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ABSTRACT Deep learning methods have shown promise for automated medical image analysis tasks.
However, class imbalance is a common challenge that can negatively impact model performance, especially
for tasks withminority classes that are clinically significant. This study aims to address this challenge through
a novel hyperparameter optimization technique for training convolutional neural networks on imbalanced
data. We developed a custom Convolutional Neural Network (CNN) architecture and introduced a Tangent
Optimization Algorithm (TOA) based on the trigonometric properties of the tangent function. The TOA
optimizes hyperparameters during training without requiring data preprocessing or augmentation steps.
We applied our approach to classifying B-mode ultrasound carotid artery plaque images as symptomatic
or asymptomatic using a dataset with significant class imbalance. On k-fold cross-validation, our method
achieved an average accuracy of 98.82%, a sensitivity of 99.41%, and a specificity of 95.74%. The proposed
optimization technique provides a computationally efficient and interpretable solution for training deep
learning models on unbalanced medical image datasets.

INDEX TERMS Plaque classification, deep learning, carotid artery imaging, tangent optimization algorithm,
ultrasound imaging.

I. INTRODUCTION
Atherosclerosis, the buildup of plaque in the arteries, is a
major risk factor for cardiovascular diseases such as heart
attacks and strokes, which are leading causes of death
and disability worldwide. The formation and progression of
atherosclerotic plaques significantly impact cardiovascular
health and are associated with various disease conditions.
According to the World Health Organization, cardiovascular
diseases cause over 17million deaths annually, with over 75%

The associate editor coordinating the review of this manuscript and

approving it for publication was Wojciech Sałabun .

of these deaths occurring in low- and middle-income
countries [1].

A key contributor to atherosclerosis is the progressive
accumulation of lipid and fibrous elements within the inner
layer of the arterial walls – the plaque. Over time, this plaque
buildup narrows the lumen of arteries, reducing blood flow to
organs and tissues. If left unchecked, it can lead to complete
blockage and critical ischemia. While atherosclerosis often
develops silently over decades, sudden plaque rupture can
trigger life-threatening events such as myocardial infarction
or ischemic stroke. Early detection and prevention of plaque
formation is therefore crucial to reducing cardiovascular dis-
ease risk and mortality rates on a global scale.

73970

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-1959-0480
https://orcid.org/0000-0002-9867-4382
https://orcid.org/0000-0001-7225-7401
https://orcid.org/0000-0002-7302-6135
https://orcid.org/0000-0003-1150-2244
https://orcid.org/0000-0001-7076-2519


T. Ali et al.: CAROTIDNet: A Novel Carotid Symptomatic/Asymptomatic Plaque Detection System

TABLE 1. State of art methods employed for the automated detection of plaque using ultrasound images.

Characterizing the composition and morphology of
atherosclerotic plaques can provide valuable insight into
disease pathogenesis and prognosis. Features such as plaque
size, lipid content, calcification, ulceration, and neovascu-
larization have all been associated with plaque vulnerability
and risk of clinical events. Studying plaque characteristics
aids in determining which are more prone to rupture. It also
helps in the development of diagnostic techniques, therapies
and clinical guidelines for risk stratification and treatment.
Non-invasive carotid plaque imagingmodalities such as ultra-
sound, CT and MRI have enabled detailed in vivo plaque
analysis [2], leading to a better understanding of disease
progression and more effective management approaches,
as shown in Fig. 1. Ultrasound imaging is considered one of
the most preferred methods for analyzing the morphological
aspects of atherosclerotic plaque [3], [4], and can be chosen
over CT andMRI as it is real-time, does not use ionizing radi-
ation, and is inexpensive, while still allowing amorphological
analysis of changes including ulceration, heterogeneity, and
echogenicity in plaques [5]. However, processing ultrasound
images is challenging due to poor resolution [6], the presence
of manual markers and artifacts.

