POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Two-Fold Traffic Flow Model for Network Security Management

Original

A Two-Fold Traffic Flow Model for Network Security Management / Bringhenti, Daniele; Bussa, Simone; Sisto, Riccardo;
Valenza, Fulvio. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. -
ELETTRONICO. - 21:4(2024), pp. 3740-3758. [10.1109/TNSM.2024.3407159]

Availability:
This version is available at: 11583/2989178 since: 2024-08-26T05:59:227

Publisher:
IEEE

Published
DOI:10.1109/TNSM.2024.3407159

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

12 September 2024

3740

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

A Two-Fold Traffic Flow Model for
Network Security Management

Daniele Bringhenti
Riccardo Sisto

Abstract—Introducing formal methods in the automatic reso-
lution of network security management problems can guarantee
solution correctness, so also boosting human confidence in using
automatic techniques. A necessary step to achieve this feature is
the definition of formal network models, representing network
topology, traffic flows, etc. Each state-of-the-art formal network
modeling approach has been proposed and validated only for a
specific management problem (e.g., verification of configurations
or refinement of policies into configurations). This paper analyzes
a possible combination of the most promising state-of-the-art
modeling approaches into a unified formal model that can be
used by existing automatic resolution algorithms to solve both
the verification and the refinement problems, without the need
of major changes. The model is flexible enough to allow different
aggregation levels of traffic into flows. The paper analyzes two
opposite flow aggregation strategies, named Atomic Flows and
Maximal Flows, and compares their performance when applied
to the two identified security problems.

Index Terms—Network security management, policy-based
management, network formal models.

I. INTRODUCTION

N THE last decade, computer networks have been
Isigniﬁcantly reshaped by the advent of softwarization
paradigms, such as Software-Defined Networking (SDN) and
Network Functions Virtualization (NFV). Nowadays, network
security management must comply with the agility and
dynamism characterizing virtual environments [1]. In order
to meet this requirement, the traditional security management
approaches, based on manual trial-and-error techniques, are
being progressively abandoned, because they are cumbersome,
time-consuming, and error-prone. In particular, they are being
replaced by automatic processes and tools, which can exploit
a comprehensive view of the network to simplify and speed up
security management operations, while reducing the number
of fallible human interventions.

A possible paradigm through which automation can
be introduced into network security is policy-based

Manuscript received 7 August 2023; revised 22 February 2024 and 27 May
2024; accepted 28 May 2024. Date of publication 30 May 2024; date of
current version 21 August 2024. This work was partially supported by project
SERICS (PE00000014) under the MUR National Recovery and Resilience
Plan funded by the European Union - NextGenerationEU. The associate editor
coordinating the review of this article and approving it for publication was
M. Li. (Corresponding author: Fulvio Valenza.)

The authors are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, 10129 Torino, Italy (e-mail: daniele.bringhenti@
polito.it; simone.bussa@polito.it; riccardo.sisto@polito.it; fulvio.valenza@
polito.it)).

Digital Object Identifier 10.1109/TNSM.2024.3407159

, Member, IEEE, Simone Bussa
, Member, IEEE, and Fulvio Valenza

, Graduate Student Member, IEEE,
, Member, IEEE

management [2], which lately in literature is also tending
to intent-based networking [3]. The core idea is that human
administrators should just specify the security requirements
or intents to be managed in a network by means of sentences
expressed in a user-friendly language, and then automatic
resolution algorithms are employed to solve the related
network security management problems [4] (e.g., to verify if
an existing security configuration fully satisfies the required
policies, or to automatically derive the configuration from
them). A key feature of employing policy-based management
for network security automation is that it is suitable to
be paired with formal methods. This feature can assist in
guaranteeing that the automatically computed results of the
policy-based management operations are actually correct and
compliant with the security requirements to be enforced in the
network [5]. Therefore, it increases the human confidence in
employing automated tools and it contributes to the success
of network security automation.

In this context, a central research activity is the investigation
of adequate network models, representing the key elements
for the application of policy-based security management, as
well as for other automatic techniques (e.g., approaches based
on artificial intelligence). A concept that plays a central role
in such models is the representation of network traffic flows.
Formally modeling how the packets originating from the
source of a communication can be forwarded and modified in
a network until they reach their destination is a complex task,
which involves modeling multiple elements: (i) the packets
that can cross a network; (ii) the paths that each packet can
follow in the network; and (iii) the transformations that each
network function can produce in the packets that traverse it.

Research in formal network models has made progress over
the last years. The first models proposed in literature for
verification purposes [6], [7], [8] could describe only simple
networks, without functions that can modify packets, and
were characterized by limited scalability. These limitations
have been overcome by more recent approaches such as AP
Verifier [9], its extension APT [10] and Verigraph2.0 [11]
for verification, while ConfigSynth [12] and Verefoo [13]
for refinement. However, most of these models have been
designed to assist a single security management operation
(verification or refinement), and they are usually not flexible
enough to allow the application of the other operation. The
only exception is the pair Verigraph2.0 - Verefoo, because
these approaches share a similar network and flow modeling
approach, which is based on modeling traffic flows rather

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3086-7364
https://orcid.org/0009-0001-2563-1074
https://orcid.org/0000-0002-3142-2383
https://orcid.org/0000-0002-8471-3029

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

than packet classes. In particular, those approaches aim to
aggregate flows as much as possible, creating entities named
Maximal Flows. Another interesting concept, which was intro-
duced in AP Verifier and extended in APT to networks with
transformers, is Atomic Predicates, representing the coarsest
equivalence classes of packets in a particular network (i.e., two
packets belong to the same class if they are not distinguished
by any middlebox in the network). Even if this concept has
been formulated and used only for the verification problem, it
features very good performance and scalability.

In this paper, we aim to improve this state of the art about
research in formal network models with multiple contributions.
First, we present a new flow grouping strategy, aiming to create
flow entities named Atomic Flows. This strategy leverages the
concept of Atomic Predicates so as to have packet classes
considered for traffic flow computation that are minimal and
disjoint from each other. This feature allows a finer flow
granularity than what Verigraph2.0 [11] and Verefoo [13]
can achieve with Maximal Flows, despite creating a larger
number of flows. In order to clarify all their differences,
in this paper we fully detail not only the novel Atomic
Flow strategy, but also the Maximal Flow strategy, as it
was not completely described in the Verigraph2.0 [11] and
Verefoo papers [13], whose scope was different. Then, we
developed Verigraph2.0 and Verefoo variants based on Atomic
Flows instead of Maximal Flows. These new variants of
the two original frameworks allowed us to experimentally
compare the efficacy and efficiency of the two algorithms for
flow computation in the context of the two main operations
related to policy-based management for network security, i.e.,
verification of connectivity properties (i.e., reachability and
isolation properties) [14], and refinement (i.e., deriving the
security configuration from the user-specified policies [15]).
A main objective of this comparative analysis was to identify
the flow aggregation strategy that is characterized by lower
computation time and memory usage to solve each one of the
analyzed security management problems.

The idea of this two-fold traffic flow model was presented
preliminarily in [16]. This paper improves and completes that
preliminary idea in the following ways: (i) the formalization
of the traffic flow model, and the presentation of the two
algorithms for computing Atomic Flows and Maximal Flows,
so as to show the generality and flexibility of this model; (ii)
a complete use case to which both algorithms are applied so
that each step of them can be more easily understood; (iii) an
extended discussion of related work to emphasize the novelty
of this proposal; (iv) an improved experimental validation of
the approach with application to realistic computer network
topologies and the addition of new metrics in the scalability
tests; (v) an extended comparison of the two algorithms
with the identification of their respective advantages and
disadvantages.

The remainder of this paper is structured as follows.
Section II discusses related work. Section III describes
the approach that is pursued for modeling and computing
traffic flows. Section IV introduces the models of basic
networking concepts (network topology, network functions,
packets classes, security policies). Section V and Section VI

3741

illustrate the algorithms for the computation of Atomic Flows
and Maximal Flows respectively, built on the previously
presented models. Section VII describes how the modeling
approach has been validated and the two algorithms have
been compared, highlighting their advantages and drawbacks.
Finally, Section VIII briefly concludes the paper and outlines
future work.

II. RELATED WORK

Several state-of-the-art approaches pairing security policy-
based management with formal methods (i.e., [6], [7], [8], [9],
(101, [11], [12], [13], [17], [18], [19], [20], [21], [22], [23],
[24], [25]) showed the need to model network packets or traffic
flows, as they represent the key components for modeling more
complex elements (e.g., the behavior of network functions, or
the network security policies specified by the administrator).
Here, our focus is on the formal models proposed to address
the problems of verifying network security properties or of
automating security configuration from user-specified policies.
These two problems also represent the scenarios our model has
been validated on. To this regard, Section II-A discusses the
main characteristics and limitations of formal models proposed
in literature to verify network security properties, whereas
Section II-B focuses on the models defined in the context of
automated approaches for network security configuration.

A. Flow Models for Verifying Network Security Properties

Initially, the problem of defining traffic flow models for
the verification of network security properties (e.g., network
connectivity) was addressed without focusing on possible
optimizations. In this respect, the milestone in this research
area, i.e., [17], proposed an approach that computes and
verifies the reachability a network can provide from a static
snapshot of the configuration state from each of the routers
composing the network topology. In doing so, it models all
the possible packets whose reachability should be checked.

Later, some optimizations were introduced. On the one
hand, [18] proposed a formal approach, named Header Space
Analysis (HSA), based on a geometric model of the packet
header space. Packets are modeled as points in the geo-
metric space {O,l}L, where L is the header length, and
network functions as transfer functions on that space itself.
Consequently, the operations performed on a packet along a
path are obtained by composing the operations of the network
functions it crosses. Reference [19] extended this approach
by adapting it to real-time property checking. On the other
hand, Veriflow, the methodology illustrated in [6], combines
packets into disjoint Equivalent Classes (ECs), i.e., sets of
packets experiencing the same forwarding actions throughout
the network. For each EC, Veriflow builds a forwarding
graph representing the paths this EC can take according
to the forwarding behavior of the network. However, both
the approaches discussed in [6] and [18] initially model all
the packets, before selecting or combining them into the
classes that are really needed to check the requested security
properties.

3742

Other solutions are based on symbolic modeling, which
avoids the explicit modeling of each packet. Reference [20]
proposes Network Optimized Datalog (NoD), a tool that mod-
els each packet header field as a separate symbolic variable,
and a network function as a predicate that takes as parameters
all the header fields in the packet. A symbolic execution
explores all possible paths through the program, computing
the possible values for each symbolic variable at every point.
As not all such values are usually necessary, but only some
of them, there is a redundancy of the results that need to
be computed. Another tool, named Symnet [21], tried to
overcome this limitation by proposing the Symbolic Execution
Friendly Language (SEFL). This programming language is
used to express the data plane of the network so as to
enable fast symbolic execution, as models are by construction
memory safe, have bounded memory usage and are guaranteed
to terminate. One of the limitations of this approach, as the
authors state in [21], is that accurately modeling network
functionalities that work with their proposed traffic model
requires expertise from human users. However, they provide
parsers only for a limited number of functions (i.e., switches,
routers, and firewalls). This makes their models difficult
to be extended to solve other security problems and for
heterogeneous networks.

Among the most recent studies proposing traffic models
for verifying network properties, two techniques are particu-
larly relevant: Verigraph2.0 [11] and APT [10], which is an
extended version of AP Verifier [9]. The former [11] models
each packet class as a conjunction of predicates set over the
packet fields, so that these predicates can be used for the
formulation of a constraint programming problem to represent
the verification problem, and it introduces the model of a
traffic flow, which includes a collection of packets forwarded
along the same path. The latter [10] introduces the concept
of Atomic Predicate, used to represent a class of packets that
are treated identically by every filter and transformer in the
network. In their approach, the packet class represented by
each Atomic Predicate can be identified by an integer, so that
all the required operations of the verification process only
deal with the integers that represent such classes. Nevertheless,
each packet class is modeled as a bit array, and each predicate
is a Boolean formula where each variable represents one bit in
the packet header. In our view, this formalization may make
it difficult to use this strategy for other security management
operations, such as configuration, as the number of variables
employed is high (i.e., a Boolean variable for each packet
header bit).

Anyhow, we were inspired by the proposed concept of
Atomic Predicate for the formulation of the algorithm to
compute Atomic Flows (analyzed in Section V), casting that
concept into a different traffic model based on less variables,
as predicates are set over the packet fields instead that on their
single bits.

