
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DeX: Deep learning-based throughput prediction for real-time communications with emphasis on traffic eXtremes / Song,
Tailai; Garza, Paolo; Meo, Michela; Munafo, Maurizio Matteo. - In: COMPUTER NETWORKS. - ISSN 1389-1286. -
ELETTRONICO. - 249:(2024), p. 110507. [10.1016/j.comnet.2024.110507]

Original

DeX: Deep learning-based throughput prediction for real-time communications with emphasis on traffic
eXtremes

Publisher:

Published
DOI:10.1016/j.comnet.2024.110507

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989246 since: 2024-06-03T10:27:23Z

Elsevier

Computer Networks 249 (2024) 110507

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

DeX: Deep learning-based throughput prediction for real-time
communications with emphasis on traffic eXtremes
Tailai Song ∗, Paolo Garza, Michela Meo, Maurizio M. Munafò
Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 TO, Torino, Italy

A R T I C L E I N F O

Keywords:
Real-time communications
RTP
Throughput prediction
Packet level
Machine learning
Deep learning

A B S T R A C T

Recent years have witnessed a remarkable upsurge in the global proliferation of Real-Time Communications
(RTC) applications, a trend propelled by the flourishing advancement of network technologies and further
amplified by the COVID-19 pandemic. Within this context, there is a burgeoning interest in the innovation
of sophisticated and intelligent network infrastructures and technologies. Positioned as a promising candidate
for this purpose, real-time throughput prediction emerges as a key enabler to foster network observability and
offer proactive functions, upholding advanced system management, including but not limited to, bandwidth
allocation and adaptive streaming. Nonetheless, existing methodologies struggle with predicting extreme
conditions of throughput, notably peaks, valleys, and abrupt changes, that are critical in RTC traffic. To
surmount these obstacles, we introduce DeX, a Deep Learning (DL)-based framework, designed to predict
short-term throughput, with a dexterous proficiency and dedicated focus on navigating the complexities of
traffic eX tremes.

In particular, DeX leverages solely packet-level information as features and is composed of three integral
components: a packet selection module that opts for an optimal subset of input features, a feature extraction
block that partially incorporates the Transformer architecture, and a multi-task learning pipeline that improves
the proficiency in handling traffic extremes. Moreover, our work is anchored in extensive traffic traces garnered
during actual video-teleconferencing calls, and we formulate a time-series regression problem, rigorously
evaluating a spectrum of technologies ranging from an adaptive filter to diverse Machine Learning (ML)
and DL approaches. Initially, we aim at predicting throughput within 500-ms time windows using historical
1024 packets out of 2048, and consequently, our methodology exhibits exceptional efficacy, especially in
forecasting traffic extremities. Conclusively, we conduct a series of ablation experiments and thorough analyses
to showcase the enhanced performance of various scenarios, further validating the effectiveness and robustness
of DeX.
1. Introduction

In the modern era, Real-Time Transport Protocol (RTP) [1]-based
Real-Time Communications (RTC) have entrenched themselves as in-
dispensable instruments across both professional and recreational do-
mains, ushering in a suite of applications such as video-teleconferencing,
online gaming, streaming, etc. The unprecedented popularity of RTC
applications throughout recent years can be attributable to the height-
ened demand for entertainment and enhanced lifestyles in the post-
pandemic period, in tandem with the global shift towards remote
work practices [2]. Presently, consumers are confronted with an abun-
dance of rival applications [3] driven by perpetual enrichment of
RTC services, which can be ascribed to the augmented accessibility
of bandwidth, the extensive growth of network infrastructures, and

∗ Corresponding author.
E-mail addresses: tailai.song@polito.it (T. Song), paolo.garza@polito.it (P. Garza), michela.meo@polito.it (M. Meo), maurizio.munafo@polito.it

(M.M. Munafò).

the advent of cutting-edge 5G technologies. This expansion leads to
a diversification of user preferences and expectations, necessitating
the implementation of advanced and efficacious optimizations in RTC
systems to deliver an unparalleled user experience in various contexts.
Contemporary users seek not only high-quality audio and video but
also a seamless and fluid overall communication experience. Catering
to these intensified expectations requires multifaceted and innovative
approaches that transcend the scope of traditional solutions.

To this end, there is a compelling necessity to develop and re-
fine robust, intelligent, and scalable technologies aimed at augment-
ing network performance and Quality of Experience (QoE). Notably,
bandwidth management assumes a pivotal role in RTC, incorporating
essential functionalities such as throughput measurement, bandwidth
vailable online 16 May 2024
389-1286/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2024.110507
Received 29 January 2024; Received in revised form 23 March 2024; Accepted 12
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

May 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:tailai.song@polito.it
mailto:paolo.garza@polito.it
mailto:michela.meo@polito.it
mailto:maurizio.munafo@polito.it
https://doi.org/10.1016/j.comnet.2024.110507
https://doi.org/10.1016/j.comnet.2024.110507
http://creativecommons.org/licenses/by/4.0/

Computer Networks 249 (2024) 110507T. Song et al.

-

i
e
2
g
t
n
p
p
d

allocation, dynamic transmission adjustments, and traffic prioritiza-
tion [4–7]. In light of this, the prediction of traffic throughput holds
immense potential, proffering a preemptive mechanism that confers
manifold advantages: (i) Optimized bandwidth allocation and utiliza-
tion are attainable through accurate throughput estimations, thereby
avoiding both underutilization and over-provisioning of network re-
sources; (ii) Adaptive streaming and transcoding can increase QoE by
dynamically modifying media quality, resolution, or encoding settings
in alignment with the anticipated bitrate, ensuring optimal content
dissemination; (iii) Network congestion management can be effectively
executed through the forecasting of bandwidth requirements, facilitat-
ing proactive countermeasures such as traffic shaping, prioritization, or
rerouting to alleviate or avert congestion issues; (iv) Resource planning
becomes more efficient as service providers and network operators
utilize predicted throughput information to assess and strategically
allocate the required network resources, guaranteeing scalability and
consistent levels of service quality to accommodate the anticipated
communication demands. Nevertheless, throughput prediction poses
formidable challenges, particularly within the context of RTC, owing
to dynamic, ever-changing, and heterogeneous nature of networks,
constrained computational capacity, and possible temporal limitations.
Compounding this, existing solutions for common time-series problems
often struggle with the prediction of extreme conditions, which are of
critical significance in RTC traffic.

In this paper, we present DeX, an innovative Deep Learning (DL)
Neural Network (NN), meticulously tailored to predict the throughput
of RTC traffic, with emphasis on traffic eX tremes, namely peak values,
valley values, and abrupt changes. DeX strategically and exclusively
capitalizes on packet-level information, providing the benefit of mini-
mal extraction efforts while endeavoring to address inherent challenges
in the problem. Specifically, DeX is characterized by a tripartite struc-
ture, comprising three multifunctional and synergistic components: a
packet selection module that autonomously and intelligently filters an
optimal subset of input packets, aiming to curtail feature quantity and
model complexity; a Transformer [8]-based feature extraction block
that employs the multi-head attention mechanism to discern the dy-
namic and intrinsic network traffic patterns; and a multi-task learning
pipeline with various weights that enhances the regression problem
by integrating two supplementary tasks to effectively adapt to traffic
extremities.

Our work is underpinned by a substantial collection of real video-
conferencing traffic, collected from client sides across various network
environments, and the dataset is curated with both historical through-
put time series and packet-level features. We articulate a regression
problem and benchmark our model against a simple baseline and an
array of prevalent techniques, spanning from an adaptive filter to
conventional ML and DL approaches. Initially, we select 1024 packets
from a set of 2048 to predict short-term throughput in forthcoming
time windows of 500 ms, and subsequently, we undertake a series of
ablation studies to ascertain the importance of different components,
accompanied by comprehensive analyses to explore diverse scenar-
ios and expatiate the operational mechanics of DeX. Moreover, our
proposed solution with a streamlined architecture is envisioned to
achieve computational efficiency and reduce processing time consump-
tion, and to be integrated as a software module for end-users or
network equipment such as media servers, establishing an AI-based,
RTC-aware, comprehensive, and proactive system for traffic monitoring
and management. It facilitates application-level observability within
the network control plane, thus empowering efficient and informed
decision-making processes, and incorporates a feedback mechanism to
rapidly respond to fluctuating network conditions. To summarize, our
contribution is characterized by the following key aspects:

• A three-component DL framework, named DeX, optimized for
accurate throughput forecasting, especially suited for handling
traffic extremes.
2

• A dataset encompassing packet-level details of RTP-based traffic
traces, collected from real video calls utilizing common RTC
applications.

• A series of analyses coupled with model interpretation for our
proposed solution that justifies the model’s effectiveness and
generalizability.

The remainder of this paper is organized as follows. Section 2
provides the motivation and formulates the problem, while Section 3
describes the dataset employed in our work. Afterwards, we delineate
the architecture and functionalities of DeX in Section 4, and present
the experimental outcomes in Section 5. Moreover, we perform five
ablation tests in Section 6, followed by experimenting various param-
eter configurations and elucidating the model’s operational logic in
Section 7. Finally, Section 8 discusses relevant literature, and Sec-
tion 9 offers concluding remarks. Additionally, in light of the research
reproducibility, we make both the dataset and the model publicly
available.1

2. Problem statement

This section starts with a brief introduction to the necessary back-
ground, followed by a detailed exposition of the motivation driving our
work, and culminates in an expression of the problem formulation.

2.1. Background

RTC applications are predominantly categorized into two types:
HTTP (Hypertext Transfer Protocol) [9]-based and RTP-based. The
former paradigm, exemplified by commercial video-streaming services
like Netflix, is favored for its stateless and reliable attributes, making
it well-suited for scenarios where delay tolerance is permissible. In
contrast, RTP over User Datagram Protocol (UDP) [10] forms the
cornerstone for a myriad of RTC applications, especially for occasions
requiring nearly instantaneous responsiveness with minimal latency,
such as video-teleconferencing and online gaming. Moreover, a wide
range of IoT applications also employ RTP [11], and web browsers
as well as mobile devices (e.g., Android) universally hinge on the
acclaimed standard, WebRTC [12],2 an open-source framework built
atop RTP. Traditionally, Real-Time Transport Control Protocol (RTCP)
is implemented alongside RTP as an integral framework for monitoring,
reporting, and managing the quality and delivery of multimedia data.
Nowadays, plenty of innovative technologies are developed to optimize
the performance of RTP-related applications, such as QoE metrics esti-
mation [13], adaptive bitrate control [14,15], traffic identification [16,
17], congestion control [18], etc. In many cases of modern optimiza-
tion approaches, information retrieved from end-users including traffic
throughput, are frequently used as vital feedback of endpoints to
further enhance performance.

In this context, the predicted throughput transcends the observed
value, assuming an instrumental role in preemptively informing net-
work units and enabling proactive reactions, particularly under resource
constrained circumstances [19,20]. Generally, various scenarios are
envisaged to benefit from the integration and utilization of DeX. For
nstance, dynamic adaptive streaming/encoding becomes increasingly
ffective by incorporating the anticipated throughput as feedback [21,
2], or as a state for the decision-making agent [23]. Google con-
estion control (GCC) [24] could leverage the prediction to supplant
he recorded measurement, intervening beforehand to mitigate the
etwork congestion. The emerging software-defined networking (SDN)
aradigm is able to effectively manage networks by employing the
rediction as a key factor for bandwidth allocation [25,26]. Given the
iverse latent usages and the computational requirement of DeX, we

1 https://mplanestore.polito.it:5001/sharing/XTiiXJOPM
2 https://webrtc.org/

https://mplanestore.polito.it:5001/sharing/XTiiXJOPM
https://webrtc.org/

Computer Networks 249 (2024) 110507T. Song et al.
Fig. 1. Deployment scenario benefiting from DeX .

postulate a scenario involving multiple entities wherein our model can
contribute, as depicted in Fig. 1. DeX could be deployed in end-users’
devices (e.g., PC), with swift access to and processing of network pack-
ets through existing technologies [27–30]. The predicted throughput
information serves as supportive feedback for the traffic sender, the
network controller (or orchestrator), and the receiver itself, facilitating
system management in an independent or cooperative manner. For
example, the controller could accurately and promptly allocate more
bandwidth in advance upon notification of predicted peaks or abrupt
increases, potentially ensuring the consistent QoE for content delivery.
Additionally, apart from functions provided by external actors, the re-
ceiver per se could also utilize the prediction to manage local resources
through integrated tools [31,32].

2.2. Underlying motivations

In alignment with the three components of DeX, we hereby elucidate
the motivation behind our work.

2.2.1. Why packet-level information
The packet selection module operates on packet-level information as

its features, with the primary objective of optimally selecting a subset
from the entire pool of considered packets.

The rationale underpinning the utilization of packet-level infor-
mation is threefold: (i) Packets constitute the most fundamental and
granular entities within networks, encapsulating the rapidly changing
dynamics and inherent characteristics of network traffic [33]. Models
sculpted around such meticulous features are intrinsically poised to
effectively discern underlying traffic patterns, leading to enhanced
prediction accuracy. (ii) The acquisition of packet-level data requires
minimal effort in terms of feature extraction, an aspect particularly
advantageous in the realm of RTC, where temporal and computational
constraints are common. Importantly, packet encryption is becoming
prevalent [34,35], rendering the acquirement and computation of in-
tricate features not only arduous but also, at times, entirely unfeasible.
Our model exclusively depends on elementary and unencrypted IP/UDP
header attributes, circumventing potential complexities associated with
packet encryption, and thus facilitating a more streamlined workflow
with expeditious access to pertinent information. (iii) Packets are ubiq-
uitously available across the network, extending beyond the confines of
client sides, and thus affording a more holistic network observability.
This broader vantage point enables the prospect of performing through-
put prediction within the network, contributing to the improvement of
overall network performance.

Crucially, RTC services often encounter computational and temporal
limitations, and the demand for low-latency communication necessi-
tates a delicate equilibrium between real-time response and consumed
3

Fig. 2. Throughput time series of sample traffic.

computational resources. On the one hand, RTC applications need swift
as well as recurrent processing of media data and execution of various
algorithms. This intensifies the computational demand, especially on
devices with constrained processing capabilities, such as mobile phones
and embedded systems. On the other hand, the natural pursuit of low
latency in RTC inherently calls for minimal time consumption of any
intermediate process. Absent this, elevated communication delays and
synchronization discrepancies may emerge, impacting the overall QoE.
Hence, we endeavor to decrease the total volume of input packets to
downsize the model complexity, ultimately improving memory effi-
ciency and fostering a more computationally and temporally effective
paradigm.

