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Improving robustness to termination conditions in
passivity enforcement of rational macromodels

Antonio Carlucci, Graduate Student Member, IEEE, Tommaso Bradde, Member, IEEE,
Stefano Grivet-Talocia, Fellow, IEEE

Abstract—Common design and verification flows of electronic
systems under Signal and/or Power Integrity (SI/PI) constraints
often rely on the availability of accurate macromodels of compo-
nents and interconnects. Such macromodels enable fast transient
analysis at the system level and consequently the possibility to
efficiently verify the quality of the design. Several approaches
are available to construct macromodels whose response accu-
rately matches the raw data used for their identification, most
often tabulated scattering responses. However, for the sake of
SI/PI optimization, it is mandatory that such models reproduce
accurately the underlying structure response when inserted as a
component in a larger network, possibly subjected to different
or uncertain port termination schemes. This capability is not
inherently guaranteed by standard macromodeling approaches.
Recently, the authors proposed a modified Vector Fitting (VF)
iteration that overcomes this issue, by optimizing the macromodel
accuracy with respect to sets of arbitrary terminations. This work
completes this robust macromodeling framework by introducing
a companion perturbation-based passivity enforcement scheme
that preserves the macromodel accuracy with respect to the
prescribed set of loads. The main innovation is the definition
of a novel loss function to drive the perturbation routine, that
allows to correct the non-passive model while preserving the
required robust performance. Numerical evidence on a set of
relevant Power Delivery Network (PDN) benchmarks confirms
the effectiveness of the proposed approach.

I. INTRODUCTION

Transient analysis of large-scale circuits is a mandatory
step for verifying and optimizing the electrical performance
of modern electronic systems, in particular for Signal In-
tegrity (SI) and Power Integrity (PI) applications. Although
for a given design many performance indices can be inferred
based on frequency domain descriptions, time domain anal-
ysis represents the ultimate verification tool, especially when
active/nonlinear devices are involved [1]–[3].

Very efficient transient analyses are typically enabled by
representing the behavior of complex interconnects and com-
ponents via state-space macromodels, whose extraction from
tabulated scattering data from electromagnetic solvers is nowa-
days considered an off-the-shelf commodity [4]. Among all
methods, the rational approximation method known as Vec-
tor Fitting (VF) iteration currently represents the reference
algorithm. Since the first appearance of VF [5], significant
improvements have been proposed in the literature in order
to increase its robustness [6]–[9], efficiency [10]–[13], and
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accuracy [14], as well as for extending the original frequency
domain formulation to time domain measurements [15], [16]
or to a more general multivariate setting [17]. Correspondingly,
a number of available methods have been proposed to enforce
the passivity of the resulting macromodels [18]–[23]. This
Passivity Enforcement (PE) step is fundamental, since a non-
passive macromodel may induce spurious numerical instabili-
ties when included in transient simulations in which it is inter-
connected with other (even passive) electrical networks [24].
For a comprehensive overview on passive macromodeling and
its applications see [4].

Macromodels are never solved as standalone components.
Instead, they are typically inserted in a global network descrip-
tion as individual components, whose ports are interconnected
to other components and subsystems to obtain a complete
computational model of an entire system. Examples can be
Power Delivery Network (PDN) models at board, package and
chip level which are interconnected and loaded by decoupling
capacitor banks, possibly integrated voltage regulator models
with sense and feedback loops, and excited by chip loading
patterns [25], [26]. The main objective of system-level tran-
sient verification is an accurate prediction of all port signals
of such coupled and terminated global system. The accuracy
of a single macromodel is not important by itself, but rather
as an enabler for an accurate prediction of the entire system
behavior.

One relevant open problem affecting the above described
framework is related to the sensitivity of the passive macro-
models to their actual operating conditions. As pointed out in a
number of papers [27]–[32], even when a macromodel matches
with high accuracy one network function of the underlying
component, it is not formally guaranteed that it will reproduce
the desired port behavior when loaded with an arbitrary electri-
cal network. Intuitively, this happens because the (even small)
residual error affecting the macromodel response propagates
through the feedback loops that arise from the electrical
interconnections and terminations, undergoing uncontrolled
and possibly large magnification. Although often overlooked,
the macromodel sensitivity in not uncommon in scenarios of
practical interests, and especially in PI applications [30]–[32].

In the recent papers [31], [32], the authors proposed to
alleviate the problem by optimizing the macromodel accuracy
with respect to a prescribed (yet completely arbitrary) class of
Linear and Time-Invariant (LTI) terminations. The approach
modifies the VF iteration, by explicitly incorporating in the
optimization routine the information about the port behavior
of the system under modeling when it is subjected to the
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Fig. 1. General system topology under investigation, where the DUT is
connected to a loading network L with external excitations w. Variables x
and y denote input and output signals of the DUT, respectively.

admissible loads. It was verified that this strategy generates
macromodels that are more robust, in the sense that their
accuracy is less sensitive when the port terminations are
changed. In this work, we build on these results, and we
augment the proposed framework with an ad hoc passivity en-
forcement post-processing algorithm that preserves robustness
to port loading conditions. The proposed approach inherits the
strategy applied in most of the perturbation-based passivity
enforcement algorithms [18]–[22], [33]. Starting from a non-
passive rational model, we perturb its residues iteratively in
order to achieve passivity, by solving a constrained optimiza-
tion problem that minimizes model perturbation subject to
passivity constraints. Robustness to loading conditions is here
enforced by suitable penalization terms added to the cost
function defining model accuracy. Several examples, mostly
related to PI applications, are presented to demonstrate the
excellent performance of this approach, despite its simplicity
in both formulation and implementation.

