsequent
task (a feedforward neural network (FNN)), we refrain from
doing so to prevent potential excessive noise and model over-
complication. Instead, we calculate the mean value for each set
of encoded features in the output sequence, distilling feature
quintessence and deriving the ultimate feature vector with a di-
mension of 1 ×W. Additionally, we apply layer normalization
to standardize the condensed features dependently for an indi-
vidual sample, aiming to stabilize the pattern within each input
and consummate the feature extraction phase.

4.1.3. Multi-task learning pipeline
We elaborately craft a multi-task learning strategy, enriched

with multifunctional weights, designed to further incentivize
the model to discern traffic extremes. Besides the primary re-
gression task, we incorporate two auxiliary learning blocks: a
binary classification component and a trainable multiplier. The
former block aims to predict and identify whether the target
throughput signifies an abrupt change with respect to the pre-
ceding sample, a feat deemed attainable due to the granular and
domain-specific packet-level features that are often absent in
conventional time-series scenarios. The latter block operates
as a calibrator that either amplifies or attenuates the regression
output based on the classification outcome, adjusting the final
predictions to better accommodate dramatic variations. Each
block (task) consists of a 2-layer FNN, which takes as input the
encoded features generated by the feature extraction block and
produces a scalar value. For the classification block, a Sigmoid
function is adopted to convert the output into class probabilities.
Consequently, the NN undergoes meticulous training, ensuring
that it consistently satisfies normal value expectations, while
also methodically compensating for abrupt changes. Mean-
while, we implement learnable weights [41] that autonomously
determine the importance of different tasks to systematically
and optimally combine losses generated by different blocks, as
depicted below:

Lcomb = e−w1 · Lclass + w1 + e−w2 · Lreg + w2

with Lclass = ℓwBCE(y, ŷ; wclass),

Lreg = ℓwMAE(R, R̂; wreg),

R̂ = R̂′ · M,

M =

M′, if ŷ = 1 (abrupt change)
1, if ŷ = 0 (normal transition)

,

(6)

where Lcomb stands as the combined loss, calculated by blend-
ing the classification (Lclass) and regression (Lreg) losses via
learnable weights, w1 and w2. Moreover, both regression and
classification blocks leverage weighted losses during training
phase. On the one hand, in order to tackle the imbalance be-
tween classes (only around 16% of throughput samples are
abrupt changes), the classification loss is calculated by the
weighted Binary Cross Entropy (BCE) loss function ℓwBCE(·),
with elevated weights wclass granted to the minority samples of

Table 2: Implementation detail of DeX

Parameter Value

Learning rate*, η 10−3

Size of feature embedding, Nembedding 32
Size of positional encoding 1024 × 32
Number of heads 8
Number of encoder 1
Number of neurons for FNN in encoder 512
Activation function in encoder ReLU [42]
Number of layers for multi-task learning pipeline 2
Number of neurons of the 1st layer for a task in pipeline 512
Number of neurons of the 2nd layer for a task in pipeline 1
Activation in multi-task learning pipeline ReLU
Training optimizer Adam [43]
Batch size 16
Weight for peaks and valleys, wreg 2.0
Weight for abrupt changes, wclass 6.0
Weight for loss of probability, λ 4 × 10−4

Parameters for the predefined probability, ppredefined
a = 1.59 × 10−7

b = 3.25 × 10−4

* We adopt a decay of 1 order of magnitude for every 2 epochs.

Table 3: Model summary

Category Model

Naive baseline* Moving Average (MA)1 [44]

Adaptive filter Recursive Least Squares (RLS)1 [45]

ML method Random Forest (RF)1 regressor [46]
XGBoost (XGB)1 regressor [47]

DL method

Multi Layer Perceptron (MLP)1 [48]
Long- and Short-term Time-series network (LSTNet)2 [49]
Long Short-Term Memory (LSTM)1,2 [50]
N-BEATS network1 [51]

* It calculates the average value of past throughput samples as the prediction.
1 Problem i, univariate time series prediction.
2 Problem ii, multivariate packet level prediction.

abrupt changes. On the other hand, the weighted Mean Abso-
lute Error (MAE) loss function ℓwMAE(·) is employed for regres-
sion, with larger weights wreg assigned to peaks and valleys to
accentuate the model’s sensitivity to such scenarios. Both y and
R represent the ground truths of classification and regression
tasks, and ŷ denotes the label predicted by classification block,
while R̂ symbolizes the final forecasted throughput, ascertained
by modulating the regression output (R̂′) with the intervention
of the trainable multiplier (M = M′). Notably, when the clas-
sification indicates a normal transition (ŷ = 0), the multiplier
remains neutral (M = 1), thus leaving the regression output
unaltered.

Finally, by considering the entire model, the final loss is com-
puted as:

Lfinal = Lcomb + λ · Lprob, (7)

in which Lcomb is the combined loss yielded by the multi-task
learning pipeline in Equation 6, and Lprob corresponds to the
loss of probability tweaked by the hyperparameter, λ, and gen-
erated by packet selection module in Equation 5. The second
term can be regarded as a regularization component, imposing
constraints on the learning process, that are instrumental in pre-
venting the model from becoming overly dependent on prox-
imal packets, and thereby nudge the model towards solutions

10

that are not only effective on the primary task but also exhibit
a level of flexibility and adaptability when faced with varying
packet selections.

4.2. Model development, comparison, and evaluation process

DeX is developed using the Pytorch [52] framework and is
trained on a single GPU of NVIDIA Tesla V100-16GB. The
implementation details are enumerated in Table 2. Notably, the
parameters for the predefined probabilities, a and b, are not ini-
tialized randomly but derived based on the following procedure:

• Step 1 – define a line space of N = 2048 elements with
uniform increment:

Θ = [θ1, ..., θi, ..., θ2048]
s.t. i ∈ [1, 2048],

θi = θi−1 +
1

2048
,

θ1 = 1, θ2048 = 2.

• Step 2 – normalize the line space to sum to 1:

ppredefined = Θ←
Θ∑
Θ
,with

∑
Θ = 3071.5

⇓∑
ppredefined = 1,

p1 = θ1 = 1/3071.5 ≈ 3.256 × 10−4,

p2048 = θ2048 = 2/3071.5 ≈ 6.511 × 10−4.

As a result, the parameters a and b are computed accordingly.
In fact, the actual controllers governing the linearity of the
distribution are the values of the head and tail of Θ, i.e.,
θ1 and θ2048, for which we simply endow with a rudimentary
initialization of 1 and 2.

Furthermore, we deliberately and randomly partition the cor-
pus of 71 pcap files (video-calls) into 3 independent groups (50,
10, 11) to construct training (355,651 samples of throughput),
validation (62,193), and test (65,061) datasets. For features and
throughput samples, we calculate based on the training set the
statistics of mean value and standard deviation, which are then
used to standardize validation and test sets. Consequently, the
model is trained based on traffic collected under unique con-
ditions different from other datasets in terms of location, con-
nectivity, and time, aiming to derive a generalized solution and
preclude data cross-contamination among traffic. Additionally,
akin to the domain of Computer Vision, each throughput sample
(target) is stored in a single file (npy format in our case). Each
file is composed of a matrix with dimensions 2048 × 3, that
represents the 3 chosen features of the preceding 2048 packets,
while the file name contains the throughput value, along with
the corresponding percentile and inter-variation, derived within
a single session to respect our initial setting for the thresholds
of traffic extremes.

We also extend our examination to a wide range of domains
for the purpose of comparison, incorporating multiple other

technologies appeared in the literature, as listed in Table 3. No-
tably, a total of 7 models are implemented for problem i, while
3 models including DeX are developed for problem ii11. More-
over, we evaluate the performance of each model across various
dimensions, including overall traffic, peaks, valleys, and abrupt
changes, by gauging 4 metrics between the ground truth and
prediction: Mean Squared Error (MSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and the co-
efficient of determination (R2 score).

5. Experimental result

In this section, we compare DeX against baselines, present-
ing the experimental outcomes derived from all models based
on the initialized configuration. Then, two visual instances are
displayed to further endorse our findings.

Table 4 showcases the assessment metrics independently for
overall traffic, peak values, valley values, and abrupt changes.
We embark upon the overall performance outlined in the first
part. Evidently, DeX outshines other solutions across all quan-
titative measures. Although certain models, such as RF, XGB,
N-BEATS, and LSTNet, yield results that are ostensibly on par,
e.g. N-BEATS achieves a nearly identical MAPE of 10.6%,
they invariably falter in other metrics, like RF’s declined MAPE
of 11.844%. Additionally, the MA baseline and RLS filter man-
ifest the poorest performance, marked by the most substantial
errors (e.g., MSE > 0.07) and inferior R2 scores (<0.9), indicat-
ing the inadequacy of simple statistical tools.

Proceeding to the plateaus as well as troughs depicted by the
second and third parts in the table, DeX significantly outper-
forms its counterparts. On the one hand, our model stands out in
terms of peak values, boasting the most minimal errors (e.g., the
only MSE beneath 0.17 and the sole MAE lower than 0.25) and
a preeminent R2 score (the only one exceeding 0.82), affirm-
ing its capacity for precise forecasting rather than mere over-
estimation. On the other hand, the superiority becomes even
more conspicuous when examining valley values. DeX delivers
markedly diminished errors and remarkable coherence, as evi-
denced by a MAPE that is lowered by 1.285% and an R2 score
augmented by 0.0759 in comparison to their respective second-
best values.

