
12 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Two-Fold Traffic Flow Model for Network Security Management / Bringhenti, Daniele; Bussa, Simone; Sisto, Riccardo;
Valenza, Fulvio. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. -
ELETTRONICO. - 21:4(2024), pp. 3740-3758. [10.1109/TNSM.2024.3407159]

Original

A Two-Fold Traffic Flow Model for Network Security Management

Publisher:

Published
DOI:10.1109/TNSM.2024.3407159

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989178 since: 2024-08-26T05:59:22Z

IEEE

A two-fold traffic flow model
for network security management

Daniele Bringhenti, Simone Bussa, Riccardo Sisto, Fulvio Valenza

Abstract—Introducing formal methods in the automatic reso-
lution of network security management problems can guarantee
solution correctness, so also boosting human confidence in using
automatic techniques. A necessary step to achieve this feature is
the definition of formal network models, representing network
topology, traffic flows, etc. Each state-of-the-art formal network
modeling approach has been proposed and validated only for a
specific management problem (e.g., verification of configurations
or refinement of policies into configurations). This paper analyzes
a possible combination of the most promising state-of-the-art
modeling approaches into a unified formal model that can be
used by existing automatic resolution algorithms to solve both
the verification and the refinement problems, without the need
of major changes. The model is flexible enough to allow different
aggregation levels of traffic into flows. The paper analyzes two
opposite flow aggregation strategies, named Atomic Flows and
Maximal Flows, and compares their performance when applied
to the two identified security problems.

Index Terms—network security management, policy-based
management, network formal models

I. INTRODUCTION

In the last decade, computer networks have been signifi-
cantly reshaped by the advent of softwarization paradigms,
such as Software-Defined Networking (SDN) and Network
Functions Virtualization (NFV). Nowadays, network security
management must comply with the agility and dynamism
characterizing virtual environments [1]. In order to meet this
requirement, the traditional security management approaches,
based on manual trial-and-error techniques, are being pro-
gressively abandoned, because they are cumbersome, time-
consuming, and error-prone. In particular, they are being
replaced by automatic processes and tools, which can exploit
a comprehensive view of the network to simplify and speed up
security management operations, while reducing the number
of fallible human interventions.

A possible paradigm through which automation can be
introduced into network security is policy-based management
[2], which lately in literature is also tending to intent-based
networking [3]. The core idea is that human administrators
should just specify the security requirements or intents to
be managed in a network by means of sentences expressed
in a user-friendly language, and then automatic resolution
algorithms are employed to solve the related network secu-
rity management problems [4] (e.g., to verify if an existing
security configuration fully satisfies the required policies, or

D. Bringhenti, S. Bussa, R. Sisto, and F. Valenza are with the Politecnico
di Torino, Dip. Automatica e Informatica; e-mail: {first.last}@polito.it.

to automatically derive the configuration from them). A key
feature of employing policy-based management for network
security automation is that it is suitable to be paired with
formal methods. This feature can assist in guaranteeing that
the automatically computed results of the policy-based man-
agement operations are actually correct and compliant with
the security requirements to be enforced in the network [5].
Therefore, it increases the human confidence in employing
automated tools and it contributes to the success of network
security automation.

In this context, a central research activity is the investigation
of adequate network models, representing the key elements
for the application of policy-based security management, as
well as for other automatic techniques (e.g., approaches based
on artificial intelligence). A concept that plays a central role
in such models is the representation of network traffic flows.
Formally modeling how the packets originating from the
source of a communication can be forwarded and modified in
a network until they reach their destination is a complex task,
which involves modeling multiple elements: (i) the packets
that can cross a network; (ii) the paths that each packet can
follow in the network; and (iii) the transformations that each
network function can produce in the packets that traverse it.

Research in formal network models has made progress
over the last years. The first models proposed in literature
for verification purposes [6]–[8] could describe only simple
networks, without functions that can modify packets, and
were characterized by limited scalability. These limitations
have been overcome by more recent approaches such as AP
Verifier [9], its extension APT [10] and Verigraph2.0 [11]
for verification, while ConfigSynth [12] and Verefoo [13] for
refinement. However, most of these models have been designed
to assist a single security management operation (verification
or refinement), and they are usually not flexible enough to al-
low the application of the other operation. The only exception
is the pair Verigraph2.0 - Verefoo, because these approaches
share a similar network and flow modeling approach, which is
based on modeling traffic flows rather than packet classes. In
particular, those approaches aim to aggregate flows as much
as possible, creating entities named Maximal Flows. Another
interesting concept, which was introduced in AP Verifier and
extended in APT to networks with transformers, is Atomic
Predicates, representing the coarsest equivalence classes of
packets in a particular network (i.e., two packets belong to
the same class if they are not distinguished by any middlebox
in the network). Even if this concept has been formulated and

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

used only for the verification problem, it features very good
performance and scalability.

In this paper, we aim to improve this state of the art about
research in formal network models with multiple contributions.
First, we present a new flow grouping strategy, aiming to create
flow entities named Atomic Flows. This strategy leverages the
concept of Atomic Predicates so as to have packet classes
considered for traffic flow computation that are minimal and
disjoint from each other. This feature allows a finer flow
granularity than what Verigraph2.0 [11] and Verefoo [13]
can achieve with Maximal Flows, despite creating a larger
number of flows. In order to clarify all their differences, in
this paper we fully detail not only the novel Atomic Flow
strategy, but also the Maximal Flow strategy, as it was not
completely described in the Verigraph2.0 [11] and Verefoo
papers [13], whose scope was different. Then, we developed
Verigraph2.0 and Verefoo variants based on Atomic Flows
instead of Maximal Flows. These new variants of the two
original frameworks allowed us to experimentally compare
the efficacy and efficiency of the two algorithms for flow
computation in the context of the two main operations re-
lated to policy-based management for network security, i.e.,
verification of connectivity properties (i.e., reachability and
isolation properties) [14], and refinement (i.e., deriving the
security configuration from the user-specified policies [15]).
A main objective of this comparative analysis was to identify
the flow aggregation strategy that is characterized by lower
computation time and memory usage to solve each one of the
analyzed security management problems.

The idea of this two-fold traffic flow model was presented
preliminarily in [16]. This paper improves and completes that
preliminary idea in the following ways: (i) the formalization
of the traffic flow model, and the presentation of the two
algorithms for computing Atomic Flows and Maximal Flows,
so as to show the generality and flexibility of this model; (ii)
a complete use case to which both algorithms are applied so
that each step of them can be more easily understood; (iii) an
extended discussion of related work to emphasize the novelty
of this proposal; (iv) an improved experimental validation of
the approach with application to realistic computer network
topologies and the addition of new metrics in the scalability
tests; (v) an extended comparison of the two algorithms with
the identification of their respective advantages and disadvan-
tages.

The remainder of this paper is structured as follows. Section
II discusses related work. Section III describes the approach
that is pursued for modeling and computing traffic flows.
Section IV introduces the models of basic networking concepts
(network topology, network functions, packets classes, security
policies). Section V and Section VI illustrate the algorithms
for the computation of Atomic Flows and Maximal Flows
respectively, built on the previously presented models. Section
VII describes how the modeling approach has been validated
and the two algorithms have been compared, highlighting
their advantages and drawbacks. Finally, Section VIII briefly
concludes the paper and outlines future work.

II. RELATED WORK

Several state-of-the-art approaches pairing security policy-
based management with formal methods (i.e., [6]–[13], [17]–
[25]) showed the need to model network packets or traffic
flows, as they represent the key components for modeling more
complex elements (e.g., the behavior of network functions, or
the network security policies specified by the administrator).
Here, our focus is on the formal models proposed to address
the problems of verifying network security properties or of
automating security configuration from user-specified policies.
These two problems also represent the scenarios our model has
been validated on. To this regard, Subsection II-A discusses the
main characteristics and limitations of formal models proposed
in literature to verify network security properties, whereas
Subsection II-B focuses on the models defined in the context
of automated approaches for network security configuration.

A. Flow models for verifying network security properties

Initially, the problem of defining traffic flow models for
the verification of network security properties (e.g., network
connectivity) was addressed without focusing on possible op-
timizations. In this respect, the milestone in this research area,
i.e., [17], proposed an approach that computes and verifies the
reachability a network can provide from a static snapshot of
the configuration state from each of the routers composing
the network topology. In doing so, it models all the possible
packets whose reachability should be checked.

Later, some optimizations were introduced. On the one
hand, [18] proposed a formal approach, named Header Space
Analysis (HSA), based on a geometric model of the packet
header space. Packets are modeled as points in the geometric
space {0, 1}𝐿 , where 𝐿 is the header length, and network
functions as transfer functions on that space itself. Conse-
quently, the operations performed on a packet along a path are
obtained by composing the operations of the network functions
it crosses. [19] extended this approach by adapting it to real-
time property checking. On the other hand, Veriflow, the
methodology illustrated in [6], combines packets into disjoint
Equivalent Classes (ECs), i.e., sets of packets experiencing
the same forwarding actions throughout the network. For each
EC, Veriflow builds a forwarding graph representing the paths
this EC can take according to the forwarding behavior of
the network. However, both the approaches discussed in [18]
and [6] initially model all the packets, before selecting or
combining them into the classes that are really needed to check
the requested security properties.

Other solutions are based on symbolic modeling, which
avoids the explicit modeling of each packet. [20] proposes
Network Optimized Datalog (NoD), a tool that models each
packet header field as a separate symbolic variable, and a
network function as a predicate that takes as parameters all
the header fields in the packet. A symbolic execution explores
all possible paths through the program, computing the possible
values for each symbolic variable at every point. As not all
such values are usually necessary, but only some of them,
there is a redundancy of the results that need to be computed.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Another tool, named Symnet [21], tried to overcome this
limitation by proposing the Symbolic Execution Friendly Lan-
guage (SEFL). This programming language is used to express
the data plane of the network so as to enable fast symbolic
execution, as models are by construction memory safe, have
bounded memory usage and are guaranteed to terminate. One
of the limitations of this approach, as the authors state in
[21], is that accurately modeling network functionalities that
work with their proposed traffic model requires expertise from
human users. However, they provide parsers only for a limited
number of functions (i.e., switches, routers, and firewalls).
This makes their models difficult to be extended to solve other
security problems and for heterogeneous networks.

Among the most recent studies proposing traffic models for
verifying network properties, two techniques are particularly
relevant: Verigraph2.0 [11] and APT [10], which is an ex-
tended version of AP Verifier [9]. The former [11] models
each packet class as a conjunction of predicates set over the
packet fields, so that these predicates can be used for the
formulation of a constraint programming problem to represent
the verification problem, and it introduces the model of a
traffic flow, which includes a collection of packets forwarded
along the same path. The latter [10] introduces the concept
of Atomic Predicate, used to represent a class of packets that
are treated identically by every filter and transformer in the
network. In their approach, the packet class represented by
each Atomic Predicate can be identified by an integer, so that
all the required operations of the verification process only
deal with the integers that represent such classes. Nevertheless,
each packet class is modeled as a bit array, and each predicate
is a Boolean formula where each variable represents one bit in
the packet header. In our view, this formalization may make
it difficult to use this strategy for other security management
operations, such as configuration, as the number of variables
employed is high (i.e., a Boolean variable for each packet
header bit).

Anyhow, we were inspired by the proposed concept of
Atomic Predicate for the formulation of the algorithm to
compute Atomic Flows (analyzed in Section V), casting that
concept into a different traffic model based on less variables,
as predicates are set over the packet fields instead that on their
single bits.

B. Flow models for automatic network security configuration

Among the studies that apply formal methods to the au-
tomatic configuration of network security functions, the first
ones, such as [7], [8] and [22], have limited models for
network traffic. In particular, when mapping user-specified
policies onto the configuration of security functions (mostly
firewalls), these approaches do not take into account the
possible transformations that may be applied to the traffic by
functions such as NATs or load balancers.

Then, in more recent papers, such as [12], [13], [23]–
[25], modeling flows has gained more interest, mainly due
to the need to make automated methodologies applicable to
distributed security functions, e.g. distributed firewalls, where

it is necessary to have a global view of all the traffic crossing
the network rather than of the packets reaching a single
function instance. In greater detail, [12] simply identifies traffic
flows by the identifiers of the end points of the communication
and it uses them to decide how to secure a user-provided
network graph by allocating different types of network security
functions. Their flow model is rather simplistic, as it does not
take into account the possible values that packet header fields
such as IP addresses or ports may have. [23] also models
the protocol that is used for the communication (e.g., HTTP,
SSH), while [24] considers a large number of packet attributes
(e.g., the IP 5-tuple fields or the timestamp) to represent each
traffic flow, so that the methodology proposed in those papers
takes decisions on the values of those attributes to automate the
composition and configuration of chains composed of network
security functions.