B. Flow Models for Automatic Network Security
Configuration

Among the studies that apply formal methods to the
automatic configuration of network security functions, the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

first ones, such as [7], [8] and [22], have limited models for
network traffic. In particular, when mapping user-specified
policies onto the configuration of security functions (mostly
firewalls), these approaches do not take into account the
possible transformations that may be applied to the traffic by
functions such as NATs or load balancers.

Then, in more recent papers, such as [12], [13], [23], [24],
[25], modeling flows has gained more interest, mainly due
to the need to make automated methodologies applicable to
distributed security functions, e.g., distributed firewalls, where
it is necessary to have a global view of all the traffic crossing
the network rather than of the packets reaching a single
function instance. In greater detail, [12] simply identifies traffic
flows by the identifiers of the end points of the communication
and it uses them to decide how to secure a user-provided
network graph by allocating different types of network security
functions. Their flow model is rather simplistic, as it does
not take into account the possible values that packet header
fields such as IP addresses or ports may have. Reference [23]
also models the protocol that is used for the communication
(e.g., HTTP, SSH), while [24] considers a large number of
packet attributes (e.g., the IP 5-tuple fields or the timestamp) to
represent each traffic flow, so that the methodology proposed
in those papers takes decisions on the values of those attributes
to automate the composition and configuration of chains
composed of network security functions.

Finally, [13], [25] introduce a model which represents
packets including all the fields of the IP 5-tuple, but open
to include more fields, and traffic flows, modeled in a way
similar to the one introduced in Verigraph2.0. Even if their
traffic model is tailored to packet filtering and its validity for
other security management problems is not proved, a relevant
concept is that the approach proposed there tries to group
multiple flows that behave in the same way (i.e., that cross
the same node sequence and are subject to the same changes)
into a single one.

C. Our Contributions

All the studies mentioned above define network and traffic
models to solve specific verification or configuration tasks,
but they did not prove that the same models can be used
efficiently to solve other security-related problems. Moreover,
each method is affected by some limitations, as illustrated
above.

This paper starts from the most promising modeling
approaches proposed so far, and studies a possible way of com-
bining them into a general formal model that can be used both
for verification and refinement purposes, and that overcomes
the most important limitations of the original techniques. More
specifically, our contributions are the following ones:

o Differently from the modeling approaches used by
Verigraph2.0 [11] and by Verefoo [13], where flows are
joined together in order to reduce their number, here we
also study a different grouping strategy, which we call
Atomic Flows. This novel strategy is inspired by the APT
approach of coarsest equivalence classes [10], but cast to
the traffic flow model, using efficient field models rather
than header bits.

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

272 n
[000
2% (] T
Network Policy = Packet Traffic
\ Model Model Model Model I
T
Model Definition
-

LX)

o
Com

Traffic Flow Solver
L)
Y Y
Traffic Flow Automatic Algorithm
Computation Execution

Fig. 1. The flow modeling approach.

e We formalize and validate the algorithm to compute
Atomic Flows, according the Atomic Predicates strat-
egy. Moreover, we provide a complete description of
the Maximal Flows computation algorithm, which was
not fully investigated in the Verigraph2.0 [11] and
Verefoo [13] papers.

o We compare the two strategies with an extensive series
of experimental tests to assess their performance, their
applicability to security management operations and to
provide their trade-offs.

III. THE FLOW MODELING APPROACH

This section describes the workflow where the proposed
flow modeling approach can be used to pair automation
and formal methods for network security management. This
workflow is composed of three main steps, as illustrated in
Fig. 1:

1) the definition of general models for the main compo-

nents of the network security management problem;

2) the computation of the traffic flows that cross the

network under consideration;

3) the execution of an automatic resolution algorithm tai-

lored to solve the security management problem.

A. Model Definition

The first step of the approach consists in the definition
of formal models for the main components of the network
security problem. In particular, four main model classes are
needed:

e The packet class model is needed to identify and group
packets which belong to the same traffic flows and which
are subject to the same networking operations.

e The network model consists in the representation of
both the network topology structure and the forwarding
and transformation behaviors of each function composing
it. This model is needed to understand how packet
classes cross the network and how they are managed by
intermediate middleboxes.

3743

e The traffic flow model is needed to provide a general
representation for the flows of packets that cross the
network, so as to apply the traffic flow algorithms to
compute the flows that are interesting for the security
policies.

¢ The network security policy model is needed to represent
the requirements that must be managed in the network
(e.g., that must be verified or enforced), so as to identify
the network areas and the traffic flows that concern them.

In the definition of these models, a main aim has been to
achieve a trade-off between adherence to reality and efficiency.

On the one hand, the models must capture all the

information that may influence the correctness of the solution.
If a critical piece of information is missing, the output of
the automatic verification or resolution algorithm may not be
correct, even if there is no issue in the algorithm design. For
example, the configuration of a packet filtering firewall must
be modeled so as to consider the decision that the function may
take for any kind of possible input traffic (e.g., by modeling
a default action that is applied whenever there is no match of
the packet fields with the conditions of another filtering rule).

On the other hand, such models must be lightweight enough

so as not to impact too much on the performance of the
algorithms. If an excessive amount of redundant information is
included in the models, their processing will require additional
execution time, without altering the final result. For example,
the behavior of a firewall should be modeled so as to
capture only the features related to the security properties
that must be enforced in a network (e.g., only the features
related to forwarding operations if the security requirements
concern reachability or isolation properties). Defining models
that are lightweight enough is particularly important when
the algorithm is based on a constraint-based programming
problem, such as an integer linear programming problem or a
Satisfiability Modulo Theories (SMT) problem. Less complex
models allow reducing the number of variables employed
for the problem formulation, and consequently the size of
the solution space that the automated solver of such kind of
problems must exhaustively explore.

The models that are defined in this paper to achieve such

trade-offs are detailed in Section IV.

B. Traffic Flow Computation

The second step of the approach consists in computing
all the traffic flows that are relevant for solving the network
security management problems. For instance, if a human
administrator wants to verify a reachability property, the flows
that pertain that requirement must be identified and computed
before the execution of the verification algorithm.

In our vision, a traffic flow represents how a packet class,
generated by a network end point, crosses an ordered list
of intermediate network functions before reaching the desti-
nation, and how these functions may transform the packets
belonging to this class before possibly forwarding them to
the next hop. According to this definition, the traffic flow
computation may produce different results depending on how
single network packets are grouped into classes. In particular,

3744

the choice of a grouping strategy has impact on the following
main features: 1) the number of traffic flows that are computed;
2) the granularity level of each traffic flow, expressing how
small the packet class associated with the flows is.

As different trade-offs can be reached for these characteris-
tics, we have analyzed two different algorithms for traffic flow
computation. Both of them work on the same general formal
models proposed for packet classes and traffic flows, but they
balance the number of computed flows and their granularity
level in different ways. The flows that are computed with
these two algorithms are respectively named Atomic Flows
and Maximal Flows.

The computation of Atomic Flows is inspired by the idea
of Atomic Predicates originally proposed in [9], as previously
stated in Section II. According to that study, given a set
of predicates on packet fields, it is possible to compute the
set of totally disjoint and minimal predicates, named Atomic
Predicates, such that each predicate can be expressed as a
disjunction of a subset of atomic ones. Applying this concept
to a computer network, it is possible to split each complex
predicate (e.g., a predicate representing a firewall rule field,
a NAT input packet class, or the condition of a security
policy) into a disjunction of simpler and minimal Atomic
Predicates. After computing the set of Atomic Predicates for
all the predicates used in the network, the Atomic Flows
can be computed so that each packet class that is associated
with one of them is represented by an Atomic Predicate.
This guarantees a fine granularity level, as each packet class
considered for traffic flow computation is the minimal one,
and is disjoint from the others. Another main advantage of
this approach is that, as all Atomic Predicates are disjoint for
definition, each packet class related to an Atomic Flow can be
associated with an integer number that uniquely identifies it.
This feature allows the execution of easier operations, both for
traffic flow computation and for the resolution of the security
management problem, because they can work on integers
instead of complex predicates. Nevertheless, a drawback is
that a larger number of traffic flows are produced with this
algorithm. The algorithm for the computation of Atomic Flows
is detailed in Section V.

Instead, the computation of Maximal Flows is based on
the opposite criterion, which is to reduce the number of
generated flows, while maximizing their aggregation. In this
second case, all traffic flows that behave in the same way
when crossing the network are grouped into a single Maximal
Flow, so that it is sufficient to consider one Maximal Flow in
the resolution of the security management problem instead of
considering all the flows that make it up. The execution time
for computing the Maximal Flows is expected to take less time,
because the number of actual flows that must be computed is
minimized. The counterbalance of such approach is that the
packet classes whose transformation through the network is
represented by a Maximal Flow have a coarser granularity, as
they may represent a larger set of packets with respect to the
approach based on the computation of Atomic Flows. Besides,
these packet classes may not be disjoint, which complicates
their use and requires that the packet classes they represent
be preserved, instead of being neglected as it is possible

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

with atomic flows. Indeed, differently from the approach
based on Atomic Flows, the predicates representing packet
classes cannot be uniquely identified by integer numbers. The
algorithm for the computation of Maximal Flows is detailed
in Section VL.

C. Automatic Algorithm Execution for Security Management

The third step of the approach consists in executing a spe-
cific automatic resolution algorithm for the network security
management problem that needs to be addressed. State-of-
the-art algorithms, already available in literature, may be
employed for this step with minor changes. On the one hand,
some changes are required to make those algorithm compliant
with the formal models defined for the main components
of the network security problem. However, as these models
are designed to be as general as possible, most algorithms,
already defined to work with custom network models, can
be easily adapted to work with them. On the other hand,
some modifications are due to the choice of which strategy
is used for flow computation, as Atomic and Maximal Flows
rely on partially different models for packet classes and traffic
flows. Nevertheless, these changes are not related to the core
approach of the selected resolution algorithm. Instead, they are
mostly related to the actual low-level operations that must be
executed (e.g., operations related to Atomic Flows work with
integer numbers, while those related to Maximal Flows work
with more complex predicates).

In order to show that this approach can be pursued by
slightly modifying and extending existing resolution algo-
rithms, we have applied it to two state-of-the-art algorithms
for network security automation, available as open-source
code: VerigraphZ.O] [11] and Verefoo? [13]. The former
automatically verifies connectivity properties (i.e., reachability
and isolation properties) by providing formal assurance of
the result correctness. Instead, the latter automatically refines
user-specified security policies into the allocation scheme
and configuration of distributed packet filtering firewalls, by
formulating the security automation problem as a Maximum
Satisfiability Modulo Theories (MaxSMT) problem so as to
ensure correctness by construction for its output. Section VII
shows how both these resolution strategies could be extended
to support both Atomic and Maximal Flows, and how the two
flow computation algorithms behave in terms of performance
when applied to solve different network security management
problems.

D. Running Example

In order to aid the understanding of the formal models
and of the traffic flow computation algorithms, Fig. 2 shows
a possible scenario that will be used as a running example
to describe the proposed approach in the next sections of
the paper. The figure represents a network composed of two
client sub-networks (10.0.0.0/24 and 20.0.0.0/24) and a server
(30.0.5.1 in sub-network 30.0.5.0/24). The network includes

1 https://github.com/netgroup-polito/verigraph
2https:// github.com/netgroup-polito/verefoo

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

P NAT, Fw, P
w N g =
(10005) = — g (3005) =)
10.0.0.1 7‘7% % - T 30051
7 200,04
F1 Forwarding domain
action ipSrc ipDst portSrc portDst trProto
1 Allow 10.0.0.1 30.0.5.1 * * *
D Deny # * * # #
P (10.0.0.1, 30.0.5.1, *, *, *)
I, I
NAT 30.0.0.1 Transformation domain
Sources 10.0.0.1

D (Shadowing)
D, (Reconversion)
D5 (Forwarding)

(10.0.0.1, =10.0.0.1 A =30.0.0.1, *, *, *)
(=10.0.0.1 A =30.0.0.1, 30.0.0.1, *, *, *)
D1 AN =Dy

Fig. 2. Example scenario.

also a NAT (30.0.0.1) shadowing only the IP address 10.0.0.1,
and a firewall with its own access list containing only one
rule. In this scenario, the only security policies specified by
the user refer to all traffic flows originating from the client
sub-network 10.0.0.0/24 and directed to the server 30.0.5.1,
without any restriction on port numbers and protocol type.
In particular, the flows linking 10.0.0.0/24 and 30.0.5.1 can
take two possible paths: one passing through the NAT and one
passing through the client sub-network 20.0.0.0/24.