This manuscript is structured as follows. Section II in-
troduces preliminaries and notation. Background on robust
macromodeling is presented in Sec. III. The proposed robust
passivity enforcement scheme is discussed in Sec. IV, and
numerical examples are presented in Sec. V.

II. NOTATION AND PRELIMINARIES

In the following, scalars will be denoted with lowercase
italic fonts (x); vectors and matrices with bold italic fonts,
lowercase (x) and uppercase (X) respectively. The notation
XT and X∗ represents the matrix transpose and the hermitian
transpose of X. The symbol IP is the identity matrix of size
P . With A ⊗ B we denote the Kronecker product between
matrices A and B and operator vec{·} stacks the elements of
its matrix argument as a column vector. The imaginary unit is
j =
√
−1 and the Laplace variable is s = σ+ jω. The matrix

norm notation ∥X∥ indicates the 2-norm, whereas ∥X∥F is
the Frobenius norm. Similarly, for vectors, ∥x∥ is the standard
Euclidean norm. We recall that ∥X∥F = ∥vec{X}∥.

Let us consider an arbitrary passive LTI P -port network,
labeled as Device Under Test (DUT) in Fig. 1. An external port
representation for the DUT can be given in terms of one of its
network functions, e.g. its impedance, admittance, or scattering
matrices. We will generically denote a network function of
the DUT as H̆(s) ∈ CP×P . Correspondingly, we will denote

with x̆(s) ∈ CP and with y̆(s) ∈ CP the input and the output
signals associated with this network representation, so that

y̆(s) = H̆(s)x̆(s). (1)

The accent ˘ is used to label the exact network function of the
DUT and its port signals, whereas any DUT quantity without
accents will correspond to the (approximate) models to be
constructed with related port signals.

With reference to Fig. 1, we will consider the scenario in
which the DUT is a subnetwork of a larger interconnected
system. Without loss of generality, we assume the DUT is
connected with an arbitrary loading LTI network L, having
P ports connected to the DUT and P ′ ports excited by ideal
voltage or current sources. We will collect these sources in the
vector w(s). Considering a representation of L based on the
same DUT port signals, we can write

x̆(s) = Γ(s)y̆(s) +P(s)w(s) (2)

where matrices Γ(s) and P(s) are supposed to be known.
Combining (1) with (2) leads to the exact solution of the
coupled system for the interface port signals

x̆(s) = [IP − Γ(s)H̆(s)]−1P(s)w(s) (3a)

y̆(s) = H̆(s)[IP − Γ(s)H̆(s)]−1P(s)w(s). (3b)

III. ROBUST MACROMODELING

The objective of this paper is to describe a procedure for the
generation of a passive macromodel H(s) that reproduces the
DUT behavior not only by matching its exact network function

H(s) ≈ H̆(s) (4)

as typical in standard macromodeling schemes, but also when
the model replaces the DUT in its operating environment, as
in Fig. 1. This requirement is not trivial: while enforcing (4)
is straightforward with state-of-the-art passive macromodeling
approaches [4], ensuring that the port signals

x(s) = [IP − Γ(s)H(s)]−1P(s)w(s) (5a)

y(s) = H(s)[IP − Γ(s)H(s)]−1P(s)w(s), (5b)

obtained by replacing the exact DUT with its macromodel,
match up to the desired accuracy their references (3)

y(s) ≈ y̆(s), x(s) ≈ x̆(s) (6)

requires additional care. This difficulty is evident from (3),
basically due to the matrix [IP − Γ(s)H̆(s)] that needs to
be inverted. When such matrix is nearly singular with some
small magnitude eigenvalue µ, the inevitable approximation
error ∆H(s) = H(s) − H̆(s) that affects the macromodel
is amplified by µ−1, possibly leading to highly inaccurate
port signal estimates [27]–[32]. In this situation, we say that
macromodel accuracy is sensitive to the actual termination
condition. Conversely, a macromodel will be robust with
respect to a particular termination network L when (6) hold
concurrently.
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The derivations in [31], [32] show that a straightforward
solution to this problem is achieved by enforcing (4) together
with the additional fitting condition

H(s)x̆(s) ≈ y̆(s), (7)

where x̆(s) and y̆(s) are known from (3) as solutions of the
nominal DUT under the prescribed termination condition. In
practice, the starting point for the construction of a robust
macromodel is a set of K frequency samples of the reference
network function

H̆k = H̆(jωk), k = 1, ...,K, (8)

typically scattering responses computed by full-wave field
solvers. In addition, we consider a set of M independent
termination networks and associated sources

T (m) : {L(m),w(m)}, m = 1, . . . ,M. (9)

For each of such termination networks we compute the nom-
inal DUT port signals through a frequency-domain solution
of (3), obtaining the signal pairs data

x̆
(m)
k = x̆(m)(jωk), y̆

(m)
k = y̆(m)(jωk). (10)

Then, a rational macromodel structure is assumed

H(s) =

ν∑
i=1

Ri

s− pi
+R∞, (11)

where {pi} are the unknown model poles and {Ri} the
corresponding unknown residue matrices with direct coupling
R∞. The robust model is identified through a standard VF
pole relocation iteration, where the multiple fitting conditions

H(jωk) ≈ H̆k, (12a)

H(jωk)x̆
(m)
k ≈ y̆

(m)
k , m = 1, . . . ,M, (12b)

are enforced concurrently for k = 1 . . .K at each iteration.
Technical details are given in [31, Sec. IV].