In recent years, conventional machine learning and deep
learning-based techniques have been proposed to charac-
terize symptomatic and asymptomatic plaque, specifically
in longitudinal B-mode ultrasound images of the carotid
artery [5], [7], [8], [9], [10]. To be specific, radiomic features
have been analyzed by developing complex image processing
algorithms [8]. Additionally, some researchers have also used
segmentation methods to improve the accuracy of classifi-
cation. Table 1 provides an overview of the related works
on plaque classification in longitudinal B-mode ultrasound
images of the common carotid artery (CCA). The CCA is

FIGURE 1. Depiction of plaque images, contrasting asymptomatic (a) and
symptomatic (b) cases. White arrow indicates the plaque.

typically analyzed to measure the intima-media thick-
ness (IMT) on the far wall of the artery, as an increased
IMT value is often considered a precursor to the develop-
ment of a plaque [11], [12]. Previous studies in the literature
have also aimed to classify plaques as either vulnerable and
stable by analyzing plaque echogenicity after contrast agent
injection [13], [14]. While this method may permit a more
in-depth analysis of plaque tissue characterization, it has the
drawback of being minimally invasive as it requires the injec-
tion of microbubbles into the bloodstream. It is important to
note that the dataset used in our study is the same as that
used in [15] and represents the largest available collection of
carotid plaque image data to date.

One major challenge in plaque classification is the imbal-
anced nature of the dataset, due to which there is a significant
gap in sensitivity and specificity, results in most of the clas-
sification tasks [16], [17]. Most researchers employ data
balancing techniques such as data augmentation, generating
synthetic samples, etc. However, such data balancing tech-
niques increase the computational complexity. In addition,
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conventional data augmentation techniques often generate
images that are very similar to each other, which can limit
their effectiveness in improving model performance [18].
In contrast, images generated by AI systems may not guar-
antee the preservation of pathological features on synthetic
images, which can affect their usefulness in certain applica-
tions [19].

The goal of this study is to develop an automated method,
called CAROTIDNet, for classifying carotid plaque images
into symptomatic versus asymptomatic categories based on
morphological characteristics that are extracted fromB-mode
ultrasound images without the use of any contrast agent. Such
a technique could assist physicians in evaluating plaque sta-
bility and tailoring medical management accordingly. It may
also help identify patients who would benefit most from
interventions like endarterectomy.

The proposed method aims to overcome issues associ-
ated with classifying unbalanced medical image datasets by
employing a novel optimization methodology for identifying
optimal convolutional neural network (CNN) hyperparam-
eters. A major contribution of the proposed classification
approach is that it eliminates the need for data preprocess-
ing steps to remove artifacts. It can also efficiently handle
imbalanced datasets, producing promising accuracy for clas-
sifying normal (asymptomatic plaque) and risk (symptomatic
plaque) images while avoiding the computational complexity
of data augmentation techniques. Plaques were classified as
symptomatic or asymptomatic based on whether the patient
exhibited symptoms such as transient ischemic attack or
stroke. However, it is important to note that asymptomatic
does not necessarily mean the plaque is stable or without risk
of rupture. Vulnerable plaques can still cause clinical events
even in the absence of symptoms. Similarly, stable plaques
may remain asymptomatic but still increase the risk of future
cardiovascular disease. The proposed method aims to assist
physicians in evaluating plaque stability and identify patients
who could benefit from medical intervention, regardless of
current symptom status. The key contributions are three-fold:
1. A new optimization algorithm based on trigonometric

properties of the tangent function is proposed to optimize
hyperparameters for classification with an unbalanced
plaque image dataset.

2. A CNN architecture, named CAROTIDNet, is developed
and its hyperparameters are optimized using a sine-cosine
optimization algorithm.

3. The dataset used in this study consists of 1773 images,
which is one of the largest available carotid plaque image
datasets, allowing for more robust deep learning model
development and effective hyperparameter optimization to
improve performance.
To the best of our knowledge, this is the first approach that

eliminates the need for data augmentation while efficiently
handling class imbalance, achieving balanced sensitivity and
specificity for classification. The paper is organized as fol-
lows: Section II describes the detailed methodology of the
proposed tangent optimization algorithm; Sections III and IV

report and discuss the experimental results; Section V con-
cludes with implications drawn from the study.

II. MATERIALS AND METHODS
A. DATASET
The dataset consisted of longitudinal ultrasound images of the
carotid arteries in the common tract acquired on 420 patients.
All images were from subjects with atherosclerosis that were
either in an early stage or showed clearly visible plaques.
A total of 1353 images were from symptomatic subjects who
exhibited at least one of the following symptoms: amaurosis,
transient ischemic attack (TIA), minor stroke, or transient
aphasia. An additional 420 images were from asymptomatic
subjects. At the time of image acquisition, none of the
subjects had experienced a major stroke or had other cere-
brovascular diseases.