IV. MODEL

In this section, we present the formal models of the main
network elements (packet classes, network topology and func-
tions, network security policies, traffic flows). These models
are partially mutated from the modeling approaches proposed
in [11] and [13], as they were already defined to be compatible
with the two network security automation operations analyzed
in this paper, i.e., the verification of connectivity properties,
and the refinement of user-specified policies into security
function configuration. However, they have been generalized
so that they could be applied to both the algorithms for
computing the Atomic Flows and Maximal Flows.

A. Packet Class Model

Definition 1: Packet class (traffic): A packet class, also
named traffic, ¢, is modeled as a predicate defined over the
values of the packet fields. In particular, ¢ is a disjunction of
predicates, where each predicate is defined over a single field.

This definition is general enough to support the formal-
ization of packet class models suitable for solving different
network security management problems. Depending on the
packet fields that must be considered to solve them, new pred-
icates defined over them may be included to the disjunction
of predicates modeling ¢.

In the following, we present a special case of packet class
model, where the packet fields on which the predicates of

3745

t are defined are the ones of the IP 5-tuple. This specific
formulation has been mutated from the two studies proposing
the resolution strategies with which we aim to analyze the
two flow computation algorithms, i.e., [11] and [13]. In those
studies, it has been already proved to achieve higher efficiency
for verification and refinement algorithms with respect to state-
of-the-art alternatives, hence the decision of using it as a
starting point for the approach discussed in this paper.

In this particular case, a packet class ¢ is formally modeled
as a disjunction of predicates q; 1V gz 2 V -+ -V gt,n, Where
each ¢ ; is defined over the 5-tuple fields. A packet belongs
to class ¢ if and only if its 5-tuple satisfies at least one ¢y ;.
Each ¢; ; represents the conjunction of five predicates, one for
each field of the 5-tuple. For sake of simplicity, each ¢; ; is
written as

qt,; = (ipSre, ipDst, portSre, portDst, trProto) (1)

where ipSrc, ipDst, portSrc, portDst and trProto are the 5
predicates.

The predicates about source and destination IPv4 addresses
ipSrc and ipDst are conjunctions of four predicates, one for
each byte of the address. Each one of the four predicates
can represent a single integer value or a range of values,
not exceeding the range 0 to 255. The predicates that make
up ipSrc or ipDst are concisely written by means of the
dotted-decimal notation ipj.ipa.ip3.ip4. The range [0, 255] is
concisely represented by the wildcard *. If ¢p; is a range,
the predicates on its right must be x. For example, ipSrc =
130.192.5.x stands for the predicate 1 = 130 A zp = 192 A
23 = b, where z; is the variable representing the i-th byte of
the source IP address packet field, and this predicate identifies
all the IP addresses matching 130.192.5.0/24.

The predicates about source and destination ports portSrc
and portDst can identify either a single integer number or a
range of values, not exceeding the range 0 to 65535, and the
same notation used for each byte of an IP address is also used
for the port number, with the range [0, 65535] symbolized by
the wildcard *. For example, 80 stands for the predicate x =
80 and [80, 100] stands for the predicate z <= 100Az >= 80
where z is the variable that represents the port field.

The predicate about the transport-level protocol trProto can
identify a single value or a subset of values among a finite
set of possible values (e.g., a set including the “TCP” and
“UDP” values). The set of all the possible values in this set
is concisely symbolized by the wildcard *.

In all our models, we use the “.” notation to denote a
specific tuple element (e.g., given a tuple ¢ = (a, b, ¢), t.a
identifies element a of tuple ¢). Therefore, each sub-predicate
of a g, predicate can be denoted with this notation for sake
of conciseness, e.g., g ;.ipSrc represents the sub-predicate of
the ¢; ; predicate defined over the source IP address.

Let us denote () the set of all the predicates g; ; that can
be specified with the above notation, and T the set of all the
disjunctions of such predicates, i.e., the set of all packet classes
t that can be represented by this model. It can be proved that
T is closed under conjunction, disjunction and negation. Given
two traffic predicates ¢y, % € T, t; is said to be a sub-traffic

3746

of to, written t; C tp, if ¢; represents a subset of the packets
represented by fo, i.e., if t; = to.

B. Network Model

The network topology is modeled as a tuple (N, L), where
N is the set of the vertices representing network nodes,
whereas L is the set of the links representing directed network
connections. The nodes represent the network endpoints and
functions (i.e., Web clients, Web servers, routers, firewalls,
VPN gateways, load balancers).

Definition 2: Network Function (NF): The behavior of an
NF is modeled abstractly by means of two functions, which
captures respectively the forwarding behavior (i.e., which input
packets are discarded by the functions) and the transformation
behavior (i.e., how the packets are modified before being
forwarded to the next hop towards their destination).

The forwarding behavior of a function node n; € N is
modeled with the predicate deny;:T — B, which maps an
input packet class to the Boolean value true, if all the packets
of that class are dropped by the function, as a consequence of
its configuration. I Z-d denotes the largest class of packets ¢ such
that deny;(t) = true. Instead, the complement of Iid, i.e., the
class of packets which are not discarded by the function, is
denoted as 7. From this definition, it derives that Iid VLY =
true and Iid NI} = false.

The transformation behavior of a node n; € N is modeled
with the function 7;:T — T, which maps an input packet
class to another class. For many network functions such as
forwarders, traffic monitors and load balancers, 7 1is the
identity function, because they do not apply any transformation
to the packets that reach their input ports. In this case, both
the 7 domain and co-domain correspond to the 7" set. Instead,
other functions show a more complex behavior. An example is
a type of Network Address Translator (NAT) that can perform
only address translation, without the feature of port translation.
The configuration of such NAT is commonly characterized
by m shadowed IP addresses, i.e., the IP addresses that the
NAT translates, represented by the predicates the p1, ..., pm,
and by [public IP addresses, used to replace the shadowed
addresses and denoted by the aj,...,q; predicates. With
such configuration, this NAT can perform three different
transformations on an input packet: 1) the source address is
translated into a public address of the NAT (shadowing), if the
source address is a shadowed address, while the destination
address is not; 2) the destination address is reconverted into a
shadowed address (reconversion), if the source address is not a
shadowed address and the destination address is a public one;
3) if no previous condition is met, the packet is not modified.
For such a function that operates different transformations
for different packet classes, the transformer can be expressed
as T;(t) = V;j(T;;(D;j Nt)), where T; j:T — T is the
transformer applied for the packet class defined by predicate
D; . In the case of NAT, we have 7;(t) = T; 1(D;1 A t) V
Ti2(Dia At) VT;3(D;3At), where T; 1 is the shadowing
transformer, 7; 9 is the reconverting transformer and 7; 3 is
the identity transformer that is applied in all other cases. Then,
considering a generic traffic ¢ = \/Zzl(qtk)’ the predicates

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

D; ; and the transformers 7; ; can be defined as follows.

Di,l = \/:Tﬂnzl(pil?a _‘(\/;nzl(pz))v *, %k, *) (2)
Tia(t) = Vé:l \/Z:1 (ay, gt 5-1pDst, q; 1,-portSrc,
qt k-portDst, q; 1..trProto) 3)
Di,? = \/:lyzl (_'(\/;nzl(pﬂi))a a’ya *, %k, *) (4)
7;72(15) = \/Tzl \/Zzl (Qt,k-ipSTC,pz,
qy k-portSre, qg p-portDst, qu.trProto) 5)
D;3=—(D;,1) A(Di2) (6)
Tis(t) =t (7)

An example of firewall and NAT models is reported at the
bottom of Fig. 2.

C. Traffic Flows and Network Security Policies Models

Definition 3: Traffic flow: A traffic flow represents how a
packet class, generated by a source ng € N, crosses an ordered
list of intermediate network functions before reaching the
destination ny € N, and how these functions may transform
the packets belonging to this class before possibly forwarding
them to the next hop.

A traffic flow f € F, where F is the set of all flows, is
formally modeled as a list of alternating nodes and predicates,
[Ns, tsas Mas tap, My - - - 5 N, teds g). Each node in the list
corresponds to a node crossed by the flow in the path, starting
from the source node ns (that generates traffic ts,) and
arriving at the destination node ng (that receives traffic t;4).
Each generic traffic #; is the class of packets transmitted
from node n; to n; in the flow. While crossing a node, the
traffic can be forwarded, possibly changed, or dropped. In
this way, traffic flows are used to describe the forwarding
and transformation behavior of a network and of its NFs. The
main advantage of this approach, compared to the alternative
modeling approaches, is that the NFs can be modeled in a
simpler way, as the models do not need to deal with all the
single packets but they can deal with a few equivalent classes
of packets.

A computer network may be crossed by countless different
traffic flows. However, in the formalization proposed in this
paper, only a limited subset of flows are modeled, i..e, the
ones that must be considered when checking if a network
security policy is satisfied in a verification problem, or when
transforming a policy into the a function configuration in a
refinement problem.

Definition 4: Connectivity network security policy: A
network security policy expresses security requirements that
must be fulfilled in a computer network. Among the possible
policies that may be defined, the connectivity ones specify
which traffic flows must not (reachability policies), and which
must be prohibited from reaching it (isolation policies). In the
remainder of this paper, we will name connectivity policies as
policies for sake of conciseness.

A network security policy is modeled as p = (C, a), where
a is the action to perform on the network packets that match
the condition The condition C is a predicate similar to the ones
defined for modeling packet classes. In relation to the specific

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

example of packet class model presented in Section IV-A, C
is modeled as C' = (ipSrc, ipDst, portSrc, portDst, trProto).
The predicates ipSrc and portSrc specify the traffic sources
the policy refers to. Instead, the predicates ipDst, portDst, and
trProto specify the traffic destinations and the protocol the
policy refers to. Instead, the action a may be allow in case of
a reachability policy, deny in case of an isolation policy.

For this specific network security policy model, a flow
[= lesits,a,---stg d,eq] satisfies C if the following
three conditions are satisfied: 1) its source and destination
endpoints es, ey have IP addresses matching ipSrc and
ipDst respectively, ie., a(es) € C.ipSrc and a(ey) C
C.ipDst, 2) its source traffic satisfies ipSrc and portSrc,
ie., tsg C (C.ipSrc,x, C.portSrc,x,*); 3) its destination
traffic satisfies ipDst, portDst, and trProto, ie., tp; C
(*, C.ipDst, x, C.portDst, C.trProto). Similar conditions are
formulated with minor changes, if the predicates of the packet
class models are defined over different packet fields.

Let then F}, C F' denote the set of flows that satisfy p.C'
Therefore, it follows that all the subflows of a flow that is in
F,, are in F, too.

The definition of traffic flows given above leaves some free-
dom concerning the granularity of flows, i.e., it is possible to
consider fewer flows characterized by larger packet classes or
more flows characterized by simpler packet classes. Therefore,
it is suitable for the definition of both the Atomic Flows
and Maximal Flows algorithms, as it will be detailed in next
sections.

V. AtoMIc FLOWS

The first flow computation algorithm that we described is
the one that computes Atomic Flows, entities based on the
concept of Atomic Predicates. According to this concept, each
complex predicate used to model the network can be split
into a disjunction of simple and minimal Atomic Predicates,
that are unique and completely disjoint. Then, it is possible
to collect them in a set, i.e., the set of Atomic Predicates of
the network, and replace each original complex predicate as a
disjunction of some of the predicates of this set. Being unique,
Atomic Predicates can be assigned unique integer identifiers.
In this way, each complex predicate can be represented as a
set of integers, where each integer is the identifier of each
Atomic Predicate composing the disjunction that characterizes
the complex predicate. The advantage of this approach is that
it allows to use integers in all the computations, instead of
using more complex explicit representations for each predicate
(e.g., BDDs, Tuple Representations, or Wildcard Expressions,
just to mention a few used in the literature).