2.2.2. Why Transformer
The feature extraction block partially incorporates a Transformer

architecture to systematically condense packet series. Particularly, the
sequential composition of packet flows shares affinities with problems
in the domain of Natural Language Processing (NLP), which has been
revolutionized by the groundbreaking game changer — Transformer. It
equips our proposed model with the potential to demonstrate robust
proficiency in learning the nuanced and inherent network patterns.
Our objective is to harness the innate capabilities of the multi-head
attention mechanism, to autonomously and intuitively discern the en-
dogenous correlations interlacing the packet-level features and target
traffic throughput.

2.2.3. Why traffic extremes
We implement the last component, a multi-task learning pipeline,

aimed to improve the performance concerning traffic extremes, which
constitute critical facets in RTC traffic, represent the intricate nuances
of network dynamics, and exert a profound influence on prediction
accuracy. To provide context, the time series throughput of an example
traffic is presented in Fig. 2, where extremities are highlighted. More
specifically, we underscore the prediction of extreme values for the
sake of several reasons: (i) Peak values of transmission rates often
coincide with network bottlenecks, providing invaluable insights into
the prospective bandwidth availability. The precise prediction of peaks
facilitate optimal resource allocation, which in turn averts potential pit-
falls such as packet loss, compromised audio/video quality, diminished
QoE, and more. (ii) Valley values denote periods of relative network
idleness, where network resources remain underutilized, unveiling op-
portunities for energy-conservation strategies, resource redistribution,
and load balancing. Moreover, certain unexpected valleys might herald
network irregularities, bolstering the detection of traffic anomalies.
(iii) The ability to anticipate abrupt changes, which signal sudden
and transient network fluctuations, could significantly enhance adap-
tive streaming agility and expedited bandwidth allocation, ensuring a
prompt adaptation to rapid transitions of network environment.

2.3. Problem formulation

The objective entails the prediction of traffic throughput in an up-
coming time window with a duration of 𝛥𝑡. In order to comprehensively
evaluate the performance, we approach the problem in a dual manner
with distinct features but a shared target: (i) a conventional univariate

Computer Networks 249 (2024) 110507T. Song et al.

𝑀
t
a
w
s
p
t
p
p

o

W
f
d
i
i
h
p
p

t
p
a
a
o
f
a
d
a
i
N
i

Table 1
Summary of the collected traffic.

Total number of pcap files 71
Total duration of traffic [h] 69.13
Average duration per pcap [min] 58.42
Period of collection Apr, 2020–Jan, 2021
Total number of collected packets 66,327,753
Total number of throughput samples (500 ms) 482,905

time series problem with historical samples as features, and (ii) an
irregular multivariate one with prior packet-level features. Assuming
a given time instant 𝑡, we formulate a regression problem as follows:

• Problem i — univariate time series prediction:

�̂�𝑡 = 𝑓 (𝑋)

with 𝑋 = [𝑟𝑡−𝛥𝑡, 𝑟𝑡−2𝛥𝑡,… , 𝑟𝑡−𝑚𝛥𝑡,…],

𝑚 ∈ [1,𝑀],

(1)

• Problem ii — multivariate packet-level prediction:

�̂�𝑡 = 𝑓 (𝑋)

with 𝑋 = [..., 𝑥𝑡,𝑛,… ,
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑊

],

𝑛 ∈ [1, 𝑁],

(2)

where �̂�𝑡 is the predicted throughput in the ensuing time window
spanning from time 𝑡 to 𝑡 + 𝛥𝑡, and the input feature matrix 𝑋 varies
between the two problems. For the conventional time series problem i,

historical samples are considered, and 𝑟𝑡−𝑚×𝛥𝑡 denotes the previous
hroughput within the time window of duration 𝛥𝑡 that commences
t 𝑡 − 𝑚 × 𝛥𝑡. In the case of the multivariate packet-level problem ii,
e factor in the past records of 𝑁 packets in total, while selecting a

ubset of 𝑊 < 𝑁 packets as features. Notably, only the 𝑊 chosen
ackets are features fed to the following prediction components, and
hey do not need to be contiguous. The remaining 𝑁 −𝑊 non-selected
ackets are simply unused and discarded. Should the 𝑛th preceding
acket antecedent to time 𝑡 be designated as one of the selected packets,

𝑥𝑡,𝑛 represents its corresponding feature vector, which is constituted
by a tuple of the packet attributes (explained in the next section).
The model learns a function 𝑓 (⋅), undertaking the regression task and
mapping the input feature matrix 𝑋 into the estimated throughput that
converges closely with the actual value, 𝑅. Additionally, we define the
three extreme conditions for all throughput samples observed during
each video-teleconferencing session as follows:

• Peak values: the throughput samples associated to the uppermost
𝛼𝑝 (percentage) values;

• Valley values: the throughput samples associated to the lowest 𝛼𝑣
(percentage) values;

• Abrupt changes: the throughput samples with inter-variations
compared to their respective preceding samples exceeding a spe-
cific threshold (percentage) 𝛽:
|𝑅𝑡 − 𝑅𝑡−𝛥𝑡|

𝑅𝑡−𝛥𝑡
> 𝛽. (3)

3. Dataset

Herein, we introduce the details of the dataset employed in our
work, presenting the data source, dataset construction, feature selec-
tion, and related characteristics.

Our work is founded on abundant traffic traces collected during
multiple real video-teleconferencing calls, each involving 2 to 6 par-
4

ticipants, connected via WiFi, mobile networks, or Ethernet cables. We
employ two RTC applications, Jitsi Meet 3 and Webex,4 and gather traffic
from client sides, dumping packet captures and archiving data in pcap
format. By laying focus on incoming streams, we aim at forecasting
the traffic throughput of RTP packet flows during a session, sourcing
from all senders and traversing through the network. A summary of
the [traffic] characteristics is provided in Table 1. To streamline the
dataset construction process, we parse each pcap file, extracting the raw
traffic data to create a datasheet, in which each entry represents the
corresponding packet information, such as timestamp and packet size.
Fig. 3 graphically depicts the entire procedure.

In accordance with the problem formulation, we construct the
dataset by generating the time series of throughput samples for each
individual video-call. Starting from the initial 𝑁 packets in the traffic
from a certain call, we establish a following 𝛥𝑡-long time window
adjacent to the last packet. Afterwards, we progress forward by 𝛥𝑡,
assimilating new packets while discarding old ones to maintain a
consistent count of 𝑁 packets in the past, and we iterate this procedure
until consuming the entire traffic. On top of that, the traffic throughput
are calculated in successive time windows following chronological
order, by aggregating the frame length of all packets contained within
each window. Simply put, the throughput is basically the amount of
traffic per unit time, whose value is computed as 𝑅𝑡 =

∑

𝑙𝑖∕𝛥𝑡, where 𝑙𝑖
is the frame length of the 𝑖th packet in the time window starting from
time 𝑡. In this context, we select 3 elements (i.e., 𝑥𝑡,𝑛 = [𝑥FL

𝑡,𝑛, 𝑥
IAT
𝑡,𝑛 , 𝑥

TS
𝑡,𝑛])

f the RTP packet to serve as features:

• Frame length (𝑥FL
𝑡,𝑛) is the packet total length including both its

header and data, which directly represents the impact of packet
size and transmitted bits in the past, endowing the model with
the capability to operate in an autoregressive manner.

• Inter-arrival time (𝑥IAT
𝑡,𝑛) is the temporal gap between the arrival

of the current packet and its previous packet, and it serves as a
local granularity indicator for assessing the frequency of packet
flows, even when the preceding packet in the consecutive pair is
not selected.

• Timestamp (𝑥TS
𝑡,𝑛) denotes the relative timestamp at which the

packet is received by the end-user. It is the absolute timestamp of
the current packet subtracted by the timestamp of the start of the
session and it introduces global timing patterns from previously
considered packets.

ith these features, we intend to encompass potential influence arising
rom both spatial and temporal patterns, and we extract information
irectly from RTP packets, thereby obviating the necessity for resource-
ntensive feature engineering. As a consequence, each time window,
.e., a data sample of target throughput, is accompanied with the
istorical throughput samples from the previous 𝑀 time windows for
roblem i, and the aforementioned packet-level features of each of the
receding 𝑁 packets for problem ii.

In our initial setting, we compute and predict the throughput within
ime windows of 𝛥𝑡 = 500 ms, and resort to the previous 𝑁 = 2048
ackets, with the goal of selecting half of them, i.e., 𝑊 = 1024 packets,
s features for problem ii. In our dataset, 2048 packets correspond to
n average duration of roughly 7.6 s, and thus, a comparable time span
f 8 s, equivalent to 𝑀 = 16 (16 × 500 ms) prior windows is considered
or problem i. Furthermore, we devise that 𝛼𝑝 = 10%, 𝛼𝑣 = 10%,
nd 𝛽 = 20%, i.e., the highest and lowest 10% throughput samples
uring a session are specified as peaks and valleys, respectively, and
sample with an inter-variation surpassing 20% when compared to

ts previous and neighboring sample is regarded as an abrupt change.
otice that all these selections are modifiable parameters, and we delve

nto alternative scenarios in Section 7.

3 An open source platform, https://meet.jit.si/.
4 A commercial application, https://www.webex.com/.

https://meet.jit.si/
https://www.webex.com/

Computer Networks 249 (2024) 110507T. Song et al.
Fig. 3. The process of data preprocessing.
Fig. 4. Traffic patterns of 20 randomly selected video-teleconferencing sessions.
To provide contextual insight, we illustrate traffic patterns from
20 randomly selected sessions in Fig. 4, which depicts 3 sets of Em-
pirical Cumulative Distribution Function (ECDF) plots.5 On the one
hand, the leftmost Fig. 4(a), which shows the ECDF of throughput
values, demonstrates that nearly all values exhibit a steep ascent in
the middle, gradually tapering into narrower tails for both ultra-low
and high values, despite quantitative differences among traffic. On the
other hand, the middle Fig. 4(b) showcases the percentage variations
(inter-variation) between successive throughput samples, revealing that
the majority of inter-variations remain below 20%. In fact, 64.9% of
inter-variations are smaller than 10%, and 84.2% are smaller than

5 Notes: (i) The display of only 20 traffic samples is for the sake of a
relatively lucid visualization, and we can confirm a similar pattern across the
dataset. (ii) Rather than amalgamating all the traffic to generate a ECDF for the
entire dataset, we choose to construct individual ECDFs, in order to illustrate
and compare the pattern of each individual traffic trace separately.
5

20% for all traffic. Both of the previous observations suggest that the
traffic throughput generally undergoes a globally stationary evolution,
which underlines the significance of comprehending and forecasting
traffic extremes, further rendering their prediction an intriguing and
substantial endeavor. Furthermore, we also investigate the duration
of each set of 2048 packets for separate sessions in the rightmost
Fig. 4(c). Although the average elapse is 7.6 s as mentioned earlier,
different traffic exhibit various characteristics, where multiple traffic
sessions share a similar pattern with a majority of cases covering a
duration ranging from 3 to 10 s, as indicated by the rapid ascent in the
ECDF, and several sessions manifest peculiar patterns, characterized by
either relatively uniform or irregular distributions of elapsed duration.
Such phenomena are actually common in reality, given that a video-
call could be either active with frequent data packets exchanged or
quiescent with a few transmitted packets. The aforementioned aspects
provide rationality for choosing 𝑁 = 2048 packets to encompass the
multifarious facets of traffic transmitted in RTC, regardless of the
degree of activity. This leads to a judicious trade-off between including

Computer Networks 249 (2024) 110507T. Song et al.

r

Fig. 5. Traffic patterns of individual RTP flows (this is not the pattern of the entire dataset with mixed flows).
A
a
t
t
r
i

4

p
e
l
e
p
p

c
i
o
s
h
r
r
t
c
t
p
a
w
v

extraneous and excessive information beyond the target and having
insufficient packets.

Moreover, we also provide insights into the actual multimedia data
being transmitted by analyzing the statistics of individual RTP traffic
flows. A single RTP flow, responsible for conveying particular content,
such as audio or video, is uniquely determined by a tuple composed
of (𝐼𝑃𝑠𝑟𝑐 , 𝐼𝑃𝑑𝑠𝑡, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐 , 𝑝𝑜𝑟𝑡𝑑𝑠𝑡, 𝑆𝑆𝑅𝐶, 𝑡𝑦𝑝𝑒𝑝𝑎𝑦𝑙𝑜𝑎𝑑).6 For the traffic of
each session, we segregate and extract data on a per-flow basis, and
then for each flow, we aggregate packets into consecutive 1-s time bins,
calculating 3 types of statistics for each bin, i.e., the total number of
packets, the average inter-arrival time, and the average inter-difference
between RTP timestamps, whose ECDFs are presented separately in
Fig. 5. Importantly, all 3 plots indicate a notable degree of statistical
similarity, featuring a pronounced increase to above 50% in the ECDFs
around either 50 packets∕s (Fig. 5(a)), an inter-arrival time of 20 ms
(Fig. 5(b)), or an inter-RTP timestamp of 1000 (Fig. 5(c)). Such a trend
is due to the presence of audio flows that are typically packetized
adhering to the protocol RTP RFC 3550 [36]. For example, given
that the most common audio packetization implementation employs
a 20-ms interval, and the widely-used codecs like Opus operates at a
frequency of 48 kHz [37,38], the difference in RTP timestamp between
two consecutive audio packets is 960 (48 kHz×20 ms ≈ 1000). Building
upon these observations, coupled with other distinct sudden rises in
the ECDFs that potentially indicate various payload types, we can
reasonably infer that our dataset is composed of abundant and different
media data rather than monotonous content. This diversity ensures the
datasets’ relevance and representativeness in capturing the numerous
aspects of RTC traffic, complicating somewhat the problem because of
the mixture of different patterns, but simultaneously consolidating the
versatility and comprehensiveness of our model.

4. Methodology

In this section, we describe the architecture of our proposed model,
DeX. Subsequently, other considered approaches for comparison and
the model development as well as evaluation process are outlined.