All images were acquired using an ATL HDI5000 ultra-
sound scanner equippedwith a linear probe operatingwithin a
frequency range of 7-12MHz. Fig. 1 illustrates representative
asymptomatic and symptomatic images from the acquired
dataset. The images were not subjected to any kind of image
pre-processing methods, and none were excluded from the
study.

B. HYPERPARAMETER OPTIMIZATION USING PROPOSED
METHOD AND CLASSIFICATION
Convolutional neural networks (CNNs) extend the capabil-
ities of traditional neural networks by including additional
convolutional and activation functions. The main advantage
of CNNs is the incorporation of convolutional filters, which
aid in detecting patterns in the data that may not be discernible
to the human eye, thus enabling more accurate classifica-
tion. The overall architecture of the CAROTIDNet is shown
in Fig. 2. The convolution and fully connected layers are
composed of biases and weights that are trained using opti-
mization algorithms such as Adam, gradient descent, and
stochastic gradient descent.

The performance of the CNN is mainly controlled by
hyperparameters such as the initial learning rate, momentum,
L2 regularization, and number of epochs. The choice of
hyperparameters depends heavily on the application. How-
ever, tuning hyperparameters is essential for each application
to achieve a balanced sensitivity and specificity, especially
when dealing with imbalanced medical datasets.

Table 2 provides details of the CNN architecture, including
the types and sizes of filters, numbers of filters, and stride
values at each layer. Convolution layers are followed by batch
normalization, activation functions, and max pooling layers.
The network ends with fully connected and softmax classifi-
cation layers. The batch normalization (BN) layer normalizes
the gradients and activation functions. The max pooling
layer (MPL) reduces the dimensions of the feature maps
and passes them to subsequent convolutional layers. The
rectified linear unit (ReLU) performs non-linear mapping,
while the final fully connected layer performs classification,
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FIGURE 2. Overview of the proposed CNN architecture and optimizing hyperparameters.

TABLE 2. Details of the proposed CNN architecture developed.

followed by the softmax layer to convert probabilities to
numerical outputs. The hyperparameters used in the stochas-
tic gradient descent algorithm for optimization are the
learning rate, momentum, L2 regularization, and number
of epochs. The learning rate primarily controls the speed
of gradient descent by regulating how quickly the neural
network learns the problem. The momentum parameter is
responsible for accumulating themoving average of gradients
in an exponentially decaying manner. L2 regularization, also
known as weight decay, causes weights to decay towards zero
over time [25], [26], [27]. The number of epochs refers to
the number of full passes through the training dataset during
optimization. An optimal epoch size is necessary for accurate
training of the CNN model, as one epoch is equivalent to the
size of the training dataset.

C. OPTIMIZATION USING SINE COSINE ALGORITHM (SCA)
One of the most popular metaheuristic population-based
optimization algorithms proposed by Mirjalili [28] is the
sine-cosine algorithm (SCA). The optimization initialization

begins with a population group of random solutions. The ran-
dom solution population set is continuously evaluated based
on the objective function. As described in Eq. (1), the SCA
consists of exploration and exploitation phases.

X t+1
i = X t

i + r1 · sin (r2)
∣∣r3P ti − X t

i

∣∣ (1)

The exploration phase aids in the location of the area.
Further, the exploitation phase reduces the fluctuations that
occur by the random solutions as given in Eq. (2).

Xit+1
= Xit + r1 · cos (r2)

∣∣r3Pit − Xit
∣∣ (2)

Here t indicates the current iteration number, and i
indicates the ith solution at the corresponding X position;
Pi indicates the point of destination. The direction of move-
ment between the solution and the destination is guided by
the parameter r1 as given in Eq (3).

r1 = 2 − t
(

2
T

)
(3)

The movement of the particles towards or away from the
destination and defining the distance movement using ran-
dom weights is given by r2 and r3.

r2 = 2π · rand (value) (4)

r3 = 2 · rand (value) (5)

If r3> 1, an emphasizing effect occurs, while if r3< 1,
a deemphasizing effect occurs in the movement towards the
optimal solution. The switching between the exploration and
exploitation phases is performed by r4. Exploration takes
place if the value of r4 is less than 0.5, while exploitation
occurs if the value is greater than 0.5. Fig. 3 illustrates the
convergence curve for the SCA algorithm, considering the
upper and lower bound values of the dataset used for tuning
the hyperparameters. This convergence curve demonstrates
how the objective function value changes as the algorithm
optimizes the hyperparameters within the defined bounds.
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FIGURE 3. Illustration of convergence curve considering the objective
function for SCA.