We remark that two application scenarios are enabled by
this approach. If the application at hand requires fine-tuning
the model accuracy for a well-defined termination condition,
which is never modified during model operation, then one
can set M = 1 and base model identification on that specific
termination. There will be however no guarantee of reduced
sensitivity under different operating conditions. If instead the
model is requested to be robust to a possibly ample class
of terminations, than multiple samples M > 1 from this
class (9) will be needed, to reduce the likelihood of high
sensitivity under varying termination conditions. The above
statements are documented and illustrated through several
examples in [31], [32]. A systematic procedure to design a
worst-case termination that emphasizes sensitivity of a given
DUT at one or more discrete frequencies is reported in the
Appendix.

This manuscript completes this framework by proposing a
PE post-processing that, combined with the above rational
fitting scheme, produces a guaranteed passive model with
enhanced robustness to terminations. In fact, application of

any of the standard and well-documented passivity enforce-
ment schemes to a robust macromodel will not preserve this
robustness, thus spoiling all efforts previously spent to include
termination effects in the rational fitting phase.

IV. PASSIVITY ENFORCEMENT

Starting from a stable macromodel in pole-residue form
(11), a popular and effective method to enforce passivity
consists in iteratively applying small perturbations to the
model residues until suitable passivity constraints are met. This
method will be referred to as Standard PE in the following
and is described in full detail in [4, Sec. 10.5 and 10.10] and
references therein.

In the following, we will assume that the macromodel
representation H(s) is a scattering network function. Similar
results hold for immittance representations, as for other pas-
sivity enforcement schemes. Under this assumption, a stable
macromodel is passive if the transfer matrix norm is less than
one [4], [34]–[36] for all frequencies

∥H(jω)∥ ≤ 1, ∀ω ∈ R. (13)

A non-passive macromodel would violate this constraint on
Nv frequency bands Ω(i), i = 1, . . . , Nv , where its norm is
above unity, that is

∥H(jω)∥ > 1, ∀ω ∈
Nv⋃
i=1

Ω(i), Ω(i) ≜ (ω
(i)
0 , ω

(i)
1 ) (14)

where ω
(i)
0 , ω

(i)
1 are the interval endpoints. A necessary con-

dition for (13) is asymptotic passivity, i.e.

∥R∞∥ ≤ 1. (15)

In the following, we assume that condition (15) is enforced
during the final residue estimation stage of the robust VF
iteration introduced in [31]. This can be done easily via
semidefinite optimization solvers, since (15) is convex in the
unknown direct coupling term R∞. Therefore, we assume that
the violation intervals Ω(i) are bounded.

The core idea behind residue perturbation-based PE algo-
rithms [4] is to introduce a perturbation

δH(s) =

ν∑
i=1

δRi

s− pi
(16)

such that the perturbed model H(s) + δH(s) ≜ H̄(s) is
passive. Ideally, the model should be perturbed the least
necessary to meet the constraints without impacting accuracy.
These objectives can be encoded in an optimization problem
where a cost function J (δH) is minimized to find the optimal
residue perturbation

min
δRi

J (δH) (17a)

s.t. ∥H(jω) + δH(jω)∥ ≤ 1 ∀ω ∈ R (17b)

In principle, the constraint (17b) could be translated into a
finite-dimensional Linear Matrix Inequality condition using
the Kalman-Yakubovich-Popov (KYP) Lemma [37], and the
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resulting problem would be solvable by semidefinite program-
ming. However, computational complexity scales badly and
makes this approach oftentimes impractical for many common
applications where the modeled device has more than a few
tens of ports and its model involves a modest number of
poles. This intractability justifies an approximate approach to
enforce the set of infinitely many constraints (17b) through
its discretized version, namely a finite set of nc passivity
constraints localized at frequencies where (17b) is violated.
In formulae, the constraint becomes∥∥H̄(jωℓ)

∥∥ ≤ 1, ℓ = 1, . . . , nc (18)

where the set C = {ωℓ}nc

ℓ=1 is suitably chosen to target all
frequency bands Ω(i). For instance, these frequencies can
be the mid-points of violation intervals. The consequence
of enforcing the approximate constraint instead of (17b) is
that new violations may appear in the perturbed model, at
frequencies where passivity was not enforced. Hence, it is
necessary to perform multiple PE steps iteratively, see [4],
[19].

Given this overview, we shall now turn to a detailed descrip-
tion of the two crucial aspects of the residue perturbation-
based PE algorithm, namely constraint formulation and the
cost function. The only difference between the PE algorithm
proposed here and standard passivity enforcement is indeed in
the cost function J(δH(s)), and this is discussed in the fore-
going Sec. IV-A. Iterative formulation of localized constraints
is the same as in standard PE and is reviewed in Sec. IV-B.
Implementation details are provided in Sec. IV-C.