Fig. 3 shows an example of how complex predicates can be
represented as disjunctions of Atomic Predicates. Starting from
two complex predicates of the network P(1) and P(2), rep-
resenting respectively packets traveling from the sub-network
10.0.0.0/24 to 30.0.5.1 and packets traveling from 10.0.0.1 to
the sub-network 30.0.5.0/24, the corresponding set of Atomic
Predicates is computed. Note that P(1) and P(2) have a non-
empty intersection. The four resulting Atomic Predicates are
AP(1), AP(2), AP(3), and AP(4), and they are minimal and

3747

P(1)
P(2)

e

AP(4)

:@+O +D+

AP(1) AP(Q2) AP(3)

P(1) = (10.0.0.%, 30.0.5.1, *, *,)

P(2) = (10.0.0.1, 30.0.5.%, *, * *)

AP(1) = (10.0.0.% A ~10.0.0.1, 30.0.5.1, *, *, %)

AP(2) = (10.0.0.1, 30.0.5.1, *, *, *)

AP(3) = (10.0.0.1, 30.0.5.% A =30.0.5.1, *, *, *)

AP4) = (=10.0.0.%, *, %, %) U (¥, =30.0.5.%, *, *, %)

Fig. 3. From complex predicates to Atomic Predicates.

disjoint (i.e., they do not overlap). In this way, P (1) can be
expressed as the disjunction of AP(1) and AP(2), while P2 as
the disjunction of AP(2) and AP(3).

From the set of Atomic Predicates it is possible to compute
the set of Atomic Flows.

Definition 5: Atomic Flows: A flow f = [ng, tsq, g, tap,
N, ..., Nk, tkd, ng] is defined as atomic if each traffic #; is
an Atomic Predicate.

The goal is to compute flows that are as simple as possible
and mutually disjoint because they contain only Atomic
Predicates. In this way, Atomic Flows are simple lists of
alternating nodes and integers.

A. Atomic Flows Algorithms

This subsection describes the two algorithms to compute
respectively the set of Atomic Predicates and the correspond-
ing set of Atomic Flows, starting from the models describing
the security policies the network must satisfy and the behavior
of the network functions.

Algorithm 1 is used to compute the set of Atomic Predicates
of the network.

The first objective of Algorithm 1 is the creation of the
set P, containing all the predicates that are useful to model
both the computer network and the security policies to be
enforced in it (lines 1-6). A predicate is included in P if it
is useful to discriminate the packets a security policy refers
to or to identify a domain of an NF crossed by at least
one of the paths a security policy refers to. More precisely,
P collects three predicate classes: (i) predicates representing
the source packets identified by a policy condition (line 3);
(ii) predicates representing the destination packets identified
by a policy condition (line 4); (iii) predicates describing the
forwarding and transformation domains (Iia,Iid, D;) for each
NF, such as firewalls and NATs, belonging to one of the paths
associated with a security policy (line 7). Predicates belonging
to these three classes are complex and not yet atomic.

The second objective of Algorithm 1 is the actual compu-
tation of the Atomic Predicates (lines 9-18). In particular, the
algorithm transforms the set P into the corresponding set B
of Atomic Predicates, unique for the entire network, applying
the function A (line 9). A is a standard function that allows,
given a set of predicates, to split them according to their
mutual intersections. In literature, there are several algorithms
to perform this task. An example can be found in [10].

3748

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

Algorithm 1 For Computing the Atomic Predicates

Algorithm 2 For Computing the Atomic Flows

Input: a set of n security policies p = (C, a), a set of m

intermediate network functions, each one with its {I“,Id}, {D}
Output: the set of Atomic Predicates B

1: P < {false}

2: for i =0,1,...,n do

3: P + P U {(C;.ipSrc, *, C;.portSrc, *, *)}
4: P + P U {(x, C;.ipDst, x, C;.portDst, C;.trProto)}
5: end for

6: for i =0,1,...,m do

7. P+ PU{IL I} U {D;}

8: end for

9: B+ A(P)

10: R < {false}

11: for s =0,1,...,m do

12: R < R U {T;(b)| for each b € B}

13: end for

14: if B= A(P UR) then

15: return B

16: else

17: P+ PUR, B+ APUR)

18: goto line 9

19: end if

However, P only contains the input packet classes of the
network functions and not the transformed ones, so the related
set P does not include Atomic Predicates related to complex
predicates output by transformers. In order to compensate for
this, Algorithm 1 applies all the possible transformations 7;
to each Atomic Predicate of the set B that matches a specific
input class of those transformers, obtaining in this way the
transformed predicates (line 12). The transformed predicates
are included into the set R, and the function A is applied
to the union of the sets B and R, producing a new set B
that replaces the previous one (line 14). All these operations
from line 11 to line 14 are iterated, until the new set B does
not undergo any new change. This means that all the possible
combinations made of a input predicate and corresponding
transformed output predicate have been considered, and B has
thus become the set of Atomic Predicates representative for
both input predicates and transformed ones (line 15).

The worst-case time complexity of Algorithm 1 can be
estimated as the sum of the time complexities of four
sequential code blocks. Lines 1-4 have O(n) complexity,
because O(1) operations are performed on each one of the
n input security policies. Lines 6-7 have O(m) complexity,
because O(1) operations are performed on each one of the
m input middleboxes. Line 9 has O(A) complexity, where A
is the external function that is called to compute the atomic
predicates of a given set of input predicates. Referring to
the example of A presented in [10], this function is linear
in the number of input predicates. Lines 10-6 have O(m) -
(O(m)+ O(A)) complexity because that code block consists
of two nested loops. The external loop, represented by the
goto directive in the algorithm pseudo-code, iterates m times
in the worst case. This is the case where all m middleboxes
are arranged in a single sequential chain, and the output of
each 7; transformation function may take up to m steps to
impact the behavior of the same function related to the last

Input: one security policy p, one path with endpoints es and ey
and middleboxes £=[n{,n9,...,nm], the set B of Atomic
Predicates computed by Algorithm 1

Output: a set of Atomic Flows Flg

Fo+ 0
2 By < {b1,b9,...,bm, } Vb;:b;.ipSrc A p.ipSrc # 0 and
b;.portSrc A p.portSrc # () and b; € B
: for b € By do
for f € RECURSIVEGEN(1, b) do
fa < [657 b] +f
Fa < Fa U {fa}
end for
: end for
: return Fg

SOVRXIDINE RN

11: function RECURSIVEGEN(%, b)
12: if i == m + 1 then

13: if b.ipDst == a(eg) and b.portDst A p.portDst # ()
and

14: b.trProto A p.trProto # () then

15: return {[e;]}

16: else return ()

17: end if

18: end if

19: if b.ipDst == «a(n;) then return ()

20: end if

21: r < T;(b)

22: By + {b1.bg,...bm, } such that \/]m:tlbj =rand bj € B;
23: Fy <0

24: for b; € B; do

25: for f € RECURSIVEGEN(: + 1, b;) do
26: fe < [ng, be] + f

27: Fy + Fr U{fs}

28: end for

20: end for
30: return Fy
31: end function

node in the sequence. Then, in this external loop, lines 11-12
represent an internal loop iterating on the m middleboxes, and
sequentially the function A is executed at line 1. In view of
this analysis, ignoring the complexity of the second and third
code blocks as they are dominated by the one of the fourth
block, the overall worst-case time complexity of Algorithm 1
is O(n) 4+ O(A)- O(m)+ O(m?). Among these three terms,
it is not possible to establish theoretically that one dominates
the others, because it depends on the different scenarios to
which the algorithm is applied (e.g., in some scenarios there
may be more policies than middleboxes, or vice versa).

The result of Algorithm 1, representing the set of Atomic
Predicates, is then used as input for Algorithm 2, which
computes the Atomic Flows.

Algorithm 2 considers one security policy p = (C, a) and
one path, characterized by endpoints es and ey and a list of
middleboxes £ = [ny, ng, ..., "y, at a time. Nodes es and ey
are endpoints whose IP addresses match respectively C'.ipSrc
and C.ipDst, as explained in Section IV-C. At the beginning
of Algorithm 2, the traffic generated by es; (source node of
the policy) is grouped in a subset By, which represents the
disjunction of all the Atomic Predicates of 3 whose ipSrc and
portSrc are equal to the ones expressed by the condition of

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

the policy (line 3). Then, starting from the predicates in By,
the algorithm computes recursively all related Atomic Flows,
which represent the evolution of each single predicate along
the specific path (line 5). In greater detail, each single Atomic
Predicate b, belonging to By, is propagated along the path
that links source to destination, taking in consideration the
fact that, crossing a node, it can be transformed into one or
more different disjoint Atomic Predicates (lines 21-22). At
each recursion level, some pruning is also performed in order
to discard the flows that are not part of the solution. For
example, flows that arrive at the destination with an Atomic
Predicate whose ipDst, portDst and trProto do not match
the corresponding fields of the policy condition (line 16) or
that have already reached their destination before reaching
the destination of the path (i.e., when the IP address of an
intermediate node matches with the ipDst field of the actual
Atomic Predicate) (line 19) are removed.

The worst-case time complexity of Algorithm 2 can be
estimated as the sum of the time complexities of two sequential
code blocks. Lines 1-3 have O(|B|) complexity, because O(1)
operations are performed on each Atomic Predicates of the
B set. Then, lines 4-10 call iteratively a recursive function
described in lines 12-30. On the one hand, the loop has O(|B])
complexity, because it iterates at most || times in the worst
case where all elements of B are included in By. On the other
hand, the recursive function has O(|B|™) complexity. The
reason is that at each level of recursion, the function makes
|B| recursive calls, while the depth of recursion is determined
by the parameter ¢, which starts at 1 and goes up to m. All
other operations in the recursive function simply have O(1)
complexity. In conclusion, the complexity of the second block
is O(|B|™*1) and, as it dominates the complexity term of the
first block, it coincides with the worst-case time complexity
of the overall Algorithm 2.

B. Atomic Flows Example

This subsection illustrates how the algorithms proposed for
the Atomic Flow groping strategy works, when they are exe-
cuted to identify all the traffic flows related to an input security
policy p, with condition p.C' = (10.0.0.*,30.0.5.1,* * *) and
action p.a = deny, in the network topology introduced in the
running example of Section III. The discussion of this example
will be supported by the information provided in Fig. 4, which
will be progressively described in the following.
First, Algorithm 1 is executed to compute the set of Atomic
Predicates B related to the input policy p and the NFs of the
network topology. As a preliminary operation, it computes the
set P, including:
o the predicate describing the source traffic (10.0.0. *, *, *,
*, %), representing all the possible packets generated in
the sub-network 10.0.0.0/24, on the left of Fig. 4 (line 3
of Algorithm 1);

o the predicate describing the destination traffic (x,
30.0.5.1, *, %, %), representing all the possible traffic that
can arrive as input to the server on the right of Fig. 4,
without any restriction on port number and protocol type
(line 4 of Algorithm 1);

3749

AP(11) | AP (11) AP (11)
: ATOMIC FLOW 1
AP (3)
- : ATOMIC FLOW 2
TYY T — N |- S
A!? - 10.0.0.% w ; . (;'
= S AT,
10.0.0.1 r @.! ATOMIC FLOW 3
P (55\ 20.0.0.% ATOMIC FLOW 4
AP (1)

Atomic predicates with their integer identifier
AP(1) = (10.0.0.1, 10.0.0.1, AP(2) = (10.0.0.1, 30.0.0.1,

w k)
AP(3) = (10.0.0.1, 30.0.5.1, *, *, *) | AP(4) = (10.0.0.1, =10.0.0.1 A
Hk K -30.0.0.1 A =30.0.5.1,
k)
AP(5) = (30.0.0.1, 10.0.0.1, AP(6) = (30.0.0.1, 30.0.0.1,
wE) k)
AP(7) = (30.0.0.1, 30.0.5.1, AP(8) = (30.0.0.1, =10.0.0.1 A
* O F) =30.0.0.1 A =30.0.5.1,
k)
AP(9) = (10.0.0.* A =10.0.0.1, AP(10) = (10.0.0.*A =10.0.0.1,
10.0.0.1, *, *, *) 30.0.0.1, *, *, %)
AP(11) = (10.0.0.*A =10.0.0.1, AP(12) = (10.0.0.*A —=10.0.0.1,
30.0.5.1, *, *, *) =10.0.0.1 A =30.0.0.1

A =30.0.5.1, *, *, *)
AP(14) = (=10.0.0.*A =30.0.0.1,

AP(13) = (=10.0.0.*A =30.0.0.1,

10.0.0.1, *, *, *) 30.0.0.1, *, *, *)
AP(15) = (—10.0.0.*A =30.0.0.1, AP(16) = (—10.0.0.*A =30.0.0.1,
30.0.5.1, *, *, * —=10.0.0.1 A =30.0.0.1

A =30.0.5.1, *, **)

Transformation for NAT1

(3) becomes (7), (4) becomes (8)

(10) becomes (9), (14) becomes (13)

D), (5), (1), (12), (15), (16) are

simply forwarded

(2), (6) reach their destination in the NAT
Forwarding for FW1

T4 |(3) allowed to pass

741 (D),). @), (5). (6). (D), (8), (9, (10), (11),

(12), (13), (14), (15), (16) dropped

D; (Shadowing)
D, (Reconversion)
D3 (Forwarding)

Fig. 4. Atomic Flows.

o the predicates related to the input and transformation
domains of the NFs found along each of the two pos-
sible paths (line 7 of Algorithm 1). The NFs crossed
by at least one path are the NAT and the firewall.
Their corresponding input domains can be seen in the
two inner tables of Fig. 2: predicates D1, D2 and
D3 for the NAT and predicates [, and [I; for the
firewall.