D. TANGENT OPTIMIZATION ALGORITHM (TOA)
The proposed tangent optimization algorithm consists of four
sequential phases: (i) Initialization, (ii) Definition of the
objective function, (iii) Exploration & exploitation, and (v)
Stopping criteria.

1) INITIALIZATION
The goal of the initialization phase is to generate the defined
search space for exploration and exploitation.

Rather than random solutions, lower and upper bound
values are determined based on the minimum and maxi-
mum possible values for each hyperparameter. The search
space is represented as a matrix of dimensions NXd , where
N= 50 (solutions) and d = 4 (columns) since four
hyperparameters are optimized. This results in a search
space of 50x4. The choice between the exploration and
exploitation phases is controlled by a mathematical nor-
malization function (NF) calculated from the search space,
as shown in Eq. (6)-(7). The NF provides a threshold
based on the current iteration and maximum iterations for
determining whether exploration or exploitation will be
performed during optimization within the defined search
space.

Criteria =

[
Exploration, if r1 > NF
Exploitation, if r1 ≤ NF

]
(6)

NF = min (X) + t
(

max (X) − min (X)

T

)
(7)

where t and T indicate the current and maximum number
of iterations. Since the search space is 50 × 4, we set the
maximum iteration value as 200 (50 × 4).

2) OBJECTIVE FUNCTION
The goal of the optimization algorithm is to predict the opti-
mal hyperparameter values when training on the dataset. One
key aspect of designing an optimization algorithm is selecting
an appropriate objective function. The tangent optimization
algorithm aims to minimize the classification error between
predicted and actual values by considering the hyperparam-
eters obtained during exploration and exploitation phases
within the bounds of the defined search space. To select
the best value for the validation set, the training data is

further split in an 80:20 ratio. The final value for each
hyperparameter is chosen based on the error rate calculated
from the held-out 20% of the training data.

The pseudocode for the objective function is provided in
Algorithm 1. It outlines the process of defining the lower and
upper bounds, training the CNNmodel using stochastic gradi-
ent descent with optimized hyperparameters, and evaluating
classification errors on the validation set to identify optimal
hyperparameters.

Algorithm 1

1 Defining the Lb, and Ub, ∀x ∈ N ub
lb

2 CNN (SGD{M , ILR, Ep, L2 Regularization}

UsingX t+1
i = X ti +r1Sin (r2)

∣∣r3Pti − X ti
∣∣ ,X t+1

i = X ti +
r1Cos (r2)

∣∣r3Pti − X ti
∣∣

3 ∀ x ∈ {Hyp} , 0.8 (Training data)
= testing the values obtained
from exploitation and exploration
phase

4 Classification Error
= Actual values (0.2 Training data)
−Predicted values(0.2 Training Data)

5 Final Hyp = min {Classification Error}

3) EXPLORATATION AND EXPLOITATION
The exploration phase begins by considering the normal-
ization function in conjunction with random variables r2
and r3. These random variables are used to control switching
between subsequent phases. The ability to flexibly switch
between arithmetic operations aids in achieving optimal val-
ues for optimization.

A scaling parameter α is introduced to achieve symme-
try between the exploration and exploitation phases. Fig. 4
illustrates the convergence curve considering the objective
function for the proposed tangent optimization.

FIGURE 4. Illustration of convergence curve considering the objective
function for TOA.

The value of α is calculated as given in Eq. (8). Position
update equations incorporating α, the normalization function,
random variables and hyperparameters bounds are formu-
lated in Eq. (9)-(10) to govern movement between solutions
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during exploration and exploitation.