A. Cost function

The concurrent constraints (4) and (7) leading to a robust
macromodel, suitably discretized as in (12), can be collected
in a compact form and encoded in the following cost function

Jfit =

K∑
k=1

∥∥∥H(jωk)− H̆k

∥∥∥2
F

(19)

+ λ2
K∑

k=1

∥∥∥H(jωk)X̆k − Y̆k

∥∥∥2
F

where all input-output pairs (x̆
(m)
k , y̆

(m)
k ) are collected in the

following data matrices

X̆k ≜
(
x̆
(1)
k · · · x̆

(M)
k

)
(20a)

Y̆k ≜
(
y̆
(1)
k · · · y̆

(M)
k

)
(20b)

and where λ plays the role of a penalization parameter. In (19)
the model error is optimized with respect to the original data
samples of network function and port signals.

In a passivity enforcement based on structure (16), the
model perturbation δH(s) depends linearly on the decision
variables δRi. This suggests a formulation of the cost function
for robust PE based on a local reference provided by the initial
non-passive model rather than the raw data samples. This
approach is standard in so-called model-based PE methods [4]
and is here extended to account for the additional term in the
enhanced cost function (19).

We need to ensure that the passive model H̄(s) is robustly
accurate based on both (4) and (7), which in this setting read

H̄(s) ≈ H̆(s), H̄(s)x̆(s) ≈ y̆(s) (21)

However, we know that the initial non-passive model obtained
by minimizing (19) verifies (4) and (7). Combining with (21)
this leads to

H̄(s) ≈ H(s), H̄(s)x̆(s) ≈ H(s)x̆(s) (22)

or equivalently

δH(s) ≈ 0, δH(s)x̆(s) ≈ 0. (23)

A discretization process (as described in Sec. III) leads to the
proposed modified cost function for robust PE

JPE =

K∑
k=1

(
∥δH(jωk)∥2F + λ2

∥∥∥δH(jωk)X̆k

∥∥∥2
F

)
. (24)

where all frequency samples and all termination configura-
tions (20a) are considered. Note that the above formulation
does not require the data matrix (20b) and leads to a homoge-
neous cost function in the model perturbation. These two fea-
tures are known to contribute to reducing computational cost
on one side as well as improving convergence properties [4].
It should be noted that setting λ = 0 in (24), i.e., removing
the second term in the proposed modified cost function JPE,
reduces the proposed formulation to the standard non-robust
PE.

B. Passivity constraints

The constraint (17b) to be enforced for finding optimal
perturbations is here approximated with a finite number of
constraints (18), that are localized at a discrete set of frequen-
cies {ωℓ}nc

ℓ=1. Thus, an algorithmic method should be provided
to identify this discrete set of frequencies at each PE iteration,
based on the location of passivity violations, found through
a passivity check stage. Several approaches are available for
this task, either exploiting Hamiltonian spectral properties [21]
or simpler adaptive sampling strategies [38]. This material is
standard, see [4]. Therefore, we assume that the following
passivity violation data are available

{σℓ,q,uℓ,q,vℓ,q}, ℓ = 1, . . . , nc, q = 1, . . . , Qℓ (25)

at frequencies ωℓ where the model H(jωℓ) has Qℓ (one or
more) singular values σℓ,q > 1, with associated left and right
singular vectors uℓ,q , vℓ,q . In particular,

u∗
ℓ,qH(jωℓ)vℓ,q = σℓ,q , ∀ℓ, q. (26)

Following [4], a first-order approximation of the perturbed
singular value σ̄ℓ,q as a result of model perturbation can be
written as

σ̄ℓ,q ≈ σℓ,q +Re
{
u∗
ℓ,qδH(jωℓ)vℓ,q

}
≤ 1 (27)

as ∥δH∥ → 0, which is required to be bounded by one.
Assembling constraints (27) while minimizing the robust cost
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function (24) leads to the proposed optimization problem for
robust passivity enforcement

min
δRi

K∑
k=1

(
∥δH(jωk)∥2F + λ2

∥∥∥δH(jωk)X̆k

∥∥∥2
F

)
(28a)

s.t. Re
{
u∗
ℓ,qδH(jωℓ)vℓ,q

}
≤ 1− σℓ,q, ∀ℓ, q (28b)

C. Numerical implementation

In (28), the unknown model perturbation is represented by
δH, which is however induced by a perturbation on the model
residues (16). Let us define a vector δr containing all the
problem unknowns

δr ≜ vec {δR} , where δRT ≜
(
δRT

1 · · · δRT
ν

)
(29)

We further define the Cauchy matrix Φ with elements

[Φ]k,i = (jωk − pi)
−1, (30)

with its k-th row denoted as φk ∈ C1×ν . The model pertur-
bation (16) is first rewritten as

δH(jωℓ) = (φℓ ⊗ IP ) δR . (31)

Using the properties of the Kronecker product allows restat-
ing each of the localized constraints (28b) in the following
compact form

u∗
ℓ,qδH(jωℓ)vℓ,q = (vT

ℓ,q ⊗ u∗
ℓ,q) vec{δH(jωℓ)}

= (vT
ℓ,q ⊗ u∗

ℓ,q)(IP ⊗φℓ ⊗ IP ) δr =

= (vT
ℓ,q ⊗φℓ ⊗ u∗

ℓ,q) δr . (32)