Finally, [13], [25] introduce a model which represents
packets including all the fields of the IP 5-tuple, but open
to include more fields, and traffic flows, modeled in a way
similar to the one introduced in Verigraph2.0. Even if their
traffic model is tailored to packet filtering and its validity for
other security management problems is not proved, a relevant
concept is that the approach proposed there tries to group
multiple flows that behave in the same way (i.e., that cross
the same node sequence and are subject to the same changes)
into a single one.

C. Our contributions

All the studies mentioned above define network and traffic
models to solve specific verification or configuration tasks,
but they did not prove that the same models can be used
efficiently to solve other security-related problems. Moreover,
each method is affected by some limitations, as illustrated
above.

This paper starts from the most promising modeling ap-
proaches proposed so far, and studies a possible way of com-
bining them into a general formal model that can be used both
for verification and refinement purposes, and that overcomes
the most important limitations of the original techniques. More
specifically, our contributions are the following ones:
• Differently from the modeling approaches used by Veri-

graph2.0 [11] and by Verefoo [13], where flows are
joined together in order to reduce their number, here we
also study a different grouping strategy, which we call
Atomic Flows. This novel strategy is inspired by the APT
approach of coarsest equivalence classes [10], but cast to
the traffic flow model, using efficient field models rather
than header bits.

• We formalize and validate the algorithm to compute
Atomic Flows, according the Atomic Predicates strategy.
Moreover, we provide a complete description of the
Maximal Flows computation algorithm, which was not
fully investigated in the Verigraph2.0 [11] and Verefoo
[13] papers.

• We compare the two strategies with an extensive series
of experimental tests to assess their performance, their

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 1: The flow modeling approach

applicability to security management operations and to
provide their trade-offs.

III. THE FLOW MODELING APPROACH

This section describes the workflow where the proposed
flow modeling approach can be used to pair automation
and formal methods for network security management. This
workflow is composed of three main steps, as illustrated in
Fig. 1:

1) the definition of general models for the main components
of the network security management problem;

2) the computation of the traffic flows that cross the network
under consideration;

3) the execution of an automatic resolution algorithm tai-
lored to solve the security management problem.

A. Model definition

The first step of the approach consists in the definition
of formal models for the main components of the network
security problem. In particular, four main model classes are
needed:

• The packet class model is needed to identify and group
packets which belong to the same traffic flows and which
are subject to the same networking operations.

• The network model consists in the representation of both
the network topology structure and the forwarding and
transformation behaviors of each function composing it.
This model is needed to understand how packet classes
cross the network and how they are managed by inter-
mediate middleboxes.

• The traffic flow model is needed to provide a general
representation for the flows of packets that cross the
network, so as to apply the traffic flow algorithms to
compute the flows that are interesting for the security
policies.

• The network security policy model is needed to represent
the requirements that must be managed in the network
(e.g., that must be verified or enforced), so as to identify
the network areas and the traffic flows that concern them.

In the definition of these models, a main aim has been to
achieve a trade-off between adherence to reality and efficiency.

On the one hand, the models must capture all the infor-
mation that may influence the correctness of the solution.
If a critical piece of information is missing, the output of
the automatic verification or resolution algorithm may not be
correct, even if there is no issue in the algorithm design. For
example, the configuration of a packet filtering firewall must
be modeled so as to consider the decision that the function may
take for any kind of possible input traffic (e.g., by modeling
a default action that is applied whenever there is no match of
the packet fields with the conditions of another filtering rule).

On the other hand, such models must be lightweight enough
so as not to impact too much on the performance of the
algorithms. If an excessive amount of redundant information
is included in the models, their processing will require ad-
ditional execution time, without altering the final result. For
example, the behavior of a firewall should be modeled so as
to capture only the features related to the security properties
that must be enforced in a network (e.g., only the features
related to forwarding operations if the security requirements
concern reachability or isolation properties). Defining models
that are lightweight enough is particularly important when
the algorithm is based on a constraint-based programming
problem, such as an integer linear programming problem or a
Satisfiability Modulo Theories (SMT) problem. Less complex
models allow reducing the number of variables employed
for the problem formulation, and consequently the size of
the solution space that the automated solver of such kind of
problems must exhaustively explore.

The models that are defined in this paper to achieve such
trade-offs are detailed in Section IV.

B. Traffic flow computation

The second step of the approach consists in computing
all the traffic flows that are relevant for solving the network
security management problems. For instance, if a human
administrator wants to verify a reachability property, the flows
that pertain that requirement must be identified and computed
before the execution of the verification algorithm.

In our vision, a traffic flow represents how a packet class,
generated by a network end point, crosses an ordered list
of intermediate network functions before reaching the des-
tination, and how these functions may transform the packets
belonging to this class before possibly forwarding them to
the next hop. According to this definition, the traffic flow
computation may produce different results depending on how
single network packets are grouped into classes. In particular,
the choice of a grouping strategy has impact on the following
main features: 1) the number of traffic flows that are computed;
2) the granularity level of each traffic flow, expressing how
small the packet class associated with the flows is.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

As different trade-offs can be reached for these characteris-
tics, we have analyzed two different algorithms for traffic flow
computation. Both of them work on the same general formal
models proposed for packet classes and traffic flows, but they
balance the number of computed flows and their granularity
level in different ways. The flows that are computed with
these two algorithms are respectively named Atomic Flows
and Maximal Flows.

The computation of Atomic Flows is inspired by the idea
of Atomic Predicates originally proposed in [9], as previously
stated in Section II. According to that study, given a set
of predicates on packet fields, it is possible to compute the
set of totally disjoint and minimal predicates, named Atomic
Predicates, such that each predicate can be expressed as a
disjunction of a subset of atomic ones. Applying this concept
to a computer network, it is possible to split each complex
predicate (e.g., a predicate representing a firewall rule field,
a NAT input packet class, or the condition of a security
policy) into a disjunction of simpler and minimal Atomic
Predicates. After computing the set of Atomic Predicates for
all the predicates used in the network, the Atomic Flows
can be computed so that each packet class that is associated
with one of them is represented by an Atomic Predicate.
This guarantees a fine granularity level, as each packet class
considered for traffic flow computation is the minimal one,
and is disjoint from the others. Another main advantage of
this approach is that, as all Atomic Predicates are disjoint for
definition, each packet class related to an Atomic Flow can be
associated with an integer number that uniquely identifies it.
This feature allows the execution of easier operations, both for
traffic flow computation and for the resolution of the security
management problem, because they can work on integers
instead of complex predicates. Nevertheless, a drawback is
that a larger number of traffic flows are produced with this
algorithm. The algorithm for the computation of Atomic Flows
is detailed in Section V.

Instead, the computation of Maximal Flows is based on
the opposite criterion, which is to reduce the number of
generated flows, while maximizing their aggregation. In this
second case, all traffic flows that behave in the same way
when crossing the network are grouped into a single Maximal
Flow, so that it is sufficient to consider one Maximal Flow in
the resolution of the security management problem instead of
considering all the flows that make it up. The execution time
for computing the Maximal Flows is expected to take less time,
because the number of actual flows that must be computed is
minimized. The counterbalance of such approach is that the
packet classes whose transformation through the network is
represented by a Maximal Flow have a coarser granularity, as
they may represent a larger set of packets with respect to the
approach based on the computation of Atomic Flows. Besides,
these packet classes may not be disjoint, which complicates
their use and requires that the packet classes they represent
be preserved, instead of being neglected as it is possible
with atomic flows. Indeed, differently from the approach
based on Atomic Flows, the predicates representing packet

classes cannot be uniquely identified by integer numbers. The
algorithm for the computation of Maximal Flows is detailed
in Section VI.

C. Automatic algorithm execution for security management

The third step of the approach consists in executing a
specific automatic resolution algorithm for the network secu-
rity management problem that needs to be addressed. State-
of-the-art algorithms, already available in literature, may be
employed for this step with minor changes. On the one hand,
some changes are required to make those algorithm compliant
with the formal models defined for the main components
of the network security problem. However, as these models
are designed to be as general as possible, most algorithms,
already defined to work with custom network models, can
be easily adapted to work with them. On the other hand,
some modifications are due to the choice of which strategy
is used for flow computation, as Atomic and Maximal Flows
rely on partially different models for packet classes and traffic
flows. Nevertheless, these changes are not related to the core
approach of the selected resolution algorithm. Instead, they are
mostly related to the actual low-level operations that must be
executed (e.g., operations related to Atomic Flows work with
integer numbers, while those related to Maximal Flows work
with more complex predicates).

In order to show that this approach can be pursued by
slightly modifying and extending existing resolution algo-
rithms, we have applied it to two state-of-the-art algorithms
for network security automation, available as open-source
code: Verigraph2.01 [11] and Verefoo2 [13]. The former au-
tomatically verifies connectivity properties (i.e., reachability
and isolation properties) by providing formal assurance of
the result correctness. Instead, the latter automatically refines
user-specified security policies into the allocation scheme
and configuration of distributed packet filtering firewalls, by
formulating the security automation problem as a Maximum
Satisfiability Modulo Theories (MaxSMT) problem so as to
ensure correctness by construction for its output. Section VII
shows how both these resolution strategies could be extended
to support both Atomic and Maximal Flows, and how the two
flow computation algorithms behave in terms of performance
when applied to solve different network security management
problems.

D. Running example

In order to aid the understanding of the formal models
and of the traffic flow computation algorithms, Fig. 2 shows
a possible scenario that will be used as a running example
to describe the proposed approach in the next sections of
the paper. The figure represents a network composed of two
client sub-networks (10.0.0.0/24 and 20.0.0.0/24) and a server
(30.0.5.1 in sub-network 30.0.5.0/24). The network includes
also a NAT (30.0.0.1) shadowing only the IP address 10.0.0.1,
and a firewall with its own access list containing only one

1https://github.com/netgroup-polito/verigraph
2https://github.com/netgroup-polito/verefoo

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

F1 Forwarding domain
action ipSrc ipDst portSrc portDst trProto
1 Allow 10.0.0.1 30.0.5.1 * * *
D Deny * * * * *
I𝑎 (10.0.0.1, 30.0.5.1, *, *, *)
I𝑑 ¬I𝑎

NAT 30.0.0.1 Transformation domain
Sources 10.0.0.1

D1 (Shadowing) (10.0.0.1, ¬10.0.0.1 ∧ ¬30.0.0.1, *, *, *)
D2 (Reconversion) (¬10.0.0.1 ∧ ¬30.0.0.1, 30.0.0.1, *, *, *)
D3 (Forwarding) ¬D1 ∧ ¬D2

Fig. 2: Example scenario

rule. In this scenario, the only security policies specified by
the user refer to all traffic flows originating from the client
sub-network 10.0.0.0/24 and directed to the server 30.0.5.1,
without any restriction on port numbers and protocol type. In
particular, the flows linking 10.0.0.0/24 and 30.0.5.1 can take
two possible paths: one passing through the NAT and one
passing through the client sub-network 20.0.0.0/24.

IV. MODEL

In this section, we present the formal models of the main
network elements (packet classes, network topology and func-
tions, network security policies, traffic flows). These models
are partially mutated from the modeling approaches proposed
in [11] and [13], as they were already defined to be compatible
with the two network security automation operations analyzed
in this paper, i.e., the verification of connectivity properties,
and the refinement of user-specified policies into security
function configuration. However, they have been generalized
so that they could be applied to both the algorithms for
computing the Atomic Flows and Maximal Flows.

A. Packet class model

Definition IV.1. Packet class (traffic): A packet class, also
named traffic, 𝑡, is modeled as a predicate defined over the
values of the packet fields. In particular, 𝑡 is a disjunction of
predicates, where each predicate is defined over a single field.

This definition is general enough to support the formal-
ization of packet class models suitable for solving different
network security management problems. Depending on the
packet fields that must be considered to solve them, new pred-
icates defined over them may be included to the disjunction
of predicates modeling 𝑡.

In the following, we present a special case of packet class
model, where the packet fields on which the predicates of

𝑡 are defined are the ones of the IP 5-tuple. This specific
formulation has been mutated from the two studies proposing
the resolution strategies with which we aim to analyze the
two flow computation algorithms, i.e., [11] and [13]. In those
studies, it has been already proved to achieve higher efficiency
for verification and refinement algorithms with respect to state-
of-the-art alternatives, hence the decision of using it as a
starting point for the approach discussed in this paper.

In this particular case, a packet class 𝑡 is formally modeled
as a disjunction of predicates 𝑞𝑡 ,1 ∨ 𝑞𝑡 ,2 ∨ ... ∨ 𝑞𝑡 ,𝑛, where
each 𝑞𝑡 ,𝑖 is defined over the 5-tuple fields. A packet belongs
to class 𝑡 if and only if its 5-tuple satisfies at least one 𝑞𝑡 ,𝑖 .
Each 𝑞𝑡 ,𝑖 represents the conjunction of five predicates, one for
each field of the 5-tuple. For sake of simplicity, each 𝑞𝑡 ,𝑖 is
written as

𝑞𝑡,𝑖 = (ipSrc, ipDst, portSrc, portDst, trProto) (1)

where ipSrc, ipDst, portSrc, portDst and trProto are the 5
predicates.