∝=
t
T

(8)

Xij (t + 1)

=

{
X j

(∝+tan(U{b}−L{b})µ+tan(L{b})) if r2 ≤ 0.5
Xj ∝ tan(U {b} + L {b})µ − tan (L {b})) if r2 > 0.5

}
(9)

Xij (t + 1)

=

{
Xj− ∝ µ tan (U {b} − L {b})+tan (L {b})) if r3≤0.5
Xj+∝ µ tan (U {b} − L {b}) − tan (L {b})) if r3 > 0.5

}
(10)

The primarymotivation for using the tangent trigonometric
function was to address the lead-lag behavior exhibited by
sine and cosine functions. Additionally, combining tangent
with sine and cosine results in asymmetry of the generated
harmonics. This asymmetry could lead to delayed conver-
gence and increased computational complexity in reaching
optimal values. Therefore, the tangent function is employed
individually for the exploration and exploitation phases,
rather than in combination with other trigonometric func-
tions. The exploration phase equations also serve as the
initialization function.

During optimization, if the value of r2 is less than 0.5, the
division operator is used in the equations. Conversely, if the
value of r2 is greater than 0.5, the multiplication operator is
used. Similarly, the arithmetic operators (+/-) are switched
based on whether the value of r3 is less than or greater than
0.5. This switching technique helps balance the exploration
of the search space.

4) STOPPING CRITERIA
The exploration and exploitation phases terminate once the
optimal solution is found. The stopping criteria are reaching
the maximum number of iterations, as defined by the size of
the search space. The search space consists of 50 × 4 = 200
possible combinations of hyperparameters since it is repre-
sented as a 50 × 4 matrix. Therefore, the maximum number
of iterations is set to 200 to allow full exploration of this
defined search space. The exploration and exploitation phases
systematically examine the entire space.

III. RESULTS
A. TRAINING PROCESS
The proposed methodology was implemented in MATLAB
2020a on a 64-bit operating system. The entire image dataset
consisted of 420 patients, with an average of 10 images
acquired per patient. The dataset was initially divided on a
patient-wise basis into a training set comprising 80% of the
patients and a validation set comprising the remaining 20% of
patients. This ensured that images from the same patient did
not fall into different sets. A k-fold cross-validation (k =5)
was used to evaluate the model.

Algorithm 2
1 Initialization: Choose N = 50, d = 4, search space = 50×

4,min (X) ,Max (X) , ; t = {1, 2, . . . . . . .N }Lb =

{0.00001, 0.1, 5, 0.001}Ub = {0.1, 0.9, 15, 0.1}
2 While t < T → Compute Nf using (7), ∝=

t
T

if Nf < 0.5, Check for r2
if r2 ≤ 0.5
Xij (t + 1) =

Xj
(∝+ tan(U{b}−L{b})µ+tan(L{b}))

else
Xj ∝ tan (U {b} + L {b})µ − tan (L {b}))

if r3 ≤ 0.5
Xij (t + 1) = Xj− ∝ µ tan (U {b} − L {b}) + tan (L {b}))

else
Xij (t + 1) = X j+ ∝ µ tan (U {b} − L {b}) − tan (L {b}))

3 Create CNN layers → 6(CL + ReLu+MPL)

4 Formulate the objective function : classification error
5 Hyperparameters

= optimal {SGDM , ILR,Ep,L2 Regularization}
6 Best Parameters : 0.2(training data)

7 Stopping Criteria :

While t < Tmax
Check x = best(min(Classification error(0.2 (train))

else
t = t + 1

As the dataset contained images of varying sizes, all
images were resized uniformly to 256 × 256×1 pixels to
retain consistency. The optimized CNN architecture con-
sisted of 5 convolutional layers for classifying images into
two categories. Stochastic gradient descent hyperparameters
were optimized using two algorithms: SCA and TOA. Fig. 5
illustrates the training progress plots obtained using SCA and
TOA. The figure shows that when optimizing an unbalanced
dataset with SCA, the performance decreases compared to
optimization with the Tangent algorithm, in terms of both
classification performance and loss function value.

FIGURE 5. Training Progress using CNN model optimized using (a) SCA,
and (b) TOA.