As for abrupt changes, DeX consistently excels other mod-
els with optimal performance across the board, exemplified by
being the only model with an MSE below 0.27. However, it re-
mains intrinsically arduous to precisely predict such rapid and
sudden transitions, given the relatively subpar performance re-
gardless of the models. The non-ideal result originates from
the inherent complexities entwined within the problem per se.
Instantaneous fluctuations of throughput in the context of RTC
could be induced by a multitude of factors, like emergent traffic
surges or network disruptions, elements which may not man-
ifest prominently in the packet flows received by end-users,
thus rendering them elusive and challenging to be detected by

11It is noteworthy that the other two models leverage the nearest 1024 packets
as features without packet selection.

11

Table 4: Experimental result of all models regarding overall traffic, peaks, valleys, and abrupt changes.

Problem Problem i Problem ii

Feature Historical time series samples Packet-level information

Model MA RLS RF XGB MLP LSTM-i N-BEATS LSTM-ii LSTNet DeX

Overall
values
[Mbps]

MSE ↓ 0.0984 0.0777 0.0499 0.0522 0.0524 0.0530 0.0516 0.0577 0.0510 0.0474
MAE ↓ 0.1620 0.1307 0.1175 0.1187 0.1205 0.1208 0.1160 0.1245 0.1171 0.1147

MAPE ↓ 15.726% 12.299% 11.844% 10.827% 12.453% 12.354% 10.600% 11.286% 11.457% 10.597%
R2 ↑ 0.8461 0.8785 0.9220 0.9184 0.9180 0.9171 0.9193 0.9101 0.9204 0.9261

Peak
values
[Mbps]

MSE ↓ 0.2623 0.2398 0.1798 0.1895 0.1759 0.1762 0.1799 0.1990 0.1821 0.1688
MAE ↓ 0.3290 0.2685 0.2662 0.2706 0.2624 0.2645 0.2610 0.2767 0.2581 0.2460

MAPE ↓ 15.807% 13.167% 12.852% 13.142% 12.349% 12.610% 12.795% 12.871% 12.298% 12.263%
R2 ↑ 0.7286 0.7520 0.8140 0.8040 0.8181 0.8177 0.8139 0.7953 0.8127 0.8263

Valley
values
[Mbps]

MSE ↓ 0.1196 0.0570 0.0335 0.0314 0.0424 0.0421 0.0314 0.0340 0.0306 0.0245
MAE ↓ 0.1619 0.1021 0.0913 0.0819 0.1037 0.1017 0.0814 0.0805 0.0834 0.0777

MAPE ↓ 33.553% 23.158% 23.133% 18.954% 27.271% 27.107% 19.366% 19.825% 23.178% 17.669%
R2 ↑ -0.4927 0.2888 0.5819 0.6078 0.4711 0.4749 0.6080 0.5774 0.6189 0.6948

Abrupt
changes
[Mbps]

MSE ↓ 0.3137 0.3671 0.2805 0.2898 0.2866 0.2960 0.2922 0.3022 0.2825 0.2645
MAE ↓ 0.3740 0.3992 0.3737 0.3768 0.3800 0.3884 0.3819 0.3983 0.3750 0.3574

MAPE ↓ 43.283% 42.834% 40.305% 39.055% 41.900% 42.080% 39.105% 43.018% 38.595% 36.057%
R2 ↑ 0.5861 0.5156 0.6299 0.6177 0.6219 0.6095 0.6145 0.6009 0.6269 0.6507

the models. Yet, amidst this backdrop of hurdles, DeX skill-
fully harnesses granular packet-level insights in conjunction
with a meticulously designed model architecture, accommodat-
ing abrupt changes to a commendable extent.

Two traffic examples from the test dataset are outlined in Fig-
ure 8, which portrays the time series of throughput regarding
ground truth alongside the corresponding predictions, and ac-
centuates traffic extremities in four sub-figures with MAE un-
derscored in parenthesis12. Generally, all models exhibit an ap-
titude for tracking the fundamental traffic evolution, albeit to
varying degrees of proficiency. Upon closer analysis, DeX ex-
hibits superiority characterized by the lowest error in the ma-
jority of cases, while the MA baseline falls short in adapting
the variations and RLS filter produces aggressive and volatile
predictions. In particular:

• The first example in Figure 8a presents individual in-
stances of critical traffic scenarios. For valley values (sub-
figure A), DeX excels the others by deftly following the
localized fluctuations, although performance disparities
are relatively subtle with respect to certain models, e.g.,
LSTM-ii and LSTNet. Notably, certain models, like RF
and MLP, suffer from the sudden drop, resulting in un-
satisfactory performance at the onset of troughs. Con-
cerning peak values (sub-figure B), DeX is good in cap-
turing and adapting to summits, whereas the majority of
other models tend to generate underestimated predictions.
On top of that, DeX also outperforms its peers in terms
of abrupt changes (sub-figures C & D), by swiftly and
precisely accommodating the instantaneous declines. Re-
markably, DeX can even anticipate the precipitate rise af-
ter a serial descents in example C, while yielding an opti-
mal error, 3.83% lower the penultimate one in example D.
However, each model exhibits a latency in response to the

12The presence of MAE facilitates performance comparison in cases where
predictions are visually hard to differentiate.

initial abrupt transformation, reaffirming the notion that it
is barely possible to predict drastic transitions.

• The second example in Figure 8b depicts mixtures of
traffic extremes. Regarding peaks coupled with abrupt
changes (sub-figures A & C), DeX shows the smallest er-
rors, whereas the tendency of underestimation from the
most of other models reappears. More importantly, DeX
also demonstrates how swift and effective it is to transition
from a prior precise prediction of critical values to another
subsequent critical point in the opposite direction. Mean-
while, similar capability is also applied to valleys with
abrupt changes (sub-figures B & D). An evident instance
can be observed at the initiation and the culmination of the
example D, where DeX responses rapidly to the sudden
transitions, while all the others exhibit a lingering effect
of either a tail for the descent from high values to valleys
or a delay for the ascent from valleys to high values. Al-
though DeX only ranks the third place in terms of MAE
with a slight performance dip, all of the aforementioned
irreplaceable merits still serve to validate its uniqueness
and overall distinction.

Indeed, the prediction of traffic extremes ends up with under-
whelming performance in contrast to the totality, which could
emanate from the prevalence of relatively stable throughput
samples, that limits the model’s ability to effectively learn pat-
terns associated with critical values, echoing the dilemma in
imbalanced ML scenarios [53]. Additionally, given that cer-
tain discrepancies among the reported metrics are subtle, we
also conduct pair-wise t-tests with a confidence level of 95%
between the errors generated by comparative models and those
produced by DeX, in order to statistically and rigorously exam-
ine the disparities among predictions. In fact, the resulting p-
values are exceedingly negligible with a magnitude lower than
10−4, decisively rejecting the null hypothesis and unequivocally
indicating significant differences with respect to the predictions
of DeX.

12

MA(30.31%)

A - Example of valley values

RLS(19.91%)

RF(14.95%) XGB(14.14%)

MLP(16.42%) LSTM-i(13.15%)

N-BEATS(16.85%) LSTM-ii(12.77%)

LSTNet(12.93%) DeX(12.57%)

MA(10.74%)

B - Example of peak values

RLS(8.29%)

RF(8.04%) XGB(7.95%)

MLP(8.15%) LSTM-i(8.01%)

N-BEATS(7.95%) LSTM-ii(17.25%)

LSTNet(10.13%) DeX(7.76%)

MA
(53.86%)

C - Example of abrupt change

RLS
(22.40%)

RF
(14.71%)

XGB
(16.39%)

MLP
(24.09%)

LSTM-i
(18.48%)

N-BEATS
(22.78%)

LSTM-ii
(14.74%)

LSTNet
(15.21%)

DeX
(14.40%)

MA
(56.59%)

D - Example of abrupt change

RLS
(28.44%)

RF
(23.93%)

XGB
(24.26%)

MLP
(33.67%)

LSTM-i
(25.42%)

N-BEATS
(34.81%)

LSTM-ii
(18.83%)

LSTNet
(19.65%)

DeX
(15.00%)

0 100 200 300 400 500 600 700 800
Time [s]

0

2

4

T
hr

ou
hp

ut
[M

bp
s]

A

B C D

Main - Entire traffic and the corresponding predictions from all models

Prediction
Ground truth

(a) Example traffic 1.