4.1. Introduction of the proposed model

Our novel DL framework DeX leverages historical packet-level fea-
tures to predict traffic throughput in future time windows. The archi-
tecture of DeX comprises three components, namely, a packet selection
module, a feature extraction block, and a multi-task learning pipeline,

6 𝐼𝑃𝑠𝑟𝑐 and 𝐼𝑃𝑑𝑠𝑡 are the IP addresses of the traffic source and destination,
espectively, 𝑝𝑜𝑟𝑡𝑠𝑟𝑐 and 𝑝𝑜𝑟𝑡𝑑𝑠𝑡 are the ports of source and destination, 𝑆𝑆𝑅𝐶

is the synchronization source identifier that uniquely identifies the source of
a stream, and 𝑡𝑦𝑝𝑒𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is dynamically assigned to represent the format of the
payload.
6

as elucidated in Fig. 6. In general, we perform a moving window
prediction during the training phase, taking into account all of the
preceding 𝑁 = 2048 packets with three RTP elements, as raw input.

long with the training, DeX learns an optimal subset out of all
vailable packets, selecting a portion as actual input features. Following
he feature extraction process, we adopt a multi-task learning paradigm
hat integrates various loss functions to optimize the performance
egarding traffic extremities. Particularly, each component is detailed
n the following.

.1.1. Packet selection module
This component reduces the input quantity while maintaining the

erformance by selecting an optimal subset out of all considered pack-
ts. To choose which packets to select, we employ a straightforward
ogic, by randomly initializing 𝑁 = 2048 trainable parameters (𝑖),
ach being assigned to the corresponding packet (𝑃𝑖). Subsequently, we
ass all of these parameters through a Softmax function to derive 2048
robabilities (𝑝softmax) to opt for corresponding packets based on their

values, i.e., we select the 𝑊 = 1024 packets associated to the highest
1024 probabilities.7 It is important to note that the outputs of Softmax
are called probabilities simply because of the naming convention, and
thus do not imply a stochastic process but are treated as deterministic
scores for packet selection. We expect the model to learn and refine
the trainable parameters in a way such that the derived probabilities
(scores) are optimized to select the most suitable packets for the
regression task.

However, the aforementioned procedure possesses a fundamental
flaw of not being attached to the computational graph, given that
such a selection, which triggers no computations in the last step,
is not involved in the gradient flow. In order to tackle the issue,
we introduce a predefined distribution of probabilities (𝑝predefined) to
ompare the derived probabilities output by Softmax, thereby bringing
n computational process. Meanwhile, we postulate that the potentially
ptimal selections are the packets closest to the target throughput
ample, i.e., the most recent 1024 packets in the packet sequence. This
ypothesis stems from the nature of time series problem, where tempo-
ally proximate samples ought to encompass the most salient features,
eflecting the latest trend in evolution. However, unlike conventional
ime series problem, the domain-specific irregularity in packet sequence
ould potentially provide critical information to various packets other
han those proximate to targets. Therefore, we conceive the preset
robabilities (scores) as a guideline to steer the learning process as well
s the selection towards the hypothetically optimal (closest) packets,
hile still permitting a certain degree of freedom to unearth potentially
aluable packets located further away from the targets.

7 𝑃 = {𝑃 |

∑ ∏

(𝑝 > 𝑝) > 1024},∀𝑖, 𝑗 ∈ [1, 2048].
selected 𝑖 𝑖≠𝑗 𝑖≠𝑗 softmax,𝑖 softmax,𝑗

Computer Networks 249 (2024) 110507T. Song et al.
Fig. 6. Workflow, model architecture, and training strategy of DeX.
To this end, we devise a simple predefined and monotonically
increased linear distribution8 as follows:
𝑝predefined = [𝑝1,… , 𝑝𝑖,… , 𝑝2048]

s.t. 𝑝𝑖 < 𝑝𝑖+1,
∑

𝑝𝑖 = 1,

𝑝𝑖 = 𝑎 ⋅ 𝑖 + 𝑏,

with 𝑖 ∈ [1, 2048],

(4)

8 Superficially, the choice of such a distribution may appear somewhat
arbitrary, but, by fine-tuning the hyperparameters, it is possible for the NN to
automatically cherry-pick beneficial packets, reaching optimal performance,
irrespective of the initial distribution chosen. Therefore, the specific distri-
bution adopted is inconsequential, as long as it satisfies our requirement, for
example, an exponentially increased distribution of probabilities (scores) could
also serve the purpose, as we elaborate on in Section 6. In other words, the pre-
determined probabilities function as a reference, and different predefinitions,
i.e., different references, will unquestionably influence the learning process,
engendering distinct alterations in the trainable parameters, but the ultimate
optimized objective, that is always the regression task, remains invariant,
impelling the model to eventually ascertain the advantageous packet selection,
regardless of the trajectory it follows in relation to the convergence towards
7

various references.
where 𝑝𝑖 represents the predefined probability (score) assigned to the
𝑖th packet (the larger indexes are closer to the target), and the summa-
tion of 𝑝predefined equals 1, as the output of Softmax sums to 1. The term
𝑎 ⋅ 𝑖+𝑏 indicates a linear relationship.9 A visual example is illustrated in
Fig. 7, and the parameters, , are trained to produce Softmax probabil-
ities that converge to the predefined ones, accomplished by computing
the Mean Absolute Error (MAE loss function, 𝓁MAE(⋅)) between them:

prob = 𝓁MAE(𝑝predefined, 𝑝softmax)

with 𝑝softmax = Softmax(1,… ,𝑖,… ,2048),
(5)

in which, prob, namely the loss of probability, is one of the optimized
targets subjected to minimization. As a result, the module operates
in a manner that diligently pushes the selection of packets towards
the target. Nevertheless, the procedure encounters another problem —
it always ends up with the proximate packets due to the consistent
gravitation towards the hypothetically optimal selection,10 deviating
from our original goal of choosing informative packets in distance. To

9 Details regarding their derivation are in Section 4.2.
10 The solution to minimization of MAE exists, i.e., prob = 0, when the

trainable parameters yield Softmax probabilities identical to the predefined
ones.

Computer Networks 249 (2024) 110507T. Song et al.

a
b
f
t
A
i
p
r
t
w
s
o
t
p

t
s
d
i
s
t

4

e
i
l
t
t
t
S
w
a
t
c
c
i
p
s
N
s
s
s

Fig. 7. How packet selection module works (note that 𝑟𝑒𝑔 in the figure is just a nominal representation instead of the actual regression loss in Eq. (6)).
t
s
e
i
f
O
c
f
a
F
e
u
w
m
e
q
o
t
t
e

4

m
t
i
p
a
w
t
a
a
b
b
a
t
f
c
i
w
w

lleviate such an aggressive outcome, we mitigate the MAE loss, prob,
y introducing a weighting factor, 𝜆, to reduce its impact, preventing
rom permanently choosing the packets closest to the target. An illus-
rative depiction of this concept is presented in the right part of Fig. 7.
s the training process unfolds, both losses of regression and probabil-

ty decrease synchronously, until reaching a certain point, where the
acket selection is deemed non-optimal, leading to an upswing in the
egression loss. Simultaneously, the MAE loss of probability continues
o decrease, further abating its influence thanks to the weight, 𝜆, and
hen the regression loss escalates because of certain selection, the

election revisits a prior relatively optimal position, given that the loss
f probability exerts mere impact on the final loss. In consequence,
he selection process stabilizes or hovers around the optimal locations,
rimarily due to the dominance of the regression loss.

Consequently, we optimize the packet selection throughout the
raining process, significantly reducing the amount of input for down-
tream components. Notice that such a selection module will be ren-
ered superfluous and discarded post-training without continuing to
ncrease the model complexity, since the optimal position in the packet
equence is already derived, and from then on, we can directly channel
he selected packets into the next components.

.1.2. Feature extraction block
We employ a Transformer-based NN with customized structures to

xtract features. Firstly, we inject the sequence of selected packets,
.e., each set of the 3 features (a 1 × 3 vector), into a packet embedding
ayer (linear layer) to create embedded features. The NN is anticipated
o learn an apt mapping from the primordial attributes of a packet
o its latent embedding, thereby enriching the traffic features and
ransforming the dimension of the feature vector to 1 × 𝑁embedding.
econdly, while each packet has the timestamp indicative of its order,
e still lack of positional information for other packet entities. To
ddress this, we implement sine/cosine positional encoding, following
he original Transformer model. On top of that, we augment the ar-
hitecture by introducing an additional trainable positional encoding
onstituting of learnable parameters for two main purposes: (i) learn-
ng automatically optimal positional and potentially domain-related
atterns during training to improve the task-specific adaptability, con-
idering that the original one is fixed and particularly designed for
LP, and (ii) supplementing probably absent insights caused by incon-

istent packet selection, since the original one operates on continuous
equence without any interstitial gap in between. With the same dimen-
ion of 𝑊 × 𝑁 , both positional encodings are superimposed
8

embedding
o embedded features, wherein each vector (1 × 𝑁embedding) at the
econd dimension of the encoding is added to its corresponding packet
mbedding. Thirdly, the resultant sequence of embedded features is fed
nto a single Transformer encoder, a component frequently employed
or sequence representation [39,40], to generate encoded features.
ur objective is to leverage the multi-head attention mechanism, the
ore of the encoder, to unveil latent patterns and apprehend network
ate. Moreover, we opt not to implement the Transformer decoder or
dditional stacks of encoders to avoid increasing the model complexity.
inally, the output encoded features comprise a total of 𝑊 ×𝑁embedding
ntries. While a straightforward solution would be to connect all val-
es to each subsequent task (a feedforward neural network (FNN)),
e refrain from doing so to prevent potential excessive noise and
odel over-complication. Instead, we calculate the mean value for

ach set of encoded features in the output sequence, distilling feature
uintessence and deriving the ultimate feature vector with a dimension
f 1 × 𝑊 . Additionally, we apply layer normalization to standardize
he condensed features dependently for an individual sample, aiming
o stabilize the pattern within each input and consummate the feature
xtraction phase.

.1.3. Multi-task learning pipeline
We elaborately craft a multi-task learning strategy, enriched with

ultifunctional weights, designed to further incentivize the model
o discern traffic extremes. Besides the primary regression task, we
ncorporate two auxiliary learning blocks: a binary classification com-
onent and a trainable multiplier. The former block aims to predict
nd identify whether the target throughput signifies an abrupt change
ith respect to the preceding sample, a feat deemed attainable due to

he granular and domain-specific packet-level features that are often
bsent in conventional time-series scenarios. The latter block operates
s a calibrator that either amplifies or attenuates the regression output
ased on the classification outcome, adjusting the final predictions to
etter accommodate dramatic variations. Each block (task) consists of
2-layer FNN, which takes as input the encoded features generated by

he feature extraction block and produces a scalar value. For the classi-
ication block, a Sigmoid function is adopted to convert the output into
lass probabilities. Consequently, the NN undergoes meticulous train-
ng, ensuring that it consistently satisfies normal value expectations,
hile also methodically compensating for abrupt changes. Meanwhile,
e implement learnable weights [41] that autonomously determine the

Computer Networks 249 (2024) 110507T. Song et al.

c

i
l

e
c
l
𝑤
t

Table 2
Implementation detail of DeX.

Parameter Value

Learning ratea, 𝜂 10−3

Size of feature embedding, 𝑁embedding 32
Size of positional encoding 1024 × 32
Number of heads 8
Number of encoder 1
Number of neurons for FNN in encoder 512
Activation function in encoder ReLU [42]
Number of layers for multi-task learning pipeline 2
Number of neurons of the 1st layer for a task in pipeline 512
Number of neurons of the 2nd layer for a task in pipeline 1
Activation in multi-task learning pipeline ReLU
Training optimizer Adam [43]
Batch size 16
Weight for peaks and valleys, 𝑤reg 2.0
Weight for abrupt changes, 𝑤class 6.0
Weight for loss of probability, 𝜆 4 × 10−4

Parameters for the predefined probability, 𝑝predefined 𝑎 = 1.59×10−7

𝑏 = 3.25×10−4

a We adopt a decay of 1 order of magnitude for every 2 epochs.

Table 3
Model summary.

Category Model

Naive baselinea Moving Average (MA)b [44]

Adaptive filter Recursive Least Squares (RLS)b [45]

ML method Random Forest (RF)b regressor [46]
XGBoost (XGB)b regressor [47]

DL method Multi Layer Perceptron (MLP)b [48]
Long- and Short-term Time-series network (LSTNet)c

[49]
Long Short-Term Memory (LSTM)b,c [50]
N-BEATS networkb [51]

a It calculates the average value of past throughput samples as the prediction.
b Problem i, univariate time series prediction.

Problem ii, multivariate packet level prediction.

mportance of different tasks to systematically and optimally combine
osses generated by different blocks, as depicted below:

comb = 𝑒−𝑤1 ⋅ class +𝑤1 + 𝑒−𝑤2 ⋅ reg +𝑤2

with class = 𝓁wBCE(𝑦, �̂�;𝑤class),

reg = 𝓁wMAE(𝑅, �̂�;𝑤reg),

�̂� = �̂�′ ⋅,

 =

{

′, if �̂� = 1 (abrupt change)
1, if �̂� = 0 (normal transition),

(6)

where comb stands as the combined loss, calculated by blending the
classification (class) and regression (reg) losses via learnable weights,
𝑤1 and 𝑤2. Moreover, both regression and classification blocks leverage
weighted losses during training phase. On the one hand, in order to
tackle the imbalance between classes (only around 16% of throughput
samples are abrupt changes), the classification loss is calculated by
the weighted Binary Cross Entropy (BCE) loss function 𝓁wBCE(⋅), with
levated weights 𝑤class granted to the minority samples of abrupt
hanges. On the other hand, the weighted Mean Absolute Error (MAE)
oss function 𝓁wMAE(⋅) is employed for regression, with larger weights

reg assigned to peaks and valleys to accentuate the model’s sensitivity
o such scenarios. Both 𝑦 and 𝑅 represent the ground truths of clas-

sification and regression tasks, and �̂� denotes the label predicted by
classification block, while �̂� symbolizes the final forecasted through-
put, ascertained by modulating the regression output (�̂�′) with the
intervention of the trainable multiplier (= ′). Notably, when
the classification indicates a normal transition (�̂� = 0), the multiplier
remains neutral (= 1), thus leaving the regression output unaltered.
9

Finally, by considering the entire model, the final loss is computed
as:

final = comb + 𝜆 ⋅ prob, (7)

in which comb is the combined loss yielded by the multi-task learning
pipeline in Eq. (6), and prob corresponds to the loss of probability
tweaked by the hyperparameter, 𝜆, and generated by packet selection
module in Eq. (5). The second term can be regarded as a regularization
component, imposing constraints on the learning process, that are
instrumental in preventing the model from becoming overly dependent
on proximal packets, and thereby nudge the model towards solutions
that are not only effective on the primary task but also exhibit a level of
flexibility and adaptability when faced with varying packet selections.