This initial set of predicates P is thus used by Algorithm 1 to
compute the corresponding set of Atomic Predicates 3 through
the function A (line 9 of Algorithm 1). However, the set 5 thus
computed does not include Atomic Predicates representing the
results of possible transformations that can occur to a packet
while crossing the network, but only represent the predicates

of P.

3750

Next, Algorithm 1 iterates over each predicate in B and
checks if it intersects any input transformation domain of an
NF found along a path (i.e., the NAT in this example). If an
intersection is found with a domain D;, then the corresponding
transformation 7; is applied (line 12 of Algorithm 1). All
the computed transformed predicates are thus included into a
temporary set R to get the resulting transformed predicate. For
example, the Atomic Predicate AP(1) = (10.0.0.1, 30.0.5.1,
*, %, %), shown in Fig. 4, intersects with D; = (10.0.0.1,
—10.0.0.1 A 30.0.0.1, %, %, %) of the NAT, so the corresponding
Shadowing operation is applied to it. The resulting transformed
predicate (30.0.0.1, 30.0.5.1, %, *, x) is then inserted into R.

After computing the set R, Algorithm 1 adds its element to
P, and re-applies the function A to it. If the new set of Atomic
Predicates is the same as the one previously computed, the
algorithm ends, as that means the effect of all transformations
have been taken into account (lines 14-15 of Algorithm 1).
Otherwise, the intersection between the Atomic Predicates and
the transformation domains is repeated until the recomputed
set B does not change. In this example, as there is only
one function that applies transformation, a single iteration
is enough, and the set B includes all the Atomic Predicates
shown in the top-level table of Fig. 4. In this table, each
Atomic Predicate is assigned with an integer identifier, since
they are mutually disjoint. In this way, all forwarding and
transformation domains of the NFs can be rewritten by using
these integers. The corresponding models of the NAT and
Firewall are shown in the medium-level and bottom-level
tables of Fig. 4. In particular, the medium-level table shows
how each integer representing a possible input packet class
is mapped into an integer representing a transformed packet
class for the shadowing and reconversion operations, and it
lists the integers representing the packet classes that are not
transformed but simply forwarded as they are. Instead, the
bottom-level table lists the integers representing the packet
lasses the firewall drops, and the ones representing the packet
classes it allows to pass.

Starting from the set of Atomic Predicates, Algorithm 2
computes the corresponding set of Atomic Flows. Taking
one security policy and one path at a time, the algorithm
collects into Bp all the Atomic Predicates matching with
the source part of the security policy condition, i.e., all the
Atomic Predicates intersecting (10.0.0. %, %, %, *, %) (line 3
of Algorithm 2). In this example, B includes all the Atomic
Predicates from AP(1) to AP(4) and from AP(9) to AP(12),
because their sub-predicates about source IP address and
source port intersect the ones of the policy (C.ipSrc and
C.portSrc), and thus they represent all possible packet classes
that the sub-network 10.0.0.0/24 may generate. Note that, in
this specific case, there is no restriction about source port
numbers, as the policy condition C.portSrc is defined as x.

Then, through a recursive function (lines 14-15 of
Algorithm 2), all Atomic Flows related to the policy p are
computed, by propagating each predicate belonging to By
along all possible paths. In this propagation of the predicates
representing packet classes, they may intersect with the input
forwarding or transformation domain of a crossed NF. In that
case, the packet class represented by the predicate may be

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

dropped, or transformed into one or more classes represented
by different predicates. An Atomic Flow is created only if,
starting from the source, the possibly transformed packet
class can reach its destination, i.e., 30.0.5.1. Here, we discuss
two exemplifying cases of such propagation, with different
outcomes:

e AP(2) =(10.0.0.1, 30.0.0.1, *, *, %) is never able to reach
the destination 30.0.5.1, because there is no intersection
between the destination IP address sub-predicates of the
two predicates (i.e., of AP(2) and the policy condition
predicate). Instead, the destination of all Atomic Flows
starting with AP(2) as first packet class of their model
is the NAT 30.0.0.1. Therefore, the recursive function of
Algorithm 2 discards all these Atomic Flows, as they are
not valid solutions.

e AP(3) = (10.0.0.1, 30.0.5.1, =, *, %) can reach the
destination 30.0.5.1 through both the upper and lower
paths of the topology depicted in Fig. 4, so two Atomic
Flows are generated. Crossing the lower path, the packet
class represented by AP (3) does not undergo any trans-
formation, so AP(3) will be in between any pair of nodes
included in the alternating list modeling the flow. Instead,
crossing the upper path, the packet class represented by
AP(3) is transformed by the NAT into the packet class
represented by AP(11), which is the one actually reaching
the destination.

At the end of this example, four Atomic Flows are com-

puted, as shown in Fig. 4. Two of them originate from AP (3),
while the remaining two originate from AP(11).

VI. MAXIMAL FLOWS

The second flow computation algorithm that we present is
the one that computes Maximal Flows, and it is based on a
concept opposite to the idea behind Atomic Flows. In fact, this
algorithm aggregates different flows together so as to minimize
their number, instead of splitting them into Atomic Flows.
In particular, it reduces the number of generated flows by
considering only a subset of them, i.e., the set of Maximal
Flows. In order to do so, all the flows that behave in the
same way while crossing the network are grouped in the same
Maximal Flow. These flows can be indicated as subflows of the
Maximal Flow which they belong to. Then, for the execution
of the resolution algorithms of security management problems,
it is enough to consider only the Maximal Flows and not each
single flow that they represent.

Definition 6: Maximal Flows: Called F), the set of all
possible flows of the network, the corresponding set of
Maximal Flows F’M matches the following definition:

FM = {fM e Pltf € Fp(f £ FM A M C 1))

The set F}/[is defined as a subset of F), that contains only
the flows that are not subflows of any other flow in F,,. All the
flows behaving in the same way are aggregated in the same
Maximal Flow, and then only Maximal Flows in F, M , which
has a smaller size than F,, are considered for the analysis.

Predicates defined within a Maximal Flow are the disjunc-
tion of several IP 5-tuples that have been aggregated together.

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

Algorithm 3 Computation of Fzﬁw

Input: a policy p = (C, a), the network topology (N, L)
Output: F;V[

1: Fé\/[=0 path = [ng, n1, ..., Nmt1]

2. F {[no,tf,nl,true,nz,...,true,nm_,_l]}

3: for i =1,2,...,m do

4: F(—{l-i—[bi/\bg,ni}-‘rl/‘l+[bi,nz‘]+l/€F7
s b € {T0,73})

6: F(f{l+[bi/\bg,ni]+l/‘l+[bi,ni]+l/EF,
7: b'/i S {'Dz}}

8 F {14 [bs,ni, big1 ATi(bi), nig1] + 1|

9: 14 [bs, ng, bit1, njr1] + e F}

10: end for

1 Pl {14 [t Abmyts g 1] | 14 [bmr1, 1] € F}
12: fori=m,m—1,...,1 do

130 F e {14 (b AT (big1), miy biga] + 1|
14: 14 [bs, ng, big1] + e F/}

15: end for

16: if F' # F' then

17: F « F'

18: goto line 3

19: end if

20 FM « FMUF

21: return Fj/[

For this reason, they cannot be considered atomic and replaced
by integer identifiers.

A. Maximal Flows Algorithm

Algorithm 3 is formalized for the computation of the
Maximal Flows.

As for Algorithm 2, one security policy and one possible
path are considered at a time. For each path, Algorithm 3
computes the related Maximal Flows in an iterative way
(line 1). At each iteration, two sets of lists of alternating
nodes and predicates, F' and F’, are computed. The first set F’
initially contains only the list [ng, {1, n1, true.. ., true, 1y, 4+1]
(line 2). In this list, ¢; is equal to the predicate (C.ipSrc, *,
C.portSrc, *, *), representing the largest traffic that satisfies
the source component of the network policy condition we are
considering, while all the other traffic entities inside the list
are set to true (i.e., the class of all packets). The basic idea of
this algorithm is to start with flows that are as large as possible
(i.e., which include as many subflows as possible) and then
divide the flows into smaller flows only when necessary. For
example, a division may be needed when the flow encounters
a node in the path in relation to which at least two of its
subflows have different behavior.

At each iteration, a forward traversal and a backward
traversal on the path p are performed.

In the forward traversal (lines 3-9), each list in F' is
progressively updated to take into account the way the traffic
is transformed by each network function. Each predicate b;,
in input to the node n;, is intersected with the forwarding

3751

domains Z¢ and Iid (line 5), and the transformation domain
D; of the node (line 7). The corresponding function T is
also applied to each traffic that matches the domain D;
(line 9). With this procedure, b; is thus split into the largest
homogeneous subclasses of packets resulting from all the
computed intersections. In this way, for each partition of
the predicate b;, a new list is generated and becomes a
new Maximal Flow. Then, when the traffic arrives to the
destination node, it is restricted with the predicate representing
the destination components of the policy we are considering,
i.e., (x, C.ipDst, *, C.portDst, C.trProto) (line 11). Note that, in
all lines of Algorithm 3, the operator + is used to concatenate
multiple lists into a single list. These lists are appended
in the order in which they are specified as input to this
operator.

A backward traversal is then executed, so as to compute a
new set of lists F/ (lines 11-14). F' is initialized to contain
each element of F', with its last traffic restricted to the largest
traffic that satisfy the destination components of the policy, as
previously described (line 11). In this way, with the backward
traversal, each predicate representing the ingress traffic of a
node is changed as the new information about the destination
is added (lines 12-14).

After the backward traversal, a new forward traversal
starts, to evaluate if the new version of the flow further
splits (lines 16-18). The procedure stops when, after the last
iteration, the flows in F and F’ are the same. This means
that both last two traversals have no longer changed the flow
(lines 20-21).

For what concerns the worst-case time complexity,
Algorithm 3 is characterized by three nested loops. The most
external loop starts at line 1 and iterates on all possible paths
that can be identified between any pair of endpoints in the
input network topology (N, L). Denoting the number of all
possible paths as 7, the complexity of the most external loop
is O(m). The central loop is represented by the goro directive
of line 18 and iterates m times in the worst case, where m
is the number of intermediate network functions in the input
topology, so it has a O(m) complexity. The reason is similar
to the one discussed for a similar loop in Algorithm 1, i.e., the
output of each 7; transformation function may take up to m
steps to have an impact on the behavior of the same function
related to the last node in the forward traversal, and the same
applies to the inverse function 771 function in the backward
traversal. Then, internally there are two sequential loops at
lines 3-9 and lines 12-14, each one with O(m) complexity as
both iterate O(1) operations m times. In summary, multiplying
the complexity factor of each nested loop, the overall worst-
case time complexity of Algorithm 3 is O(7) - O(m?).