MA(6.60%)

A - Example of
peaks & abrupt changes

RLS(6.25%)

RF(6.42%) XGB(13.18%)

MLP(7.79%) LSTM-i(6.37%)

N-BEATS(6.81%) LSTM-ii(29.30%)

LSTNet(17.36%) DeX(6.23%)

MA(35.07%)

B - Example of
valleys & abrupt changes

RLS(14.49%)

RF(14.36%) XGB(14.49%)

MLP(16.47%) LSTM-i(15.29%)

N-BEATS(14.39%) LSTM-ii(13.09%)

LSTNet(12.94%) DeX(12.86%)

MA
(18.97%)

C - Example of
peaks & abrupt changes

RLS
(9.03%)

RF
(8.20%)

XGB
(13.61%)

MLP
(10.30%)

LSTM-i
(9.96%)

N-BEATS
(7.23%)

LSTM-ii
(27.55%)

LSTNet
(15.34%)

DeX
(7.01%)

MA(43.29%)

D - Example of
valleys & abrupt changes

RLS(13.47%)

RF(17.03%) XGB(14.17%)

MLP(17.70%) LSTM-i(13.56%)

N-BEATS(16.72%) LSTM-ii(11.93%)

LSTNet(12.68%) DeX(12.79%)

0 50 100 150 200 250 300 350 400
Time [s]

0

2

4

T
hr

ou
hp

ut
[M

bp
s] A

B

C

D

Main - Entire traffic and the corresponding predictions from all models

Prediction
Ground truth

(b) Example traffic 2 (white spaces are present in the zoomed-in figures for a clear visualization at the edges).

Figure 8: Ground truth & predictions: traffic examples of throughput time series
with highlights on peaks, valleys, and abrupt changes.

13

Table 5: Result of ablation study.

Scenario Ablation test 1i Ablation test 2ii Ablation test 3iii Ablation test 4iv Ablation test 5v Original DeX*

Overall
values
[Mbps]

MSE ↓ 0.0458 0.0489 0.0478 0.0492 0.0530 0.0474
MAE ↓ 0.1108 0.1149 0.1149 0.1147 0.1230 0.1147

MAPE ↓ 10.710% 10.709% 10.437% 10.599% 11.998% 10.597%
R2 ↑ 0.9285 0.9238 0.9254 0.9232 0.9174 0.9261

Peak
values
[Mbps]

MSE ↓ 0.1567 0.1646 0.1646 0.1806 0.1529 0.1688
MAE ↓ 0.2327 0.2392 0.2417 0.2582 0.2322 0.2460

MAPE ↓ 12.075% 12.019% 12.292% 12.235% 11.526% 12.263%
R2 ↑ 0.8388 0.8306 0.8307 0.8142 0.8428 0.8263

Valley
values
[Mbps]

MSE ↓ 0.0239 0.0276 0.0242 0.0258 0.0413 0.0245
MAE ↓ 0.0754 0.0815 0.0780 0.0747 0.0989 0.0777

MAPE ↓ 19.001% 18.526% 17.605% 18.187% 22.557% 17.669%
R2 ↑ 0.7030 0.6574 0.6996 0.6790 0.4864 0.6948

Abrupt
changes
[Mbps]

MSE ↓ 0.2646 0.2774 0.2670 0.2768 0.2890 0.2645
MAE ↓ 0.3621 0.3707 0.3601 0.3662 0.3771 0.3574

MAPE ↓ 36.548% 37.216% 35.509% 37.217% 39.419% 36.057%
R2 ↑ 0.6505 0.6337 0.6473 0.6344 0.6184 0.6507

i Refer to the entire 2048 packets that precede the targets as features without packet selection.
ii Train the model with the 1024 packets closest to targets, devoid of packet selection.
iii Train the model with 1024 packets subject to a different distribution of predefined probabilities for packet selection.
iv Replace the Transformer encoder with an LSTM neural network for feature extraction.
v Remove the multi-task learning pipeline, and only reserve the regression block.
* Indicate the identical result retrieved from Table 4 to facilitate immediate comparisons.

6. Ablation study

In order to comprehend the impact of individual components
and specific designs, we perform a series of ablation tests to
substantiate their respective contributions. We first focus on
packet selection module to conduct 3 sets of experiments, elim-
inating the module to assess the performance with either the
complete ensemble of 2048 packets or the hithermost 1024
packets, and retaining the module but to train the intact model
with an alternative predetermined distribution for packet selec-
tion. Following the architectural sequence of DeX, we then
substitute the Tranformer-based feature extraction block with
an LSTM-based one, and at last, we retrain the model with-
out multi-task learning pipeline. All results are shown in Ta-
ble 5, alongside the original performance metrics derived from
the unaltered architecture. In general, DeX surpasses the out-
comes from ablation tests 2, 4, and 5, where the defective model
structure with the equivalent amount of features is considered,
achieving the superior overall performance notwithstanding oc-
casional minor exceptions.

6.1. Ablation test 1 - Training with the entire 2048 packets
Firstly, we consider all of the 2048 (N = W = 2048) pack-

ets preceding target samples to feed the following prediction
components so as to probe the upper limit of DeX’s capability
and shed light on the potential performance degradation asso-
ciated with fewer packets. As corroborated by the result (1st

column in the table), DeX successfully reaches a prominent per-
formance with 2048 packets at our disposal, exemplified by the
only model boasting R2 scores greater than 0.92, 0.83, 0.70, and
0.65, simultaneously, for the entirety, peaks, valleys, and abrupt
changes, respectively. Concurrently, this supremacy also rein-
forces the pivotal role played by the packet selection mecha-
nism, whose indispensability becomes evident, as it would be
unreasonable to contemplate a reduction in packets, starting
from the initial quantity of 2048, if we could not attain peak

performance when endowed with the entire historical features.
Indeed, DeX does encounter effectiveness decline as we cur-
tail the amount of features, but the performance degradation
is almost negligible with respect to the original 1024 packets,
verifying the exceptional ability of DeX to utilize the packet
selection module to adeptly grasp long-term knowledge while
preserving salient short-term insights.

6.2. Ablation test 2 - Training with the nearest 1024 packets
To scrutinize the efficacy of the packet selection module, we

opt for its omission, relying instead on an equivalent subset of
1024 packets that closely proximate the target samples (i.e., the
hypothetically optimal selection). According to the 2nd column
in the result, DeX registers a marginal performance decrement
due to the absence of packet selection, especially for valley val-
ues and abrupt changes, e.g., a degradation of 0.0374 in R2

score, in spite of the slight improvement for peaks. The reason
behind lies in the fact that the hypothetically optimal (closest)
packets primarily account for the immediate, short-term influ-
ence exerted by recently transpired packets, neglecting the in-
corporation of long-term dependencies. Conversely, the packet
selection module is engineered to take into account both as-
pects, introducing the impact of relatively distant packets as
well as preserving a substantial degree of adjacency (which is
elaborated upon in Section 7.2.1). Although the performance
enhancement thanks to packet selection may not be substantial,
we nonetheless perceive its significance. This is because the
module is excised after model training, thereby engendering an
equivalence in the practical complexity between models featur-
ing the selected or the nearest 1024 packets.

6.3. Ablation test 3 - Training with a different distribution of
predefined probabilities

As heretofore mentioned, the predefined probability (score)
of the hypothetically optimal selection merely serves as an in-
termediary tool to introduce a computational process so that

14

the neural network can dynamically adjust trainable parameters
and learn an efficacious subset of packets. In other words, the
choice of the predefined distribution holds no paramount sig-
nificance, so long as it aligns with our prerequisite of assigning
higher probabilities (scores) to packets in proximity to targets.
Thus, we persist in the strategy of choosing 1024 packets out of
2048, but adopt a different distribution of predefined probabili-
ties for packet selection, aiming to reproduce the outcome and
substantiate the underlying concept. Explicitly, we adhere to
the same procedure in Section 4.2, but instead of creating a lin-
ear distribution, we envision an exponential one by appending
an additional procedure at the end of step 1 to transform the lin-
ear space into a curvilinear one, i.e., θi ← eθi . As a consequence
(3rd column in the table), DeX with the predefined exponential
distribution yields outcome akin to the original, despite trivial
variations, indicating that the model is compatible with differ-
ent configurations of predefined probabilities.

More importantly, the performance produced by the trio of
aforementioned ablation tests, wherein the Transformer-based
feature extraction and the multi-task learning pipeline always
discharge their functions, remains decent, outstripping other
comparative models in Table 4 as well, which in turn illustrates
the prowess of other components of DeX.

6.4. Ablation test 4 - Training with LSTM-based feature extrac-
tion block

Hereafter, we maintain the bipolar components, yet imple-
ment an LSTM neural network to substitute the intermediate
feature extraction block, aiming to verify the competence of
Transformer. We employ 3 layers of LSTM unit and connect the
hidden states of the last layer to the multi-task learning pipeline.
Apparently, extracting features with LSTM falls short in both of
traffic entirety and extremities (4th column in the table) compar-
ing to the Transformer-based one in most cases. Interestingly,
the performance is found to substantially transcend that of the
vanilla LSTM with packet-level features (Table 4, LSTM-ii),
demonstrating the DeX’s applicability as well as transportabil-
ity to a certain extent, and further consolidating the proficiency
embodied in other components.

6.5. Ablation test 5 - Training without multi-task learning

Finally, we explore the scenario where the last component
is excised, leaving behind solely the regression task, while dis-
carding the other two. As attested by the 5th column in the ta-
ble, the basic model without multi-task learning experiences a
substantial performance drop, which particularly reflects in val-
ley values with an R2 score of merely 0.4864, thus reinstating
the model’s performance to a level on par with other compar-
ative methods. It is worth noting that we inadvertently reach
the best performance for peak values up to now, implying that
the deployment of Transformer encoder in concert with packet-
level features intrinsically advocates for traffic peaks, and the
employment of multi-task learning comes with a concomitant
expense, sacrificing somewhat such performance to accommo-
date and compensate other categories of critical values.