4.2. Model development, comparison, and evaluation process

DeX is developed using the Pytorch [52] framework and is trained
on a single GPU of NVIDIA Tesla V100-16 GB. The implementation
details are enumerated in Table 2. Notably, the parameters for the
predefined probabilities, 𝑎 and 𝑏, are not initialized randomly but
derived based on the following procedure:

• Step 1 – define a line space of 𝑁 = 2048 elements with uniform
increment:

𝛩 = [𝜃1,… , 𝜃𝑖,… , 𝜃2048]

s.t. 𝑖 ∈ [1, 2048],

𝜃𝑖 = 𝜃𝑖−1 +
1

2048
,

𝜃1 = 1, 𝜃2048 = 2.

• Step 2 – normalize the line space to sum to 1:

𝑝predefined = 𝛩 ←
𝛩

∑

𝛩
,with

∑

𝛩 = 3071.5

⇓
∑

𝑝predefined = 1,

𝑝1 = 𝜃1 = 1∕3071.5 ≈ 3.256 × 10−4,

𝑝2048 = 𝜃2048 = 2∕3071.5 ≈ 6.511 × 10−4.

As a result, the parameters 𝑎 and 𝑏 are computed accordingly. In fact,
the actual controllers governing the linearity of the distribution are the
values of the head and tail of 𝛩, i.e., 𝜃1 and 𝜃2048, for which we simply
endow with a rudimentary initialization of 1 and 2.

Furthermore, we deliberately and randomly partition the corpus of
71 pcap files (video-calls) into 3 independent groups (50, 10, 11) to con-
struct training (355,651 samples of throughput), validation (62,193),
and test (65,061) datasets. For features and throughput samples, we
calculate based on the training set the statistics of mean value and
standard deviation, which are then used to standardize validation and
test sets. Consequently, the model is trained based on traffic collected
under unique conditions different from other datasets in terms of loca-
tion, connectivity, and time, aiming to derive a generalized solution and
preclude data cross-contamination among traffic. Additionally, akin to
the domain of Computer Vision, each throughput sample (target) is
stored in a single file (npy format in our case). Each file is composed
of a matrix with dimensions 2048 × 3, that represents the 3 chosen
features of the preceding 2048 packets, while the file name contains the
throughput value, along with the corresponding percentile and inter-
variation, derived within a single session to respect our initial setting
for the thresholds of traffic extremes.

We also extend our examination to a wide range of domains for
the purpose of comparison, incorporating multiple other technologies
appeared in the literature, as listed in Table 3. Notably, a total of 7
models are implemented for problem i, while 3 models including DeX

Computer Networks 249 (2024) 110507T. Song et al.

o
p
t
A
t

5

o
c
t
M
d
f
e

p
b
t

m
b
0

o
m
a
t
i

p

Table 4
Experimental result of all models regarding overall traffic, peaks, valleys, and abrupt changes.

Problem Problem i Problem ii
Feature Historical time series samples Packet-level information

Model MA RLS RF XGB MLP LSTM-i N-BEATS LSTM-ii LSTNet DeX

Overall
values
[Mbps]

MSE ↓ 0.0984 0.0777 0.0499 0.0522 0.0524 0.0530 0.0516 0.0577 0.0510 0.0474
MAE ↓ 0.1620 0.1307 0.1175 0.1187 0.1205 0.1208 0.1160 0.1245 0.1171 0.1147
MAPE ↓ 15.726% 12.299% 11.844% 10.827% 12.453% 12.354% 10.600% 11.286% 11.457% 10.597%
R2 ↑ 0.8461 0.8785 0.9220 0.9184 0.9180 0.9171 0.9193 0.9101 0.9204 0.9261

Peak
values
[Mbps]

MSE ↓ 0.2623 0.2398 0.1798 0.1895 0.1759 0.1762 0.1799 0.1990 0.1821 0.1688
MAE ↓ 0.3290 0.2685 0.2662 0.2706 0.2624 0.2645 0.2610 0.2767 0.2581 0.2460
MAPE ↓ 15.807% 13.167% 12.852% 13.142% 12.349% 12.610% 12.795% 12.871% 12.298% 12.263%
R2 ↑ 0.7286 0.7520 0.8140 0.8040 0.8181 0.8177 0.8139 0.7953 0.8127 0.8263

Valley
values
[Mbps]

MSE ↓ 0.1196 0.0570 0.0335 0.0314 0.0424 0.0421 0.0314 0.0340 0.0306 0.0245
MAE ↓ 0.1619 0.1021 0.0913 0.0819 0.1037 0.1017 0.0814 0.0805 0.0834 0.0777
MAPE ↓ 33.553% 23.158% 23.133% 18.954% 27.271% 27.107% 19.366% 19.825% 23.178% 17.669%
R2 ↑ −0.4927 0.2888 0.5819 0.6078 0.4711 0.4749 0.6080 0.5774 0.6189 0.6948

Abrupt
changes
[Mbps]

MSE ↓ 0.3137 0.3671 0.2805 0.2898 0.2866 0.2960 0.2922 0.3022 0.2825 0.2645
MAE ↓ 0.3740 0.3992 0.3737 0.3768 0.3800 0.3884 0.3819 0.3983 0.3750 0.3574
MAPE ↓ 43.283% 42.834% 40.305% 39.055% 41.900% 42.080% 39.105% 43.018% 38.595% 36.057%
R2 ↑ 0.5861 0.5156 0.6299 0.6177 0.6219 0.6095 0.6145 0.6009 0.6269 0.6507
t
v
I

are developed for problem ii.11 Moreover, we evaluate the performance
f each model across various dimensions, including overall traffic,
eaks, valleys, and abrupt changes, by gauging 4 metrics between
he ground truth and prediction: Mean Squared Error (MSE), Mean
bsolute Error (MAE), Mean Absolute Percentage Error (MAPE), and

he coefficient of determination (𝑅2 score).

. Experimental result

In this section, we compare DeX against baselines, presenting the
experimental outcomes derived from all models based on the initial-
ized configuration. Then, two visual instances are displayed to further
endorse our findings.

Table 4 showcases the assessment metrics independently for overall
traffic, peak values, valley values, and abrupt changes. We embark
upon the overall performance outlined in the first part. Evidently, DeX
utshines other solutions across all quantitative measures. Although
ertain models, such as RF, XGB, N-BEATS, and LSTNet, yield results
hat are ostensibly on par, e.g. N-BEATS achieves a nearly identical
APE of 10.6%, they invariably falter in other metrics, like RF’s

eclined MAPE of 11.844%. Additionally, the MA baseline and RLS
ilter manifest the poorest performance, marked by the most substantial
rrors (e.g., MSE > 0.07) and inferior 𝑅2 scores (<0.9), indicating the

inadequacy of simple statistical tools.
Proceeding to the plateaus as well as troughs depicted by the second

and third parts in the table, DeX significantly outperforms its counter-
arts. On the one hand, our model stands out in terms of peak values,
oasting the most minimal errors (e.g., the only MSE beneath 0.17 and
he sole MAE lower than 0.25) and a preeminent 𝑅2 score (the only

one exceeding 0.82), affirming its capacity for precise forecasting rather
than mere overestimation. On the other hand, the superiority becomes
even more conspicuous when examining valley values. DeX delivers

arkedly diminished errors and remarkable coherence, as evidenced
y a MAPE that is lowered by 1.285% and an 𝑅2 score augmented by
.0759 in comparison to their respective second-best values.

As for abrupt changes, DeX consistently excels other models with
ptimal performance across the board, exemplified by being the only
odel with an MSE below 0.27. However, it remains intrinsically

rduous to precisely predict such rapid and sudden transitions, given
he relatively subpar performance regardless of the models. The non-
deal result originates from the inherent complexities entwined within

11 It is noteworthy that the other two models leverage the nearest 1024
ackets as features without packet selection.
10
the problem per se. Instantaneous fluctuations of throughput in the
context of RTC could be induced by a multitude of factors, like emer-
gent traffic surges or network disruptions, elements which may not
manifest prominently in the packet flows received by end-users, thus
rendering them elusive and challenging to be detected by the models.
Yet, amidst this backdrop of hurdles, DeX skillfully harnesses granular
packet-level insights in conjunction with a meticulously designed model
architecture, accommodating abrupt changes to a commendable extent.

Two traffic examples from the test dataset are outlined in Fig. 8,
which portrays the time series of throughput regarding ground truth
alongside the corresponding predictions, and accentuates traffic ex-
tremities in four sub-figures with MAE underscored in parenthesis.12

Generally, all models exhibit an aptitude for tracking the fundamental
traffic evolution, albeit to varying degrees of proficiency. Upon closer
analysis, DeX exhibits superiority characterized by the lowest error in
he majority of cases, while the MA baseline falls short in adapting the
ariations and RLS filter produces aggressive and volatile predictions.
n particular:

• The first example in Fig. 8(a) presents individual instances of
critical traffic scenarios. For valley values (sub-figure A), DeX
excels the others by deftly following the localized fluctuations,
although performance disparities are relatively subtle with re-
spect to certain models, e.g., LSTM-ii and LSTNet. Notably, certain
models, like RF and MLP, suffer from the sudden drop, resulting
in unsatisfactory performance at the onset of troughs. Concerning
peak values (sub-figure B), DeX is good in capturing and adapt-
ing to summits, whereas the majority of other models tend to
generate underestimated predictions. On top of that, DeX also
outperforms its peers in terms of abrupt changes (sub-figures C
& D), by swiftly and precisely accommodating the instantaneous
declines. Remarkably, DeX can even anticipate the precipitate rise
after a serial descents in example C, while yielding an optimal
error, 3.83% lower the penultimate one in example D. However,
each model exhibits a latency in response to the initial abrupt
transformation, reaffirming the notion that it is barely possible to
predict drastic transitions.

• The second example in Fig. 8(b) depicts mixtures of traffic ex-
tremes. Regarding peaks coupled with abrupt changes (sub-figures
A & C), DeX shows the smallest errors, whereas the tendency of
underestimation from the most of other models reappears. More
importantly, DeX also demonstrates how swift and effective it

12 The presence of MAE facilitates performance comparison in cases where
predictions are visually hard to differentiate.

Computer Networks 249 (2024) 110507T. Song et al.
Fig. 8. Ground truth & predictions: traffic examples of throughput time series with highlights on peaks, valleys, and abrupt changes. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
is to transition from a prior precise prediction of critical values
to another subsequent critical point in the opposite direction.
Meanwhile, similar capability is also applied to valleys with
abrupt changes (sub-figures B & D). An evident instance can be
observed at the initiation and the culmination of the example D,
where DeX responses rapidly to the sudden transitions, while all
the others exhibit a lingering effect of either a tail for the descent
from high values to valleys or a delay for the ascent from valleys
11

to high values. Although DeX only ranks the third place in terms
of MAE with a slight performance dip, all of the aforementioned
irreplaceable merits still serve to validate its uniqueness and
overall distinction.

Indeed, the prediction of traffic extremes ends up with underwhelming
performance in contrast to the totality, which could emanate from
the prevalence of relatively stable throughput samples, that limits
the model’s ability to effectively learn patterns associated with crit-

ical values, echoing the dilemma in imbalanced ML scenarios [53].

Computer Networks 249 (2024) 110507T. Song et al.

t
a
t
o
I
5
o
n

6

p
s
p
c
r
e
0
a
r
w

Table 5
Result of ablation study.

Scenario Ablation test 1a Ablation test 2b Ablation test 3c Ablation test 4d Ablation test 5e Original DeX f

Overall
values
[Mbps]

MSE ↓ 0.0458 0.0489 0.0478 0.0492 0.0530 0.0474
MAE ↓ 0.1108 0.1149 0.1149 0.1147 0.1230 0.1147
MAPE ↓ 10.710% 10.709% 10.437% 10.599% 11.998% 10.597%

R2 ↑ 0.9285 0.9238 0.9254 0.9232 0.9174 0.9261

Peak
values
[Mbps]

MSE ↓ 0.1567 0.1646 0.1646 0.1806 0.1529 0.1688
MAE ↓ 0.2327 0.2392 0.2417 0.2582 0.2322 0.2460
MAPE ↓ 12.075% 12.019% 12.292% 12.235% 11.526% 12.263%

R2 ↑ 0.8388 0.8306 0.8307 0.8142 0.8428 0.8263

Valley
values
[Mbps]

MSE ↓ 0.0239 0.0276 0.0242 0.0258 0.0413 0.0245
MAE ↓ 0.0754 0.0815 0.0780 0.0747 0.0989 0.0777
MAPE ↓ 19.001% 18.526% 17.605% 18.187% 22.557% 17.669%

R2 ↑ 0.7030 0.6574 0.6996 0.6790 0.4864 0.6948

Abrupt
changes
[Mbps]

MSE ↓ 0.2646 0.2774 0.2670 0.2768 0.2890 0.2645
MAE ↓ 0.3621 0.3707 0.3601 0.3662 0.3771 0.3574
MAPE ↓ 36.548% 37.216% 35.509% 37.217% 39.419% 36.057%

R2 ↑ 0.6505 0.6337 0.6473 0.6344 0.6184 0.6507

a Refer to the entire 2048 packets that precede the targets as features without packet selection.
b Train the model with the 1024 packets closest to targets, devoid of packet selection.
c Train the model with 1024 packets subject to a different distribution of predefined probabilities for packet selection.
d Replace the Transformer encoder with an LSTM neural network for feature extraction.
e Remove the multi-task learning pipeline, and only reserve the regression block.

f Indicate the identical result retrieved from Table 4 to facilitate immediate comparisons.
t
o
t
d
d
v
m
s

6

i
t
m
a
t
o
T
e
e
o
e
o
o
t
s
t
e
s

6
p

h
t
d
o
h

Additionally, given that certain discrepancies among the reported met-
rics are subtle, we also conduct pair-wise t -tests with a confidence
level of 95% between the errors generated by comparative models and
those produced by DeX, in order to statistically and rigorously examine
the disparities among predictions. In fact, the resulting p-values are
exceedingly negligible with a magnitude lower than 10−4, decisively
rejecting the null hypothesis and unequivocally indicating significant
differences with respect to the predictions of DeX.