The model perturbations at all the sampled frequencies can be
assembled from (31) as δH(jω1)

...
δH(jωK)

 = (Φ⊗ IP ) δR . (33)

This enables us to rewrite the cost function (24) in terms δr.
The first term in (24) can be compactly written as

K∑
k=1

∥δH(jωk)∥2F = ∥(IP ⊗Φ⊗ IP ) δr∥2 . (34)

As for the second term in (24), the contribution of the k-th
frequency point can be written as

vec{δH(jωk)X̆k} =
(
X̆T

k ⊗ IP
)
(IP ⊗φk ⊗ IP )︸ ︷︷ ︸
≜Ψk

δr. (35)

Upon substituting (34)-(35) in (24), JPE becomes

JPE = ∥(IP ⊗Φ⊗ IP ) δr∥2 + λ2 ∥Ψδr∥2

= ∥Θ δr∥2
(36)

where Ψ stacks vertically the Ψk for k = 1, . . . ,K as block-
rows, and where

Θ =

(
IP ⊗Φ⊗ IP

λΨ

)
(37)

plays the role of a regressor matrix, as in standard least squares
problems. Thus, equations (36) and (32) respectively give

the explicit dependence of (28a) and (28b) on the decision
variables, leading to the optimization problem to be solved at
each PE iteration

min
δr
∥Θ δr∥2 (38a)

s.t. Re
{
(vT

ℓ,q ⊗φℓ ⊗ u∗
ℓ,q)δr

}
≤ 1− σℓ,q, ∀ ℓ, q. (38b)

The proposed robust PE scheme is summarized in Algorithm 1.

Algorithm 1 Robust Passivity Enforcement

Require: initial model H, terminations T (m) as in (9)
1: Run passivity check on H to find Nv violation bands Ω(i)

2: H̄← H
3: Compute regressor matrix Θ of JPE as in (37)
4: while Nv > 0 do
5: Select violation frequencies {ωℓ}nc

ℓ=1 from all Ω(i)

6: for ℓ = 1, . . . , nc do
7: Compute {σℓ,q > 1,uℓ,q,vℓ,q} as in (25)-(26)
8: Setup constraint matrices ∀ℓ, q as in (38b)
9: end for

10: Solve the minimization problem (38) to find δr
11: H̄← H̄+ δH, i.e. update residues based on (16)
12: Check passivity of H̄, retrieve Nv violation bands Ω(i)

13: end while
14: return H̄

D. Computational cost

The computational complexity of the proposed approach
differs from that of standard PE schemes only for the increased
row dimension of the matrix Θ ∈ R(M+P )PK×P 2ν , which
depends on the possibly large number M of termination con-
ditions included in the model optimization. This drawback can
be alleviated by pre-processing Θ before applying the robust
PE scheme. This is possible because Θ is block diagonal up
to a permutation. Applying such permutation and computing
the QR factorization of the resulting diagonal blocks allows
to define the quadratic cost function of (38) in terms of a
square block-diagonal matrix of size P 2ν (the total number
of unknowns). This procedure is entirely analogue to the
one described in [31] and originally in [10], to which the
reader is referred for further details (additional implementation
aspects are omitted here). The asymptotic computational cost
of this pre-processing step is O(MKP 3ν2). The impact of this
overhead is quantified in Table I, which anticipates the runtime
(including preliminary QR factorizations) and PE iterations
that were experimentally measured for the three test cases
presented in Sec. V on a workstation equipped with a Core
i9-7900X CPU running at 3.3 GHz with 64 GB of RAM.

V. NUMERICAL RESULTS

The advantages of the proposed robust PE scheme are
illustrated on three different PDN testcases. Such structures
are in fact known to be quite sensitive to port terminations
when scattering-based rational macromodels are used in
simulations at the system level.
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TABLE I
EXPERIMENTAL COMPARISON OF COMPUTATIONAL COST (STANDARD PE

VS ROBUST PE) FOR THE THREE BENCHMARKS OF SEC. V.

Runtime # of iterations
Example P ν Standard Robust Standard Robust
Sec. V-A 4 24 11.3 s 26 s 6 23
Sec. V-B 5 22 4.5 s 5.2 s 4 6
Sec. V-C 9 26 7.2 s 8.4 s 6 6

Fig. 2. Top panel: magnitude of the Z2,2 entry of the impedance matrix of
the canonical PDN example of Sec. V-A. The reference data is compared with
the model response before PE, after standard PE, and after proposed robust
PE. Bottom panel: Average absolute error on the Z1,1 entry after loading
DUT with 2000 random capacitive terminations.

A. Testcase A

This section describes a canonical PDN structure consisting
in a pair of parallel conducting planes of size 12×10 cm sepa-
rated by a 1 mm dielectric FR4 layer (ϵr = 4.7, tanδ = 0.01).
Five lumped ports are located at random plane locations, and
one of them is connected to a 20 mΩ shunt resistor, so as to
model the presence of a voltage regulator (VR) providing the
main voltage and power supply. We consider the impedance
matrix looking into the remaining four ports, for which a
macromodel can be built. Note that this impedance matrix
is well-defined at DC because of the low-impedance path
provided by the resistive VR model.