Table 6: Result of parametric analysis 1: less input packets.

Model DeX

Scenario
(number of packets) 2048* 1024* 512 256

Overall
values
[Mbps]

MSE ↓ 0.0458 0.0474 0.0486 0.0557
MAE ↓ 0.1108 0.1147 0.1155 0.1294

MAPE ↓ 10.710% 10.597% 10.575% 11.902%
R2 ↑ 0.9285 0.9261 0.9242 0.9131

Peak
values
[Mbps]

MSE ↓ 0.1567 0.1688 0.1682 0.1993
MAE ↓ 0.2327 0.2460 0.2474 0.2865

MAPE ↓ 12.075% 12.263% 12.459% 15.211%
R2 ↑ 0.8388 0.8263 0.8270 0.7950

Valley
values
[Mbps]

MSE ↓ 0.0239 0.0245 0.0241 0.0207
MAE ↓ 0.0754 0.0777 0.0792 0.0694

MAPE ↓ 19.001% 17.669% 17.947% 17.185%
R2 ↑ 0.7030 0.6948 0.6997 0.7420

Abrupt
changes
[Mbps]

MSE ↓ 0.2646 0.2645 0.2756 0.2968
MAE ↓ 0.3621 0.3574 0.3686 0.3865

MAPE ↓ 36.548% 36.057% 36.273% 37.104%
R2 ↑ 0.6505 0.6507 0.6360 0.6080

* The results are obtained from ablation test 1 with the entire set of 2048 pack-
ets without packet selection in Table 5, and the original DeX with the selec-
tion of 1024 packets in Table 4, for a straightforward comparison.

7. In-depth analysis

This section is composed of three parts, a sequence of para-
metric analyses to investigate the universality and versatility of
DeX, an attempt of model explainability that unravels the work-
ing logic, and an exploration of model practicability that eluci-
dates the model overhead and the potential for further optimiza-
tion.

7.1. Parametric analysis
We undertake 3 distinct sets of parametric analyses to com-

prehensively evaluate the performance of DeX and establish
that the previously obtained outcomes are not a mere happen-
stance due to a specific model configuration. Notably, for the
latter two sets of analyses, where the comparison against other
baselines is needed, we confine our consideration to only three
models (RF, XGB, N-BEATS) with comparative performance
as elucidated by the initial experimental findings (Table 4).

7.1.1. Number of selected packets
We embark on an exploration of two additional scenarios for

different numbers of input packets to reveal the possibility of
further reducing the quantity of features. By halving the amount
at a time, we consider the scenarios with W = 512 or 256 pack-
ets. Due to the substantial reduction in packet quantity, we opt
to conduct the selection out of the 1024 nearest packets pre-
ceding targets, differing from the original case with 1024 out
of 2048 packets to avoid excessively sparse selection, that may
lead to a loss of crucial contextual information. According to
the result in Table 6, selecting 512 packets still delivers compa-
rable outcome without fundamentally compromising the perfor-
mance even in contrast to 2048 packets, but 256 packets starts
to exhibit a decline except for valley values (briefly explained
in Section 7.2.1). Indeed, it is conceivable and inevitable to en-
counter performance setback with diminishing features. Nev-
ertheless, the selection of only 512 packets constitutes merely

15

Table 7: Result of parametric analysis 2: different duration (∆t) for predicted time window.

Scenario
(duration of predicted window, ∆t) 300 ms 1000 ms

Model RF XGB N-BEATS DeX RF XGB N-BEATS DeX

Overall
values
[Mbps]

MSE ↓ 0.0589 0.0580 0.0567 0.0538 0.0490 0.0505 0.0512 0.0457
MAE ↓ 0.1347 0.1335 0.1275 0.1260 0.1084 0.1126 0.1080 0.1057

MAPE ↓ 13.794% 13.579% 11.453% 11.547% 12.206% 13.260% 10.291% 10.872%
R2 ↑ 0.9097 0.9111 0.9131 0.9177 0.9216 0.9191 0.9180 0.9269

Peak
values
[Mbps]

MSE ↓ 0.2291 0.2223 0.2153 0.2010 0.1335 0.1378 0.1432 0.1172
MAE ↓ 0.3192 0.3134 0.3023 0.2881 0.2154 0.2227 0.2224 0.1927

MAPE ↓ 14.659% 14.480% 14.439% 14.022% 10.459% 11.262% 10.888% 9.897%
R2 ↑ 0.7713 0.7780 0.7850 0.8003 0.8478 0.8429 0.8367 0.8667

Valley
values
[Mbps]

MSE ↓ 0.0531 0.0540 0.0478 0.0410 0.0359 0.0372 0.0293 0.0233
MAE ↓ 0.1209 0.1234 0.1071 0.1015 0.0865 0.0910 0.0707 0.0688

MAPE ↓ 31.547% 31.732% 24.342% 23.133% 29.078% 32.553% 19.609% 24.854%
R2 ↑ 0.3791 0.3684 0.4407 0.5270 0.5545 0.5385 0.6359 0.7174

Abrupt
changes
[Mbps]

MSE ↓ 0.2190 0.2175 0.2185 0.2119 0.3259 0.3297 0.3553 0.3019
MAE ↓ 0.3159 0.3135 0.3093 0.3085 0.4275 0.4332 0.4517 0.4041

MAPE ↓ 34.411% 34.072% 30.806% 30.417% 57.281% 58.422% 50.060% 49.754%
R2 ↑ 0.7167 0.7187 0.7174 0.7263 0.5144 0.5087 0.4706 0.5518

Table 8: Result of parametric analysis 3: different thresholds (αp, αv, β) for defining traffic extremes.

Model RF XGB N-BEATS DeX RF XGB N-BEATS DeX

Different thresholds
for peak & valley

Top and lowest 15% throughput values
(αp = 15%, αv = 15%)

Top and lowest 20% throughput values
(αp = 20%, αv = 20%)

Peak
values
[Mbps]

MSE ↓ 0.1381 0.1455 0.1380 0.1287 0.1138 0.1200 0.1141 0.1065
MAE ↓ 0.2271 0.2305 0.2222 0.2093 0.1994 0.2036 0.1959 0.1856

MAPE ↓ 11.387% 11.649% 11.337% 10.946% 10.347% 10.666% 10.347% 10.114%
R2 ↑ 0.8478 0.8397 0.8479 0.8592 0.8685 0.8613 0.8682 0.8776

Valley
values
[Mbps]

MSE ↓ 0.0293 0.0277 0.0277 0.0221 0.0311 0.0303 0.0308 0.0245
MAE ↓ 0.0832 0.0753 0.0744 0.0723 0.0842 0.0781 0.0776 0.0747

MAPE ↓ 19.375% 15.633% 16.041% 14.808% 17.622% 14.420% 14.823% 13.703%
R2 ↑ 0.6955 0.7116 0.7115 0.7702 0.7407 0.7473 0.7430 0.7958

Different thresholds
for abrupt change

Inter-variation ≥ 15%
(β = 15%)

Inter-variation ≥ 10%
(β = 10%)

Abrupt
changes
[Mbps]

MSE ↓ 0.1988 0.2060 0.2074 0.1875 0.1285 0.1335 0.1340 0.1213
MAE ↓ 0.3020 0.3042 0.3087 0.2894 0.2267 0.2285 0.2311 0.2173

MAPE ↓ 30.940% 29.648% 29.839% 27.683% 22.701% 21.411% 21.627% 20.186%
R2 ↑ 0.7356 0.7260 0.7242 0.7508 0.8221 0.8151 0.8145 0.8322

a quarter of the initial quantity, yet still manages to attain re-
sults that consistently secure the highest rank among those in
Table 4, further consolidating the efficacy of DeX, and opening
up the possibility to reduce even more memory consumption,
computational overhead, and model complexity.

7.1.2. Duration of predicted time window
In the following, we delve into the performance of predicting

traffic throughput across distinct future time horizons, 300 and
1000 ms. In particular, we construct the datasets in a consistent
way, computing throughput values within consecutive windows
of the requisite time span, and for each time window (target
throughput sample), we adhere to the usual practice of consid-
ering 2048 packets in the past for DeX, while referring to the
historical throughput samples of the preceding 27 and 8 time
windows13 in the 300- and 1000-ms scenarios respectively for
time series models. Additionally, all models are subjected to
retraining from scratch due to the modification of dataset.

13The choice of such amount of time windows mirrors our previous ap-
proach, wherein 2048 packets translate to a duration of approximately 8 s, i.e.,
27 × 300 ms ≈ 8 s and 8 × 1000 ms = 8 s.