6. Ablation study

In order to comprehend the impact of individual components and
specific designs, we perform a series of ablation tests to substanti-
ate their respective contributions. We first focus on packet selection
module to conduct 3 sets of experiments, eliminating the module to
assess the performance with either the complete ensemble of 2048
packets or the hithermost 1024 packets, and retaining the module but
to train the intact model with an alternative predetermined distribution
for packet selection. Following the architectural sequence of DeX, we
hen substitute the Transformer-based feature extraction block with
n LSTM-based one, and at last, we retrain the model without multi-
ask learning pipeline. All results are shown in Table 5, alongside the
riginal performance metrics derived from the unaltered architecture.
n general, DeX surpasses the outcomes from ablation tests 2, 4, and
, where the defective model structure with the equivalent amount
f features is considered, achieving the superior overall performance
otwithstanding occasional minor exceptions.

.1. Ablation test 1 - Training with the entire 2048 packets

Firstly, we consider all of the 2048 (𝑁 = 𝑊 = 2048) packets
receding target samples to feed the following prediction components
o as to probe the upper limit of DeX ’s capability and shed light on the
otential performance degradation associated with fewer packets. As
orroborated by the result (1st column in the table), DeX successfully
eaches a prominent performance with 2048 packets at our disposal,
xemplified by the only model boasting 𝑅2 scores greater than 0.92,
.83, 0.70, and 0.65, simultaneously, for the entirety, peaks, valleys,
nd abrupt changes, respectively. Concurrently, this supremacy also
einforces the pivotal role played by the packet selection mechanism,
12

hose indispensability becomes evident, as it would be unreasonable u
o contemplate a reduction in packets, starting from the initial quantity
f 2048, if we could not attain peak performance when endowed with
he entire historical features. Indeed, DeX does encounter effectiveness
ecline as we curtail the amount of features, but the performance degra-
ation is almost negligible with respect to the original 1024 packets,
erifying the exceptional ability of DeX to utilize the packet selection
odule to adeptly grasp long-term knowledge while preserving salient

hort-term insights.

.2. Ablation test 2 - Training with the nearest 1024 packets

To scrutinize the efficacy of the packet selection module, we opt for
ts omission, relying instead on an equivalent subset of 1024 packets
hat closely proximate the target samples (i.e., the hypothetically opti-
al selection). According to the 2nd column in the result, DeX registers
marginal performance decrement due to the absence of packet selec-

ion, especially for valley values and abrupt changes, e.g., a degradation
f 0.0374 in 𝑅2 score, in spite of the slight improvement for peaks.
he reason behind lies in the fact that the hypothetically optimal (clos-
st) packets primarily account for the immediate, short-term influence
xerted by recently transpired packets, neglecting the incorporation
f long-term dependencies. Conversely, the packet selection module is
ngineered to take into account both aspects, introducing the impact
f relatively distant packets as well as preserving a substantial degree
f adjacency (which is elaborated upon in Section 7.2.1). Although
he performance enhancement thanks to packet selection may not be
ubstantial, we nonetheless perceive its significance. This is because
he module is excised after model training, thereby engendering an
quivalence in the practical complexity between models featuring the
elected or the nearest 1024 packets.

.3. Ablation test 3 - Training with a different distribution of predefined
robabilities

As heretofore mentioned, the predefined probability (score) of the
ypothetically optimal selection merely serves as an intermediary tool
o introduce a computational process so that the neural network can
ynamically adjust trainable parameters and learn an efficacious subset
f packets. In other words, the choice of the predefined distribution
olds no paramount significance, so long as it aligns with our prereq-

isite of assigning higher probabilities (scores) to packets in proximity

Computer Networks 249 (2024) 110507T. Song et al.

t
o
f
t
S
a
s

L
b
l
t
L
i
I
o

Table 6
Result of parametric analysis 1: less input packets.

Model DeX

Scenario
(number of packets) 2048a 1024a 512 256

Overall
values
[Mbps]

MSE ↓ 0.0458 0.0474 0.0486 0.0557
MAE ↓ 0.1108 0.1147 0.1155 0.1294
MAPE ↓ 10.710% 10.597% 10.575% 11.902%

R2 ↑ 0.9285 0.9261 0.9242 0.9131

Peak
values
[Mbps]

MSE ↓ 0.1567 0.1688 0.1682 0.1993
MAE ↓ 0.2327 0.2460 0.2474 0.2865
MAPE ↓ 12.075% 12.263% 12.459% 15.211%

R2 ↑ 0.8388 0.8263 0.8270 0.7950

Valley
values
[Mbps]

MSE ↓ 0.0239 0.0245 0.0241 0.0207
MAE ↓ 0.0754 0.0777 0.0792 0.0694
MAPE ↓ 19.001% 17.669% 17.947% 17.185%

R2 ↑ 0.7030 0.6948 0.6997 0.7420

Abrupt
changes
[Mbps]

MSE ↓ 0.2646 0.2645 0.2756 0.2968
MAE ↓ 0.3621 0.3574 0.3686 0.3865
MAPE ↓ 36.548% 36.057% 36.273% 37.104%

R2 ↑ 0.6505 0.6507 0.6360 0.6080

a The results are obtained from ablation test 1 with the entire set of 2048
packets without packet selection in Table 5, and the original DeX with the
selection of 1024 packets in Table 4, for a straightforward comparison.

o targets. Thus, we persist in the strategy of choosing 1024 packets out
f 2048, but adopt a different distribution of predefined probabilities
or packet selection, aiming to reproduce the outcome and substantiate
he underlying concept. Explicitly, we adhere to the same procedure in
ection 4.2, but instead of creating a linear distribution, we envision
n exponential one by appending an additional procedure at the end of
tep 1 to transform the linear space into a curvilinear one, i.e., 𝜃𝑖 ← 𝑒𝜃𝑖 .

As a consequence (3rd column in the table), DeX with the predefined
exponential distribution yields outcome akin to the original, despite
trivial variations, indicating that the model is compatible with different
configurations of predefined probabilities.

More importantly, the performance produced by the trio of afore-
mentioned ablation tests, wherein the Transformer-based feature ex-
traction and the multi-task learning pipeline always discharge their
functions, remains decent, outstripping other comparative models in
Table 4 as well, which in turn illustrates the prowess of other com-
ponents of DeX.

6.4. Ablation test 4 - Training with LSTM-based feature extraction block

Hereafter, we maintain the bipolar components, yet implement an
STM neural network to substitute the intermediate feature extraction
lock, aiming to verify the competence of Transformer. We employ 3
ayers of LSTM unit and connect the hidden states of the last layer to
he multi-task learning pipeline. Apparently, extracting features with
STM falls short in both of traffic entirety and extremities (4th column
n the table) comparing to the Transformer-based one in most cases.
nterestingly, the performance is found to substantially transcend that
f the vanilla LSTM with packet-level features (Table 4, LSTM-ii),

demonstrating the DeX ’s applicability as well as transportability to a
certain extent, and further consolidating the proficiency embodied in
other components.

6.5. Ablation test 5 - Training without multi-task learning

Finally, we explore the scenario where the last component is ex-
cised, leaving behind solely the regression task, while discarding the
other two. As attested by the 5th column in the table, the basic
model without multi-task learning experiences a substantial perfor-
mance drop, which particularly reflects in valley values with an 𝑅2

score of merely 0.4864, thus reinstating the model’s performance to
13
a level on par with other comparative methods. It is worth noting
that we inadvertently reach the best performance for peak values up
to now, implying that the deployment of Transformer encoder in con-
cert with packet-level features intrinsically advocates for traffic peaks,
and the employment of multi-task learning comes with a concomitant
expense, sacrificing somewhat such performance to accommodate and
compensate other categories of critical values.

7. In-depth analysis

This section is composed of three parts, a sequence of parametric
analyses to investigate the universality and versatility of DeX, an at-
tempt of model explainability that unravels the working logic, and an
exploration of model practicability that elucidates the model overhead
and the potential for further optimization.

7.1. Parametric analysis

We undertake 3 distinct sets of parametric analyses to compre-
hensively evaluate the performance of DeX and establish that the
previously obtained outcomes are not a mere happenstance due to
a specific model configuration. Notably, for the latter two sets of
analyses, where the comparison against other baselines is needed, we
confine our consideration to only three models (RF, XGB, N-BEATS)
with comparative performance as elucidated by the initial experimental
findings (Table 4).

7.1.1. Number of selected packets
We embark on an exploration of two additional scenarios for dif-

ferent numbers of input packets to reveal the possibility of further
reducing the quantity of features. By halving the amount at a time,
we consider the scenarios with 𝑊 = 512 or 256 packets. Due to the
substantial reduction in packet quantity, we opt to conduct the selec-
tion out of the 1024 nearest packets preceding targets, differing from
the original case with 1024 out of 2048 packets to avoid excessively
sparse selection, that may lead to a loss of crucial contextual infor-
mation. According to the result in Table 6, selecting 512 packets still
delivers comparable outcome without fundamentally compromising
the performance even in contrast to 2048 packets, but 256 packets
starts to exhibit a decline except for valley values (briefly explained
in Section 7.2.1). Indeed, it is conceivable and inevitable to encounter
performance setback with diminishing features. Nevertheless, the se-
lection of only 512 packets constitutes merely a quarter of the initial
quantity, yet still manages to attain results that consistently secure the
highest rank among those in Table 4, further consolidating the efficacy
of DeX, and opening up the possibility to reduce even more memory
consumption, computational overhead, and model complexity.

7.1.2. Duration of predicted time window
In the following, we delve into the performance of predicting traffic

throughput across distinct future time horizons, 300 and 1000 ms. In
particular, we construct the datasets in a consistent way, computing
throughput values within consecutive windows of the requisite time
span, and for each time window (target throughput sample), we adhere
to the usual practice of considering 2048 packets in the past for DeX,
while referring to the historical throughput samples of the preceding
27 and 8 time windows13 in the 300- and 1000-ms scenarios respec-
tively for time series models. Additionally, all models are subjected to
retraining from scratch due to the modification of dataset.

Table 7 presents all the results regarding different predicted time
windows for DeX and other models. Overall, DeX still dominates the
board with three minor exceptions in terms of MAPE, irrespective of
the duration, justifying its versatility and robustness. Comparing all

13 The choice of such amount of time windows mirrors our previous ap-
proach, wherein 2048 packets translate to a duration of approximately 8 s,
i.e., 27 × 300 ms ≈ 8 s and 8 × 1000 ms = 8 s.

Computer Networks 249 (2024) 110507T. Song et al.
Table 7
Result of parametric analysis 2: different duration (𝛥𝑡) for predicted time window.

Scenario
(duration of predicted window, 𝛥𝑡)

300 ms 1000 ms

Model RF XGB N-BEATS DeX RF XGB N-BEATS DeX

Overall
values
[Mbps]

MSE ↓ 0.0589 0.0580 0.0567 0.0538 0.0490 0.0505 0.0512 0.0457
MAE ↓ 0.1347 0.1335 0.1275 0.1260 0.1084 0.1126 0.1080 0.1057
MAPE ↓ 13.794% 13.579% 11.453% 11.547% 12.206% 13.260% 10.291% 10.872%
R2 ↑ 0.9097 0.9111 0.9131 0.9177 0.9216 0.9191 0.9180 0.9269

Peak
values
[Mbps]

MSE ↓ 0.2291 0.2223 0.2153 0.2010 0.1335 0.1378 0.1432 0.1172
MAE ↓ 0.3192 0.3134 0.3023 0.2881 0.2154 0.2227 0.2224 0.1927
MAPE ↓ 14.659% 14.480% 14.439% 14.022% 10.459% 11.262% 10.888% 9.897%
R2 ↑ 0.7713 0.7780 0.7850 0.8003 0.8478 0.8429 0.8367 0.8667

Valley
values
[Mbps]

MSE ↓ 0.0531 0.0540 0.0478 0.0410 0.0359 0.0372 0.0293 0.0233
MAE ↓ 0.1209 0.1234 0.1071 0.1015 0.0865 0.0910 0.0707 0.0688
MAPE ↓ 31.547% 31.732% 24.342% 23.133% 29.078% 32.553% 19.609% 24.854%
R2 ↑ 0.3791 0.3684 0.4407 0.5270 0.5545 0.5385 0.6359 0.7174

Abrupt
changes
[Mbps]

MSE ↓ 0.2190 0.2175 0.2185 0.2119 0.3259 0.3297 0.3553 0.3019
MAE ↓ 0.3159 0.3135 0.3093 0.3085 0.4275 0.4332 0.4517 0.4041
MAPE ↓ 34.411% 34.072% 30.806% 30.417% 57.281% 58.422% 50.060% 49.754%
R2 ↑ 0.7167 0.7187 0.7174 0.7263 0.5144 0.5087 0.4706 0.5518
Table 8
Result of parametric analysis 3: different thresholds (𝛼𝑝 , 𝛼𝑣 , 𝛽) for defining traffic extremes.