The predicates about source and destination IPv4 addresses
ipSrc and ipDst are conjunctions of four predicates, one for
each byte of the address. Each one of the four predicates can
represent a single integer value or a range of values, not ex-
ceeding the range 0 to 255. The predicates that make up ipSrc
or ipDst are concisely written by means of the dotted-decimal
notation 𝑖𝑝1.𝑖𝑝2.𝑖𝑝3.𝑖𝑝4. The range [0, 255] is concisely
represented by the wildcard ∗. If 𝑖𝑝𝑖 is a range, the predicates
on its right must be ∗. For example, ipSrc = 130.192.5.∗ stands
for the predicate 𝑥1 = 130 ∧ 𝑥2 = 192 ∧ 𝑥3 = 5, where 𝑥𝑖 is
the variable representing the i-th byte of the source IP address
packet field, and this predicate identifies all the IP addresses
matching 130.192.5.0/24.

The predicates about source and destination ports portSrc
and portDst can identify either a single integer number or a
range of values, not exceeding the range 0 to 65535, and the
same notation used for each byte of an IP address is also used
for the port number, with the range [0, 65535] symbolized by
the wildcard ∗. For example, 80 stands for the predicate 𝑥 = 80
and [80, 100] stands for the predicate 𝑥 <= 100 ∧ 𝑥 >= 80
where 𝑥 is the variable that represents the port field.

The predicate about the transport-level protocol trProto can
identify a single value or a subset of values among a finite
set of possible values (e.g., a set including the “TCP” and
“UDP” values). The set of all the possible values in this set
is concisely symbolized by the wildcard ∗.

In all our models, we use the “.” notation to denote a
specific tuple element (e.g., given a tuple 𝑡 = (𝑎, 𝑏, 𝑐), 𝑡.𝑎

identifies element 𝑎 of tuple 𝑡). Therefore, each sub-predicate
of a 𝑞𝑡 ,𝑖 predicate can be denoted with this notation for sake
of conciseness, e.g., 𝑞𝑡 ,𝑖 .ipSrc represents the sub-predicate of
the 𝑞𝑡 ,𝑖 predicate defined over the source IP address.

Let us denote 𝑄 the set of all the predicates 𝑞𝑡 ,𝑖 that can
be specified with the above notation, and T the set of all the
disjunctions of such predicates, i.e., the set of all packet classes
𝑡 that can be represented by this model. It can be proved that
𝑇 is closed under conjunction, disjunction and negation. Given

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

two traffic predicates 𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 is said to be a sub-traffic
of 𝑡2, written 𝑡1 ⊆ 𝑡2, if 𝑡1 represents a subset of the packets
represented by 𝑡2, i.e., if 𝑡1 ⇒ 𝑡2.

B. Network model

The network topology is modeled as a tuple (𝑁, 𝐿), where
𝑁 is the set of the vertices representing network nodes,
whereas 𝐿 is the set of the links representing directed network
connections. The nodes represent the network endpoints and
functions (i.e., web clients, web servers, routers, firewalls,
VPN gateways, load balancers).

Definition IV.2. Network Function (NF): The behavior of an
NF is modeled abstractly by means of two functions, which
captures respectively the forwarding behavior (i.e., which
input packets are discarded by the functions) and the trans-
formation behavior (i.e., how the packets are modified before
being forwarded to the next hop towards their destination).

The forwarding behavior of a function node 𝑛𝑖 ∈ 𝑁 is
modeled with the predicate deny𝑖 : 𝑇 → B, which maps an
input packet class to the Boolean value true, if all the packets
of that class are dropped by the function, as a consequence
of its configuration. 𝐼𝑑

𝑖
denotes the largest class of packets

𝑡 such that 𝑑𝑒𝑛𝑦𝑖 (𝑡) = true. Instead, the complement of 𝐼𝑑
𝑖

,
i.e., the class of packets which are not discarded by the
function, is denoted as I𝑎

𝑖
. From this definition, it derives

that I𝑑
𝑖
∨ I𝑎

𝑖
= true and I𝑑

𝑖
∧ I𝑎

𝑖
= false.

The transformation behavior of a node 𝑛𝑖 ∈ 𝑁 is mod-
eled with the function T𝑖 : 𝑇 → 𝑇 , which maps an input
packet class to another class. For many network functions
such as forwarders, traffic monitors and load balancers, T
is the identity function, because they do not apply any
transformation to the packets that reach their input ports.
In this case, both the T domain and co-domain correspond
to the 𝑇 set. Instead, other functions show a more complex
behavior. An example is a type of Network Address Translator
(NAT) that can perform only address translation, without the
feature of port translation. The configuration of such NAT
is commonly characterized by 𝑚 shadowed IP addresses,
i.e., the IP addresses that the NAT translates, represented by
the predicates the 𝑝1, ..., 𝑝𝑚, and by 𝑙 public IP addresses,
used to replace the shadowed addresses and denoted by the
𝑎1, ..., 𝑎𝑙 predicates. With such configuration, this NAT can
perform three different transformations on an input packet:
1) the source address is translated into a public address of
the NAT (shadowing), if the source address is a shadowed
address, while the destination address is not; 2) the destination
address is reconverted into a shadowed address (reconversion),
if the source address is not a shadowed address and the
destination address is a public one; 3) if no previous condition
is met, the packet is not modified. For such a function that
operates different transformations for different packet classes,
the transformer can be expressed as T𝑖 (𝑡) = ∨ 𝑗 (T𝑖, 𝑗 (D𝑖, 𝑗 ∧ 𝑡)),
where T𝑖, 𝑗 : 𝑇 → 𝑇 is the transformer applied for the packet
class defined by predicate D𝑖, 𝑗 . In the case of NAT, we have
T𝑖 (𝑡) = T𝑖,1 (D𝑖,1∧𝑡)∨T𝑖,2 (D𝑖,2∧𝑡)∨T𝑖,3 (D𝑖,3∧𝑡), where T𝑖,1 is

the shadowing transformer, T𝑖,2 is the reconverting transformer
and T𝑖,3 is the identity transformer that is applied in all other
cases. Then, considering a generic traffic 𝑡 = ∨ℎ

𝑘=1 (𝑞𝑡 ,𝑘), the
predicates D𝑖, 𝑗 and the transformers T𝑖, 𝑗 can be defined as
follows.

D𝑖,1 = ∨𝑚
𝑥=1 (𝑝𝑥 , ¬(∨𝑚𝑧=1 (𝑝𝑧)) , ∗, ∗, ∗) (2)

T𝑖,1 (𝑡) = ∨𝑙𝑦=1 ∨
ℎ
𝑘=1 (𝑎𝑦 , 𝑞𝑡,𝑘 .ipDst, 𝑞𝑡,𝑘 .portSrc,

𝑞𝑡,𝑘 .portDst, 𝑞𝑡,𝑘 .trProto)
(3)

D𝑖,2 = ∨𝑙
𝑦=1 (¬(∨

𝑚
𝑥=1 (𝑝𝑥)) , 𝑎𝑦 , ∗, ∗, ∗) (4)

T𝑖,2 (𝑡) = ∨𝑚𝑥=1 ∨
ℎ
𝑘=1 (𝑞𝑡,𝑘 .ipSrc, 𝑝𝑥 ,

𝑞𝑡,𝑘 .portSrc, 𝑞𝑡,𝑘 .portDst, 𝑞𝑡,𝑘 .trProto)
(5)

D𝑖,3 = ¬(D𝑖,1) ∧ ¬(D𝑖,2) (6)

T𝑖,3 (𝑡) = 𝑡 (7)

An example of firewall and NAT models is reported at the
bottom of Fig. 2.

C. Traffic flows and network security policies models
Definition IV.3. Traffic flow: A traffic flow represents how a
packet class, generated by a source 𝑛𝑠 ∈ 𝑁 , crosses an ordered
list of intermediate network functions before reaching the
destination 𝑛𝑑 ∈ 𝑁 , and how these functions may transform
the packets belonging to this class before possibly forwarding
them to the next hop.

A traffic flow 𝑓 ∈ 𝐹, where 𝐹 is the set of all flows, is
formally modeled as a list of alternating nodes and predicates,
[𝑛𝑠 , 𝑡𝑠𝑎, 𝑛𝑎, 𝑡𝑎𝑏, 𝑛𝑏, ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑]. Each node in the list corre-
sponds to a node crossed by the flow in the path, starting from
the source node 𝑛𝑠 (that generates traffic 𝑡𝑠𝑎) and arriving at
the destination node 𝑛𝑑 (that receives traffic 𝑡𝑘𝑑). Each generic
traffic 𝑡𝑖 𝑗 is the class of packets transmitted from node 𝑛𝑖 to 𝑛 𝑗

in the flow. While crossing a node, the traffic can be forwarded,
possibly changed, or dropped. In this way, traffic flows are
used to describe the forwarding and transformation behavior of
a network and of its NFs. The main advantage of this approach,
compared to the alternative modeling approaches, is that the
NFs can be modeled in a simpler way, as the models do not
need to deal with all the single packets but they can deal with
a few equivalent classes of packets.

A computer network may be crossed by countless different
traffic flows. However, in the formalization proposed in this
paper, only a limited subset of flows are modeled, i..e, the
ones that must be considered when checking if a network
security policy is satisfied in a verification problem, or when
transforming a policy into the a function configuration in a
refinement problem.

Definition IV.4. Connectivity network security policy: A
network security policy expresses security requirements that
must be fulfilled in a computer network. Among the possible
policies that may be defined, the connectivity ones specify
which traffic flows must not (reachability policies), and which
must be prohibited from reaching it (isolation policies). In the
remainder of this paper, we will name connectivity policies as
policies for sake of conciseness.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

A network security policy is modeled as 𝑝 = (𝐶, 𝑎), where
𝑎 is the action to perform on the network packets that match
the condition The condition C is a predicate similar to the ones
defined for modeling packet classes. In relation to the specific
example of packet class model presented in Subsection IV-A,
C is modeled as 𝐶 = (ipSrc, ipDst, portSrc, portDst, trProto).
The predicates ipSrc and portSrc specify the traffic sources
the policy refers to. Instead, the predicates ipDst, portDst, and
trProto specify the traffic destinations and the protocol the
policy refers to. Instead, the action 𝑎 may be allow in case of
a reachability policy, deny in case of an isolation policy.

For this specific network security policy model, a flow
𝑓 = [𝑒𝑠 , 𝑡𝑠,𝑎, ..., 𝑡𝑘,𝑑 , 𝑒𝑑] satisfies 𝐶 if the following
three conditions are satisfied: 1) its source and destination
endpoints 𝑒𝑠 , 𝑒𝑑 have IP addresses matching ipSrc and
ipDst respectively, i.e., 𝛼(𝑒𝑠) ⊆ 𝐶.ipSrc and 𝛼(𝑒𝑑) ⊆
𝐶.ipDst; 2) its source traffic satisfies ipSrc and portSrc,
i.e., 𝑡𝑠𝑎 ⊆ (𝐶.ipSrc, ∗, 𝐶.portSrc, ∗, ∗); 3) its destination
traffic satisfies ipDst, portDst, and trProto, i.e., 𝑡𝑘𝑑 ⊆
(∗, 𝐶.ipDst, ∗, 𝐶.portDst, 𝐶.trProto). Similar conditions are
formulated with minor changes, if the predicates of the packet
class models are defined over different packet fields.

Let then 𝐹𝑝 ⊆ 𝐹 denote the set of flows that satisfy 𝑝.𝐶.
Therefore, it follows that all the subflows of a flow that is in
𝐹𝑝 are in 𝐹𝑝 too.

The definition of traffic flows given above leaves some
freedom concerning the granularity of flows, i.e., it is pos-
sible to consider fewer flows characterized by larger packet
classes or more flows characterized by simpler packet classes.
Therefore, it is suitable for the definition of both the Atomic
Flows and Maximal Flows algorithms, as it will be detailed
in next sections.

V. ATOMIC FLOWS

The first flow computation algorithm that we described is
the one that computes Atomic Flows, entities based on the
concept of Atomic Predicates. According to this concept, each
complex predicate used to model the network can be split
into a disjunction of simple and minimal Atomic Predicates,
that are unique and completely disjoint. Then, it is possible
to collect them in a set, i.e., the set of Atomic Predicates of
the network, and replace each original complex predicate as a
disjunction of some of the predicates of this set. Being unique,
Atomic Predicates can be assigned unique integer identifiers.
In this way, each complex predicate can be represented as
a set of integers, where each integer is the identifier of each
Atomic Predicate composing the disjunction that characterizes
the complex predicate. The advantage of this approach is that it
allows to use integers in all the computations, instead of using
more complex explicit representations for each predicate (e.g.,
BDDs, Tuple Representations, or Wildcard Expressions, just
to mention a few used in the literature).