Table 7 presents all the results regarding different predicted
time windows for DeX and other models. Overall, DeX still
dominates the board with three minor exceptions in terms of
MAPE, irrespective of the duration, justifying its versatility and
robustness. Comparing all conditions including the original 500
ms, several insightful observations emerge: i) The 300-ms case
fails in predicting peaks and valleys, e.g., DeX produces an R2

score of only 0.5270 for valleys, and RF and XGB cannot even
reach 0.4. Conversely, there is a notable improvement in perfor-
mance concerning abrupt changes, with all models exhibiting
MAPEs lower than 35% and R2 scores exceeding 0.7 for the
first time. This could be rooted in the more frequent updates
of throughput values, which promptly and timely inform the
dynamic traffic fluctuations. Yet, it could be for the same rea-
son that traffic aggregated into shorter windows exhibits higher
volatility, leading to elusive patterns and thus overall dimin-
ished performance. ii) In the 1000-ms scenario, DeX maintains
its preeminence with further enhancement for peaks and val-
leys (e.g., R2 scores rise from 0.8263 and 0.6948 to 0.8667 and
0.7174), but noticeable degradation for abrupt changes (e.g.,
an escalation in MAPE from 36.057% to 49.754%). Both ob-

16

0.0

0.01

0.02

0.03

0.04

0.05

0.06
Pr

ob
ab

ili
ty

[%
]

Predefined
linear distribution

0.0
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Pr
ob

ab
ili

ty
[%

]

Predefined
exponential distribution

1 N/2 N
Packet index

0 (0%) N/2 (100%)

Theoretically optimal selection

Density of selected packets

0.0

0.01

0.02

0.03

0.04

0.05

0.06

Sm
oo

th
ed

pr
ob

ab
ili

ty
[%

]

1024 selected packets
(linear)

1024 selected packets
(exponential)

512 selected packets 256 selected packets

1

10
24

20
48

D
en

si
ty

121 (11.8%) 903 (88.2%)

1

10
24

20
48

132 (12.9%) 892 (87.1%)
1

51
2

10
24

35 (6.8%) 477 (93.2%)

1

76
8

10
24

59 (23.0%)
197

(77.0%)

Actual
probabilities

Actual
probabilities

Actual
probabilities

Actual
probabilities

Packet index (time−−→)

Figure 9: Outcomes of packet selection.

servations can originate from the same reason of a longer pre-
dicted time window, which smooths out traffic variations and
stabilizes throughput evolution. Such an effect facilitates the
forecasting of peaks and valleys, thanks to the reduction of lo-
calized fluctuations, but renders the abrupt changes even more
sudden and unexpected, as the gradually escalated patterns of
traffic throughput vanish, significantly hampering the predic-
tion. Nonetheless, DeX still yields the best outcome (e.g., an
improvement of 0.0374 in R2 score comparing to the second
place), not to mention the overall decent performance and the
longer time horizon, which affords a higher degree of freedom
for system management to implement optimized policies.

7.1.3. Different thresholds for defining extremes
Previously, traffic extremities are defined by specific thresh-

olds to optimize the model performance, and thus, we now elab-
orate on 4 extra conditions, varying the thresholds from the
highest and lowest 10% values to 15% or 20% (αp,v = 10% ⇒
αp,v = 15% or 20%) for peaks and valleys, and from inter-
variations greater than 20% to 15% or 10% (β = 20% ⇒ β =
15% or 10%) for abrupt changes. Simply put, we broaden our
experiment to encompass more samples as traffic extremes to
also examine the performance for sub-critical values. As ex-
pected, DeX still excels the others, regardless of variations in
thresholds according to Table 8. The performance excess gen-
erated by DeX remains relatively stable across different thresh-
olds for peaks and abrupt changes (e.g., the advantage in R2

score for peaks with respect to RF is 0.0123 when β = 20%,
and is 0.0091 when β = 10%), while it declines for valleys
to an acceptable extend (e.g., the difference in R2 score com-

paring to N-BEATS is 0.0862 for αv = 10%, but decreases to
0.0528 for αv = 20%), underscoring the consistent versatility
and comprehensiveness of DeX, which is not only reliant on the
predominance of performance regarding the original predefined
thresholds.

7.2. Model explainability

Herein, we showcase several outcomes of the packet selec-
tion module and the multi-task learning pipeline, elucidating
their operational mechanisms.

7.2.1. Packet selection module
The derived packet selections across various scenarios in-

volving different quantity of selected packets (initial 1024 pack-
ets in Section 5, modified 1024 packets with different prede-
fined probabilities in Section 7.1.1, and 512 as well as 256 pack-
ets in Section 7.1) are presented in Figure 9, in which the upper-
most 3 graphs depict the 2 aforementioned hypothetically opti-
mal selections as baselines, the quartet of reddish figures below
illustrate the smoothed distribution of resulting selection proba-
bilities along the packet indices, showing the average probabil-
ity value for every 8 packets, and the bottom 4 bluish figures
elucidate the density of the corresponding packet selections,
with darker regions signifying heightened packet density14.

14Notes: i) The two-sided figures on top present the hypothetically optimal
selection probabilities (linear one in Equation 4 and exponential one in Sec-
tion 7.1.1), and consequently, the closest half packets (N/2) to the target are
selected (top central figure); ii) The smoothed probabilities on bottom are for

17

0 1 2 3 4 5 6 7 8
Time index

0.5

1.0

1.5

2.0

R
aw

th
ro

ug
hp

ut
va

lu
e

Example 1

0 1 2 3 4 5 6 7 8
Time index

0.5

1.0

1.5

2.0

2.5

Example 2

0 1 2 3 4 5 6 7 8
Time index

−1.0

−0.5

0.0

0.5

1.0

1.5

Example 3

0 1 2 3 4 5 6 7 8
Time index

−0.5

0.0

0.5

1.0

Example 4

M = 0.511
M = 0.638

M = 1.348 M = 1.589

Ground truth Prediction without multiplier Prediction with multiplier

Figure 10: Examples of how the trainable multiplier operates.

With regard to the probability of packet selection, it is dis-
cernible that convergence towards the hypothetically optimal
probabilities persists consistently across the various scenarios,
despite minor divergences in alignment. The integrated packet
selection module enables DeX to meticulously strike a balance
between optimally choosing input features and modulating the
trainable parameters to generate Softmax probabilities towards
the predefined ones, resulting in higher scores even for packets
situated distally from the target. Indeed, the majority of selec-
tions are still allocated in temporal proximity to the prediction
target, notwithstanding the broader distribution. Furthermore,
the three cases of 1024 and 512 packets share a similar pattern
of picking a portion of packets in the farside, which is likely
attributed to the fact that they all occupy half of the original
packet count. In contrast, no remote packets are elected in the
case of 256 packets, and even the 59 packets absent in the tar-
get’s immediate vicinity (256 nearest ones) are still positioned
closed to the boundary. This could originate from the exiguous
256 packets per se, which lack of sufficient margin for potential
packets in distance. Moreover, alongside the performance in-
dicated in Section 7.1.1, where 256 packets output suboptimal
performance with an exception for valleys, we can safely de-
duce that the long-term packet features indeed foster the over-
all prediction, albeit with some hindrance in identifying valleys.
Of noteworthy concern, although both instances of 1024 pack-
ets produce analogous performance, the ensuing packet selec-
tions are different. The packet selection module does not seek to
pinpoint the absolutely and deterministically optimal locations
of packets, but aim to uncover the practically effective pack-
ets that are suitable for a specific model training. Therefore,
while dissimilar packets are selected based on distinct prede-
fined probabilities, they still make comparable short- as well as
long-term contributions, due to their respective roles during the
associated model development.

a clearer visualization, while the original ones are portrayed in the sub-figures;
iii) The lowermost figures also indicate the specific number of selected packets
and their occupation in different regions, which are marked based on the target
number of packet selection, e.g., in the case of selecting 256 packets from a
pool of 1024, 768 packets are allocated to the farside while 256 packets are in
the nearside.

7.2.2. Multi-task learning pipeline
Figure 10 showcases 4 time series of traffic throughput in

terms of both ground truth and the corresponding predictions,
with and without intervention of trainable multiplier, to exem-
plify the role of the multi-task learning pipeline in improving
the regression outputs when it comes to abrupt changes15. Ac-
cordingly, trainable multipliers can either magnify or compress
the primordial regression outcomes, bringing them into closer
alignment with the ground truth, especially in example 1, where
the adjusted prediction is almost identical to the true value. Be-
yond the specific points of focus within the figures, a more pro-
found instance is demonstrated at the tail end of traffic exam-
ple 4, where the throughput experiences a sudden increase, but
the unaltered prediction veers in the opposite direction. Re-
markably, the trainable multiplier discerns such an erroneous
behaviour as well as the abrupt surge, calibrating the prediction
to attain a performance level deemed acceptable. Although it
is barely possible to response instantaneously to the very first
abrupt change, the prompt and precise adaptations still demon-
strate the effectiveness of DeX.

7.3. Model practicability

Given the real-time nature and the restricted time window,
the time consumed by DeX for predictions stands as a criti-
cal consideration. While examining the implementation in re-
ality remains challenging at present, we maintain confidence in
the practicability and feasibility of the model. To provide con-
text, we investigate the time needed for two versions of DeX
to execute a single prediction across three different levels of
CPU environments devoid of GPU acceleration. Based on the
findings presented in Table 9, both models demonstrate accept-
able consumption irrespective of the CPU, leaving at least four-
fifths of the time available within the 500-ms window. Notably,

15Notes: i) The presence of negative throughput samples is a consequence
of the displayed figures showcasing the raw values emanating from the neural
network, subsequently subjected to an inverse scaling procedure to replicate the
actual throughput; ii) The magnified sub-figures explicitly indicate the magni-
tude of the multiplier, that modulates the original regression output to align with
the ground truth.

18

Table 9: Time consumption for DeX to make a prediction in CPU environments.