B. Maximal Flows Example

This subsection illustrates how the algorithm proposed for
the Maximal Flow groping strategy works, when it is executed
to identify all the traffic flows related to an input security
policy p, with condition p.C = (10.0.0.%, 30.0.5.1, *, *, %) and
action p.a = deny, in the network topology introduced in the
running example of Section III. The discussion of this example

3752

=

NAT FW, 30.0.5.1
=l 2 —
= (1000+) 5_@ —— B —(3005+)- ﬁ|

10.0.0.1

L --{30.0.0.1, -10.0.0.1
"{10.0.0.1, -10.0.0.1A -30.0.0.1} {{

,-10.0.0.1A-30.0.0.1} | A-30.0.0.1}
{10.0.0.* /\%).0.1,
10.0.0.1}

{10.0.0.* A ~10.0.0.1, -30.0.0.1} {10.0.0.* A ~10.0.0.1, ~30.0.0.1}{ {10.0.0.* A ~10.0.0.1,
-30.0.0.1}

{30.0.0.1,30.0.5.1}

{10.0.0.%,
} {10.0.0. A -10.0.0.1, 30.0.0.1} {{10.0.0.* A ~10.0.0.1, 10.0.0.1}

{10.0.0.1, 30.0.5.1} {30.0.0.1, 30.0.5.1}

{10.0.0.%,
30.0.5.1} {10.0.0.*A-10.0.0.1,
Patial

30.0.5.1}

{10.0.0.* A -10.0.0.1, 30.0.5.1} { {10.0.0.* A -10.0.0.1, 30.0.5.1}

Fig. 5. Maximal Flows Algorithm: first forward and backward traversal.

{10.0.0.* A-10.0.0.1,

{10.0.0.* A=10.0.0.1, 30.0.5.1, *, * *} ;30.0.5.1,% % %}
: s MAXIMAL FLOW 1

{10.0.0.*,30.0.5.1, *, *, *} {30.0.0.1,30.0.5.1, %, *, *}.-~ {30.0.0.1,30.0.5.1, *, *, *}

! —— » MAXIMAL FLOW 2
_ - - : Ly - i
£ =
|,,- 10000) — § —(3005+ -8
10.0.0.1 =)

NAT, 7 =;‘

20.0.0.%

MAXIMAL FLOW 3
{10.0.0.1,30.0.5.1, *, *, *}

{10.0.0.%,30.0.5.1,

* %%

MAXIMAL FLOW 4
1{10.0.0.* A~10.0.0.1, 30.0.5.1, *, *, *}

Fig. 6. Maximal Flows.

will be supported by the information provided in Fig. 5 and
Fig. 6.

Specifically, Fig. 5 graphically represents how Algorithm 3
generates two Maximal Flows through the path that includes
the NAT, starting from the packet class identified by the
predicate representing the source part of the security policy
condition, i.e., (10.0.0.x, %, *, %, *x). The figure, which only
reports source IP and destination IP addresses in the predicates
for the sake of conciseness, shows how the initial flow that
starts from that initial packet class is progressively divided into
smaller flows through the procedures of forward traversal (first
line of the figure, below the function chain), and backward
traversal (second line of the figure, below the function chain).

In the forward traversal, the initial flow is split into three
sub-flows when reaching the NAT, because the predicate
(10.0.0.x%, *, *, x, %) intersects with all the three input domains
of that NF: Dy = (10.0.0.1,— 10.0.0.1 A = 30.0.0.1, %, *, %),
Dy = (- 10.0.0.1 A = 30.0.0.1, 30.0.0.1, *, *, x), and
D3 = =Dy A —=Ds. In greater detail, the intersection with D;
generates (10.0.0.1, = 10.0.0.1 A = 30.0.0.1, *, %,), the one
with Dy generates (10.0.0.x A — 10.0.0.1, 30.0.0.1, %, *, %),
and finally the one with D3 generates (10.0.0.* A — 10.0.0.1,
= 30.0.0.1, %, *, *). However, the first two predicates must
also undergo a transformation, respectively Shadowing and
Reconversion. Therefore, their corresponding output predicates
are (30.0.0.1, = 10.0.0.1 A = 30.0.0.1, *, *, *) due to the
change to the source IP address, and (10.0.0.* A = 10.0.0.1,
10.0.0.1, %, %, %) due to the change to the destination IP
address.

In the continuation of the forward traversal, the three flows
that have been generated so far are not split when reaching

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

the firewall, as all the three predicates representing the packet
classes output by the NAT only intersect with the domain
IZ% of the firewall, and there is no intersection with I 74,
The forward traversal thus ends with the three flows reaching
the destination 30.0.5.1. Nevertheless, not all of them are
admitted to the next step of the algorithm, which is the
backward traversal. Their admission to it is granted only if the
predicates representing the packet classes that reached 30.0.5.1
intersect with the destination component of the security policy
condition, i.e., (x, 30.0.5.1, %, *, *). The flow whose last packet
class predicate is (10.0.0.x A —10.0.0.1, 10.0.0.1, %, *, %) is
discarded, since its intersection with the destination component
of the policy is the empty set.

In the backward traversal, the two admitted flows are
propagated from the destination to the original source. The
same operations as the ones previously described are repeated,
by checking if there is any intersection between packet class
predicates and input domains of the NFs. In this example, no
other transformations are applied in the backward traversal,
and both flows are considered valid when reaching the original
source.

At this stage, the algorithm must repeat a second forward
and backward traversal. It thus confirms that the two flows
have not undergone any other modification or division in this
repetition, and therefore they are valid Maximal Flows related
to the input security policy.

The same procedure is applied to the other path as well.
The only difference is that, in this case, the initial flow is split
when reaching the firewall. The intersection with Z% gives
(10.0.0.1, 30.0.5.1, %, *, *), while the intersection with zd
gives a different predicate.

Finally, Fig. 6 graphically shows that four Maximal Flows
are successfully computed with Algorithm 3. Two of them
cross the upper path of the depicted network topology, orig-
inating from an initial flow that is divided into sub-entities
when reaching the NAT. Instead, the other two cross the lower
path of the depicted network topology, originating from an
initial flow that is divided into sub-entities when reaching the
firewall.

VII. DISCUSSION AND EXPERIMENTAL COMPARISON

Depending on the selected flow computation algorithm and
on the specific network security management problem to be
solved, the comprehensive workflow discussed in Section III
is expected to have different execution time. The reason
is that the algorithms for computing Atomic and Maximal
Flows have different features. On the one hand, with Atomic
Flows the aim is to obtain minimal and disjoint flows, with
predicates represented by integers. This simple representation
of predicates promises to bring performance advantages, but it
also introduces overhead for computing the Atomic Predicates
and the related Atomic Flows. On the other hand, with
Maximal Flows, the aim is to obtain flows that are indeed
more complex, because they aggregate different predicates
together, but certainly fewer in number. Besides, for this
second algorithm, no initial phase is required to compute
Atomic Predicates.

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

The goal of this section is to evaluate the feasibility and
performance of the two traffic flow computation algorithms as
stand-alone algorithms and when applied to solve the security
policy verification and refinement tasks, so as to underline the
advantages and limitations of each one of them. Consequently,
two main classes of validation tests have been executed.
On the one hand, we have assessed the performance of the
flow computation algorithms, independently from the security
management problem for which they are used (Section VII-A).
These tests aim to understand how the execution time varies
depending on parameters such as the number of policies,
transformer functions like NATs, filtering functions like fire-
walls, and network endpoint. For the execution of these tests,
we have implemented the Atomic Flow algorithm with the
Java programming language, as that language was already
used for the implemented of the Maximal Flow algorithm
in the Verigraph2.0 [11] and Verefoo [13] frameworks. On
the other hand, we have analyzed how the Atomic and
Maximal Flow formalizations differently affect the resolution
of the security policy verification and refinement problems
(Section VII-B). These tests aim to assess how significantly
the choice of flow modeling between the two identified
algorithms affects the time performance and memory usage of
the overall approach, and to establish which flow computation
algorithm is more suitable for each specific analyzed security
management problem. For the execution of these tests, we have
extended the implementation of the existing Verigraph2.0 and
Verefoo frameworks, developing variants that could work with
the implemented Atomic Flow algorithm.

The experimental setup used for the validation consists in a
machine with an Intel 17-6700 CPU running at 3.40 GHz and
32GB of RAM.

A. Validation for Traffic Flow Computation

With the first class of tests, we have evaluated the time that
the two algorithms take to compute the set of corresponding
traffic flows, Atomic or Maximal, and how this time changes
as the network varies in size and in a number of parameters. In
this evaluation, the networks used as test cases are randomly
generated, based on a set of configurable parameters: number
of security policies to be satisfied, number of endpoints in the
network (inclusive of application clients and servers), number
of NATSs, and number of firewalls. Then, we followed two
strategies for text execution:

o In the first strategy, a preliminary task consists in finding

a starting value for each configurable parameter. Once
this configuration, named “basic configuration”, has been
obtained, we proceed to execute the various tests increas-
ing one parameter at a time, keeping all the others at their
basic value. This approach is mainly used to understand
which parameters have a greater influence on the total
execution time. The chosen “basic configuration” is the
one with 100 policies, 200 endpoints, 25 NATs and 25
firewalls.

o In the second strategy, we progressively increase the value

of all parameters at the same time in a proportional way,
simulating a progressive enlargement of the network.

3753

Fig. 7 shows the results of the tests executed by following
the first strategy for both Atomic and Maximal Flow compu-
tation algorithms.

Figs. 7(a), 7(b) and 7(c) depict how the execution time
of the Atomic Flow computation algorithm varies when the
number of policies, NATs and firewalls respectively increases.
As it can be seen, the total time that is required by its execution
is the sum of two times, i.e., the time to generate the Atomic
Predicates (i.e., Algorithm 1) and the time to generate the
Atomic Flows (i.e., Algorithm 2). Below each bar chart, these
figures have a table reporting the number of Atomic Predicates
generated in each analyzed case. Indeed, this is an important
metric which directly affects the total time, since the more the
predicates, the more the generated flows.

These figures allowed us to analyze the impact of each
parameter of the network configuration for the performance of
this algorithm. (i) Number of policies (Fig. 7(a)): As described
in Algorithm 1, a predicate is generated for each source and
for each destination of a policy. So, the more the policies, the
more the starting predicates, and, consequently, the resulting
Atomic Predicates. Consequently, the time to compute Atomic
Predicates increases because there are more predicates to
convert. The time to compute the Atomic Flows increases as
well, because Algorithm 2 needs to compute the flows related
to a larger set of policies. Regarding the number of generated
Atomic Predicates, in the last case, its value saturates to
51076, because there is an Atomic Predicate for each possible
pair of source and destination endpoints. (ii) Number of
NATs (Fig. 7(b)): This is the most affecting parameter in the
number of generated Atomic Predicates. Since NATSs introduce
transformations, a higher number of predicates to represent
the input classes (transformation domain) and the results after
the transformation are necessary. Both the considered times
increase, since there are more Atomic Predicates to manage.
(iii)) Number of firewalls (Fig. 7(c)): Here, the reasoning is
similar to the one done for NATs. For each firewall, the
predicates representing its forwarding domain are added to
the set of predicates to be converted into Atomic ones. In
this case, the impact is less significant since firewalls are not
transformers, so the predicate is either blocked or forwarded,
but never changed. Therefore, no new predicates are added as a
result of the transformation. Moreover, a general consideration
can be drawn with respect to the number of application clients
and servers in the network topology. This parameter does not
influence the total time required by the algorithm. In general,
endpoints do not affect the number of generated Atomic
Predicates because such predicates are computed starting from
the policies and not for each endpoint of the network. Indeed,
there is a starting predicate for every pair of source and
destination nodes of a policy. Therefore, if an endpoint is not
included in any policy, it is not considered in the set of Atomic
Predicates.

Figs. 7(d), 7(e) and 7(f) depict how the execution time of the
Maximal Flow computation algorithm varies when the number
of policies, NATs and firewalls respectively increases. In this
case, there is no initial phase to compute the set of Atomic
Predicates, but there is only the time that Algorithm 3 takes
directly to generate the Maximal Flows.

3754

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

60— T T T 60 T T T 60 T T T

B Atomic Predicates time (s) B Atomic Predicates time (s) B Atomic Predicates time (s)
o B Atomic Flows time (s) © B Atomic Flows time (s) > B Atomic Flows time (s)
Q Q Q
g 40f 1 £ 40 g 401 |
= = =
.S S .2
= = =
2 201 1 20 a. 20 1
£ £ z
5) 1S 5]
@] @] &)

0 0 0
100 250 500 1000 5000 25 50 100 200 25 50 100 200
Number of policies Number of NATs Number of firewalls

Number of generated Atomic Predicates

Number of generated Atomic Predicates

Number of generated Atomic Predicates

100 pol 250 pol 500 pol 1000 pol 5000 pol 25 NAT 50 NAT 100 NAT 200 NAT 25FW 50FW 100 FW 200 FW
10763 23203 43905 50499 51076 10763 16969 32431 78204 10763 30379 42773 49608
(a) Time vs Number of policies (b) Time vs Number of NATs (c) Time vs Number of firewalls
60 | | | | L 60 | - 1 - 1 1 60 1 - | - L L
‘lIMaximal Flows time (s) ‘ ‘llMax1mal Flows time (s) ‘ ‘llMax1mal Flows time (s) ‘
% by o
E 40t | E 40/ 1 § 40f |
= = =
.8 2 8
g s s
2 20f 1 2 20 4 & 20¢ |
: : :
@] @] l O
0-— : r — ; - 0 T -
100 250 500 1000 5000 25 50 100 200 25 50 100 200
Number of policies Number of NATs Number of firewalls

(d) Time vs Number of policies

Fig. 7. Tests on Atomic and Maximal Flows algorithms (first strategy).