Fig. 3 shows an example of how complex predicates can be
represented as disjunctions of Atomic Predicates. Starting from
two complex predicates of the network P(1) and P(2), repre-
senting respectively packets traveling from the sub-network

P(1) = (10.0.0.*, 30.0.5.1, *, *, *)
P(2) = (10.0.0.1, 30.0.5.*, *, *, *)
AP(1) = (10.0.0.* ∧ ¬10.0.0.1, 30.0.5.1, *, *, *)
AP(2) = (10.0.0.1, 30.0.5.1, *, *, *)
AP(3) = (10.0.0.1, 30.0.5.* ∧ ¬30.0.5.1, *, *, *)
AP(4) = (¬10.0.0.*, *, *, *, *) ∪ (*, ¬30.0.5.*, *, *, *)

Fig. 3: From complex predicates to Atomic Predicates

10.0.0.0/24 to 30.0.5.1 and packets traveling from 10.0.0.1 to
the sub-network 30.0.5.0/24, the corresponding set of Atomic
Predicates is computed. Note that P(1) and P(2) have a non-
empty intersection. The four resulting Atomic Predicates are
AP(1), AP(2), AP(3), and AP(4), and they are minimal and
disjoint (i.e., they do not overlap). In this way, P(1) can be
expressed as the disjunction of AP(1) and AP(2), while P2 as
the disjunction of AP(2) and AP(3).

From the set of Atomic Predicates it is possible to compute
the set of Atomic Flows.

Definition V.1. Atomic Flows: A flow 𝑓 = [𝑛𝑠 , 𝑡𝑠𝑎, 𝑛𝑎, 𝑡𝑎𝑏,
𝑛𝑏, ..., 𝑛𝑘 , 𝑡𝑘𝑑 , 𝑛𝑑] is defined as atomic if each traffic 𝑡𝑖 𝑗 is an
Atomic Predicate.

The goal is to compute flows that are as simple as possible
and mutually disjoint because they contain only Atomic Predi-
cates. In this way, Atomic Flows are simple lists of alternating
nodes and integers.

A. Atomic Flows algorithms

This subsection describes the two algorithms to compute re-
spectively the set of Atomic Predicates and the corresponding
set of Atomic Flows, starting from the models describing the
security policies the network must satisfy and the behavior of
the network functions.

Algorithm 1 is used to compute the set of Atomic Predicates
of the network.

The first objective of Algorithm 1 is the creation of the
set P, containing all the predicates that are useful to model
both the computer network and the security policies to be
enforced in it (lines 1-6). A predicate is included in P if it
is useful to discriminate the packets a security policy refers
to or to identify a domain of an NF crossed by at least
one of the paths a security policy refers to. More precisely,
P collects three predicate classes: (i) predicates representing
the source packets identified by a policy condition (line 3);
(ii) predicates representing the destination packets identified
by a policy condition (line 4); (iii) predicates describing the
forwarding and transformation domains (I𝑎

𝑖
,I𝑑

𝑖
,D𝑖) for each

NF, such as firewalls and NATs, belonging to one of the paths
associated with a security policy (line 6). Predicates belonging
to these three classes are complex and not yet atomic.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 1 for computing the Atomic Predicates
Input: a set of 𝑛 security policies 𝑝 = (𝐶, 𝑎), a set of 𝑚

intermediate network functions, each one with its {I𝑎 ,I𝑑}, {D}
Output: the set of Atomic Predicates B

1: P ← {false}
2: for 𝑖 = 0, 1, ..., 𝑛 do
3: P ← P ∪ {(𝐶𝑖 .ipSrc, ∗, 𝐶𝑖 .portSrc, ∗, ∗)}
4: P ← P ∪ {(∗, 𝐶𝑖 .ipDst, ∗, 𝐶𝑖 .portDst, 𝐶𝑖 .trProto)}
5: for 𝑖 = 0, 1, ..., 𝑚 do
6: P ← P ∪ {I𝑎

𝑖
,I𝑑

𝑖
} ∪ {D𝑖}

7: B ← A(P)
8: R ← {false}
9: for 𝑖 = 0, 1, ..., 𝑚 do

10: R ← R ∪ {T𝑖 (𝑏) | for each 𝑏 ∈ B}
11: if B = A(P ∪ R) then
12: return B
13: else
14: P ← P ∪ R, B ← A(P ∪ R)
15: goto line 9

The second objective of Algorithm 1 is the actual com-
putation of the Atomic Predicates (lines 7-15). In particular,
the algorithm transforms the set P into the corresponding
set B of Atomic Predicates, unique for the entire network,
applying the function A (line 7). A is a standard function
that allows, given a set of predicates, to split them according
to their mutual intersections. In literature, there are several
algorithms to perform this task. An example can be found in
[10]. However, P only contains the input packet classes of the
network functions and not the transformed ones, so the related
set P does not include Atomic Predicates related to complex
predicates output by transformers. In order to compensate for
this, Algorithm 1 applies all the possible transformations T𝑖
to each Atomic Predicate of the set B that matches a specific
input class of those transformers, obtaining in this way the
transformed predicates (line 10). The transformed predicates
are included into the set R, and the function A is applied
to the union of the sets B and R, producing a new set B
that replaces the previous one (line 11). All these operations
from line 9 to line 11 are iterated, until the new set B does
not undergo any new change. This means that all the possible
combinations made of a input predicate and corresponding
transformed output predicate have been considered, and B has
thus become the set of Atomic Predicates representative for
both input predicates and transformed ones (line 12).

The worst-case time complexity of Algorithm 1 can be es-
timated as the sum of the time complexities of four sequential
code blocks. Lines 1-4 have 𝑂 (𝑛) complexity, because 𝑂 (1)
operations are performed on each one of the 𝑛 input security
policies. Lines 5-6 have 𝑂 (𝑚) complexity, because 𝑂 (1) oper-
ations are performed on each one of the 𝑚 input middleboxes.
Line 7 has 𝑂 (A) complexity, where A is the external function
that is called to compute the atomic predicates of a given set of
input predicates. Referring to the example of A presented in
[10], this function is linear in the number of input predicates.
Lines 8-5 have 𝑂 (𝑚) · (𝑂 (𝑚)+𝑂 (A)) complexity because that

Algorithm 2 for computing the atomic flows
Input: one security policy 𝑝, one path with endpoints 𝑒𝑠 and 𝑒𝑑
and middleboxes L=[𝑛1,𝑛2,...,𝑛𝑚], the set B of Atomic Predicates
computed by Algorithm 1
Output: a set of Atomic Flows 𝐹𝑎

1: 𝐹𝑎 ← ∅
2: B0 ← {𝑏1,𝑏2,...,𝑏𝑚𝑡

} ∀𝑏𝑖 : 𝑏𝑖 .ipSrc ∧ 𝑝.ipSrc ≠ ∅ and
3: 𝑏𝑖 .portSrc ∧ 𝑝.portSrc ≠ ∅ and 𝑏𝑖 ∈ B
4: for 𝑏 ∈ B0 do
5: for 𝑓 ∈ RECURSIVEGEN(1, 𝑏) do
6: 𝑓𝑎 ← [𝑒𝑠 , 𝑏] + 𝑓

7: 𝐹𝑎 ← 𝐹𝑎 ∪ { 𝑓𝑎}
8: return 𝐹𝑎

9: function RECURSIVEGEN(𝑖, 𝑏)
10: if 𝑖 == 𝑚 + 1 then
11: if 𝑏.ipDst == 𝛼(𝑒𝑑) and 𝑏.portDst ∧ 𝑝.portDst ≠ ∅ and
12: 𝑏.trProto ∧ 𝑝.trProto ≠ ∅ then
13: return {[𝑒𝑑]}
14: else return ∅
15: if 𝑏.ipDst == 𝛼(𝑛𝑖) then return ∅
16: 𝑟 ← T𝑖 (𝑏)
17: B𝑡 ← {𝑏1,𝑏2,..,𝑏𝑚𝑡

} such that ∨𝑚𝑡

𝑗=1𝑏 𝑗 = 𝑟 and 𝑏 𝑗 ∈ B𝑖
18: 𝐹𝑡 ← ∅
19: for 𝑏𝑡 ∈ B𝑡 do
20: for 𝑓 ∈ RECURSIVEGEN(𝑖 + 1, 𝑏𝑡) do
21: 𝑓𝑡 ← [𝑛𝑖 , 𝑏𝑡] + 𝑓

22: 𝐹𝑡 ← 𝐹𝑡 ∪ { 𝑓𝑡 }
23: return 𝐹𝑡

code block consists of two nested loops. The external loop,
represented by the goto directive in the algorithm pseudo-
code, iterates 𝑚 times in the worst case. This is the case where
all 𝑚 middleboxes are arranged in a single sequential chain,
and the output of each T𝑖 transformation function may take
up to 𝑚 steps to impact the behavior of the same function
related to the last node in the sequence. Then, in this external
loop, lines 9-10 represent an internal loop iterating on the 𝑚

middleboxes, and sequentially the function A is executed at
line 1. In view of this analysis, ignoring the complexity of the
second and third code blocks as they are dominated by the one
of the fourth block, the overall worst-case time complexity of
Algorithm 1 is 𝑂 (𝑛) + 𝑂 (A) · 𝑂 (𝑚) + 𝑂 (𝑚2). Among these
three terms, it is not possible to establish theoretically that
one dominates the others, because it depends on the different
scenarios to which the algorithm is applied (e.g., in some
scenarios there may be more policies than middleboxes, or
vice versa).

The result of Algorithm 1, representing the set of Atomic
Predicates, is then used as input for Algorithm 2, which
computes the Atomic Flows.

Algorithm 2 considers one security policy 𝑝 = (𝐶, 𝑎) and
one path, characterized by endpoints 𝑒𝑠 and 𝑒𝑑 and a list
of middleboxes L = [𝑛1, 𝑛2, ..., 𝑛𝑚], at a time. Nodes 𝑒𝑠
and 𝑒𝑑 are endpoints whose IP addresses match respectively
𝐶.ipSrc and 𝐶.ipDst, as explained in Subsection IV-C. At the
beginning of Algorithm 2, the traffic generated by 𝑒𝑠 (source
node of the policy) is grouped in a subset B0, which represents

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Atomic predicates with their integer identifier
AP(1) = (10.0.0.1, 10.0.0.1, AP(2) = (10.0.0.1, 30.0.0.1,

*, *, *) *, *, *)
AP(3) = (10.0.0.1, 30.0.5.1, *, *, *) AP(4) = (10.0.0.1, ¬10.0.0.1 ∧

*, *, *) ¬30.0.0.1 ∧ ¬30.0.5.1,
*, *, *)

AP(5) = (30.0.0.1, 10.0.0.1, AP(6) = (30.0.0.1, 30.0.0.1,
*, *, *) *, *, *)

AP(7) = (30.0.0.1, 30.0.5.1, AP(8) = (30.0.0.1, ¬10.0.0.1 ∧
*, *, *) ¬30.0.0.1 ∧ ¬30.0.5.1,

*, *, *)
AP(9) = (10.0.0.* ∧ ¬10.0.0.1, AP(10) = (10.0.0.*∧ ¬10.0.0.1,

10.0.0.1, *, *, *) 30.0.0.1, *, *, *)
AP(11) = (10.0.0.*∧ ¬10.0.0.1, AP(12) = (10.0.0.*∧ ¬10.0.0.1,

30.0.5.1, *, *, *) ¬10.0.0.1 ∧ ¬30.0.0.1
∧ ¬30.0.5.1, *, *, *)

AP(13) = (¬10.0.0.*∧ ¬30.0.0.1, AP(14) = (¬10.0.0.*∧ ¬30.0.0.1,
10.0.0.1, *, *, *) 30.0.0.1, *, *, *)

AP(15) = (¬10.0.0.*∧ ¬30.0.0.1, AP(16) = (¬10.0.0.*∧ ¬30.0.0.1,
30.0.5.1, *, *, *) ¬10.0.0.1 ∧ ¬30.0.0.1

∧ ¬30.0.5.1, *, *,*)
Transformation for NAT1

D1 (Shadowing) (3) becomes (7), (4) becomes (8)
D2 (Reconversion) (10) becomes (9), (14) becomes (13)
D3 (Forwarding) (1), (5), (11), (12), (15), (16) are

simply forwarded
(2), (6) reach their destination in the NAT

Forwarding for FW1
I𝑎 (3) allowed to pass
I𝑑 (1), (2), (4), (5), (6), (7), (8), (9), (10), (11),

(12), (13), (14), (15), (16) dropped

Fig. 4: Atomic Flows

the disjunction of all the Atomic Predicates of B whose ipSrc
and portSrc are equal to the ones expressed by the condition
of the policy (line 3). Then, starting from the predicates in B0,
the algorithm computes recursively all related Atomic Flows,
which represent the evolution of each single predicate along
the specific path (line 5). In greater detail, each single Atomic
Predicate 𝑏, belonging to B0, is propagated along the path
that links source to destination, taking in consideration the
fact that, crossing a node, it can be transformed into one or
more different disjoint Atomic Predicates (lines 16-17). At
each recursion level, some pruning is also performed in order

to discard the flows that are not part of the solution. For
example, flows that arrive at the destination with an Atomic
Predicate whose ipDst, portDst and trProto do not match
the corresponding fields of the policy condition (line 14) or
that have already reached their destination before reaching
the destination of the path (i.e., when the IP address of an
intermediate node matches with the ipDst field of the actual
Atomic Predicate) (line 15) are removed.