Model DeX 1024* DeX 512**

Number of parameters 1.69M 488.65K

Server tier
Intel Xeon Gold 6140 24 ms ± 307 µs 3.82 ms ± 195 µs

High-performance tier
Apple M2 42.3 ms ± 280 µs 11.9 ms ± 57.3 µs

Mid-range consumer tier
AMD Ryzen 7 PRO 4750U 90.6 ms ± 550 µs 23 ms ± 287 µs

* The original model with 1024 selected packets.
** The modified model with 512 selected packets.

Table 10: Experimental result of DeX with less parameters.

Scenario MSE MAE MAPE R2

Overall values [Mbps] 0.0459 0.1118 10.615% 0.9284
Peak values [Mbps] 0.1684 0.2547 12.679% 0.8267

Valley values [Mbps] 0.0267 0.0818 19.300% 0.6674
Abrupt changes [Mbps] 0.2562 0.3515 36.359% 0.6616

DeX of 512 packet with a comparable performance merely re-
quires 23 ms even in the worst case scenario. We envision suf-
ficient temporal margin to employ possible optimization strate-
gies, thereby validating the model practicability, let alone the
moderately prolonged case of the 1000-ms time window.

Furthermore, we also provide insights into the model com-
plexity regarding the number of parameters shown also in Ta-
ble 9. At a first glance, both models exhibit a significant amount
of parameters, but actually the majority (93.3% and 80.8%)
are occupied by the FNNs in the multi-task learning pipeline,
which can be readily customized to reduce the parameter quan-
tity and enhance efficiency. In this regard, we curtail the size
of the multi-task learning pipeline for DeX with 1024 pack-
ets, decreasing the number of neurons in the first layer of the
FNNs in all tasks from 512 to 256, and consequently obtaining
a reduction of roughly 47% in the total parameter count. We
then evaluate the model on the test set and present the result in
Table 10. Evidently, the trimmed model successfully achieves
comparable performance to the original DeX, with only a slight
decline for valley values, illustrating the potential and possibil-
ity for further improvement of model efficiency. Moreover, it
is noteworthy that the aforementioned analyses do not factor in
any existing technical optimizations, including well-established
pruning technologies [54] and efficient Transformer architec-
tures [55], which could further bolster the model efficacy and
practicality.

8. Related work

The realm of computer networks and communications has
witnessed an enrichment through the integration of ML and
DL technologies in recent years [56, 57, 58, 59], and the do-
main of RTC, encompassing traffic classification, adaptive man-
agement, performance improvement, etc., has not been over-
looked [60, 61, 62, 63, 64, 65]. Herein, we provide an overview
of relevant literature pertaining to throughput and packet-level-
based prediction.

Throughput prediction, akin to bandwidth or bitrate predic-
tion, has gained considerable traction in academia. The work
of [66] aimed to improve the selection of bitrate by predicting
throughput based on data-driven approach. The authors ana-
lyzed millions of sessions, finding out similarities and state-
ful patterns, which were used to cluster sessions and develop a
Hidden-Markov-Model (HMM) predictor. [67] payed attention
to the average throughput prediction in cellular networks, ex-
ploiting a Random Forest (RF) [46] regressor based on a range
of radio channel metrics and throughput measurements. They
then extended the work in [68] by examining two more tech-
nologies, Support Vector Machine (SVM) [69] and Long Short-
Term Memory (LSTM) [50] NN. Authors in [70] proposed a
cross-layer solution to enhance transmission quality, particu-
larly for video calls within cellular networks. Their approach
hinged upon a linear adaptive filter, Recursive Least Squares
(RLS) [45], to forecast forthcoming bandwidth based on his-
torical capacities. In [71], a RF-based ML framework, namely
LinkForest, was introduced to predict cellular link bandwidth
in 4G Long Term Evolution (LTE) networks. In addition to
historical throughput data, the authors also considered lower-
layer metrics, e.g., Reference Signal Received Power (RSRP),
as input features. The authors in [72] utilized public datasets of
general Internet traffic to perform short-term bandwidth predic-
tion. They adopted multiple ML algorithms, ranging from tree-
based models to Deep Neural Network (DNN), and aggregated
packets into time windows, in which various features, such as
cumulative bitrate and number of packets, are computed. As
a result, RF turned out to be a promising approach. Further-
more, the LSTM Recurrent Neural Networks (RNN) were im-
plemented in [73] and [74] with customized designs. In the
former, the authors investigate real-time mobile bandwidth pre-
diction across diverse mobile network conditions. Their pro-
posed LSTM model was pre-trained and subsequently, they
augmented the framework by employing model switching and
Bayes model fusion for online deployment. In the latter, the
work aimed at improving adaptive video streaming by predict-
ing bitrates to optimize QoE metrics. The authors proposed a
reinforcement learning (RL) paradigm, wherein an LSTM com-
bined with a Convolutional Neural Network (CNN) assumed
responsibility for bitrate prediction. Unlike the former work
that relied on historical bandwidth alone, they introduced mul-
tiple features, such as chunk throughput and size. Differently,
[75] directly applied RL technique, proposing a hybrid band-
width prediction solution, namely BoB, which was trained of-
fline based on network traces, and implemented online to sup-
port a controller on the receiver side. Meanwhile, the focus
of [76, 77, 78, 79] was centered on Adaptive Bitrate (ABR)
for HTTP-based video streaming. The first two works adopted
Tree-based or DL-based models for throughput prediction, in-
tegrating the algorithms into ABR decision-making process to
optimize QoE. The penultimate work intended to use K-means
to cluster network conditions, measuring the corresponding fea-
ture vectors and leveraging DNN to capture temporal dynamics,
which were then integrated into renowned RL-based ABR de-
cision engine, while the last one utilized a Kaufman’s Adap-
tive Moving Average (KAMA) [80] method to predict bitrate

19

Table 11: Related works for throughput prediction and their
adopted technologies.

Paper Methodologies*

Y. Sun et al., 2016, ACM SIGCOMM [66] HMM
D. Raca et al., 2019, ACM MMSys [67] RF
D. Raca et al., 2020, IEEE MCOM [68] RF, SVM, LSTM
E. Kurdoglu et al., 2016, ACM MMSys [70] RLS
C. Yue et al., 2017, IEEE TMC [71] RF
M. Labonne et al., 2021, IEEE WoWMoM [72] DT, RF, XGB, DNN
L. Mei et al., 2020, Elsevier ComNet [73] LSTM, HM, RLS
A. Lekharu et al., 2020, IEEE COMSNETS [74] LSTM, 1D-CNN
A. Bentaleb et al., 2022, IEEE TMM [75] DRL
G. Lv et al., 2022, IEEE INFOCOM [76] DT, MLR

B Wei et al., 2019, IEEE Access [77] LSTM, MA, HMM, AM
HM, LS, Stochastic

J. Yin et al., 2021, arXiv [78] CNN+DNN
A. Sobhani et al., 2017, ACM TOMM [79] KAMA
* The unmentioned acronyms: DT – Decision Tree, HM – Harmonic Mean,

MLR – Multiple Linear Regression, AM – Arithmetic Mean, LS – Last Sam-
ple.

for a fuzzy-logic controller to dynamically manage video rate
and provide decision-making for video segment downloading.
To summarize, we present the related works with considered
methodologies in Table 11.

Regarding packet-level prediction, that is not confined to
RTC, a rather limited corpus of research exists. Authors in
[81] capitalized on multi-task DL approach to not only utilize
packet-level information but also to predict packet-level charac-
teristics, such as packet direction and payload length. They in-
vestigated multiple DL techniques as the backbone model, and
compared the performance against Markov chain and Random
Forest (RF) regressor. Specifically, packets featuring three pre-
dicted and three exogenous parameters (e.g., TCP window size)
were arranged in a sequential manner to enable sliding window
prediction. The study further provided intensive analyses of
different types of traffic and ML models. Moreover, the Trans-
former architecture appeared in both [82] and [83]. The first
work proposed FlowFormer to classify real-time network flow
types (video, conference, and download). Rather than adhering
strictly to the original Transformer architecture, the authors im-
plemented multiple layers of attention-based encoder to extract
features to then feed to a LSTM or a CNN model. Notably,
packet-level attributes such as payload length were tracked
and compared against predefined thresholds to be aggregated
into corresponding chronological bins, whereby the quantities
of packets in each bin were calculated as features. The sec-
ond work sought to model and generalize network dynamics
by exploiting the power of Transformer structure grounded in
packet-level information, e.g., timestamps. The authors pro-
posed the so-called Network Traffic Transformer (NTT) frame-
work, in which the general architecture of Transformer was im-
plemented except that they incorporated a hierarchical aggrega-
tion layer preceding the encoder to condense lengthy packet se-
quence, concatenating summarized older packets with the most
recent ones. The model was initially pre-trained based on an
end-to-end delay prediction, and the authors envisioned a re-
placeable decoder for other potential tasks.

To the best of our knowledge, our work stands as a pioneer-
ing effort in employing Transformer-based architecture in con-

junction with packet-level information to predict throughput in
RTC, laying focus on traffic extremes to bolster predictive per-
formance. To thoroughly contextualize the novelty and signif-
icance of our model, we opt for a total number of 9 technolo-
gies that manifest superiority in the literature. Noteworthily, the
methodology adopted in [76] is indeed able to discern abrupt
changes thanks to the feature of chunk size, which, however,
is unavailable in RTP-based traffic. Our model boasts a stream-
lined design of the architecture, efficiently and astutely harness-
ing a minimal set of packet-level information as features. Con-
sequently, the need for resource-intensive processes, such as in-
tricate feature extraction, exhaustive aggregation, and compli-
cated calculations is eliminated, contributing to the lightweight
nature of our proposed framework.