Again, these figures allowed us to analyze the impact
of each parameter of the network configuration for the
performance of this algorithm. (i) Number of policies
(Fig. 7(d)): The time increase is due to the fact that when there
are more policies for which the corresponding Maximal Flows
must be computed, Algorithm 3 has to run more times, one run
for each policy. However, the time spent is significantly less
compared to the one required by the Atomic Flow computation
algorithm. (ii) Number of NATs (Fig. 7(e)): Even in the case
of Maximal Flows, this is a determinant parameter. In fact,
each NAT, and in general each transformer of the network,
increases the number of generated flows. Each flow entering
a transformer is split into multiple flows depending on the
intersection the incoming predicate has with the transformation
domain of the node. The more the transformers, the more the
split flows and so the time to generate them. (iii) Number of
firewalls (Fig. 7(f)). As for the number of NATS, this parameter
determines an increase in time. This is explained by the
fact that, when reaching a firewall, a predicate is intersected
with the forwarding domain of the firewall (i.e., /® and [d).
Therefore, for each existing intersection with one of these
classes, a new Maximal Flow is generated.

Figs. 8(a) and 8(b) show the results of the tests executed by
following the second strategy for both Atomic and Maximal
Flow computation algorithms. This second method consists
in the progressive enlargement of the network, and it was
used to compare the two proposed approaches against the
total time taken to generate the traffic flows and the total
number of generated flows. The networks used as test cases

(e) Time vs Number of NATSs

(f) Time vs Number of firewalls

10! ‘
11 Atomic Flows approach
IiMaximal Flows approach

200

11 Atomic Flows approach (s)
IzMaximal Flows approach (s)
1501 *

0.8

Computation time (s)
Number of generated flows

A B C D E A B C D E
pol nodes NAT FW pol nodes NAT FW
A 100 400 50 50 A 100 400 50 50
B 150 600 75 75 B 150 600 75 75
C 200 800 100 100 C 200 800 100 100
D 250 1000 125 125 D 250 1000 125 125
E 300 1200 150 150 E 300 1200 150 150

(a) Flows computation time (b) Number of generated flows

Fig. 8. Tests on Atomic and Maximal Flows algorithms (second strategy).

are built starting from the same configurable parameters of the
previous examples, with the difference that, in this case, all the
parameters vary simultaneously. Specifically, 50 policies, 200
endpoints, 25 NATs and 25 FWs are added respectively to each
test case. From the figures, the following main conclusions
can be derived:

e Computing Atomic Flows requires more time than com-
puting Maximal Flows, as shown in Fig. 8(a). Most
of the time is, in fact, spent in the initial phase to
compute Atomic Predicates (Algorithm 1). On the con-
trary, Algorithm 3 for computing Maximal Flows is

BRINGHENTI et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT

3755

250 — : - - T 800 == : - - T 200 — T : . 50— : : T
B Traffic flows comp time (s) B Traffic flows comp time (s) — Atomic Flows (MB) — Atomic Flows (MB)
Z 200{|TSMT time (s) | 2 |[IMaxSMT time (s) 2 Maximal Flows (MB) & 40!l Maximal Flows (MB) i
g g 6001 S 150|" 1 =
= 150} 4 = ° 2 30l |
g £ 400 Z 100! 1 2
Z 100t 1 £ = 2 20f 1
é g 200 g g
S sof 18 £ S - 12 10f |
OAFMF AFMF AFMF AFMF AFMF OAFMF AFMF AFMF AFMF A-ﬁﬁ 0 A]§ é]5]‘3 0 AJ B C D E
A B C D E A B C D E
pol nodes NAT FW pol nodes NAT FW pol nodes NAT FW pol nodes NAT FW
A 50 40 5 5 A 10 60 5 5 A 50 40 5 5 A 10 60 5 5
B 75 60 10 10 B 15 80 10 10 B 75 60 10 10 B 15 80 10 10
C 100 80 15 15 C 20 100 15 15 C 100 80 15 15 C 20 100 15 15
D 125 100 20 20 D 25 120 20 20 D 125 100 20 20 D 25 120 20 20
E 150 120 25 25 E 30 140 25 25 E 150 120 25 25 E 30 140 25 25

(a) Time - Reachability (b) Time - Refinement

Fig. 9. Comparative validation on synthetically generated networks.

very fast, since it is a simple iterative function, mostly
parallelizable.

e The solution with Atomic Flows generates a greater
number of flows, as shown in Fig. 8(b). This is motivated
by the fact that the algorithm that computes Atomic Flows
splits each flow into simple and minimal disjoint flows,
while the one based on Maximal Flows aggregates them
as much as possible.

From the results of these tests, it is not possible to see the
real advantage of the Atomic Flows approach, which is to
enable the representation of each predicate as a simple integer.
In fact, this advantage is helpful in the subsequent network
management tasks performed using the flows, which is object
of validation in Section VII-B. As seen in Fig. 7, with the
Atomic Flows approach, the NFs can map their operation over
simple integers, while with the Maximal Flows approach more
complex predicate representations are required.

B. Comparative Validation for Solving Network Security
Management Problems

With the second class of tests, we evaluated the time
and memory that two resolution algorithms for reachability
verification and security policy refinement requires to solve
their respective problems, when they work on the Atomic and
Maximal Flow models.

Concerning reachability verification, we extended
Verigraph2.0 [11], a framework designed to verify connectivity
properties of a network, i.e., to verify whether a given set of
reachability and isolation policies is enforced correctly in a
network. Regarding policy refinement, instead, we extended
Verefoo [13]: given a set of security policies, this tool is able to
provide the automatic and optimal allocation and configuration
of network security functions in order to satisfy the user-
requested policies. Both tools formulate their respective
network security problems with constraint programming, as a
Satisfiability Modulo Theories (SMT) problem in the case of
Verigraph2.0, and as a Maximum SMT (MaxSMT) in the case
of Verefoo. In terms of computational complexity, SMT and
MaxSMT are NP-complete [26]. Nevertheless, state-of-the-art
solvers, such as the one used for the implementation of

(c) Memory - Reachability (d) Memory - Refinement

Verigraph2.0 and Verefoo (i.e., Z3 by Microsoft Research),
can solve many instances of this problem in polynomial time
with respect to the problem size [27].

To interface with the SMT/MaxSMT solver, a correct
representation of the traffic flows (either Atomic or Maximal)
has to be introduced. In particular, it is necessary to model
the predicates included in the definition of traffic flow. As
this kind of solvers typically understand only basic data types,
the explicit representation of a predicate is critical. This is
especially true for the Maximal Flows approach. In this case,
the explicit representation of a predicate is the conjunction
of four predicates defined on integer variables for the source
IP address, of four predicates defined o integer variables for
the destination IP address, two predicates defined on integer
variables for the source port range, two predicates defined on
integer variables for the destination port range, and a predicate
defined on a string variable for the transport-level protocol.
On the contrary, the approach using Atomic Flows only
requires one integer constant for the predicate representing a
packet class, i.e., the integer identifier representing the Atomic
Predicate. The advantage of using Atomic Predicates, which
was previously hidden, becomes apparent and results in a
disparity of one integer against thirteen variables per predicate.
However, it must also be said that the Maximal Flows approach
generates a smaller number of flows (and so less predicates
in input to each node), as we have seen in Fig. 8(b). This
reduction slightly mitigates the 1 vs 13 variables disparity.
However, in general, imagining to split the total time to solve
the network related problem into the time for computing traffic
flows and the time to solve the SMT/MaxSMT problem, the
Atomic Flows approach is expected to solve the second phase
faster, because of the lower number of variables the solver
has to manage. The Maximal Flows approach, instead, as seen
in Fig. 8(a), is faster in solving the traffic flows computation
phase.

Again, the tests are carried out by simulating a progressive
enlargement of the network. Each parameter is therefore
incremented by a fixed value for each test case.

Fig. 9(a) shows the results to solve the reachability
verification problem using Verigraph2.0 with the two proposed
traffic flows approaches. For each test case the chart shows

3756

two bars: one on the left corresponding to the total time using
Atomic Flows, one on the right corresponding to the total time
using Maximal Flows. Each bar, in turn, is divided into two
parts: the first one colored blue indicating the time required to
compute the traffic flows and the second one colored orange
indicating the time required to solve the SMT problem. In this
case, the approach using Maximal Flows is advantageous over
the approach that uses Atomic Flows. Looking at the time
breakdown, the first phase to compute traffic flows turns out
to be decisive for the Atomic Flows approach. Much of the
time is, in fact, spent to compute the set of Atomic Predicates
and, in addition, this approach generates a greater number of
flows the solver must consider. So, even the SMT phase, in
this case, is slower. Computing the Atomic Predicates does not
pay off, because the traffic flows phase is longer and does not
bring advantage to the subsequent SMT phase, which instead
is solved very quickly even in the case of Maximal Flows,
with the solver that has to manage complex predicates.

Fig. 9(b), instead, shows the results to solve the Refinement
problem in Verefoo. In this case, the approach using Atomic
Flows performs much better than the one using Maximal
Flows. Looking at the time breakdown, it can be seen that, as
expected, the initial traffic flows computation phase using the
Atomic Flows approach is slower in this case too, compared to
the time required by the Maximal Flows approach. However,
the subsequent MaxSMT phase is much faster. So, here,
computing the Atomic Predicates and, then, using them for
the MaxSMT problem helps to solve it much faster. Compared
to the previous reachability verification process, in which the
solver only had to check whether the connectivity policies
were satisfied or not, here, in case of a Refinement process,
the MaxSMT problem has much greater weight. In fact, it has
to allocate and automatically configure the NSFs needed to
satisfy the issued security policies. In this case, the MaxSMT
phase has a greater weight than the traffic flows computation
one (color orange in predominant in each bar over blue).
Using Atomic Flows, the initial time spent to compute the set
of Atomic Predicates brings enough advantage to make the
resolution of the MaxSMT problem simpler and faster. So,
spending more time for the initial phase pays off. The same
MaxSMT problem is very slow using Maximal Flows. In the
first case, the solver can work with integers and the whole
network configuration problem becomes a simple process
working on sets of integers. Conversely, with the Maximal
Flows approach the solver has to work with a set of 13
variables for each predicate, and this increases the execution
time.

Fig. 9(c) and Fig. 9(d) compare the memory usage of the
newly developed Verigraph2.0 and Verefoo versions based on
Atomic Flows and the original versions based on Maximal
Flows. The results graphically represented in these figures
show that solving the reachability verification problem with
Verigraph2.0 requires more memory if Atomic Flows are used,
while solving the security policy refinement problem with
Verefoo requires more memory if Maximal Flows are used.
The former result is explained by the fact that the number of
Atomic Flows that is produced is much higher than the number
of Maximal Flows. Therefore, even if the Maximal Flows

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

approach requires a set of 13 variables for each predicate
representing a packet class, the memory required to store this
higher number of variables does not overcome the memory
required to store information about all Atomic Flows, also
because in the SMT problem embedded in Verigraph2.0 there
are no optimization constraints defined on each one of those
variables. Instead, the latter result is explained by the fact
that in the MaxSMT problem formulated in Verefoo there
are optimization constraints defined on all variables of all
predicates representing packet classes. Consequently, creating
and storing all these constraints determines a memory usage
that is higher by the one requested in case of the Atomic
Flow strategy, where more flows are created, but there are
less optimization constraints, as each packet class is simply
identified by a single integer variable. Moreover, it is worth
noticing that these results are in line with the ones about time
scalability. In fact, Maximal Flows were proved to be more
efficient for solving the reachability verification problem also
in terms of computation time, and the same applies to Atomic
Flows for solving the security policy refinement problem.