B. K-FOLD CROSS-VALIDATION
The proposed classification methodology was evalu-
ated using 5-fold cross-validation on the development set.
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Within each fold, the CNN hyperparameters were optimized
using TOA. Key metrics including accuracy, sensitivity,
specificity, and precision were used to assess CNN perfor-
mance. Accuracy provides the average correct prediction rate
across both classes. Sensitivity indicates the true positive rate
for the risk class. Specificity is the true negative rate for the
normal class. Precision is the percentage of true positives
among the total predicted positives.

Table 3 reports the performance of the CNN model
optimized for each fold. The results demonstrate the high
performance of our optimized CNN model across all folds.
The average accuracy achieved was 98.82%, indicating a
high level of correct predictions for both the risk and nor-
mal classes. The sensitivity values ranged from 98.53%
to 100%, indicating the ability of our model to accu-
rately detect the symptomatic plaque. Moreover, the pre-
cision values ranged from 98.53% to 100%, highlighting
the high percentage of true positives among the predicted
positives.

TABLE 3. Quantitative metrics obtained using k-fold cross-validation for
the CNN trained using the TOA.

C. GRAD-CAM AND EXPLAINABILITY
GRAD-CAM (Gradient-weighted Class Activation Map-
ping) is a popular method in the field of Explainable
Artificial Intelligence (XAI) that provides insights into the
decision-making process of deep learning models. By visu-
alizing the areas of an input image that contribute most
strongly to the model’s prediction, GRAD-CAM helps to
interpret and understand the reasoning behind the model’s
classification.

In Fig. 6, we present grayscale images and their corre-
sponding GRAD-CAM outputs for three different cases. The
first two cases represent asymptomatic patients, where the
GRAD-CAM of CAROTIDNet shows a focus on the entire
lumen. This indicates that the model correctly focuses on the
entire length of the vessel wall in these cases.

In contrast, in the symptomatic patient image (case #3),
the intensity of the GRAD-CAM is higher near the plaque
region. This suggests that CAROTIDNet is able to localize
and prioritize the areas associated with plaque, providing
valuable information for diagnosing symptomatic plaque.
The application of GRAD-CAM as an XAI method enhances
the interpretability of CAROTIDNet’s predictions, enabling
clinicians to gain insights into the model’s decision-making
process and validating its focus on relevant regions of interest
in the images.

FIGURE 6. Illustration of Grad-CAM for the CAROTIDNet model trained
with TOA for three cases. Top row: grayscale ultrasound images of carotid
artery plaque. Bottom row: corresponding Grad-CAM heatmaps,
highlighting the important regions focused by the model for each
prediction.

D. ABLATION STUDY
To study the effectiveness of the proposed method, an abla-
tion study is conducted by considering the dataset given
in [30]. Since, the dataset consists of 80 images belonging
to only risk category, we have concatenated the non risk
images from our dataset to the images obtained from [30].
Additionally, since we are proving the robustness of the pro-
posed algorithm considering imbalance in the data, we have
160 images of non-risk category (our dataset) and 80 risk
images from external dataset. The initial study termed as first
iteration involved testing of the SCA algorithm in the for-
mulated dataset considering the CNN architecture described
in Table 2. The study was performed for five folds. The
training results obtained for the first iteration are as shown
in Fig. The second iteration consisted of testing the proposed
optimization algorithm using the CNN architecture described
in Table 2. The training results obtained for the second itera-
tion are shown in Fig.

For both iterations, the number of accurately classified risk
and non-risk cases is depicted in Fig. As it can be observed,
the proposed CAROTIDNet performs better in contrast to the
initial SCA optimization algorithm on a dataset consisting
of images from two different sources, thereby proving the
generalization and robustness of the methodology proposed.

IV. DISCUSSION
Plaque classification plays a crucial role in the detection
and management of atherosclerosis, a major risk factor for
cardiovascular diseases. Accurate classification of plaques
as symptomatic or asymptomatic can assist physicians in
tailoring medical management accordingly [1]. In this paper,
we have addressed the challenge of unbalanced datasets in
plaque classification and proposed an efficient and reliable
technique called the Tangent Optimization Algorithm (TOA).
Our approach, based on the trigonometric properties of the
tangent function, ensures balanced sensitivity and specificity
for plaque classification.
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FIGURE 7. Performance analysis for the ablation study (a) Accuracy for non risk cases, (b) Accuracy for risk cases, (c) Average accuracy for risk and non
risk cases.