This canonical example was already discussed in [31] as a
template to demonstrate load sensitivity of standard VF mod-
els. This sensitivity arises when loading the four remaining
ports with decoupling capacitors, which is a standard operation
in PDN design. We apply the robust fitting algorithm reviewed
in Sec. III to obtain a macromodel (ν = 24 model poles and
20 VF iterations, K = 2 · 103 data samples) that is robust

Fig. 3. Testcase A. Top panel: multi-sine current excitation signal; Bottom
panel: port voltages obtained from macromodels after standard and robust PE.

with respect to such termination class, based on M = 20
random capacitive (RLC) loads. The R, L, C values of the
capacitor models are uniformly distributed in the intervals
R ∈ [0.5, 1]mΩ, L ∈ [5, 10] pH, C ∈ [5 pF, 1 nF]. Next,
model passivity is enforced by residue perturbation using
both the standard cost function and the proposed robust cost
function (38), with nc = 30 passivity constraints in the first
iteration. As a measure to verify improvements and reduced
load sensitivity, we evaluate the 4×4 impedance matrix of the
DUT, including a set of randomly-generated RLC shunt loads
that were not used in the model training phase.

The top panel of Fig. 2 compares to the reference (exact)
solution three different models. The robust model before PE
(black line) is very accurate when compared to the exact
solution. Standard PE degrades model accuracy after re-
termination, as shown by the green dashed line. Using instead
the proposed robust cost function in the PE phase provides
superior accuracy (red dashed line). Such improvements are
mostly visible in close proximity of the resonance peaks.

A statistical analysis is reported in the bottom panel of
Fig. 2, which reports the average absolute error over frequency
on the input impedance Z1,1 when the macromodels are loaded
with two thousand random capacitive terminations (drawn
according to the same statistical distribution as the training
ones). The proposed PE scheme gives a passive model that
can be considered robust with a wide range of capacitive loads,
so that the results displayed in the top panel of Fig. 2 hold
consistently.

To further demonstrate the importance of a good approxima-
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Fig. 4. Testcase B. Comparison of standard and robust passive macromodel
responses to reference data. Top panel: selected scattering matrix response
S1,4. Bottom panel: selected impedance matrix response Z1,4.

tion of the reterminated input impedance, we look at the time-
domain voltage response to a current stimulus. The top panel
of Fig. 3 depicts the adopted current excitation, consisting in
a superposition of seven sinewaves with different frequencies
(corresponding to available ωk) and equal amplitude (10 mA).
This signal enables a trivial evaluation of an exact solution to
be used as reference. The responses of the two passive models
built using standard and robust cost function were computed
as well. The bottom panel of Fig. 3 shows the excellent accu-
racy of the robust passive macromodel, whereas the standard
macromodel exhibits unacceptable transient voltage errors.
This results clearly demonstrate the practical importance and
impact of using the newly defined JPE to obtain robustly
reliable results.

B. Testcase B

The second test case is an extraction of a real PDN with
P = 5 modeled ports (courtesy of Jian Liu, Cadence). This
structure shows strong error magnification when its macro-
model, built in the native scattering representation (R0 = 1Ω),
is converted to impedance (Z-parameters). The robust VF
algorithm was first applied with ν = 22 poles and 15 VF
iterations to simultaneously optimize the S-parameters with
R0 = 1Ω and the Z-parameters (i.e. M = 1 termination
scheme). The dataset contains K = 1260 samples. Given
that the weighting coefficients (20) required to enforce the Z-
parameters approximation are of much larger magnitude than
the native scattering representation, we set the regularization

Fig. 5. Testcase C (5-port model). Comparison of macromodel responses after
standard and robust PE to reference scattering responses (top panel) and after
conversion to admittance representation (bottom panel).

parameter to λ = 10−3. Then, we applied residue perturbation-
based PE using the standard and the proposed robust cost
functions, using nc = 9 passivity constraints in the first
iteration.

Results are depicted in Fig. 4. The top panel compares the
two macromodels to the reference in terms of scattering pa-
rameters. All macromodels are accurate in this representation.
However, when looking at the impedance responses in the bot-
tom panel, we see that only the proposed PE formulation pro-
vides a model that remains robust against error amplification
induced by the S-to-Z conversion. The impedance response
of the standard model is severely incorrect. This implies that
the standard model is practically useless in any system-level
simulation setting, especially those adopting high-impedance
terminations.

C. Testcase C

The last test case is extracted from an actual 45-port PDN
package design [39]. We initially consider a subset of P = 5
ports to build an S-parameter macromodel that remains accu-
rate when converted to the Y (admittance) representation. This
requirement is not trivial, because for this particular example a
standard VF macromodel exhibits high sensitivity in the S-to-
Y conversion, as we will see below. Thus, we simultaneously
fit the native scattering representation with R0 = 1Ω while
including weights (20) induced by the admittance parameter
conversion (M = 1), using 14 poles and 15 VF iterations
to fit K = 317 frequency samples. The resulting stable but
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Fig. 6. Transfer matrix norm of the testcase considered in Sec. V-C, before
and after PE. See Fig. 5 for the corresponding model responses.

non-passive model is the starting point for PE using standard
and proposed robust implementations. At the first iteration,
nc = 11 constraints are enforced. The resulting S-parameter
responses, reported in the top panel of Fig. 5, demonstrate
that standard passivity enforcement works well in the native
representation to which it is applied. However, conversion
of the standard passive model to Y representation (Fig. 5,
bottom panel) reveals major accuracy degradation. Conversely,
the proposed robust PE scheme meets the expectations of
preserving accuracy also in its admittance responses. Figure 6
reports the frequency-dependent norm ||S(jω)|| before and
after PE, demonstrating that uniform passivity is achieved at
all frequencies both for standard and robust implementations.