All the considerations made so far were confirmed also by
the tests we performed on network configurations inspired by
GEANT,? Internet2* and APAN,’ three existing real produc-
tion networks that are located respectively in Europe, America
and Asia. The tests on these network topologies were carried
out by varying the number of security policies, and assessing
computation time and memory usage of both variants of the
two frameworks: the original Maximal Flow variants, and
the newly developed Atomic Flow ones. Their results have
been graphically reported in Fig. 10, Fig. 11, and Fig. 12.
Specifically:

o Fig. 10(a), Fig. 11(a) and Fig. 12(a) report the total com-
putation time required by the two Verigraph2.0 variants
to solve the reachability verification problem;

o Fig. 10(b), Fig. 11(b) and Fig. 12(b) report the total
computation time required by the two Verefoo variants
to solve the refinement problem;

o Fig. 10(c), Fig. 11(c) and Fig. 12(c) report the memory
usage of the two Verigraph2.0 variants to solve the
reachability verification problem;

o Fig. 10(d), Fig. 11(d) and Fig. 12(d) report the memory
usage of the two Verefoo variants to solve the refinement
problem.

All these experimental results demonstrate again that the
approach using Maximal Flows requires less time and memory
to solve the reachability verification problem, while the
approach using Atomic Flows is more convenient in solving
the refinement problem.

VIII. CONCLUSION

This paper introduced a two-fold traffic flow model, which
can be used as a starting point to pair formal methods with
automation for network security management. On this general
model, two different algorithms have been built to group

3 https://network.geant.org/
4https://internet2.edu/network/
5 https://apan.net/

BRINGHENTT et al.: A TWO-FOLD TRAFFIC FLOW MODEL FOR NETWORK SECURITY MANAGEMENT 3757
40 — 1500= . . — 250 — : - = -
I8 Atomic Flows approach (s) 400 I8 Atomic Flows approach (s) | —— Atomic Flows approach (MB) —— Atomic Flows approach (MB)
@ IoMaximal Flows approach (s) @ I@Maximal Flows approach (s)) —— Maximal Flows approach (MB) = 200 ~—— Maximal Flows approach (MB) | |
o 30F 1 o = =
£ E 300] = 1000] 1 3
z :) %150/ 1
2 20¢ 1 .8] 2
s g 2001 > > 100} 4
2 2 g 500 1 ¢
£ 10] £ 100} 5 5 ol |
o) = =
0 0 0 I I I I 0 7
100 200 300 400 20 25 30 35 40 100 200 300 400 20 25 30 35 40
Number of policies Number of policies Number of policies Number of policies
(a) Time - Reachability (b) Time - Refinement (c) Memory - Reachability (d) Memory - Refinement
Fig. 10. Comparative validation on a network inspired by the GEANT topology.
. \ - \ \ - \ \ 5000 — ‘ i i 250 — - : . :
500 {18 Atomic Flows approach (s) 1 500 |18 Atomic Flows approach (s) —— Atomic Flows approach (MB) —— Atomic Flows approach (MB)
2 IoMaximal Flows approach (s) 2 l8Maximal Flows approach (s) 2 4000 —— Maximal Flows approach (MB) | | /& 200 —— Maximal Flows approach (MB) | |
2 400 2 g R
5 8 y | | @ L |
£ 300 g %‘3 3000 %o 150
= ‘= >
2 200 H Z 2000| | 100 |
g g £ g
§ 100 S S 1000} | = sof :
0 0 L Il L L 0 I ——(—————
100 200 300 400 20 25 30 35 40 100 200 300 400 2025 30 35 40
Number of policies Number of policies Number of policies Number of policies
(a) Time - Reachability (b) Time - Refinement (c) Memory - Reachability (d) Memory - Refinement
Fig. 11. Comparative validation on a network inspired by the Internet2 topology.
250 = - - 250 = - - - 600 — : T T 150 = T T : T
I8 Atomic Flows approach (s) I8 Atomic Flows approach (s) —— Atomic Flows approach (MB) —— Atomic Flows approach (MB)
@ IaMaximal Flows approach (s) @ IaMaximal Flows approach (s) o —— Maximal Flows approach (MB) = —— Maximal Flows approach (MB)
b 200 b 200 % §
g 150 £ 150 o 4001 1 S 100F]
r : r o0 o
E E
£ 100| 1 Z 00 z z
£ 2 § 200| o | E s]
: : : - :
S S0p S 50p b= _— s
0 0 ol ‘ ‘ ‘ ob—— ‘ s
100 200 300 400 20 25 30 35 40 100 200 300 400 20 25 30 35 40

Number of policies Number of policies

(a) Time - Reachability (b) Time - Refinement

Fig. 12.

packet classes into traffic flows entities, named Maximal and
Atomic Flows. These algorithms differ for the trade-off they
can achieve between two features of their grouping strategies,
i.e., the number of traffic flows that are computed, and the
granularity level of each traffic flow. Slightly modified state-
of-the-art automatic algorithms can employ these flow entities
to solve different network security management problems such
as security policy verification and refinement.

An extensive validation of the algorithm execution and
their application to management problems was carried out to
assess their feasibility, and to identify the cases where each
algorithm performs better. From the validation results, we
noticed that aggregating packet classes into Maximal Flows is
more convenient to solve less burdensome problems, such as
the verification of reachability and isolation policies, because
the time and memory required to compute the flows are lower.
Instead, using Atomic Flows is advisable when addressing
more complex problems such as policy refinement. Even if
more time is needed to compute the Atomic Predicates at

Number of policies Number of policies

(c) Memory - Reachability (d) Memory - Refinement

Comparative validation on a network inspired by the APAN topology.

the basis of these flows, each one can be assigned an integer
identifier, and these numbers can be used to formulate the
problem in a simpler way, using less variables.

Future work envisions to assess the feasibility of this traffic
flow model in other network security management problems,
such as formal verification related to information disclosure,
latency constraints, and reliability. Different trade-offs between
number of computed flows and their granularity level will
be also investigated, to understand how they can impact the
resolution of these problems.

REFERENCES

[1] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in
software defined networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 623-654, 1st Quart., 2016.

R. Boutaba and I. Aib, “Policy-based management: A historical perspec-
tive,” J. Netw. Syst. Manag., vol. 15, no. 4, pp. 447-480, 2007.

A. Leivadeas and M. Falkner, “A survey on intent based
networking,” IEEE Commun. Surveys Tuts., vol. 25, no. 1, pp. 625-655,
Ist Quart., 2023.

[2]
[3]

3758

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 21, NO. 4, AUGUST 2024

D. Bringhenti, G. Marchetto, R. Sisto, and F. Valenza, “Automation
for network security configuration: State of the art and research
trends,” ACM Comput. Surveys, vol. 56, no. 3, pp. 57, pp. 1-57:37,
2024.

J. Qadir and O. Hasan, “Applying formal methods to networking:
Theory, techniques, and applications,” IEEE Commun. Surveys Tuts.,
vol. 17, no. 1, pp. 256291, 1st Quart., 2015.

A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in Proc. USENIX Symp.
Net. Syst. Design Implement., 2013, pp. 1-13.

J. Govaerts, A. K. Bandara, and K. Curran, “A formal logic approach
to firewall packet filtering analysis and generation,” Artif. Intell. Rev.,
vol. 29, nos. 3-4, p. 223, 2008.

P. Bera, S. K. Ghosh, and P. Dasgupta, “Policy based security analysis
in enterprise networks: A formal approach,” IEEE Trans. Netw. Service
Manag., vol. 7, no. 4, pp. 231-243, Dec. 2010.

H. Yang and S. S. Lam, “Real-time verification of network properties
using atomic predicates,” IEEE/ACM Trans. Net., vol. 24, no. 2,
pp. 887-900, Apr. 2016.

H. Yang and S. S. Lam, “Scalable verification of networks with packet
transformers using atomic predicates,” IEEE/ACM Trans. Netw., vol. 25,
no. 5, pp. 2900-2915, Oct. 2017.

D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, and
J. Yusupov, “Improving the formal verification of reachability policies in
virtualized networks,” IEEE Trans. Net. Service Manag., vol. 18, no. 1,
pp. 713-728, Mar. 2021.

M. A. Rahman and E. Al-Shaer, “Automated synthesis of distributed
network access controls: A formal framework with refinement,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 2, pp. 416-430, Feb. 2017.
D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated firewall configuration in virtual networks,” IEEE Trans.
Dependable Secure Comput., vol. 20, no. 2, pp.1559-1576,
Mar./Apr. 2023.

Y. Li et al., “A survey on network verification and testing with formal
methods: Approaches and challenges,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 940-969, 1st Quart., 2019.

D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Towards a fully automated and optimized network security functions
orchestration,” in Proc. 4th Int. Conf. Comput., Commun. Security
(ICCCS), 2019, pp. 1-7.

S. Bussa, R. Sisto, and F. Valenza, “Security automation using traffic
flow modeling,” in Proc. 8th IEEE Int. Conf. Netw. Softw., (NetSoft),
2022, pp. 486-491.

G. Xie et al., “On static reachability analysis of IP networks,” in Proc.
IEEE Conf. IEEE Comp. Comm. Soc., 2005, pp. 2170-2183.

P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proc. USENIX Symp. Net. Syst. Design
Implement., 2012, pp. 1-14.

P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proc. USENIX Symp. Net. Syst. Design Implement., 2013,
pp. 1-13.

N. P. Lopes, N. Bjgrner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proc. USENIX Symp. Net.
Syst. Design Implement., 2015, pp. 1-15.

R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “SymNet:
Scalable symbolic execution for modern networks,” in Proc. ACM
SIGCOMM Conf., 2016, pp. 314-327.

N. Stouls and M. Potet, “Security policy enforcement through refinement
process,” in Proc. 7th Int. Conf. B Users, 2007, pp. 216-231.

D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner, “The mathe-
matical foundations for mapping policies to network devices,” in Proc.
13th Int. Joint Conf. e-Bus. Telecommun., 2016, pp. 1-13.

N. Schnepf, R. Badonnel, A. Lahmadi, and S. Merz, “Rule-
based synthesis of chains of security functions for software-defined
networks,” Electron. Commun. EASST, vol. 76, pp. 1-20, Dec. 2019.
D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov,
“Automated optimal firewall orchestration and configuration in virtual-
ized networks,” in Proc. IEEE/IFIP Netw. Oper. Manag. Symp., 2020,

pp. 1-7.

[26] M. E. Halaby, “On the computational complexity of MaxSAT,” Dept.

Math., Cairo Univ., Giza, Egypt, Rep. 34, 2016.

[27] R. Robere, A. Kolokolova, and V. Ganesh, “The proof complexity

of SMT solvers,” in Computer Aided Verification. Cham, Switzerland:
Springer Int. Publ., 2018.

Daniele Bringhenti (Member, IEEE) received the
M.Sc. degree (summa cum laude) and the Ph.D.
degree (summa cum laude) in computer engineering
from the Politecnico di Torino, Torino, Italy, in 2019
and 2022 respectively.

He is currently an Assistant Professor with time
contract with the Politecnico di Torino. His research
interests include novel networking technologies,
automatic orchestration and configuration of security
functions in virtualized networks, and formal verifi-
cation of network security policies.

Simone Bussa (Graduate Student Member, IEEE)
received the M.Sc. degree (summa cum laude)
in computer engineering from the Politecnico di
Torino, Turin, Italy, in 2021, where he is currently
pursuing the Ph.D. degree in control and computer
engineering.

His research interests include distributed systems
security and formal verification applied in the field
of cyber—physical systems.

Riccardo Sisto (Member, IEEE) received the Ph.D.
degree in computer engineering from the Politecnico
di Torino, Torino, Italy, in 2021.

Since 2004, he is Full Professor of Computer
Engineering with the Politecnico di Torino. His main
research interests are in the area of formal methods,
applied to distributed software and communication
protocol engineering, distributed systems, and com-
puter security. He has authored and co-authored
more than 100 scientific papers.

Prof. Sisto is a Senior Member of ACM.

Fulvio Valenza (Member, IEEE) received the M.Sc.
degree (summa cum laude) and the Ph.D. degree
(summa cum laude) in computer engineering from
the Politecnico di Torino, Torino, Italy, in 2013 and
2017, respectively.

He is currently a Tenure-Track Assistant Professor
with the Politecnico di Torino. His research activity
focuses on network security policies, orchestration
and management of network security functions in
SDN/NFV-based networks, and threat modeling.

Open Access funding provided by “Politecnico di Torino” within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