The presence of imbalanced datasets poses a significant
problem in medical image classification tasks, as it can result
in imbalanced sensitivity and specificity outcomes. Tradi-
tional data balancing techniques, such as data augmentation,
often increase computational complexity and may generate
similar images, limiting their effectiveness [18]. In con-
trast, the TOA algorithm optimizes the hyperparameters of
a CNN without the need for data preprocessing steps or data
augmentation.

We evaluated the performance of our proposed method
and compared it with the state-of-the-art technique, the
Sine-Cosine Algorithm (SCA). Our results demonstrate that
the TOA algorithm outperforms SCA in terms of accuracy,
sensitivity, and specificity. The TOA algorithm achieves
balanced performance on both symptomatic and asymp-
tomatic plaque images, effectively addressing the challenge
of imbalanced datasets. This indicates the potential of the
TOA algorithm to improve the accuracy of plaque classifi-
cation and assist in identifying patients who require medical
interventions.

The advantages of our proposed approach extend beyond
improved performance. Our method reduces the compu-
tational complexity associated with data preparation by
eliminating the need for data preprocessing steps and data
augmentation. Additionally, the TOA algorithm provides a
reliable and interpretable solution by optimizing hyperparam-
eters based on the trigonometric properties of the tangent
function. This ensures that the resulting CNNmodel captures
important features for plaque classification.

Incorporating GRAD-CAM into our analysis further
enhances the interpretability of CAROTIDNet’s predictions.
GRAD-CAM generates heatmaps that highlight the regions
of interest in the images, allowing clinicians to visual-
ize the areas that contribute most strongly to the model’s
decision-making process. This additional information helps
in understanding the specific visual features that influence
the classification of carotid plaque images. By integrating
GRAD-CAM, we strengthen the transparency of CAROTID-
Net and provide clinicians with valuable insights into the
model’s reasoning.

While our study presents promising results, there are
several areas for future research in plaque classification.

Firstly, it is important to conduct further investigations to
explore the robustness and generalizability of the TOA
algorithm on larger and more diverse datasets. This will help
assess its performance in different clinical scenarios, includ-
ing cases with rare histological diseases that may exhibit
imbalanced datasets [29]. Few studies have evaluated the per-
formance of DLmethods for plaque tissue classification [31],
[32], [33]. For instance, in [31], the diagnostic odds ratio
was used as a performance evaluation parameter. In [33],
radiomic features of the carotid artery were proven to have
great potential in predicting new ipsilateral ischemic lesions.
Evaluating the algorithm’s applicability on various imag-
ing modalities, such as CT and MRI, can provide valuable
insights into its effectiveness in different clinical settings.
Secondly, the TOA algorithm can be combined with other
techniques, such as transfer learning, to further enhance the
classification performance

V. CONCLUSION
In this study, we have developed a novel optimization
methodology for classifying longitudinal B-mode ultrasound
carotid plaque images. Our approach addresses several chal-
lenges associated with processing ultrasound images, such
as poor resolution, the presence of artifacts, and imbal-
anced datasets. The proposed methodology incorporates a
customized CNN architecture optimized using a sine-cosine
optimization algorithm. Additionally, we introduce a novel
tangent optimization algorithm that effectively handles the
imbalanced nature of plaque image datasets. Unlike tra-
ditional data augmentation techniques, our approach does
not compromise computational efficiency. The experimen-
tal results demonstrate the effectiveness of our approach in
classifying symptomatic and asymptomatic plaque images.
By achieving balanced sensitivity and specificity, our CNN
model shows promise in assisting physicians in evaluating
plaque stability and tailoring medical management accord-
ingly. Moreover, eliminating data preprocessing steps for
artifact removal further streamlines the classification pro-
cess. The future work will include evaluating the proposed
methodology using Leave One Subject Out (LOSO) cross-
validation to better assess the generalization capabilities of
the approach. Finally, developing a unified system involving
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the segmentation of plaque regions followed by classification
could provide a more comprehensive analysis. Segmenting
the plaque areas before feeding them to the classification
model may help focus the localization and improve prediction
accuracy. Integrating segmentation with the current detection
framework is an important future direction.
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