This package model is part of a larger PDN where it
is connected to a prescribed set of terminations, including
decoupling capacitors and a lumped VR model. Hence, it
makes sense to build a model with optimized accuracy with
respect to such prescribed loading network L. To demonstrate
the effectiveness of the proposed algorithm in achieving this
purpose, we now focus on nine ports, where the loading-
induced error magnification effect is particularly visible. A
9-port (P = 9) S-parameter macromodel was built using
the robust VF algorithm with 26 poles and 20 VF iterations,
whose representative scattering responses are displayed in
Fig. 7 (top panel). Passivity was again enforced by residue
perturbation using the standard PE, whose cost function does
not take terminations into account, and the proposed robust
PE (with M = 1). The resulting passive models are then
loaded with decoupling capacitors and the input impedance of
the re-terminated device is reported in Fig. 7 (bottom panel).
This experiment confirms that the standard PE reintroduces
the sensitivity issue (green dashed line), because its cost
function minimizes the perturbation in S-parameters only (thus
overlooking the error magnification issue), while the weighted
PE seeks to perturb the model coefficients so as to retain
accuracy of both the S-parameters and the input impedance
after loading (red dashed line).

VI. DISCUSSION

In this paper, we have documented how a simple modifi-
cation of the cost function defining model accuracy leads to

Fig. 7. Testcase C (9-port model). Comparison of passive model responses
(standard and robust) to reference data. Top panel: direct comparison of
scattering responses. Bottom panel: one representative PDN impedance matrix
element after retermination with VR and decoupling capacitor models.

dramatic improvements in macromodel robustness to changes
in its termination conditions. The presentation has been con-
centrated on a modification of a well-defined PE method [4,
Sec. 10.5 and 10.10] which is reviewed in Sec. IV. More
precisely, this approach is based on the iterative enforcement
of discretized constraints enforcing bounded realness of the
scattering macromodel response at a finite set of frequency
points. In the Authors’ opinion, this is by far the most effective
PE approach among those based on perturbation, as demon-
strated by the success of commercial tools (e.g. [40]) based
on this method. Due to its good performance, this method has
been successfully extended to the multivariate (parameterized)
case, see e.g. [41], [42], where the various methods differ
mainly on the strategy used to select the frequency locations
{ωℓ} where the local constraints are applied. Upon removing
the external parameters and focusing on univariate (frequency-
dependent) macromodels only, the latter methods are basically
identical to the reference PE approach that is enhanced in
this work. Therefore, it is expected that the adoption of the
robust cost function proposed in this work in the multivariate
setting of [41], [42] will lead to similar improvements on the
sensitivity of parameterized macromodels. This investigation
is left for future works.

A second remark is in order. Several strategies exist for PE,
in addition to the local perturbation described in this work.
Most notable approaches are the well-known methods based
on Hamiltonian spectral perturbation [21] and those based on
the KYP Lemma [22]. Such methods, thoroughly discussed
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and compared in [4], are all based on the minimization of
some cost function under specialized passivity constraints, re-
spectively displacement of Hamiltonian eigenvalues or Linear
Matrix Inequalities (LMIs) of KYP type. Such constraints
can be directly combined with the proposed cost function, to
make the corresponding PE methods robust to load variations.
The local perturbation approach has been preferred in this
work over KYP, because the latter would require the solution
of a Semi-Definite optimization Program (SDP) with LMI
constraints. Although SDP solvers are widely available and are
being continuously improved, we found in our experiments the
approach documented in this paper is numerically much more
robust and can easily handle large-scale problems, whereas
an SDP solver would be excessively demanding in terms of
runtime and memory. An SDP-based PE equipped with the
proposed robust cost function (24) was in fact implemented
and used to enforce passivity of the 9-port model of Fig. 7
and Sec. V-C. This process required 1480 seconds, whereas
the preferred local perturbation approach required only 8.4 s,
with no appreciable difference in the results.

We conclude this section with a final remark on conver-
gence. In this work, we have not considered Hamiltonian spec-
tral perturbation approaches, since their specific constraints do
not guarantee that the elimination of some passivity violation
band will not generate another violation elsewhere. The only
PE enforcement methods based on perturbation that guarantee
convergence are those based on direct KYP constraints, which
can be proved to be convex optimization problems in terms of
the decision variables (residue perturbations). Unfortunately,
as documented above, such methods are extremely demanding
in terms of computing resources and are inapplicable on
standard hardware to realistic large scale SI/PI structures.
The PE framework that is adopted in this work is based on
frequency-dependent constraints (13) that are fully equiva-
lent to KYP constraints (under proper technical conditions,
see [4]), which are discretized as (18) and linearized as (27). If
the discretization is sufficiently dense and accurate, it is known
that the resulting method preserves the good convergence
properties of the KYP approach, with a dramatically reduced
computational cost.