The worst-case time complexity of Algorithm 2 can be
estimated as the sum of the time complexities of two sequential
code blocks. Lines 1-3 have 𝑂 (|B|) complexity, because 𝑂 (1)
operations are performed on each Atomic Predicates of the
B set. Then, lines 4-8 call iteratively a recursive function
described in lines 10-23. On the one hand, the loop has 𝑂 (|B|)
complexity, because it iterates at most |B| times in the worst
case where all elements of B are included in B0. On the other
hand, the recursive function has 𝑂 (|B|𝑚) complexity. The
reason is that at each level of recursion, the function makes
|B| recursive calls, while the depth of recursion is determined
by the parameter 𝑖, which starts at 1 and goes up to 𝑚. All
other operations in the recursive function simply have 𝑂 (1)
complexity. In conclusion, the complexity of the second block
is 𝑂 (|B|𝑚+1) and, as it dominates the complexity term of the
first block, it coincides with the worst-case time complexity
of the overall Algorithm 2.

B. Atomic Flows example

This subsection illustrates how the algorithms proposed for
the Atomic Flow groping strategy works, when they are exe-
cuted to identify all the traffic flows related to an input security
policy 𝑝, with condition 𝑝.𝐶 = (10.0.0.∗, 30.0.5.1,∗, ∗, ∗) and
action 𝑝.𝑎 = deny, in the network topology introduced in the
running example of Section III. The discussion of this example
will be supported by the information provided in Fig. 4, which
will be progressively described in the following.

First, Algorithm 1 is executed to compute the set of Atomic
Predicates B related to the input policy 𝑝 and the NFs of the
network topology. As a preliminary operation, it computes the
set P, including:

• the predicate describing the source traffic (10.0.0. *, *, *,
*, *), representing all the possible packets generated in
the sub-network 10.0.0.0/24, on the left of Fig. 4 (line 3
of Algorithm 1);

• the predicate describing the destination traffic (*,
30.0.5.1, *, *, *), representing all the possible traffic that
can arrive as input to the server on the right of Fig. 4,
without any restriction on port number and protocol type
(line 4 of Algorithm 1);

• the predicates related to the input and transformation
domains of the NFs found along each of the two possible
paths (line 6 of Algorithm 1). The NFs crossed by
at least one path are the NAT and the firewall. Their
corresponding input domains can be seen in the two inner
tables of Fig. 2: predicates D1, D2 and D3 for the NAT
and predicates 𝐼𝑎 and 𝐼𝑑 for the firewall.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This initial set of predicates P is thus used by Algorithm
1 to compute the corresponding set of Atomic Predicates B
through the function A (line 7 of Algorithm 1). However, the
set B thus computed does not include Atomic Predicates rep-
resenting the results of possible transformations that can occur
to a packet while crossing the network, but only represent the
predicates of P.

Next, Algorithm 1 iterates over each predicate in B and
checks if it intersects any input transformation domain of an
NF found along a path (i.e., the NAT in this example). If an
intersection is found with a domain D𝑖 , then the corresponding
transformation T𝑖 is applied (line 10 of Algorithm 1). All
the computed transformed predicates are thus included into
a temporary set R to get the resulting transformed predicate.
For example, the Atomic Predicate AP(1) = (10.0.0.1, 30.0.5.1,
*, *, *), shown in Fig. 4, intersects with D1 = (10.0.0.1,
¬10.0.0.1 ∧ 30.0.0.1, *, *, *) of the NAT, so the corresponding
Shadowing operation is applied to it. The resulting transformed
predicate (30.0.0.1, 30.0.5.1, *, *, *) is then inserted into R.

After computing the set R, Algorithm 1 adds its element to
P, and re-applies the function A to it. If the new set of Atomic
Predicates is the same as the one previously computed, the
algorithm ends, as that means the effect of all transformations
have been taken into account (lines 11-12 of Algorithm 1).
Otherwise, the intersection between the Atomic Predicates and
the transformation domains is repeated until the recomputed
set B does not change. In this example, as there is only
one function that applies transformation, a single iteration is
enough, and the set B includes all the Atomic Predicates
shown in the top-level table of Fig. 4. In this table, each
Atomic Predicate is assigned with an integer identifier, since
they are mutually disjoint. In this way, all forwarding and
transformation domains of the NFs can be rewritten by using
these integers. The corresponding models of the NAT and
Firewall are shown in the medium-level and bottom-level
tables of Fig. 4. In particular, the medium-level table shows
how each integer representing a possible input packet class
is mapped into an integer representing a transformed packet
class for the shadowing and reconversion operations, and it
lists the integers representing the packet classes that are not
transformed but simply forwarded as they are. Instead, the
bottom-level table lists the integers representing the packet
lasses the firewall drops, and the ones representing the packet
classes it allows to pass.

Starting from the set of Atomic Predicates, Algorithm 2
computes the corresponding set of Atomic Flows. Taking
one security policy and one path at a time, the algorithm
collects into B0 all the Atomic Predicates matching with the
source part of the security policy condition , i.e., all the
Atomic Predicates intersecting (10.0.0. *, *, *, *, *) (line
3 of Algorithm 2). In this example, B0 includes all the
Atomic Predicates from AP(1) to AP(4) and from AP(9) to
AP(12), because their sub-predicates about source IP address
and source port intersect the ones of the policy (𝐶.ipSrc and
𝐶.portSrc), and thus they represent all possible packet classes
that the sub-network 10.0.0.0/24 may generate. Note that, in

this specific case, there is no restriction about source port
numbers, as the policy condition 𝐶.portSrc is defined as ∗.

Then, through a recursive function (lines 11-12 of Al-
gorithm 2), all Atomic Flows related to the policy 𝑝 are
computed, by propagating each predicate belonging to B0
along all possible paths. In this propagation of the predicates
representing packet classes, they may intersect with the input
forwarding or transformation domain of a crossed NF. In that
case, the packet class represented by the predicate may be
dropped, or transformed into one or more classes represented
by different predicates. An Atomic Flow is created only if,
starting from the source, the possibly transformed packet
class can reach its destination, i.e., 30.0.5.1. Here, we discuss
two exemplifying cases of such propagation, with different
outcomes:

• AP(2) = (10.0.0.1, 30.0.0.1, *, *, *) is never able to reach
the destination 30.0.5.1, because there is no intersection
between the destination IP address sub-predicates of the
two predicates (i.e., of AP(2) and the policy condition
predicate). Instead, the destination of all Atomic Flows
starting with AP(2) as first packet class of their model
is the NAT 30.0.0.1. Therefore, the recursive function of
Algorithm 2 discards all these Atomic Flows, as they are
not valid solutions.

• AP(3) = (10.0.0.1, 30.0.5.1, *, *, *) can reach the
destination 30.0.5.1 through both the upper and lower
paths of the topology depicted in Fig. 4, so two Atomic
Flows are generated. Crossing the lower path, the packet
class represented by AP(3) does not undergo any trans-
formation, so AP(3) will be in between any pair of nodes
included in the alternating list modeling the flow. Instead,
crossing the upper path, the packet class represented by
AP(3) is transformed by the NAT into the packet class
represented by AP(11), which is the one actually reaching
the destination.

At the end of this example, four Atomic Flows are com-
puted, as shown in Fig. 4. Two of them originate from AP(3),
while the remaining two originate from AP(11).

VI. MAXIMAL FLOWS

The second flow computation algorithm that we present is
the one that computes Maximal Flows, and it is based on a
concept opposite to the idea behind Atomic Flows. In fact, this
algorithm aggregates different flows together so as to minimize
their number, instead of splitting them into Atomic Flows.
In particular, it reduces the number of generated flows by
considering only a subset of them, i.e., the set of Maximal
Flows. In order to do so, all the flows that behave in the
same way while crossing the network are grouped in the same
Maximal Flow. These flows can be indicated as subflows of the
Maximal Flow which they belong to. Then, for the execution
of the resolution algorithms of security management problems,
it is enough to consider only the Maximal Flows and not each
single flow that they represent.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Definition VI.1. Maximal Flows: Called 𝐹𝑝 the set of
all possible flows of the network, the corresponding set of
Maximal Flows 𝐹𝑀

𝑝 matches the following definition:
𝐹𝑀
𝑝 = { 𝑓 𝑀𝑝 ∈ 𝐹𝑝 |� 𝑓 ∈ 𝐹𝑝 .(𝑓 ≠ 𝑓 𝑀𝑝 ∧ 𝑓 𝑀𝑝 ⊆ 𝑓)}

The set 𝐹𝑀
𝑝 is defined as a subset of 𝐹𝑝 that contains only

the flows that are not subflows of any other flow in 𝐹𝑝 . All the
flows behaving in the same way are aggregated in the same
Maximal Flow, and then only Maximal Flows in 𝐹𝑀

𝑝 , which
has a smaller size than 𝐹𝑝 , are considered for the analysis.

Predicates defined within a Maximal Flow are the disjunc-
tion of several IP 5-tuples that have been aggregated together.
For this reason, they cannot be considered atomic and replaced
by integer identifiers.

A. Maximal Flows algorithm
Algorithm 3 is formalized for the computation of the

Maximal Flows.
As for Algorithm 2, one security policy and one possible

path are considered at a time. For each path, Algorithm 3
computes the related Maximal Flows in an iterative way (line
2). At each iteration, two sets of lists of alternating nodes and
predicates, 𝐹 and 𝐹′, are computed. The first set 𝐹 initially
contains only the list [𝑛0, 𝑡1, 𝑛1, true. . . , true, 𝑛𝑚+1] (line 3).
In this list, 𝑡1 is equal to the predicate (C.ipSrc, *, C.portSrc,
*, *), representing the largest traffic that satisfies the source
component of the network policy condition we are considering,
while all the other traffic entities inside the list are set to true
(i.e., the class of all packets). The basic idea of this algorithm
is to start with flows that are as large as possible (i.e., which
include as many subflows as possible) and then divide the
flows into smaller flows only when necessary. For example, a
division may be needed when the flow encounters a node in
the path in relation to which at least two of its subflows have
different behavior.

At each iteration, a forward traversal and a backward
traversal on the path 𝑝 are performed.

In the forward traversal (lines 4-7), each list in 𝐹 is
progressively updated to take into account the way the traffic
is transformed by each network function. Each predicate 𝑏𝑖 ,
in input to the node 𝑛𝑖 , is intersected with the forwarding
domains I𝑎

𝑖
and I𝑑

𝑖
(line 5), and the transformation domain

𝐷𝑖 of the node (line 6). The corresponding function 𝑇 is also
applied to each traffic that matches the domain 𝐷𝑖 (line 7).
With this procedure, 𝑏𝑖 is thus split into the largest homoge-
neous subclasses of packets resulting from all the computed
intersections. In this way, for each partition of the predicate
𝑏𝑖 , a new list is generated and becomes a new Maximal
Flow. Then, when the traffic arrives to the destination node,
it is restricted with the predicate representing the destination
components of the policy we are considering, i.e., (*, C.ipDst,
*, C.portDst, C.trProto) (line 8). Note that, in all lines of
Algorithm 3, the operator + is used to concatenate multiple
lists into a single list. These lists are appended in the order in
which they are specified as input to this operator.