9. Conclusion

In this paper, our main objective is to predict the RTC traffic
throughput, with a distinct emphasis on traffic extremes, en-
compassing peaks, valleys, and abrupt changes. We propose
a novel DL framework named DeX, exclusively utilizing RTP
packet-level information with the merit of ease of feature ex-
traction, and consisting of three sophisticated devised compo-
nents: a packet selection module that optimally extracts infor-
mative subset and reduces the total amount of input features,
facilitating computational efficiency, a feature extraction block
that partially incorporates a Transformer-based architecture to
discern traffic intricacy, and a multi-task learning pipeline that
is meticulously designed to improve the adeptness and adapt-
ability for extremities. To consolidate the model universality
and resilience, we anchor our work on ample RTC traffic col-
lected under various conditions, compare our model against nu-
merous technologies, and elaborate on diverse scenarios, under-
taking thorough ablation studies and parametric analyses. As a
result, we obtain satisfactory overall performance with preem-
inent outcomes for traffic extremes. Future work could involve
endeavors to further reduce the model complexity, and addi-
tionally, we remain receptive to the prospect of incorporating
exogenous factors, such as the router queue length when pre-
dictions are executed at the edge node, potentially continuing
to enhance the performance. Furthermore, in order to further
justify the generalizability of DeX, our work could also benefit
from a more rigorous and systematic data collection campaign
with a broader range of RTC applications.

Acknowledgements

This work has been supported by the SmartData@PoliTO
center for BigData and Data Science, and Cisco Systems Inc.

References

[1] R. Frederick, S. L. Casner, V. Jacobson, H. Schulzrinne, RTP: A trans-
port protocol for real-time applications, RFC 1889 (Jan. 1996). doi:

10.17487/RFC1889.
URL https://rfc-editor.org/rfc/rfc1889.txt

20

https://rfc-editor.org/rfc/rfc1889.txt
https://rfc-editor.org/rfc/rfc1889.txt
https://doi.org/10.17487/RFC1889
https://doi.org/10.17487/RFC1889
https://rfc-editor.org/rfc/rfc1889.txt

[2] C. Athanasiadou, G. Theriou, Telework: systematic literature review and
future research agenda, Heliyon 7 (10) (2021) e08165.

[3] A. Nistico, D. Markudova, M. Trevisan, M. Meo, G. Carofiglio, A com-
parative study of RTC applications, in: 2020 IEEE International Sympo-
sium on Multimedia (ISM), IEEE, 2020, pp. 1–8.

[4] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, P. Halvorsen, Video
streaming using a location-based bandwidth-lookup service for bitrate
planning, ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM) 8 (3) (2012) 1–19.

[5] J. R. Wilcox, Videoconferencing: The whole picture, Taylor & Francis,
2017.

[6] C. Liang, M. Zhao, Y. Liu, Optimal bandwidth sharing in multiswarm
multiparty p2p video-conferencing systems, IEEE/ACM Transactions On
Networking 19 (6) (2011) 1704–1716.

[7] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, G. Zussman, Performance
evaluation of webrtc-based video conferencing, ACM SIGMETRICS Per-
formance Evaluation Review 45 (3) (2018) 56–68.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural
information processing systems 30 (2017).

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee, Hypertext transfer protocol–http/1.1, Tech. rep. (1999).

[10] D. P. Reed, J. Postel, User datagram protocol, https://tools.ietf.
org/html/rfc768, accessed: 2023-11-16.

[11] O. Said, Y. Albagory, M. Nofal, F. Al Raddady, Iot-rtp and iot-rtcp: Adap-
tive protocols for multimedia transmission over internet of things environ-
ments, IEEE access 5 (2017) 16757–16773.

[12] S. Loreto, S. P. Romano, Real-time communication with WebRTC: peer-
to-peer in the browser, ” O’Reilly Media, Inc.”, 2014.

[13] T. Sharma, T. Mangla, A. Gupta, J. Jiang, N. Feamster, Estimating we-
brtc video qoe metrics without using application headers, arXiv preprint
arXiv:2306.01194 (2023).

[14] M. Alahmadi, P. Pocta, H. Melvin, An adaptive bitrate switching algo-
rithm for speech applications in context of webrtc, ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM)
17 (4) (2021) 1–21.

[15] Z. Zhang, H. Chen, X. Cao, Z. Ma, Anableps: Adapting bitrate for real-
time communication using vbr-encoded video, in: 2023 IEEE Interna-
tional Conference on Multimedia and Expo (ICME), IEEE, 2023, pp.
1685–1690.

[16] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Mu-
nafò, G. Carofiglio, Real-time classification of real-time communications,
IEEE Transactions on Network and Service Management 19 (4) (2022)
4676–4690.

[17] T. Song, D. Markudova, G. Perna, M. Meo, Where did my packet go?
real-time prediction of losses in networks, in: ICC 2023-IEEE Interna-
tional Conference on Communications, IEEE, 2023, pp. 3836–3841.

[18] D. Markudova, M. Meo, Recoco: Reinforcement learning-based conges-
tion control for real-time applications, in: 2023 IEEE 24th International
Conference on High Performance Switching and Routing (HPSR), IEEE,
2023, pp. 68–74.

[19] Y. Bandung, L. B. Subekti, D. Tanjung, C. Chrysostomou, Qos analysis
for webrtc videoconference on bandwidth-limited network, in: 2017 20th
International symposium on wireless personal multimedia communica-
tions (WPMC), IEEE, 2017, pp. 547–553.

[20] N. M. Edan, A. Al-Sherbaz, S. Turner, Performance evaluation of re-
sources management in webrtc for a scalable communication, in: Intelli-
gent Computing: Proceedings of the 2018 Computing Conference, Vol-
ume 2, Springer, 2019, pp. 648–665.

[21] S. Huang, J. Xie, Dave: Dynamic adaptive video encoding for real-time
video streaming applications, in: 2021 18th Annual IEEE International
Conference on Sensing, Communication, and Networking (SECON),
IEEE, 2021, pp. 1–9.

[22] L. Liu, J. Li, H. Xu, K. Xue, J. C. Xue, Efficient real-time video con-
ferencing with adaptive frame delivery, Computer Networks 234 (2023)
109918.

[23] Y. Li, Z. Zhang, H. Chen, Z. Ma, Mamba: Bringing multi-dimensional
abr to webrtc, in: Proceedings of the 31st ACM International Conference
on Multimedia, 2023, pp. 9262–9270.

[24] G. Carlucci, L. De Cicco, S. Holmer, S. Mascolo, Analysis and design
of the google congestion control for web real-time communication (we-

brtc), in: Proceedings of the 7th International Conference on Multimedia
Systems, 2016, pp. 1–12.

[25] E. Torres, R. Reale, L. Sampaio, J. Martins, A sdn/openflow framework
for dynamic resource allocation based on bandwidth allocation model,
IEEE Latin America Transactions 18 (05) (2020) 853–860.

[26] R. A. Kirmizioglu, A. M. Tekalp, Multi-party webrtc services using delay
and bandwidth aware sdn-assisted ip multicasting of scalable video over
5g networks, IEEE Transactions on Multimedia 22 (4) (2019) 1005–1015.

[27] Intel, DPDK: Data Plane Development Kit, accessed: Mar. 6, 2024
(2018).
URL http://dpdk.org/

[28] PcapPlusPlus, PcapPlusPlus, Accessed Mar. 2024, available online:
https://pcapplusplus.github.io/ (2018).

[29] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, J. M. Smith, Scaling hard-
ware accelerated network monitoring to concurrent and dynamic queries
with {* Flow}, in: 2018 USENIX Annual Technical Conference (USENIX
ATC 18), 2018, pp. 823–835.

[30] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, K. Park, {APUNet}: Revi-
talizing {GPU} as packet processing accelerator, in: 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 17),
2017, pp. 83–96.

[31] Netlimiter, https://www.netlimiter.com/, last accessed on March
6, 2024.

[32] Netbalancer, https://netbalancer.com/, last accessed on March 6,
2024.

[33] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, G. Ventre, Internet traf-
fic modeling by means of hidden markov models, Computer Networks
52 (14) (2008) 2645–2662.

[34] J. Uberti, C. Jennings, S. Murillo, RFC 9335: Completely encrypting rtp
header extensions and contributing sources (2023).

[35] B. Marczak, J. Scott-Railton, Move fast and roll your own
crypto: A quick look at the confidentiality of zoom meetings,
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-
look-at-the-confidentiality-of-zoom-meetings/ (2020).

[36] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A transport
protocol for real-time applications, https://tools.ietf.org/html/rfc3550,
RFC 3550 (July 2003).

[37] M. Maruschke, O. Jokisch, M. Meszaros, V. Iaroshenko, Review of the
opus codec in a webrtc scenario for audio and speech communication, in:
Speech and Computer: 17th International Conference, SPECOM 2015,
Athens, Greece, September 20-24, 2015, Proceedings 17, Springer, 2015,
pp. 348–355.