Model RF XGB N-BEATS DeX RF XGB N-BEATS DeX

Different thresholds
for peak & valley

Top and lowest 15% throughput values
(𝛼𝑝 = 15%, 𝛼𝑣 = 15%)

Top and lowest 20% throughput values
(𝛼𝑝 = 20%, 𝛼𝑣 = 20%)

Peak
values
[Mbps]

MSE ↓ 0.1381 0.1455 0.1380 0.1287 0.1138 0.1200 0.1141 0.1065
MAE ↓ 0.2271 0.2305 0.2222 0.2093 0.1994 0.2036 0.1959 0.1856
MAPE ↓ 11.387% 11.649% 11.337% 10.946% 10.347% 10.666% 10.347% 10.114%
R2 ↑ 0.8478 0.8397 0.8479 0.8592 0.8685 0.8613 0.8682 0.8776

Valley
values
[Mbps]

MSE ↓ 0.0293 0.0277 0.0277 0.0221 0.0311 0.0303 0.0308 0.0245
MAE ↓ 0.0832 0.0753 0.0744 0.0723 0.0842 0.0781 0.0776 0.0747
MAPE ↓ 19.375% 15.633% 16.041% 14.808% 17.622% 14.420% 14.823% 13.703%
R2 ↑ 0.6955 0.7116 0.7115 0.7702 0.7407 0.7473 0.7430 0.7958

Different thresholds
for abrupt change

Inter-variation ≥ 15%
(𝛽 = 15%)

Inter-variation ≥ 10%
(𝛽 = 10%)

Abrupt
changes
[Mbps]

MSE ↓ 0.1988 0.2060 0.2074 0.1875 0.1285 0.1335 0.1340 0.1213
MAE ↓ 0.3020 0.3042 0.3087 0.2894 0.2267 0.2285 0.2311 0.2173
MAPE ↓ 30.940% 29.648% 29.839% 27.683% 22.701% 21.411% 21.627% 20.186%
R2 ↑ 0.7356 0.7260 0.7242 0.7508 0.8221 0.8151 0.8145 0.8322
conditions including the original 500 ms, several insightful observa-
tions emerge: (i) The 300-ms case fails in predicting peaks and valleys,
e.g., DeX produces an 𝑅2 score of only 0.5270 for valleys, and RF and
XGB cannot even reach 0.4. Conversely, there is a notable improvement
in performance concerning abrupt changes, with all models exhibiting
MAPEs lower than 35% and 𝑅2 scores exceeding 0.7 for the first time.
This could be rooted in the more frequent updates of throughput values,
which promptly and timely inform the dynamic traffic fluctuations. Yet,
it could be for the same reason that traffic aggregated into shorter
windows exhibits higher volatility, leading to elusive patterns and
thus overall diminished performance. (ii) In the 1000-ms scenario,
DeX maintains its preeminence with further enhancement for peaks
and valleys (e.g., 𝑅2 scores rise from 0.8263 and 0.6948 to 0.8667
and 0.7174), but noticeable degradation for abrupt changes (e.g., an
escalation in MAPE from 36.057% to 49.754%). Both observations
can originate from the same reason of a longer predicted time win-
dow, which smooths out traffic variations and stabilizes throughput
evolution. Such an effect facilitates the forecasting of peaks and val-
leys, thanks to the reduction of localized fluctuations, but renders the
abrupt changes even more sudden and unexpected, as the gradually
escalated patterns of traffic throughput vanish, significantly hampering
the prediction. Nonetheless, DeX still yields the best outcome (e.g., an
improvement of 0.0374 in 𝑅2 score comparing to the second place), not
to mention the overall decent performance and the longer time horizon,
which affords a higher degree of freedom for system management to
implement optimized policies.
14
7.1.3. Different thresholds for defining extremes
Previously, traffic extremities are defined by specific thresholds to

optimize the model performance, and thus, we now elaborate on 4 extra
conditions, varying the thresholds from the highest and lowest 10%
values to 15% or 20% (𝛼𝑝,𝑣 = 10% ⇒ 𝛼𝑝,𝑣 = 15% or 20%) for peaks and
valleys, and from inter-variations greater than 20% to 15% or 10% (𝛽 =
20% ⇒ 𝛽 = 15% or 10%) for abrupt changes. Simply put, we broaden
our experiment to encompass more samples as traffic extremes to also
examine the performance for sub-critical values. As expected, DeX still
excels the others, regardless of variations in thresholds according to
Table 8. The performance excess generated by DeX remains relatively
stable across different thresholds for peaks and abrupt changes (e.g., the
advantage in 𝑅2 score for peaks with respect to RF is 0.0123 when
𝛽 = 20%, and is 0.0091 when 𝛽 = 10%), while it declines for valleys
to an acceptable extend (e.g., the difference in 𝑅2 score comparing to
N-BEATS is 0.0862 for 𝛼𝑣 = 10%, but decreases to 0.0528 for 𝛼𝑣 =
20%), underscoring the consistent versatility and comprehensiveness of
DeX, which is not only reliant on the predominance of performance
regarding the original predefined thresholds.

7.2. Model explainability

Herein, we showcase several outcomes of the packet selection mod-
ule and the multi-task learning pipeline, elucidating their operational
mechanisms.

Computer Networks 249 (2024) 110507T. Song et al.
Fig. 9. Outcomes of packet selection.
7.2.1. Packet selection module
The derived packet selections across various scenarios involving

different quantity of selected packets (initial 1024 packets in Section 5,
modified 1024 packets with different predefined probabilities in Sec-
tion 7.1.1, and 512 as well as 256 packets in Section 7.1) are presented
in Fig. 9, in which the uppermost 3 graphs depict the 2 aforementioned
hypothetically optimal selections as baselines, the quartet of reddish
figures below illustrate the smoothed distribution of resulting selection
probabilities along the packet indices, showing the average probability
value for every 8 packets, and the bottom 4 bluish figures elucidate
the density of the corresponding packet selections, with darker regions
signifying heightened packet density.14

With regard to the probability of packet selection, it is discernible
that convergence towards the hypothetically optimal probabilities per-
sists consistently across the various scenarios, despite minor diver-
gences in alignment. The integrated packet selection module enables
DeX to meticulously strike a balance between optimally choosing input
features and modulating the trainable parameters to generate Softmax
probabilities towards the predefined ones, resulting in higher scores
even for packets situated distally from the target. Indeed, the majority
of selections are still allocated in temporal proximity to the predic-
tion target, notwithstanding the broader distribution. Furthermore, the
three cases of 1024 and 512 packets share a similar pattern of picking
a portion of packets in the farside, which is likely attributed to the fact
that they all occupy half of the original packet count. In contrast, no
remote packets are elected in the case of 256 packets, and even the 59

14 Notes: (i) The two-sided figures on top present the hypothetically op-
timal selection probabilities (linear one in Eq. (4) and exponential one in
Section 7.1.1), and consequently, the closest half packets (𝑁∕2) to the target
are selected (top central figure); (ii) The smoothed probabilities on bottom
are for a clearer visualization, while the original ones are portrayed in the
sub-figures; (iii) The lowermost figures also indicate the specific number of
selected packets and their occupation in different regions, which are marked
based on the target number of packet selection, e.g., in the case of selecting
256 packets from a pool of 1024, 768 packets are allocated to the farside while
256 packets are in the nearside.
15
packets absent in the target’s immediate vicinity (256 nearest ones) are
still positioned closed to the boundary. This could originate from the
exiguous 256 packets per se, which lack of sufficient margin for poten-
tial packets in distance. Moreover, alongside the performance indicated
in Section 7.1.1, where 256 packets output suboptimal performance
with an exception for valleys, we can safely deduce that the long-term
packet features indeed foster the overall prediction, albeit with some
hindrance in identifying valleys. Of noteworthy concern, although both
instances of 1024 packets produce analogous performance, the ensuing
packet selections are different. The packet selection module does not
seek to pinpoint the absolutely and deterministically optimal locations
of packets, but aim to uncover the practically effective packets that
are suitable for a specific model training. Therefore, while dissimilar
packets are selected based on distinct predefined probabilities, they still
make comparable short- as well as long-term contributions, due to their
respective roles during the associated model development.

7.2.2. Multi-task learning pipeline
Fig. 10 showcases 4 time series of traffic throughput in terms

of both ground truth and the corresponding predictions, with and
without intervention of trainable multiplier, to exemplify the role of
the multi-task learning pipeline in improving the regression outputs
when it comes to abrupt changes.15 Accordingly, trainable multipliers
can either magnify or compress the primordial regression outcomes,
bringing them into closer alignment with the ground truth, especially in
example 1, where the adjusted prediction is almost identical to the true
value. Beyond the specific points of focus within the figures, a more
profound instance is demonstrated at the tail end of traffic example 4,
where the throughput experiences a sudden increase, but the unaltered
prediction veers in the opposite direction. Remarkably, the trainable

15 Notes: (i) The presence of negative throughput samples is a consequence
of the displayed figures showcasing the raw values emanating from the neural
network, subsequently subjected to an inverse scaling procedure to replicate
the actual throughput; (ii) The magnified sub-figures explicitly indicate the
magnitude of the multiplier, that modulates the original regression output to
align with the ground truth.

Computer Networks 249 (2024) 110507T. Song et al.

p
i
e
p
t

r
g
a
i
r
w
p
i
o
m
t
o
p
M
t
p
w

8

a
r
c
h
o
p

Fig. 10. Examples of how the trainable multiplier operates.
multiplier discerns such an erroneous behavior as well as the abrupt
surge, calibrating the prediction to attain a performance level deemed
acceptable. Although it is barely possible to response instantaneously
to the very first abrupt change, the prompt and precise adaptations still
demonstrate the effectiveness of DeX.

7.3. Model practicability

Given the real-time nature and the restricted time window, the time
consumed by DeX for predictions stands as a critical consideration.
While examining the implementation in reality remains challenging at
present, we maintain confidence in the practicability and feasibility of
the model. To provide context, we investigate the time needed for two
versions of DeX to execute a single prediction across three different
levels of CPU environments devoid of GPU acceleration. Based on the
findings presented in Table 9, both models demonstrate acceptable
consumption irrespective of the CPU, leaving at least four-fifths of
the time available within the 500-ms window. Notably, DeX of 512
ackets with a comparable performance merely requires 23 ms even
n the worst case scenario. We envision sufficient temporal margin to
mploy possible optimization strategies, thereby validating the model
racticability, let alone the moderately prolonged case of the 1000-ms
ime window.

Furthermore, we also provide insights into the model complexity
egarding the number of parameters shown also in Table 9. At a first
lance, both models exhibit a significant amount of parameters, but
ctually the majority (93.3% and 80.8%) are occupied by the FNNs
n the multi-task learning pipeline, which can be readily customized to
educe the parameter quantity and enhance efficiency. In this regard,
e curtail the size of the multi-task learning pipeline for DeX with 1024
ackets, decreasing the number of neurons in the first layer of the FNNs
n all tasks from 512 to 256, and consequently obtaining a reduction
f roughly 47% in the total parameter count. We then evaluate the
odel on the test set and present the result in Table 10. Evidently, the

rimmed model successfully achieves comparable performance to the
riginal DeX, with only a slight decline for valley values, illustrating the
otential and possibility for further improvement of model efficiency.
oreover, it is noteworthy that the aforementioned analyses do not fac-

or in any existing technical optimizations, including well-established
runing technologies [54] and efficient Transformer architectures [55],
hich could further bolster the model efficacy and practicality.

. Related work

The realm of computer networks and communications has witnessed
n enrichment through the integration of ML and DL technologies in
ecent years [56–59], and the domain of RTC, encompassing traffic
lassification, adaptive management, performance improvement, etc.,
as not been overlooked [60–65]. Herein, we provide an overview
f relevant literature pertaining to throughput and packet-level-based
16

rediction.
Table 9
Time consumption for DeX to make a prediction in CPU environments.

Model DeX 1024a DeX 512b

Number of parameters 1.69M 488.65K

Server tier
Intel Xeon Gold 6140

24 ms ± 307 μs 3.82 ms ± 195 μs

High-performance tier
Apple M2

42.3 ms ± 280 μs 11.9 ms ±57.3μs

Mid-range consumer tier
AMD Ryzen 7 PRO 4750U

90.6 ms ± 550 μs 23 ms ± 287 μs

a The original model with 1024 selected packets.
b The modified model with 512 selected packets.

Table 10
Experimental result of DeX with less parameters.

Scenario MSE MAE MAPE 𝑅2

Overall values [Mbps] 0.0459 0.1118 10.615% 0.9284
Peak values [Mbps] 0.1684 0.2547 12.679% 0.8267
Valley values [Mbps] 0.0267 0.0818 19.300% 0.6674
Abrupt changes [Mbps] 0.2562 0.3515 36.359% 0.6616

Throughput prediction, akin to bandwidth or bitrate prediction, has
gained considerable traction in academia. The work of [66] aimed
to improve the selection of bitrate by predicting throughput based
on data-driven approach. The authors analyzed millions of sessions,
finding out similarities and stateful patterns, which were used to cluster
sessions and develop a Hidden-Markov-Model (HMM) predictor. [67]
payed attention to the average throughput prediction in cellular net-
works, exploiting a Random Forest (RF) [46] regressor based on a
range of radio channel metrics and throughput measurements. They
then extended the work in [68] by examining two more technologies,
Support Vector Machine (SVM) [69] and Long Short-Term Memory
(LSTM) [50] NN. Authors in [70] proposed a cross-layer solution to
enhance transmission quality, particularly for video calls within cel-
lular networks. Their approach hinged upon a linear adaptive filter,
Recursive Least Squares (RLS) [45], to forecast forthcoming bandwidth
based on historical capacities. In [71], a RF-based ML framework,
namely LinkForest, was introduced to predict cellular link bandwidth
in 4G Long Term Evolution (LTE) networks. In addition to histori-
cal throughput data, the authors also considered lower-layer metrics,
e.g., Reference Signal Received Power (RSRP), as input features. The
authors in [72] utilized public datasets of general Internet traffic to
perform short-term bandwidth prediction. They adopted multiple ML
algorithms, ranging from tree-based models to Deep Neural Network
(DNN), and aggregated packets into time windows, in which vari-
ous features, such as cumulative bitrate and number of packets, are
computed. As a result, RF turned out to be a promising approach.
Furthermore, the LSTM Recurrent Neural Networks (RNN) were imple-
mented in [73,74] with customized designs. In the former, the authors
investigate real-time mobile bandwidth prediction across diverse mo-
bile network conditions. Their proposed LSTM model was pre-trained

Computer Networks 249 (2024) 110507T. Song et al.
Table 11
Related works for throughput prediction and their adopted technologies..