A backward traversal is then executed, so as to compute a
new set of lists 𝐹′ (lines 8-10). 𝐹′ is initialized to contain

Algorithm 3 computation of 𝐹𝑀
𝑝

Input: a policy 𝑝 = (𝐶, 𝑎), the network topology (𝑁, 𝐿)
Output: 𝐹𝑀

𝑝

1: 𝐹𝑀
𝑝 = ∅

2: for each path = [𝑛0, 𝑛1, ..., 𝑛𝑚+1] do
3: 𝐹 ← {[𝑛0, 𝑡

𝑡
1, 𝑛1, true, 𝑛2, ..., true, 𝑛𝑚+1]}

4: for 𝑖 = 1, 2, ..., 𝑚 do
5: 𝐹 ← {𝑙 + [𝑏𝑖 ∧ 𝑏′

𝑖
, 𝑛𝑖] + 𝑙′ | 𝑙 + [𝑏𝑖 , 𝑛𝑖] + 𝑙′ ∈ 𝐹,

𝑏′
𝑖
∈ {I𝑎

𝑖
,I𝑑

𝑖
}}

6: 𝐹 ← {𝑙 + [𝑏𝑖 ∧ 𝑏′
𝑖
, 𝑛𝑖] + 𝑙′ | 𝑙 + [𝑏𝑖 , 𝑛𝑖] + 𝑙′ ∈ 𝐹,

𝑏′
𝑖
∈ {D𝑖}}

7: 𝐹 ← {𝑙 + [𝑏𝑖 , 𝑛𝑖 , 𝑏𝑖+1 ∧ T𝑖 (𝑏𝑖), 𝑛𝑖+1] + 𝑙′ |
𝑙 + [𝑏𝑖 , 𝑛𝑖 , 𝑏𝑖+1, 𝑛𝑖+1] + 𝑙′ ∈ 𝐹}

8: 𝐹′ ← {𝑙 + [𝑡𝑟
𝑚+1 ∧ 𝑏𝑚+1, 𝑛𝑚+1] | 𝑙 + [𝑏𝑚+1, 𝑛𝑚+1] ∈ 𝐹}

9: for 𝑖 = 𝑚, 𝑚 − 1, ..., 1 do
10: 𝐹′ ← {𝑙 + [𝑏𝑖 ∧ T −1

𝑖
(𝑏𝑖+1), 𝑛𝑖 , 𝑏𝑖+1] + 𝑙′ |

𝑙 + [𝑏𝑖 , 𝑛𝑖 , 𝑏𝑖+1] + 𝑙′ ∈ 𝐹′}
11: if 𝐹 ≠ 𝐹′ then
12: 𝐹 ← 𝐹′

13: goto line 4
14: 𝐹𝑀

𝑝 ← 𝐹𝑀
𝑝 ∪ 𝐹

15: return 𝐹𝑀
𝑝

each element of 𝐹, with its last traffic restricted to the largest
traffic that satisfy the destination components of the policy, as
previously described (line 8). In this way, with the backward
traversal, each predicate representing the ingress traffic of a
node is changed as the new information about the destination
is added (lines 9-10).

After the backward traversal, a new forward traversal starts,
to evaluate if the new version of the flow further splits (lines
11-13). The procedure stops when, after the last iteration, the
flows in 𝐹 and 𝐹′ are the same. This means that both last two
traversals have no longer changed the flow (lines 14-15).

For what concerns the worst-case time complexity, Algo-
rithm 3 is characterized by three nested loops. The most
external loop starts at line 2 and iterates on all possible paths
that can be identified between any pair of endpoints in the
input network topology (𝑁 , 𝐿). Denoting the number of all
possible paths as 𝜋, the complexity of the most external loop
is 𝑂 (𝜋). The central loop is represented by the goto directive
of line 13 and iterates 𝑚 times in the worst case, where 𝑚

is the number of intermediate network functions in the input
topology, so it has a 𝑂 (𝑚) complexity. The reason is similar
to the one discussed for a similar loop in Algorithm 1, i.e., the
output of each T𝑖 transformation function may take up to 𝑚

steps to have an impact on the behavior of the same function
related to the last node in the forward traversal, and the same
applies to the inverse function T −1

𝑖
function in the backward

traversal. Then, internally there are two sequential loops at
lines 4-7 and lines 9-10, each one with 𝑂 (𝑚) complexity as
both iterate 𝑂 (1) operations 𝑚 times. In summary, multiplying
the complexity factor of each nested loop, the overall worst-
case time complexity of Algorithm 3 is 𝑂 (𝜋) · 𝑂 (𝑚2).

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 5: Maximal Flows Algorithm: first forward and backward
traversal

Fig. 6: Maximal Flows

B. Maximal Flows example

This subsection illustrates how the algorithm proposed for
the Maximal Flow groping strategy works, when it is executed
to identify all the traffic flows related to an input security
policy 𝑝, with condition 𝑝.𝐶 = (10.0.0.∗, 30.0.5.1,∗, ∗, ∗) and
action 𝑝.𝑎 = deny, in the network topology introduced in the
running example of Section III. The discussion of this example
will be supported by the information provided in Fig. 5 and
Fig. 6.

Specifically, Fig. 5 graphically represents how Algorithm 3
generates two Maximal Flows through the path that includes
the NAT, starting from the packet class identified by the
predicate representing the source part of the security policy
condition, i.e., (10.0.0.*, *, *, *, *). The figure, which only
reports source IP and destination IP addresses in the predicates
for the sake of conciseness, shows how the initial flow that
starts from that initial packet class is progressively divided into
smaller flows through the procedures of forward traversal (first
line of the figure, below the function chain), and backward
traversal (second line of the figure, below the function chain).

In the forward traversal, the initial flow is split into three
sub-flows when reaching the NAT, because the predicate
(10.0.0.*, *, *, *, *) intersects with all the three input domains
of that NF: D1 =(10.0.0.1, ¬10.0.0.1 ∧ ¬30.0.0.1, *, *, *),
D2 =(¬10.0.0.1 ∧ ¬30.0.0.1, 30.0.0.1, *, *, *), and D3 =

¬D1 ∧ ¬D2 . In greater detail, the intersection with D1
generates (10.0.0.1, ¬10.0.0.1 ∧ ¬30.0.0.1, *, *, *), the one

with D2 generates (10.0.0.* ∧ ¬10.0.0.1, 30.0.0.1, *, *, *),
and finally the one with D3 generates (10.0.0.* ∧ ¬10.0.0.1,
¬30.0.0.1, *, *, *). However, the first two predicates must
also undergo a transformation, respectively Shadowing and
Reconversion. Therefore, their corresponding output predicates
are (30.0.0.1, ¬10.0.0.1 ∧ ¬30.0.0.1, *, *, *) due to the change
to the source IP address, and (10.0.0.* ∧ ¬10.0.0.1, 10.0.0.1,
*, *, *) due to the change to the destination IP address.

In the continuation of the forward traversal, the three flows
that have been generated so far are not split when reaching
the firewall, as all the three predicates representing the packet
classes output by the NAT only intersect with the domain
𝐼I𝑑 of the firewall, and there is no intersection with 𝐼I𝑑 .
The forward traversal thus ends with the three flows reaching
the destination 30.0.5.1. Nevertheless, not all of them are
admitted to the next step of the algorithm, which is the
backward traversal. Their admission to it is granted only if the
predicates representing the packet classes that reached 30.0.5.1
intersect with the destination component of the security policy
condition, i.e., (*, 30.0.5.1, *, *, *). The flow whose last packet
class predicate is (10.0.0.* ∧ ¬10.0.0.1, 10.0.0.1, *, *, *) is
discarded, since its intersection with the destination component
of the policy is the empty set.

In the backward traversal, the two admitted flows are
propagated from the destination to the original source. The
same operations as the ones previously described are repeated,
by checking if there is any intersection between packet class
predicates and input domains of the NFs. In this example, no
other transformations are applied in the backward traversal,
and both flows are considered valid when reaching the original
source.

At this stage, the algorithm must repeat a second forward
and backward traversal. It thus confirms that the two flows
have not undergone any other modification or division in this
repetition, and therefore they are valid Maximal Flows related
to the input security policy.

The same procedure is applied to the other path as well.
The only difference is that, in this case, the initial flow is split
when reaching the firewall. The intersection with I𝑎 gives
(10.0.0.1, 30.0.5.1, *, *, *), while the intersection with I𝑑

gives a different predicate.
Finally, Fig. 6 graphically shows that four Maximal Flows

are successfully computed with Algorithm 3. Two of them
cross the upper path of the depicted network topology, orig-
inating from an initial flow that is divided into sub-entities
when reaching the NAT. Instead, the other two cross the lower
path of the depicted network topology, originating from an
initial flow that is divided into sub-entities when reaching the
firewall.

VII. DISCUSSION AND EXPERIMENTAL COMPARISON

Depending on the selected flow computation algorithm and
on the specific network security management problem to
be solved, the comprehensive workflow discussed in Section
III is expected to have different execution time. The reason
is that the algorithms for computing Atomic and Maximal

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Flows have different features. On the one hand, with Atomic
Flows the aim is to obtain minimal and disjoint flows, with
predicates represented by integers. This simple representation
of predicates promises to bring performance advantages, but it
also introduces overhead for computing the Atomic Predicates
and the related Atomic Flows. On the other hand, with
Maximal Flows, the aim is to obtain flows that are indeed
more complex, because they aggregate different predicates
together, but certainly fewer in number. Besides, for this
second algorithm, no initial phase is required to compute
Atomic Predicates.

The goal of this section is to evaluate the feasibility and
performance of the two traffic flow computation algorithms as
stand-alone algorithms and when applied to solve the security
policy verification and refinement tasks, so as to underline the
advantages and limitations of each one of them. Consequently,
two main classes of validation tests have been executed.
On the one hand, we have assessed the performance of the
flow computation algorithms, independently from the security
management problem for which they are used (Subsection
VII-A). These tests aim to understand how the execution
time varies depending on parameters such as the number of
policies, transformer functions like NATs, filtering functions
like firewalls, and network endpoint. For the execution of these
tests, we have implemented the Atomic Flow algorithm with
the Java programming language, as that language was already
used for the implemented of the Maximal Flow algorithm in
the Verigraph2.0 [11] and Verefoo [13] frameworks. On the
other hand, we have analyzed how the Atomic and Maximal
Flow formalizations differently affect the resolution of the se-
curity policy verification and refinement problems (Subsection
VII-B). These tests aim to assess how significantly the choice
of flow modeling between the two identified algorithms affects
the time performance and memory usage of the overall ap-
proach, and to establish which flow computation algorithm is
more suitable for each specific analyzed security management
problem. For the execution of these tests, we have extended
the implementation of the existing Verigraph2.0 and Verefoo
frameworks, developing variants that could work with the
implemented Atomic Flow algorithm.

The experimental setup used for the validation consists in a
machine with an Intel i7-6700 CPU running at 3.40 GHz and
32GB of RAM.

A. Validation for traffic flow computation

With the first class of tests, we have evaluated the time that
the two algorithms take to compute the set of corresponding
traffic flows, Atomic or Maximal, and how this time changes
as the network varies in size and in a number of parameters. In
this evaluation, the networks used as test cases are randomly
generated, based on a set of configurable parameters: number
of security policies to be satisfied, number of endpoints in the
network (inclusive of application clients and servers), number
of NATs, and number of firewalls. Then, we followed two
strategies for text execution:

• In the first strategy, a preliminary task consists in finding
a starting value for each configurable parameter. Once
this configuration, named “basic configuration”, has been
obtained, we proceed to execute the various tests increas-
ing one parameter at a time, keeping all the others at their
basic value. This approach is mainly used to understand
which parameters have a greater influence on the total
execution time. The chosen "basic configuration" is the
one with 100 policies, 200 endpoints, 25 NATs and 25
firewalls.

• In the second strategy, we progressively increase the value
of all parameters at the same time in a proportional way,
simulating a progressive enlargement of the network.

Fig. 7 shows the results of the tests executed by following
the first strategy for both Atomic and Maximal Flow compu-
tation algorithms.

Figs. 7a, 7b and 7c depict how the execution time of the
Atomic Flow computation algorithm varies when the number
of policies, NATs and firewalls respectively increases. As it
can be seen, the total time that is required by its execution is
the sum of two times, i.e., the time to generate the Atomic
Predicates (i.e., Algorithm 1) and the time to generate the
Atomic Flows (i.e., Algorithm 2). Below each bar chart, these
figures have a table reporting the number of Atomic Predicates
generated in each analyzed case. Indeed, this is an important
metric which directly affects the total time, since the more the
predicates, the more the generated flows.