VII. CONCLUSIONS

This paper presented a systematic and effective approach
to generate passive macromodels with reduced sensitivity to
variations in their termination networks. The problem of load
sensitivity is often overlooked in the rich literature on the
subject. However, in the Authors’ opinion such issue still
represents a fundamental roadblock that prevents effective use
of rational fitting algorithms in several application fields.

This paper completed the framework initially introduced
in [31], where a robust formulation of the Vector Fitting
scheme with reduced load sensitivity was presented. Here, a
robust passivity enforcement scheme was presented, which,
combined with the above robust VF, can lead to behavioral
macromodels of LTI systems that are at the same time passive,
hence unconditionally stable upon loading the macromodel
with arbitrary passive termination networks, as well as robust

to variations of such termination networks. Effectiveness of
proposed algorithm was demonstrated on three Power Delivery
Network benchmarks.

APPENDIX

In this section, we elaborate on the sensitivity of a given
LTI system to its port terminations, and we propose a simple
procedure to design a passive network that emphasizes such
sensitivity. We denote such network as worst-case termination,
not to be intended in strict sense, but rather as a particular load
that maximizes sensitivity at one or more discrete frequencies
by design.

Let us consider the setting of Fig. 1 and Sec. II, namely
a DUT with input-output (scattering) representation (1) ter-
minated into a passive LTI system (2). The solution for the
interface port signals is reported in (3). Any modeling error
∆H(s) in the approximation of H̆(s) with a macromodel
H(s) is amplified in the port signals by matrix Ξ−1(s) where

Ξ(s) = IP − Γ(s)H̆(s). (39)

We attempt designing a passive P -port network with scattering
matrix Γ(s) that maximizes the magnitude of the largest
eigenvalue of Ξ−1(s), which is equivalent to minimizing the
magnitude of the smallest eigenvalue of Ξ(s).

Let us consider a fixed frequency s0 = jω0 and perform a
singular value decomposition of the DUT scattering matrix

H̆(s0) = U0Σ0V
∗
0 =

P∑
i=1

σ0,iu0,iv
∗
0,i (40)

with sorted singular values σ0,i ≥ σ0,i+1 and mutually
orthonormal left (right) singular vectors u0,i (v0,i). Given the
assumption that the DUT is passive, we have σ0,1 ≤ 1, ∀ω0.
We then define a rank-one matrix

Γ(s0) = Γ0 = α0,1v0,1u
∗
0,1. (41)

Replacing (40) and (41) in (39) leads to

Ξ(s0) = IP − α0,1v0,1u
∗
0,1

P∑
i=1

σ0,iu0,iv
∗
0,i

= IP − α0,1σ0,1v0,1v
∗
0,1

(42)

from which we see that one eigenvalue of Ξ(s0) is equal to
µ0,1 = 1−α0,1σ0,1. The minimum value that can be attained
by this eigenvalue under the constraint that also Γ(s) is a
passive LTI network (with α0,1 ≤ 1) occurs when α0,1 = 1
and reads µ0,1 = 1 − σ0,1. This value is minimum at the
frequency ω0 where σ0,1 is largest. The above considerations
lead to the following procedure:

1) find the frequency ω0 that maximizes σ0,1 = ∥H̆(jω0)∥
2) assemble the rank-one matrix (41) with α0,1 = 1,

namely
Γ0 = v0,1u

∗
0,1 (43)

3) find a real stable rational matrix function Γ(s) that
interpolates Γ0 at s = jω0 while satisfying the passivity
condition ∥Γ(jω)∥ ≤ 1, ∀ω ∈ R.
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Fig. 8. Error amplification factor for testcase B under loading with its worst-
case termination network.

Fig. 9. As in Fig. 8, but for testcase C.

The resulting Γ(s) provides the worst-case termination at
frequency ω0. The following generalizations can be envisioned

• if the largest singular value σ0,1 has multiplicity m higher
than one, or similarly if m singular values are very close
to 1, then a rank-m matrix Γ0 can be defined as

Γ0 =

m∑
i=1

v0,iu
∗
0,i (44)

resulting in multiple eigenvalues µ0,i = 1− σ0,i;
• if there are multiple frequencies jωk at which σk,1 =
∥H̆(jωk)∥ are very close to one, than rank-1 or rank-m
matrices Γk can be defined as in (43) or (44) and used to
construct a passive rational matrix Γ(s) that interpolates
all such Γk. The resulting termination network will
emphasize sensitivity at all frequencies ωk.

Circuit synthesis of Γ(s) can be performed using the general
methods discussed in [4] or [24].

We illustrate the above process with two examples, namely
the testcases B and C discussed in Sec. V-B and Sec. V-C,
respectively. Figures 8 and 9 report the frequency-dependent
eigenvalues of Ξ−1(jω) based on the worst-case terminations
designed at DC and at some high-frequency point. In both
cases the largest eigenvalue reaches a value of ≈ 104, denoting
high sensitivity and error magnification. The theory and algo-
rithms presented in this work demonstrate that, by embedding
such terminations in the fitting and passivity enforcement cost

functions, the resulting macromodel will remain accurate also
under such worst-case terminations.
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