Paper Methodologiesa

Y. Sun et al., 2016, ACM SIGCOMM [66] HMM
D. Raca et al., 2019, ACM MMSys [67] RF
D. Raca et al., 2020, IEEE MCOM [68] RF, SVM, LSTM
E. Kurdoglu et al., 2016, ACM MMSys [70] RLS
C. Yue et al., 2017, IEEE TMC [71] RF
M. Labonne et al., 2021, IEEE WoWMoM [72] DT, RF, XGB, DNN
L. Mei et al., 2020, Elsevier ComNet [73] LSTM, HM, RLS
A. Lekharu et al., 2020, IEEE COMSNETS [74] LSTM, 1D-CNN
A. Bentaleb et al., 2022, IEEE TMM [75] DRL
G. Lv et al., 2022, IEEE INFOCOM [76] DT, MLR
B Wei et al., 2019, IEEE Access [77] LSTM, MA, HMM, AM

HM, LS, Stochastic
J. Yin et al., 2021, arXiv [78] CNN+DNN
A. Sobhani et al., 2017, ACM TOMM [79] KAMA

a The unmentioned acronyms: DT – Decision Tree, HM – Harmonic Mean, MLR –
Multiple Linear Regression, AM – Arithmetic Mean, LS – Last Sample.

and subsequently, they augmented the framework by employing model
switching and Bayes model fusion for online deployment. In the latter,
the work aimed at improving adaptive video streaming by predicting
bitrates to optimize QoE metrics. The authors proposed a reinforce-
ment learning (RL) paradigm, wherein an LSTM combined with a
Convolutional Neural Network (CNN) assumed responsibility for bitrate
prediction. Unlike the former work that relied on historical bandwidth
alone, they introduced multiple features, such as chunk throughput
and size. Differently, [75] directly applied RL technique, proposing a
hybrid bandwidth prediction solution, namely BoB, which was trained
offline based on network traces, and implemented online to support
a controller on the receiver side. Meanwhile, the focus of [76–79]
was centered on Adaptive Bitrate (ABR) for HTTP-based video stream-
ing. The first two works adopted Tree-based or DL-based models for
throughput prediction, integrating the algorithms into ABR decision-
making process to optimize QoE. The penultimate work intended to use
K-means to cluster network conditions, measuring the corresponding
feature vectors and leveraging DNN to capture temporal dynamics,
which were then integrated into renowned RL-based ABR decision en-
gine, while the last one utilized a Kaufman’s Adaptive Moving Average
(KAMA) [80] method to predict bitrate for a fuzzy-logic controller to
dynamically manage video rate and provide decision-making for video
segment downloading. To summarize, we present the related works
with considered methodologies in Table 11.

Regarding packet-level prediction, that is not confined to RTC, a
rather limited corpus of research exists. Authors in [81] capitalized on
multi-task DL approach to not only utilize packet-level information but
also to predict packet-level characteristics, such as packet direction and
payload length. They investigated multiple DL techniques as the back-
bone model, and compared the performance against Markov chain and
Random Forest (RF) regressor. Specifically, packets featuring three pre-
dicted and three exogenous parameters (e.g., TCP window size) were
arranged in a sequential manner to enable sliding window prediction.
The study further provided intensive analyses of different types of traf-
fic and ML models. Moreover, the Transformer architecture appeared in
both [82,83]. The first work proposed FlowFormer to classify real-time
network flow types (video, conference, and download). Rather than
adhering strictly to the original Transformer architecture, the authors
implemented multiple layers of attention-based encoder to extract fea-
tures to then feed to a LSTM or a CNN model. Notably, packet-level
attributes such as payload length were tracked and compared against
predefined thresholds to be aggregated into corresponding chronologi-
cal bins, whereby the quantities of packets in each bin were calculated
as features. The second work sought to model and generalize network
dynamics by exploiting the power of Transformer structure grounded
in packet-level information, e.g., timestamps. The authors proposed the
17

so-called Network Traffic Transformer (NTT) framework, in which the
general architecture of Transformer was implemented except that they
incorporated a hierarchical aggregation layer preceding the encoder
to condense lengthy packet sequence, concatenating summarized older
packets with the most recent ones. The model was initially pre-trained
based on an end-to-end delay prediction, and the authors envisioned a
replaceable decoder for other potential tasks.

To the best of our knowledge, our work stands as a pioneering
effort in employing Transformer-based architecture in conjunction with
packet-level information to predict throughput in RTC, laying focus
on traffic extremes to bolster predictive performance. To thoroughly
contextualize the novelty and significance of our model, we opt for
a total number of 9 technologies that manifest superiority in the
literature. Noteworthily, the methodology adopted in [76] is indeed
able to discern abrupt changes thanks to the feature of chunk size,
which, however, is unavailable in RTP-based traffic. Our model boasts a
streamlined design of the architecture, efficiently and astutely harness-
ing a minimal set of packet-level information as features. Consequently,
the need for resource-intensive processes, such as intricate feature
extraction, exhaustive aggregation, and complicated calculations is
eliminated, contributing to the lightweight nature of our proposed
framework.

9. Conclusion

In this paper, our main objective is to predict the RTC traffic
throughput, with a distinct emphasis on traffic extremes, encompassing
peaks, valleys, and abrupt changes. We propose a novel DL framework
named DeX, exclusively utilizing RTP packet-level information with the
merit of ease of feature extraction, and consisting of three sophisticated
devised components: a packet selection module that optimally extracts
informative subset and reduces the total amount of input features,
facilitating computational efficiency, a feature extraction block that
partially incorporates a Transformer-based architecture to discern traf-
fic intricacy, and a multi-task learning pipeline that is meticulously
designed to improve the adeptness and adaptability for extremities. To
consolidate the model universality and resilience, we anchor our work
on ample RTC traffic collected under various conditions, compare our
model against numerous technologies, and elaborate on diverse scenar-
ios, undertaking thorough ablation studies and parametric analyses. As
a result, we obtain satisfactory overall performance with preeminent
outcomes for traffic extremes. Future work could involve endeavors to
further reduce the model complexity, and additionally, we remain re-
ceptive to the prospect of incorporating exogenous factors, such as the
router queue length when predictions are executed at the edge node,
potentially continuing to enhance the performance. Furthermore, in
order to further justify the generalizability of DeX, our work could also
benefit from a more rigorous and systematic data collection campaign
with a broader range of RTC applications.

CRediT authorship contribution statement

Tailai Song: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Software, Validation, Visualization, Writing
– original draft. Paolo Garza: Conceptualization, Project administra-
tion, Supervision, Writing – review & editing. Michela Meo: Writing
– review & editing, Supervision, Resources, Project administration,
Conceptualization. Maurizio M. Munafò: Writing – review & editing,
Supervision, Project administration, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Computer Networks 249 (2024) 110507T. Song et al.
Data availability

I have shared the link to my data in the paper.

Acknowledgments

This work has been supported by the SmartData@PoliTO center for
BigData and Data Science, Cisco Systems Inc, and the European Union
under the Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership on "Telecommunications of the Future"
(PE00000001 — program "RESTART", focused project R4R).

References

[1] R. Frederick, S.L. Casner, V. Jacobson, H. Schulzrinne, RTP: A transport protocol
for real-time applications, in: Request for Comments, (1889) RFC Editor, 1996,
http://dx.doi.org/10.17487/RFC1889, URL https://rfc-editor.org/rfc/rfc1889.txt.

[2] C. Athanasiadou, G. Theriou, Telework: systematic literature review and future
research agenda, Heliyon 7 (10) (2021) e08165.

[3] A. Nistico, D. Markudova, M. Trevisan, M. Meo, G. Carofiglio, A compara-
tive study of RTC applications, in: 2020 IEEE International Symposium on
Multimedia, ISM, IEEE, 2020, pp. 1–8.

[4] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, P. Halvorsen, Video streaming
using a location-based bandwidth-lookup service for bitrate planning, ACM Trans.
Multimed. Comput. Commun. Appl. (TOMM) 8 (3) (2012) 1–19.

[5] J.R. Wilcox, Videoconferencing: The whole picture, Taylor & Francis, 2017.
[6] C. Liang, M. Zhao, Y. Liu, Optimal bandwidth sharing in multiswarm multi-

party p2p video-conferencing systems, IEEE/ACM Trans. Netw. 19 (6) (2011)
1704–1716.

[7] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, G. Zussman, Performance evaluation
of webrtc-based video conferencing, ACM SIGMETRICS Perform. Eval. Rev. 45
(3) (2018) 56–68.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser,
I. Polosukhin, Attention is all you need, Adv. Neural Inf. Process. Syst. 30 (2017).

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee,
Hypertext transfer protocol–HTTP/1.1, 1999.

[10] J. Postel, User datagram protocol, 1980, https://tools.ietf.org/html/rfc768.
(Accessed 16 November 2023).

[11] O. Said, Y. Albagory, M. Nofal, F. Al Raddady, IoT-RTP and IoT-RTCP: Adaptive
protocols for multimedia transmission over internet of things environments, IEEE
Access 5 (2017) 16757–16773.

[12] S. Loreto, S.P. Romano, Real-time communication with WebRTC: peer-to-peer in
the browser, O’Reilly Media, Inc., 2014.

[13] T. Sharma, T. Mangla, A. Gupta, J. Jiang, N. Feamster, Estimating WebRTC
video QoE metrics without using application headers, 2023, arXiv preprint
arXiv:2306.01194.

[14] M. Alahmadi, P. Pocta, H. Melvin, An adaptive bitrate switching algorithm
for speech applications in context of webrtc, ACM Trans. Multimed. Comput.
Commun. Appl. (TOMM) 17 (4) (2021) 1–21.

[15] Z. Zhang, H. Chen, X. Cao, Z. Ma, Anableps: Adapting bitrate for real-time
communication using VBR-encoded video, in: 2023 IEEE International Conference
on Multimedia and Expo, ICME, IEEE, 2023, pp. 1685–1690.

[16] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M.M. Munafò, G.
Carofiglio, Real-time classification of real-time communications, IEEE Trans.
Netw. Serv. Manag. 19 (4) (2022) 4676–4690.

[17] T. Song, D. Markudova, G. Perna, M. Meo, Where did my packet go? Real-time
prediction of losses in networks, in: ICC 2023-IEEE International Conference on
Communications, IEEE, 2023, pp. 3836–3841.

[18] D. Markudova, M. Meo, Recoco: Reinforcement learning-based congestion control
for real-time applications, in: 2023 IEEE 24th International Conference on High
Performance Switching and Routing, HPSR, IEEE, 2023, pp. 68–74.

[19] Y. Bandung, L.B. Subekti, D. Tanjung, C. Chrysostomou, Qos analysis for webrtc
videoconference on bandwidth-limited network, in: 2017 20th International
Symposium on Wireless Personal Multimedia Communications, WPMC, IEEE,
2017, pp. 547–553.

[20] N.M. Edan, A. Al-Sherbaz, S. Turner, Performance evaluation of resources
management in webrtc for a scalable communication, in: Intelligent Computing:
Proceedings of the 2018 Computing Conference, Volume 2, Springer, 2019, pp.
648–665.

[21] S. Huang, J. Xie, DAVE: Dynamic adaptive video encoding for real-time video
streaming applications, in: 2021 18th Annual IEEE International Conference on
Sensing, Communication, and Networking, SECON, IEEE, 2021, pp. 1–9.

[22] L. Liu, J. Li, H. Xu, K. Xue, J.C. Xue, Efficient real-time video conferencing with
adaptive frame delivery, Comput. Netw. 234 (2023) 109918.

[23] Y. Li, Z. Zhang, H. Chen, Z. Ma, Mamba: Bringing multi-dimensional ABR to
webrtc, in: Proceedings of the 31st ACM International Conference on Multimedia,
2023, pp. 9262–9270.
18
[24] G. Carlucci, L. De Cicco, S. Holmer, S. Mascolo, Analysis and design of the google
congestion control for web real-time communication (webrtc), in: Proceedings of
the 7th International Conference on Multimedia Systems, 2016, pp. 1–12.

[25] E. Torres, R. Reale, L. Sampaio, J. Martins, A SDN/OpenFlow framework for
dynamic resource allocation based on bandwidth allocation model, IEEE Latin
Am. Trans. 18 (05) (2020) 853–860.

[26] R.A. Kirmizioglu, A.M. Tekalp, Multi-party webrtc services using delay and band-
width aware SDN-assisted IP multicasting of scalable video over 5G networks,
IEEE Trans. Multimed. 22 (4) (2019) 1005–1015.

[27] Intel, DPDK: Data Plane Development Kit, 2018, URL http://dpdk.org/. (Accessed
6 March 2024).

[28] PcapPlusPlus, PcapPlusPlus, 2018, Available online: https://pcapplusplus.github.
io/. (Accessed March 2024).

[29] J. Sonchack, O. Michel, A.J. Aviv, E. Keller, J.M. Smith, Scaling hardware
accelerated network monitoring to concurrent and dynamic queries with {*
flow}, in: 2018 USENIX Annual Technical Conference, USENIX ATC 18, 2018,
pp. 823–835.

[30] Y. Go, M.A. Jamshed, Y. Moon, C. Hwang, K. Park, {APUNet}: Revitalizing {GPU}
as packet processing accelerator, in: 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 17, 2017, pp. 83–96.

[31] NetLimiter, 2005, https://www.netlimiter.com/. (Last accessed 6 March 2024).
[32] NetBalancer, 2011, https://netbalancer.com/. (Last accessed 6 March 2024).
[33] A. Dainotti, A. Pescapé, P.S. Rossi, F. Palmieri, G. Ventre, Internet traffic

modeling by means of hidden Markov models, Comput. Netw. 52 (14) (2008)
2645–2662.

[34] J. Uberti, C. Jennings, S. Murillo, RFC 9335: Completely encrypting RTP header
extensions and contributing sources, 2023.

[35] B. Marczak, J. Scott-Railton, Move fast and roll your own crypto: A quick look at
the confidentiality of zoom meetings, 2020, https://citizenlab.ca/2020/04/move-
fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-
meetings/.

[36] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, RTP: A transport protocol
for real-time applications, 2003, https://tools.ietf.org/html/rfc3550, RFC 3550.

[37] M. Maruschke, O. Jokisch, M. Meszaros, V. Iaroshenko, Review of the opus
codec in a webrtc scenario for audio and speech communication, in: Speech
and Computer: 17th International Conference, SPECOM 2015, Athens, Greece,
September 20-24, 2015, Proceedings 17, Springer, 2015, pp. 348–355.

[38] J.-M. Valin, K. Vos, T. Terriberry, Definition of the opus audio codec, 2012.
[39] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep

bidirectional transformers for language understanding, 2018, arXiv preprint
arXiv:1810.04805.