These figures allowed us to analyze the impact of each
parameter of the network configuration for the performance of
this algorithm. (i) Number of policies (Fig. 7a): As described
in Algorithm 1, a predicate is generated for each source and
for each destination of a policy. So, the more the policies, the
more the starting predicates, and, consequently, the resulting
Atomic Predicates. Consequently, the time to compute Atomic
Predicates increases because there are more predicates to
convert. The time to compute the Atomic Flows increases as
well, because Algorithm 2 needs to compute the flows related
to a larger set of policies. Regarding the number of generated
Atomic Predicates, in the last case, its value saturates to
51076, because there is an Atomic Predicate for each possible
pair of source and destination endpoints. (ii) Number of
NATs (Fig. 7b): This is the most affecting parameter in the
number of generated Atomic Predicates. Since NATs introduce
transformations, a higher number of predicates to represent
the input classes (transformation domain) and the results after
the transformation are necessary. Both the considered times
increase, since there are more Atomic Predicates to manage.
(iii) Number of firewalls (Fig. 7c): Here, the reasoning is
similar to the one done for NATs. For each firewall, the
predicates representing its forwarding domain are added to
the set of predicates to be converted into Atomic ones. In
this case, the impact is less significant since firewalls are not
transformers, so the predicate is either blocked or forwarded,
but never changed. Therefore, no new predicates are added as a
result of the transformation. Moreover, a general consideration
can be drawn with respect to the number of application clients

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

100 250 500 1000 50000

20

40

60

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Predicates time (s)
Atomic Flows time (s)

Number of generated Atomic Predicates
100 pol 250 pol 500 pol 1000 pol 5000 pol
10763 23203 43905 50499 51076

(a) Time vs Number of policies

25 50 100 2000

20

40

60

Number of NATs

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Predicates time (s)
Atomic Flows time (s)

Number of generated Atomic Predicates
25 NAT 50 NAT 100 NAT 200 NAT
10763 16969 32431 78204

(b) Time vs Number of NATs

25 50 100 2000

20

40

60

Number of firewalls

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Predicates time (s)
Atomic Flows time (s)

Number of generated Atomic Predicates
25 FW 50 FW 100 FW 200 FW
10763 30379 42773 49608

(c) Time vs Number of firewalls

100 250 500 1000 5000
0

20

40

60

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Maximal Flows time (s)

(d) Time vs Number of policies

25 50 100 200
0

20

40

60

Number of NATs

C
om

pu
ta

tio
n

tim
e

(s
)

Maximal Flows time (s)

(e) Time vs Number of NATs

25 50 100 200
0

20

40

60

Number of firewalls

C
om

pu
ta

tio
n

tim
e

(s
)

Maximal Flows time (s)

(f) Time vs Number of firewalls

Fig. 7: Tests on Atomic and Maximal Flows algorithms (first strategy)

and servers in the network topology. This parameter does not
influence the total time required by the algorithm. In general,
endpoints do not affect the number of generated Atomic
Predicates because such predicates are computed starting from
the policies and not for each endpoint of the network. Indeed,
there is a starting predicate for every pair of source and
destination nodes of a policy. Therefore, if an endpoint is not
included in any policy, it is not considered in the set of Atomic
Predicates.

Figs. 7d, 7e and 7f depict how the execution time of the
Maximal Flow computation algorithm varies when the number
of policies, NATs and firewalls respectively increases. In this
case, there is no initial phase to compute the set of Atomic
Predicates, but there is only the time that Algorithm 3 takes
directly to generate the Maximal Flows.

Again, these figures allowed us to analyze the impact of
each parameter of the network configuration for the perfor-
mance of this algorithm. (i) Number of policies (Fig. 7d): The
time increase is due to the fact that when there are more
policies for which the corresponding Maximal Flows must
be computed, Algorithm 3 has to run more times, one run
for each policy. However, the time spent is significantly less
compared to the one required by the Atomic Flow computation
algorithm. (ii) Number of NATs (Fig. 7e): Even in the case
of Maximal Flows, this is a determinant parameter. In fact,
each NAT, and in general each transformer of the network,
increases the number of generated flows. Each flow entering

a transformer is split into multiple flows depending on the
intersection the incoming predicate has with the transformation
domain of the node. The more the transformers, the more the
split flows and so the time to generate them. (iii) Number of
firewalls (Fig. 7f). As for the number of NATs, this parameter
determines an increase in time. This is explained by the
fact that, when reaching a firewall, a predicate is intersected
with the forwarding domain of the firewall (i.e., 𝐼𝑎 and 𝐼𝑑).
Therefore, for each existing intersection with one of these
classes, a new Maximal Flow is generated.

Figs. 8a and 8b show the results of the tests executed by
following the second strategy for both Atomic and Maximal
Flow computation algorithms. This second method consists
in the progressive enlargement of the network, and it was
used to compare the two proposed approaches against the
total time taken to generate the traffic flows and the total
number of generated flows. The networks used as test cases
are built starting from the same configurable parameters of the
previous examples, with the difference that, in this case, all the
parameters vary simultaneously. Specifically, 50 policies, 200
endpoints, 25 NATs and 25 FWs are added respectively to each
test case. From the figures, the following main conclusions can
be derived:
• Computing Atomic Flows requires more time than com-

puting Maximal Flows, as shown in Fig. 8a. Most of
the time is, in fact, spent in the initial phase to compute
Atomic Predicates (Algorithm 1). On the contrary, Algo-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

A B C D E
0

50

100

150

200
C

om
pu

ta
tio

n
tim

e
(s

)
Atomic Flows approach (s)
Maximal Flows approach (s)

pol nodes NAT FW
A 100 400 50 50
B 150 600 75 75
C 200 800 100 100
D 250 1000 125 125
E 300 1200 150 150

(a) Flows computation time

A B C D E
0

0.2

0.4

0.6

0.8

1 ·104

N
um

be
ro

fg
en

er
at

ed
flo

w
s Atomic Flows approach

Maximal Flows approach

pol nodes NAT FW
A 100 400 50 50
B 150 600 75 75
C 200 800 100 100
D 250 1000 125 125
E 300 1200 150 150

(b) Number of generated flows

Fig. 8: Tests on Atomic and Maximal Flows algorithms
(second strategy)

rithm 3 for computing Maximal Flows is very fast, since
it is a simple iterative function, mostly parallelizable.

• The solution with Atomic Flows generates a greater
number of flows, as shown in Fig. 8b. This is motivated
by the fact that the algorithm that computes Atomic Flows
splits each flow into simple and minimal disjoint flows,
while the one based on Maximal Flows aggregates them
as much as possible.

From the results of these tests, it is not possible to see
the real advantage of the Atomic Flows approach, which is to
enable the representation of each predicate as a simple integer.
In fact, this advantage is helpful in the subsequent network
management tasks performed using the flows, which is object
of validation in Subsection VII-B. As seen in Fig. 4, with the
Atomic Flows approach, the NFs can map their operation over
simple integers, while with the Maximal Flows approach more
complex predicate representations are required.

B. Comparative validation for solving network security man-
agement problems

With the second class of tests, we evaluated the time
and memory that two resolution algorithms for reachability
verification and security policy refinement requires to solve
their respective problems, when they work on the Atomic and
Maximal Flow models.

Concerning reachability verification, we extended Veri-
graph2.0 [11], a framework designed to verify connectivity
properties of a network, i.e, to verify whether a given set of
reachability and isolation policies is enforced correctly in a
network. Regarding policy refinement, instead, we extended
Verefoo [13]: given a set of security policies, this tool is able
to provide the automatic and optimal allocation and config-
uration of network security functions in order to satisfy the
user-requested policies. Both tools formulate their respective
network security problems with constraint programming, as
a Satisfiability Modulo Theories (SMT) problem in the case
of Verigraph2.0, and as a Maximum SMT (MaxSMT) in the

case of Verefoo. In terms of computational complexity, SMT
and MaxSMT are NP-complete [26]. Nevertheless, state-of-
the-art solvers, such as the one used for the implementation
of Verigraph2.0 and Verefoo (i.e., Z3 by Microsoft Research),
can solve many instances of this problem in polynomial time
with respect to the problem size [27].

To interface with the SMT/MaxSMT solver, a correct repre-
sentation of the traffic flows (either Atomic or Maximal) has
to be introduced. In particular, it is necessary to model the
predicates included in the definition of traffic flow. As this
kind of solvers typically understand only basic data types,
the explicit representation of a predicate is critical. This is
especially true for the Maximal Flows approach. In this case,
the explicit representation of a predicate is the conjunction
of four predicates defined on integer variables for the source
IP address, of four predicates defined o integer variables for
the destination IP address, two predicates defined on integer
variables for the source port range, two predicates defined on
integer variables for the destination port range, and a predicate
defined on a string variable for the transport-level protocol.
On the contrary, the approach using Atomic Flows only
requires one integer constant for the predicate representing a
packet class, i.e., the integer identifier representing the Atomic
Predicate. The advantage of using Atomic Predicates, which
was previously hidden, becomes apparent and results in a
disparity of one integer against thirteen variables per predicate.
However, it must also be said that the Maximal Flows approach
generates a smaller number of flows (and so less predicates
in input to each node), as we have seen in Fig. 8b. This
reduction slightly mitigates the 1 vs 13 variables disparity.
However, in general, imagining to split the total time to solve
the network related problem into the time for computing traffic
flows and the time to solve the SMT/MaxSMT problem, the
Atomic Flows approach is expected to solve the second phase
faster, because of the lower number of variables the solver has
to manage. The Maximal Flows approach, instead, as seen in
Fig. 8a, is faster in solving the traffic flows computation phase.

Again, the tests are carried out by simulating a progressive
enlargement of the network. Each parameter is therefore
incremented by a fixed value for each test case.

Fig. 9a shows the results to solve the reachability veri-
fication problem using Verigraph2.0 with the two proposed
traffic flows approaches. For each test case the chart shows
two bars: one on the left corresponding to the total time using
Atomic Flows, one on the right corresponding to the total time
using Maximal Flows. Each bar, in turn, is divided into two
parts: the first one colored blue indicating the time required to
compute the traffic flows and the second one colored orange
indicating the time required to solve the SMT problem. In
this case, the approach using Maximal Flows is advantageous
over the approach that uses Atomic Flows. Looking at the time
breakdown, the first phase to compute traffic flows turns out
to be decisive for the Atomic Flows approach. Much of the
time is, in fact, spent to compute the set of Atomic Predicates
and, in addition, this approach generates a greater number of
flows the solver must consider. So, even the SMT phase, in

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

A B C D E
0

50

100

150

200

250
C

om
pu

ta
tio

n
tim

e
(s

)
Traffic flows comp time (s)
SMT time (s)

AF MF AF MF AF MF AF MF AF MF

pol nodes NAT FW
A 50 40 5 5
B 75 60 10 10
C 100 80 15 15
D 125 100 20 20
E 150 120 25 25

(a) Time - Reachability

A B C D E
0

200

400

600

800

C
om

pu
ta

tio
n

tim
e

(s
)

Traffic flows comp time (s)
MaxSMT time (s)

AF MF AF MF AF MF AF MF AF MF

pol nodes NAT FW
A 10 60 5 5
B 15 80 10 10
C 20 100 15 15
D 25 120 20 20
E 30 140 25 25

(b) Time - Refinement

A B C D E0

50

100

150

200

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows (MB)
Maximal Flows (MB)

pol nodes NAT FW
A 50 40 5 5
B 75 60 10 10
C 100 80 15 15
D 125 100 20 20
E 150 120 25 25

(c) Memory - Reachability

A B C D E0

10

20

30

40

50

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows (MB)
Maximal Flows (MB)

pol nodes NAT FW
A 10 60 5 5
B 15 80 10 10
C 20 100 15 15
D 25 120 20 20
E 30 140 25 25

(d) Memory - Refinement

Fig. 9: Comparative validation on synthetically generated networks

this case, is slower. Computing the Atomic Predicates does not
pay off, because the traffic flows phase is longer and does not
bring advantage to the subsequent SMT phase, which instead
is solved very quickly even in the case of Maximal Flows,
with the solver that has to manage complex predicates.

Fig. 9b, instead, shows the results to solve the Refinement
problem in Verefoo. In this case, the approach using Atomic
Flows performs much better than the one using Maximal
Flows. Looking at the time breakdown, it can be seen that, as
expected, the initial traffic flows computation phase using the
Atomic Flows approach is slower in this case too, compared to
the time required by the Maximal Flows approach. However,
the subsequent MaxSMT phase is much faster. So, here,
computing the Atomic Predicates and, then, using them for
the MaxSMT problem helps to solve it much faster. Compared
to the previous reachability verification process, in which the
solver only had to check whether the connectivity policies
were satisfied or not, here, in case of a Refinement process,
the MaxSMT problem has much greater weight. In fact, it has
to allocate and automatically configure the NSFs needed to
satisfy the issued security policies. In this case, the MaxSMT
phase has a greater weight than the traffic flows computation
one (color orange in predominant in each bar over blue).
Using Atomic Flows, the initial time spent to compute the set
of Atomic Predicates brings enough advantage to make the
resolution of the MaxSMT problem simpler and faster. So,
spending more time for the initial phase pays off. The same
MaxSMT problem is very slow using Maximal Flows. In the
first case, the solver can work with integers and the whole
network configuration problem becomes a simple process
working on sets of integers. Conversely, with the Maximal
Flows approach the solver has to work with a set of 13
variables for each predicate, and this increases the execution
time.