[38] J.-M. Valin, K. Vos, T. Terriberry, Definition of the opus audio codec,
Tech. rep. (2012).

[39] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[40] A. T. Liu, S.-W. Li, H.-y. Lee, Tera: Self-supervised learning of trans-
former encoder representation for speech, IEEE/ACM Transactions on
Audio, Speech, and Language Processing 29 (2021) 2351–2366.

[41] A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018, pp.
7482–7491.

[42] A. F. Agarap, Deep learning using rectified linear units (relu), arXiv
preprint arXiv:1803.08375 (2018).

[43] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[44] R. J. Hyndman, Moving averages. (2011).
[45] A. H. Sayed, Fundamentals of adaptive filtering, John Wiley & Sons,

2003.
[46] L. Breiman, Random forests, Machine learning 45 (2001) 5–32.
[47] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen,

R. Mitchell, I. Cano, T. Zhou, et al., Xgboost: extreme gradient boosting,
R package version 0.4-2 1 (4) (2015) 1–4.

[48] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.
[49] G. Lai, W.-C. Chang, Y. Yang, H. Liu, Modeling long-and short-term tem-

poral patterns with deep neural networks, in: The 41st international ACM
SIGIR conference on research & development in information retrieval,
2018, pp. 95–104.

[50] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural compu-

21

https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc768
http://dpdk.org/
http://dpdk.org/
https://pcapplusplus.github.io/
https://www.netlimiter.com/
https://netbalancer.com/

tation 9 (8) (1997) 1735–1780.
[51] B. N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-beats: Neural

basis expansion analysis for interpretable time series forecasting, arXiv
preprint arXiv:1905.10437 (2019).

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imper-
ative style, high-performance deep learning library, Advances in neural
information processing systems 32 (2019).

[53] H. Kaur, H. S. Pannu, A. K. Malhi, A systematic review on imbalanced
data challenges in machine learning: Applications and solutions, ACM
Computing Surveys (CSUR) 52 (4) (2019) 1–36.

[54] T. Liang, J. Glossner, L. Wang, S. Shi, X. Zhang, Pruning and quanti-
zation for deep neural network acceleration: A survey, Neurocomputing
461 (2021) 370–403.

[55] Y. Tay, M. Dehghani, D. Bahri, D. Metzler, Efficient transformers: A
survey, ACM Comput. Surv. 55 (6) (dec 2022). doi:10.1145/3530811.
URL https://doi.org/10.1145/3530811

[56] T. Cerquitelli, M. Meo, M. Curado, L. Skorin-Kapov, E. E. Tsiropoulou,
Machine learning empowered computer networks (2023).

[57] W. Samek, S. Stanczak, T. Wiegand, The convergence of machine learn-
ing and communications, arXiv preprint arXiv:1708.08299 (2017).

[58] I. Ahmad, S. Shahabuddin, H. Malik, E. Harjula, T. Leppänen, L. Loven,
A. Anttonen, A. H. Sodhro, M. M. Alam, M. Juntti, et al., Machine learn-
ing meets communication networks: Current trends and future challenges,
IEEE Access 8 (2020) 223418–223460.

[59] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, O. M. Caicedo, A comprehensive survey on machine
learning for networking: evolution, applications and research opportuni-
ties, Journal of Internet Services and Applications 9 (1) (2018) 1–99.

[60] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Mu-
nafò, G. Carofiglio, Online classification of rtc traffic, in: 2021 IEEE 18th
Annual Consumer Communications & Networking Conference (CCNC),
IEEE, 2021, pp. 1–6.

[61] D. Markudova, M. Trevisan, P. Garza, M. Meo, M. M. Munafo,
G. Carofiglio, What’s my app? ml-based classification of rtc applications,
ACM SIGMETRICS Performance Evaluation Review 48 (4) (2021) 41–
44.

[62] S. Cheng, H. Hu, X. Zhang, Z. Guo, Deeprs: Deep-learning based
network-adaptive fec for real-time video communications, in: 2020 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE, 2020,
pp. 1–5.

[63] Z. Wang, Y. Na, B. Tian, Q. Fu, Nn3a: Neural network supported acoustic
echo cancellation, noise suppression and automatic gain control for real-
time communications, in: ICASSP 2022-2022 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), IEEE,
2022, pp. 661–665.

[64] X. Jiang, X. Peng, C. Zheng, H. Xue, Y. Zhang, Y. Lu, End-to-end neu-
ral speech coding for real-time communications, in: ICASSP 2022-2022
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), IEEE, 2022, pp. 866–870.

[65] J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi, M. Revow,
A. Sadovnikov, Z. Liu, P. Cheng, S. Ashok, et al., Reinforcement learning
for bandwidth estimation and congestion control in real-time communi-
cations, arXiv preprint arXiv:1912.02222 (2019).

[66] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, B. Sinopoli,
Cs2p: Improving video bitrate selection and adaptation with data-driven
throughput prediction, in: Proceedings of the 2016 ACM SIGCOMM
Conference, 2016, pp. 272–285.

[67] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana,
V. Gopalakrishnan, B. Bathula, M. Varvello, Empowering video players
in cellular: Throughput prediction from radio network measurements, in:
Proceedings of the 10th ACM Multimedia Systems Conference, 2019, pp.
201–212.

[68] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana,
V. Gopalakrishnan, On leveraging machine and deep learning for through-
put prediction in cellular networks: Design, performance, and challenges,
IEEE Communications Magazine 58 (3) (2020) 11–17.

[69] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, B. Scholkopf, Support
vector machines, IEEE Intelligent Systems and their applications 13 (4)
(1998) 18–28.

[70] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, J. Lyu, Real-time bandwidth

prediction and rate adaptation for video calls over cellular networks, in:
Proceedings of the 7th International Conference on Multimedia Systems,
2016, pp. 1–11.

[71] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, W. Wei, Linkforecast: Cellular
link bandwidth prediction in lte networks, IEEE Transactions on Mobile
Computing 17 (7) (2017) 1582–1594.

[72] M. Labonne, J. López, C. Poletti, J.-B. Munier, Short-term flow-
based bandwidth forecasting using machine learning, arXiv preprint
arXiv:2011.14421 (2020).

[73] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, J. Li, Realtime mobile band-
width prediction using lstm neural network and bayesian fusion, Com-
puter Networks 182 (2020) 107515.

[74] A. Lekharu, K. Moulii, A. Sur, A. Sarkar, Deep learning based prediction
model for adaptive video streaming, in: 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS), IEEE, 2020, pp.
152–159.

[75] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, R. Zimmermann, Bob:
Bandwidth prediction for real-time communications using heuristic and
reinforcement learning, IEEE Transactions on Multimedia (2022).

[76] G. Lv, Q. Wu, W. Wang, Z. Li, G. Xie, Lumos: Towards better video
streaming qoe through accurate throughput prediction, in: IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications, IEEE,
2022, pp. 650–659.

[77] B. Wei, H. Song, S. Wang, K. Kanai, J. Katto, Evaluation of throughput
prediction for adaptive bitrate control using trace-based emulation, IEEE
Access 7 (2019) 51346–51356.

[78] J. Yin, Y. Xu, H. Chen, Y. Zhang, S. Appleby, Z. Ma, Ant: Learning
accurate network throughput for better adaptive video streaming, arXiv
preprint arXiv:2104.12507 (2021).

[79] A. Sobhani, A. Yassine, S. Shirmohammadi, A video bitrate adaptation
and prediction mechanism for http adaptive streaming, ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM)
13 (2) (2017) 1–25.

[80] P. J. Kaufman, Smarter trading, Vol. 22, New York: McGraw-Hill, 1995.
[81] A. Montieri, G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, A. Pescapè,

Packet-level prediction of mobile-app traffic using multitask deep learn-
ing, Computer Networks 200 (2021) 108529.

[82] R. Babaria, S. C. Madanapalli, H. Kumar, V. Sivaraman, Flowformers:
Transformer-based models for real-time network flow classification, in:
2021 17th International Conference on Mobility, Sensing and Networking
(MSN), IEEE, 2021, pp. 231–238.

[83] A. Dietmüller, S. Ray, R. Jacob, L. Vanbever, A new hope for network
model generalization, in: Proceedings of the 21st ACM Workshop on Hot
Topics in Networks, 2022, pp. 152–159.

22

https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811

	Introduction
	Problem statement
	Background
	Underlying motivations
	Why packet-level information
	Why Transformer
	Why traffic extremes

	Problem formulation

	Dataset
	Methodology
	Introduction of the proposed model
	Packet selection module
	Feature extraction block
	Multi-task learning pipeline

	Model development, comparison, and evaluation process

	Experimental result
	Ablation study
	Ablation test 1 - Training with the entire 2048 packets
	Ablation test 2 - Training with the nearest 1024 packets
	Ablation test 3 - Training with a different distribution of predefined probabilities
	Ablation test 4 - Training with LSTM-based feature extraction block
	Ablation test 5 - Training without multi-task learning

	In-depth analysis
	Parametric analysis
	Number of selected packets
	Duration of predicted time window
	Different thresholds for defining extremes

	Model explainability
	Packet selection module
	Multi-task learning pipeline

	Model practicability

	Related work
	Conclusion