[40] A.T. Liu, S.-W. Li, H.-y. Lee, Tera: Self-supervised learning of transformer encoder
representation for speech, IEEE/ACM Trans. Audio Speech Lang. Process. 29
(2021) 2351–2366.

[41] A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.

[42] A.F. Agarap, Deep learning using rectified linear units (relu), 2018, arXiv preprint
arXiv:1803.08375.

[43] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.

[44] R.J. Hyndman, Moving averages, 2011.
[45] A.H. Sayed, Fundamentals of adaptive filtering, John Wiley & Sons, 2003.
[46] L. Breiman, Random forests, Mach. Learn. 45 (2001) 5–32.
[47] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell,

I. Cano, T. Zhou, et al., Xgboost: extreme gradient boosting, R Package Version
0.4-2 1 (4) (2015) 1–4.

[48] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press, 2016.
[49] G. Lai, W.-C. Chang, Y. Yang, H. Liu, Modeling long-and short-term temporal

patterns with deep neural networks, in: The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018, pp.
95–104.

[50] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[51] B.N. Oreshkin, D. Carpov, N. Chapados, Y. Bengio, N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting, 2019, arXiv preprint
arXiv:1905.10437.

[52] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance
deep learning library, Adv. Neural Inf. Process. Syst. 32 (2019).

[53] H. Kaur, H.S. Pannu, A.K. Malhi, A systematic review on imbalanced data
challenges in machine learning: Applications and solutions, ACM Comput. Surv.
52 (4) (2019) 1–36.

[54] T. Liang, J. Glossner, L. Wang, S. Shi, X. Zhang, Pruning and quantization
for deep neural network acceleration: A survey, Neurocomputing 461 (2021)
370–403.

[55] Y. Tay, M. Dehghani, D. Bahri, D. Metzler, Efficient transformers: A survey, ACM
Comput. Surv. 55 (6) (2022) http://dx.doi.org/10.1145/3530811.

[56] T. Cerquitelli, M. Meo, M. Curado, L. Skorin-Kapov, E.E. Tsiropoulou, Machine
learning empowered computer networks, Comput. Netw. (2023) 109807.

http://dx.doi.org/10.17487/RFC1889
https://rfc-editor.org/rfc/rfc1889.txt
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb2
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb3
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb4
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb5
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb6
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb6
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb6
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb6
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb6
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb7
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb8
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb8
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb8
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb9
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb9
https://tools.ietf.org/html/rfc768
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb11
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb12
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb12
http://arxiv.org/abs/2306.01194
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb14
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb15
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb16
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb17
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb18
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb19
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb20
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb21
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb22
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb23
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb24
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb25
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb26
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb26
http://dpdk.org/
https://pcapplusplus.github.io/
https://pcapplusplus.github.io/
https://pcapplusplus.github.io/
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb29
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb30
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb30
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb30
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb30
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb30
https://www.netlimiter.com/
https://netbalancer.com/
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb33
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb33
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb33
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb33
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb33
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb34
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb34
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb34
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://citizenlab.ca/2020/04/move-fast-roll-your-own-crypto-a-quick-look-at-the-confidentiality-of-zoom-meetings/
https://tools.ietf.org/html/rfc3550
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb37
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb38
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb40
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb40
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb40
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb40
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb40
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb41
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb41
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb41
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb41
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb41
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb44
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb45
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb46
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb47
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb47
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb47
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb47
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb47
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb48
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb49
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb50
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb50
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb50
http://arxiv.org/abs/1905.10437
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb52
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb52
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb52
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb52
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb52
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb53
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb53
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb53
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb53
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb53
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb54
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb54
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb54
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb54
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb54
http://dx.doi.org/10.1145/3530811
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb56
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb56
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb56

Computer Networks 249 (2024) 110507T. Song et al.
[57] W. Samek, S. Stanczak, T. Wiegand, The convergence of machine learning and
communications, 2017, arXiv preprint arXiv:1708.08299.

[58] I. Ahmad, S. Shahabuddin, H. Malik, E. Harjula, T. Leppänen, L. Loven, A.
Anttonen, A.H. Sodhro, M.M. Alam, M. Juntti, et al., Machine learning meets
communication networks: Current trends and future challenges, IEEE Access 8
(2020) 223418–223460.

[59] R. Boutaba, M.A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, O.M. Caicedo, A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities, J. Internet Serv.
Appl. 9 (1) (2018) 1–99.

[60] G. Perna, D. Markudova, M. Trevisan, P. Garza, M. Meo, M.M. Munafò, G.
Carofiglio, Online classification of RTC traffic, in: 2021 IEEE 18th Annual
Consumer Communications & Networking Conference, CCNC, IEEE, 2021, pp.
1–6.

[61] D. Markudova, M. Trevisan, P. Garza, M. Meo, M.M. Munafo, G. Carofiglio,
What’s my app? ml-based classification of rtc applications, ACM SIGMETRICS
Perform. Eval. Rev. 48 (4) (2021) 41–44.

[62] S. Cheng, H. Hu, X. Zhang, Z. Guo, Deeprs: Deep-learning based network-adaptive
FEC for real-time video communications, in: 2020 IEEE International Symposium
on Circuits and Systems, ISCAS, IEEE, 2020, pp. 1–5.

[63] Z. Wang, Y. Na, B. Tian, Q. Fu, NN3a: Neural network supported acoustic echo
cancellation, noise suppression and automatic gain control for real-time com-
munications, in: ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, IEEE, 2022, pp. 661–665.

[64] X. Jiang, X. Peng, C. Zheng, H. Xue, Y. Zhang, Y. Lu, End-to-end neural speech
coding for real-time communications, in: ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP, IEEE, 2022, pp.
866–870.

[65] J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi, M. Revow, A. Sadovnikov, Z.
Liu, P. Cheng, S. Ashok, et al., Reinforcement learning for bandwidth estimation
and congestion control in real-time communications, 2019, arXiv preprint arXiv:
1912.02222.

[66] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, B. Sinopoli, CS2p:
Improving video bitrate selection and adaptation with data-driven throughput
prediction, in: Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp.
272–285.

[67] D. Raca, A.H. Zahran, C.J. Sreenan, R.K. Sinha, E. Halepovic, R. Jana, V.
Gopalakrishnan, B. Bathula, M. Varvello, Empowering video players in cellular:
Throughput prediction from radio network measurements, in: Proceedings of the
10th ACM Multimedia Systems Conference, 2019, pp. 201–212.

[68] D. Raca, A.H. Zahran, C.J. Sreenan, R.K. Sinha, E. Halepovic, R. Jana, V.
Gopalakrishnan, On leveraging machine and deep learning for throughput pre-
diction in cellular networks: Design, performance, and challenges, IEEE Commun.
Mag. 58 (3) (2020) 11–17.

[69] M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, B. Scholkopf, Support vector
machines, IEEE Intell. Syst. Appl. 13 (4) (1998) 18–28.

[70] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, J. Lyu, Real-time bandwidth
prediction and rate adaptation for video calls over cellular networks, in:
Proceedings of the 7th International Conference on Multimedia Systems, 2016,
pp. 1–11.

[71] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, W. Wei, LinkForecast: Cellular link
bandwidth prediction in LTE networks, IEEE Trans. Mob. Comput. 17 (7) (2017)
1582–1594.

[72] M. Labonne, J. López, C. Poletti, J.-B. Munier, Short-term flow-based bandwidth
forecasting using machine learning, 2020, arXiv preprint arXiv:2011.14421.

[73] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, J. Li, Realtime mobile bandwidth
prediction using LSTM neural network and Bayesian fusion, Comput. Netw. 182
(2020) 107515.

[74] A. Lekharu, K. Moulii, A. Sur, A. Sarkar, Deep learning based prediction
model for adaptive video streaming, in: 2020 International Conference on
COMmunication Systems & NETworkS, COMSNETS, IEEE, 2020, pp. 152–159.

[75] A. Bentaleb, M.N. Akcay, M. Lim, A.C. Begen, R. Zimmermann, Bob: Band-
width prediction for real-time communications using heuristic and reinforcement
learning, IEEE Trans. Multimed. (2022).

[76] G. Lv, Q. Wu, W. Wang, Z. Li, G. Xie, Lumos: Towards better video streaming
QOE through accurate throughput prediction, in: IEEE INFOCOM 2022-IEEE
Conference on Computer Communications, IEEE, 2022, pp. 650–659.

[77] B. Wei, H. Song, S. Wang, K. Kanai, J. Katto, Evaluation of throughput prediction
for adaptive bitrate control using trace-based emulation, IEEE Access 7 (2019)
51346–51356.

[78] J. Yin, Y. Xu, H. Chen, Y. Zhang, S. Appleby, Z. Ma, ANT: Learning accurate
network throughput for better adaptive video streaming, 2021, arXiv preprint
arXiv:2104.12507.
19
[79] A. Sobhani, A. Yassine, S. Shirmohammadi, A video bitrate adaptation and
prediction mechanism for HTTP adaptive streaming, ACM Trans. Multimed.
Comput. Commun. Appl. (TOMM) 13 (2) (2017) 1–25.

[80] P.J. Kaufman, Smarter trading, vol. 22, McGraw-Hill, New York, 1995.
[81] A. Montieri, G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, A. Pescapè, Packet-

level prediction of mobile-app traffic using multitask deep learning, Comput.
Netw. 200 (2021) 108529.

[82] R. Babaria, S.C. Madanapalli, H. Kumar, V. Sivaraman, FlowFormers:
Transformer-based models for real-time network flow classification, in: 2021 17th
International Conference on Mobility, Sensing and Networking, MSN, IEEE, 2021,
pp. 231–238.

[83] A. Dietmüller, S. Ray, R. Jacob, L. Vanbever, A new hope for network model
generalization, in: Proceedings of the 21st ACM Workshop on Hot Topics in
Networks, 2022, pp. 152–159.

Tailai Song: He obtained the B.Sc. in Automotive Engi-
neering at Politecnico di Torino in 2020 and the M.Sc. in
ICT for Smart Societies at Politecnico di Torino in 2022.
Currently, he is a Ph.D. student in the Telecommunication
Networks Group (TNG) from Department of Electronics
and Telecommunications (DET) at Politecnico di Torino
(PoliTO), Italy, and also a member of the SmartData@Polito
research center. His research focuses on machine learning
techniques applied to real-time communications to improve
Quality of Experience (QoE) and the objective of full-stack
observability through end-to-end telemetry.

Paolo Garza: He received the master’s and Ph.D. degrees
in computer engineering from the Politecnico di Torino.
He has been an associate professor at the Dipartimento di
Automatica e Informatica, Politecnico di Torino, since De-
cember 2018. He spent three years as an assistant professor
at Politecnico di Milano. He coauthored about 100 papers
in the areas of data mining and machine learning. His
current research interests are in the fields of data mining,
database systems, and big data analytics. He has worked
on classification, clustering, itemset mining and scalable
algorithms.

Michela Meo: She is a Professor of Telecommunication
Engineering with the Politecnico di Torino. She coauthored
about 200 papers, 80 of which on international journals.
She edited a book Green Communications (Wiley) and
several special issues of international journals. Her research
interests include green networking, energy-efficient mobile
networks and data centers, Internet traffic classification,
and characterization. Prof. Meo was an Associate Editor
of ACM/IEEE Transactions of Networking, Green Series of
the IEEE Journal on Selected Areas of Communications
Networking and IEEE Communication Surveys and Tutorials.
She is a Senior Editor of IEEE Transactions on Green Com-
munications. In the role of a General or Technical Chair,
she has led the organization of several conferences, includ-
ing ITC, ICC symposia, ISCC. She chairs the International
Advisory Council of the International Teletraffic Congress.
She was the Deputy Rector of Politecnico di Torino from
March 2017 to March 2018.

Maurizio Matteo Munafò: He is Assistant Professor at the
Department of Electronics and Telecommunications of Po-
litecnico di Torino. He holds a Dr.Ing. degree in Electronic
Engineering since 1991 and a Ph.D. in Telecommunications
Engineering since 1994, both from Politecnico di Torino.
He has co-authored about 80 journal and conference papers
in the area of communication networks and systems. His
current research interests are in simulation and performance
analysis of communication systems and traffic modeling,
measurement, and classification.

http://arxiv.org/abs/1708.08299
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb58
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb59
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb60
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb61
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb61
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb61
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb61
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb61
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb62
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb62
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb62
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb62
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb62
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb63
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb64
http://arxiv.org/abs/1912.02222
http://arxiv.org/abs/1912.02222
http://arxiv.org/abs/1912.02222
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb66
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb67
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb68
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb69
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb69
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb69
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb70
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb71
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb71
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb71
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb71
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb71
http://arxiv.org/abs/2011.14421
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb73
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb73
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb73
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb73
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb73
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb74
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb74
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb74
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb74
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb74
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb75
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb75
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb75
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb75
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb75
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb76
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb76
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb76
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb76
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb76
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb77
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb77
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb77
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb77
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb77
http://arxiv.org/abs/2104.12507
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb79
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb79
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb79
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb79
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb79
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb80
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb81
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb81
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb81
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb81
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb81
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb82
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb83
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb83
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb83
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb83
http://refhub.elsevier.com/S1389-1286(24)00339-6/sb83

	DeX: Deep learning-based throughput prediction for real-time communications with emphasis on traffic eXtremes
	Introduction
	Problem statement
	Background
	Underlying motivations
	Why packet-level information
	Why Transformer
	Why traffic extremes

	Problem formulation

	Dataset
	Methodology
	Introduction of the proposed model
	Packet selection module
	Feature extraction block
	Multi-task learning pipeline

	Model development, comparison, and evaluation process

	Experimental result
	Ablation study
	Ablation test 1 - Training with the entire 2048 packets
	Ablation test 2 - Training with the nearest 1024 packets
	Ablation test 3 - Training with a different distribution of predefined probabilities
	Ablation test 4 - Training with LSTM-based feature extraction block
	Ablation test 5 - Training without multi-task learning

	In-depth analysis
	Parametric analysis
	Number of selected packets
	Duration of predicted time window
	Different thresholds for defining extremes

	Model explainability
	Packet selection module
	Multi-task learning pipeline

	Model practicability

	Related work
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