Fig. 9c and Fig. 9d compare the memory usage of the
newly developed Verigraph2.0 and Verefoo versions based on
Atomic Flows and the original versions based on Maximal

Flows. The results graphically represented in these figures
show that solving the reachability verification problem with
Verigraph2.0 requires more memory if Atomic Flows are used,
while solving the security policy refinement problem with
Verefoo requires more memory if Maximal Flows are used.
The former result is explained by the fact that the number of
Atomic Flows that is produced is much higher than the number
of Maximal Flows. Therefore, even if the Maximal Flows
approach requires a set of 13 variables for each predicate
representing a packet class, the memory required to store this
higher number of variables does not overcome the memory
required to store information about all Atomic Flows, also
because in the SMT problem embedded in Verigraph2.0 there
are no optimization constraints defined on each one of those
variables. Instead, the latter result is explained by the fact
that in the MaxSMT problem formulated in Verefoo there
are optimization constraints defined on all variables of all
predicates representing packet classes. Consequently, creating
and storing all these constraints determines a memory usage
that is higher by the one requested in case of the Atomic
Flow strategy, where more flows are created, but there are
less optimization constraints, as each packet class is simply
identified by a single integer variable. Moreover, it is worth
noticing that these results are in line with the ones about time
scalability. In fact, Maximal Flows were proved to be more
efficient for solving the reachability verification problem also
in terms of computation time, and the same applies to Atomic
Flows for solving the security policy refinement problem.

All the considerations made so far were confirmed also by
the tests we performed on network configurations inspired by
GÉANT3, Internet24 and APAN5, three existing real produc-
tion networks that are located respectively in Europe, America
and Asia. The tests on these network topologies were carried
out by varying the number of security policies, and assessing

3https://network.geant.org/
4https://internet2.edu/network/
5https://apan.net/

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

100 200 300 400
0

10

20

30

40

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Flows approach (s)
Maximal Flows approach (s)

(a) Time - Reachability

20 25 30 35 40
0

100

200

300

400

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Flows approach (s)
Maximal Flows approach (s)

(b) Time - Refinement

100 200 300 4000

500

1 000

1 500

Number of policies

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows approach (MB)
Maximal Flows approach (MB)

(c) Memory - Reachability

20 25 30 35 400

50

100

150

200

250

Number of policies

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows approach (MB)
Maximal Flows approach (MB)

(d) Memory - Refinement

Fig. 10: Comparative validation on a network inspired by the GÉANT topology

100 200 300 400
0

100

200

300

400

500

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Flows approach (s)
Maximal Flows approach (s)

(a) Time - Reachability

20 25 30 35 40
0

100

200

300

400

500

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Flows approach (s)
Maximal Flows approach (s)

(b) Time - Refinement

100 200 300 4000

1 000

2 000

3 000

4 000

5 000

Number of policies
M

em
or

y
us

ag
e

(M
B

)

Atomic Flows approach (MB)
Maximal Flows approach (MB)

(c) Memory - Reachability

20 25 30 35 400

50

100

150

200

250

Number of policies

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows approach (MB)
Maximal Flows approach (MB)

(d) Memory - Refinement

Fig. 11: Comparative validation on a network inspired by the Internet2 topology

100 200 300 400
0

50

100

150

200

250

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Flows approach (s)
Maximal Flows approach (s)

(a) Time - Reachability

20 25 30 35 40
0

50

100

150

200

250

Number of policies

C
om

pu
ta

tio
n

tim
e

(s
)

Atomic Flows approach (s)
Maximal Flows approach (s)

(b) Time - Refinement

100 200 300 4000

200

400

600

Number of policies

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows approach (MB)
Maximal Flows approach (MB)

(c) Memory - Reachability

20 25 30 35 400

50

100

150

Number of policies

M
em

or
y

us
ag

e
(M

B
)

Atomic Flows approach (MB)
Maximal Flows approach (MB)

(d) Memory - Refinement

Fig. 12: Comparative validation on a network inspired by the APAN topology

computation time and memory usage of both variants of the
two frameworks: the original Maximal Flow variants, and
the newly developed Atomic Flow ones. Their results have
been graphically reported in Fig. 10, Fig. 11, and Fig. 12.
Specifically:

• Fig. 10a, Fig. 11a and Fig. 12a report the total compu-
tation time required by the two Verigraph2.0 variants to
solve the reachability verification problem;

• Fig. 10b, Fig. 11b and Fig. 12b report the total compu-
tation time required by the two Verefoo variants to solve
the refinement problem;

• Fig. 10c, Fig. 11c and Fig. 12c report the memory usage
of the two Verigraph2.0 variants to solve the reachability
verification problem;

• Fig. 10d, Fig. 11d and Fig. 12d report the memory
usage of the two Verefoo variants to solve the refinement

problem.
All these experimental results demonstrate again that the
approach using Maximal Flows requires less time and mem-
ory to solve the reachability verification problem, while the
approach using Atomic Flows is more convenient in solving
the refinement problem.

VIII. CONCLUSIONS

This paper introduced a two-fold traffic flow model, which
can be used as a starting point to pair formal methods with
automation for network security management. On this general
model, two different algorithms have been built to group
packet classes into traffic flows entities, named Maximal and
Atomic Flows. These algorithms differ for the trade-off they
can achieve between two features of their grouping strategies,
i.e., the number of traffic flows that are computed, and the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

granularity level of each traffic flow. Slightly modified state-
of-the-art automatic algorithms can employ these flow entities
to solve different network security management problems such
as security policy verification and refinement.

An extensive validation of the algorithm execution and
their application to management problems was carried out to
assess their feasibility, and to identify the cases where each
algorithm performs better. From the validation results, we
noticed that aggregating packet classes into Maximal Flows is
more convenient to solve less burdensome problems, such as
the verification of reachability and isolation policies, because
the time and memory required to compute the flows are lower.
Instead, using Atomic Flows is advisable when addressing
more complex problems such as policy refinement. Even if
more time is needed to compute the Atomic Predicates at
the basis of these flows, each one can be assigned an integer
identifier, and these numbers can be used to formulate the
problem in a simpler way, using less variables.

Future work envisions to assess the feasibility of this traffic
flow model in other network security management problems ,
such as formal verification related to information disclosure,
latency constraints, and reliability. Different trade-offs between
number of computed flows and their granularity level will
be also investigated, to understand how they can impact the
resolution of these problems.

ACKNOWLEDGMENT

This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and Re-
silience Plan funded by the European Union - NextGenera-
tionEU.

REFERENCES

[1] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security
in software defined networks,” IEEE Commun. Surv. Tutorials, vol. 18,
no. 1, pp. 623–654, 2016.

[2] R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” J. Netw. Syst. Manag., vol. 15, no. 4, pp. 447–480, 2007.

[3] A. Leivadeas and M. Falkner, “A survey on intent based networking,”
IEEE Commun. Surv. Tutor., 2022.

[4] D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation for
network security configuration: State of the art and research trends,”
ACM Comput. Surv., vol. 56, no. 3, pp. 57:1–57:37, 2024.

[5] J. Qadir and O. Hasan, “Applying formal methods to networking:
Theory, techniques, and applications,” IEEE Commun. Surv. Tutorials,
vol. 17, no. 1, pp. 256–291, 2015.

[6] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Ver-
iflow: Verifying network-wide invariants in real time,” in Proc. of the
{USENIX} Symp. on Net. Syst. Design and Impl., 2013.

[7] J. Govaerts, A. K. Bandara, and K. Curran, “A formal logic approach
to firewall packet filtering analysis and generation,” Artif. Intell. Rev.,
vol. 29, no. 3-4, 2008.

[8] P. Bera, S. K. Ghosh, and P. Dasgupta, “Policy based security analysis
in enterprise networks: A formal approach,” IEEE Trans. Netw. Service
Manag., vol. 7, no. 4, 2010.

[9] H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Trans. on Net., vol. 24, no. 2, 2016.

[10] ——, “Scalable verification of networks with packet transformers using
atomic predicates,” IEEE/ACM Trans. Netw., vol. 25, no. 5, pp. 2900–
2915, 2017.

[11] D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and
J. Yusupov, “Improving the formal verification of reachability policies
in virtualized networks,” IEEE Trans. on Net. and Serv. Manag., vol. 18,
no. 1, 2020.

[12] M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed
network access controls: A formal framework with refinement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, 2017.

[13] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated firewall configuration in virtual networks,” IEEE Trans.
Dependable Secur. Comput., vol. 20, no. 2, pp. 1559–1576, 2023.

[14] Y. Li, X. Yin, Z. Wang, J. Yao, X. Shi, J. Wu, H. Zhang, and Q. Wang,
“A survey on network verification and testing with formal methods:
Approaches and challenges,” IEEE Commun. Surv. Tutorials, vol. 21,
no. 1, pp. 940–969, 2019.

[15] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Towards a fully automated and optimized network security functions
orchestration,” in 2019 4th International Conference on Computing,
Communications and Security (ICCCS), Rome, Italy, October 10-12,
2019. IEEE, 2019, pp. 1–7.

[16] S. Bussa, R. Sisto, and F. Valenza, “Security automation using traffic
flow modeling,” in 8th IEEE International Conference on Network
Softwarization, NetSoft 2022, Milan, Italy, June 27 - July 1, 2022. IEEE,
2022, pp. 486–491.

[17] G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “On static reachability analysis of ip networks,” in Proc.
of the IEEE Conf. of the IEEE Comp. and Comm. Societies., 2005.

[18] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. of the {USENIX} Symp. on Net.
Syst. Design and Impl., 2012.

[19] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proc. of the {USENIX} Symp. on Net. Syst. Design and
Impl., 2013.

[20] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. of the {USENIX}
Symp. on Net. Syst. Design and Impl., 2015.

[21] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
Scalable symbolic execution for modern networks,” in Proc. of the ACM
SIGCOMM Conference, 2016.

[22] N. Stouls and M. Potet, “Security policy enforcement through refinement
process,” in Proc. of the 7th Intern. Conf. of B Users, Besançon, 2007.

[23] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The mathe-
matical foundations for mapping policies to network devices,” in Proc.
of the 13th Intern. Joint Conf. on e-Business and Telecommunications,
2016.

[24] N. Schnepf, R. Badonnel, A. Lahmadi, and S. Merz, “Rule-based
synthesis of chains of security functions for software-defined networks,”
ECEASST, vol. 76, 2018.

[25] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtu-
alized networks,” in Proc. of the IEEE/IFIP Network Operations and
Management Symp., 2020.

[26] M. E. Halaby, “On the computational complexity of maxsat,” Electron.
Colloquium Comput. Complex., 2016.

[27] R. Robere, A. Kolokolova, and V. Ganesh, “The proof complexity of
SMT solvers,” in Computer Aided Verification. Springer International
Publishing, 2018.

Daniele Bringhenti received the M.Sc. degree
(summa cum laude) and the Ph.D. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Torino, Italy, in 2019 and 2022
respectively, where he is currently an Assistant
Professor with time contract. His research interests
include novel networking technologies, automatic
orchestration and configuration of security functions
in virtualized networks, formal verification of net-
work security policies.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Simone Bussa received the M.Sc. degree (summa
cum laude) in computer engineering from the Po-
litecnico di Torino, Turin, Italy, in 2021, where
he is currently working toward the Ph.D. degree
in control and computer engineering. His research
interests include distributed systems security and
formal verification applied in the field of cyber-
physical systems.

Riccardo Sisto received the Ph.D. degree in Com-
puter Engineering in 1992, from Politecnico di
Torino, Italy. Since 2004, he is Full Professor of
Computer Engineering at Politecnico di Torino. His
main research interests are in the area of formal
methods, applied to distributed software and com-
munication protocol engineering, distributed sys-
tems, and computer security. He has authored and
co-authored more than 100 scientific papers. He is
a Senior Member of the ACM.

Fulvio Valenza received the M.Sc. degree (summa
cum laude) and the Ph.D. degree (summa cum laude)
in computer engineering from the Politecnico di
Torino, Torino, Italy, in 2013 and 2017, respec-
tively, where he is currently a Tenure-Track Assistant
Professor. His research activity focuses on network
security policies, orchestration and management of
network security functions in SDN/NFV-based net-
works, and threat modeling.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3407159

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Flow models for verifying network security properties
	Flow models for automatic network security configuration
	Our contributions

	The Flow Modeling Approach
	Model definition
	Traffic flow computation
	Automatic algorithm execution for security management
	Running example

	Model
	Packet class model
	Network model
	Traffic flows and network security policies models

	Atomic Flows
	Atomic Flows algorithms
	Atomic Flows example

	Maximal Flows
	Maximal Flows algorithm
	Maximal Flows example

	Discussion and Experimental Comparison
	Validation for traffic flow computation
	Comparative validation for solving network security management problems

	Conclusions
	References
	Biographies
	Daniele Bringhenti
	Simone Bussa
	Riccardo Sisto
	Fulvio Valenza

