
13 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Ultra-Low Power and Green TSCH-Based WSNs With Proactive Reduction of Idle Listening / Scanzio, Stefano; Quarta,
Federico; Paolini, Giacomo; Formis, Gabriele; Cena, Gianluca. - In: IEEE INTERNET OF THINGS JOURNAL. - ISSN
2327-4662. - (2024), pp. 1-12. [10.1109/jiot.2024.3406646]

Original

Ultra-Low Power and Green TSCH-Based WSNs With Proactive Reduction of Idle Listening

Publisher:

Published
DOI:10.1109/jiot.2024.3406646

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989162 since: 2024-05-31T07:07:17Z

IEEE



Evaluating the Reliability of Supervised
Compression for Split Computing

Juan-David Guerrero-Balaguera∗, Josie E. Rodriguez Condia∗, Marco Levorato†, Matteo Sonza Reorda∗
∗Politecnico di Torino - Department of Control and Computer Engineering (DAUIN), Turin, Italy

{juan.guerrero@, josie.rodriguez@, matteo.sonzareorda@}polito.it
†University of California - Computer Science Department, Irvine, US

levorato@uci.edu

Abstract—1Recent advances in Internet-of-things (IoT) and
5G infrastructures promote new computational paradigms such
as Split Computing (SC) for deploying Deep Neural Networks
(DNNs) on mobile applications. In SC, DNNs are partitioned into
head and tail sub-models that are executed on the mobile device
and cloud/edge servers, respectively. Modern SC models resort
to head compression techniques to balance energy consumption,
transmission data, and model size while preserving the out-
standing accuracy of large state-of-the-art DNNs. These features
make SC DNNs suitable for mobile applications, including safety-
critical systems (e.g., self-driving vehicles, autonomous robots,
and healthcare equipment), where reliability is a paramount
factor mandated by strict safety standards. Despite there are
many studies available about the reliability of DNNs, the SC
models are still unexplored, especially when hardware faults
threaten the operation of a mobile device. In this work, we
present for the first time i) an application-level fault injection
strategy for modeling hardware faults on mobile GPUs executing
SC DNNs and ii) an evaluation of the resilience of supervised
compression methods utilized by SC systems. The preliminary
results gathered on some representative benchmark networks
and configurations show the feasibility and effectiveness of the
approach. They also demonstrate that aggressive compression
strategies lead to high accuracy degradation (≈ 40%), increasing
the overall vulnerability of the DNN and the system.

Index Terms—Internet of Things, Deep Neural Networks,
Graphics Processing Units (GPUs), Reliability Evaluation, and
Split Computing.

I. INTRODUCTION

In the era of 5G technology and wireless connectivity
expansion, distributed computing is increasingly vital for
handling resource-intensive deep neural network (DNN) tasks.
As infrastructure assistance becomes a central component of
even safety-critical applications such as connected vehicles
[1], reliable computing strategies turn into an increasingly
critical component. In this direction, Split Computing (SC),
where DNNs are partitioned into a Head Model executed
by the mobile device and a Tail model executed by the
edge server [2]–[4] is emerging as an effective solution to
reduce the amount of data transported over wireless channels,
thus increasing performance and potentially reducing latency,
compared to “pure” edge computing.

1This work has been partially supported by the National Resilience and
Recovery Plan (PNRR) through the National Center for HPC, Big Data and
Quantum Computing.

Recent contributions in SC have proposed supervised com-
pression of intermediate features to make the head models
computationally efficient, aiming to balance power consump-
tion, computing load, latency, and channel usage for DNN
computations on mobile devices [5], [6]. Nonetheless, to the
best of our knowledge, there are no reported works that
study the effect of such feature compression strategies on the
reliability of the DNN, especially when considering hardware
faults that may appear due to a variety of phenomena such as
manufacturing process variations, test escaped devices, aging,
or harsh environmental conditions [7], [8].

The observation behind the work presented in this paper is
that the feature compression used in SC approaches reduces
the natural redundancy of DNNs, and so it may negatively
impact the resilience of the DNN to such faults arising
during the system’s operational life. Indeed, previous works
on DNN’s reliability [8], [9] have demonstrated that (transient
and permanent) faults affecting hardware structures can induce
errors at the algorithmic level of the DNN, resulting in wrong
predictions that might lead to system malfunctions, reduced
efficiency, or catastrophic events [10].

It is worth noting that only a few works have investigated
the resilience of compressed Neural Networks by using quan-
tization or neuron pruning [11], [12]. In fact, several authors’
findings in [11], [13] indicate that quantizing neural networks
by using fixed-point representation may positively impact their
reliability. Other works [13], [14] have explored quantization
and pruning strategies to increase the reliability of DNNs
by retraining the model or mapping non-essential neurons to
defective processor units, improving in this way the man-
ufacturing yield of hardware accelerators. Nonetheless, new
compression techniques (i.e., intermediate features and model
sizes) of DNNs for SC scenarios are still fully unexplored in
terms of reliability.

On the other hand, the reliability evaluation of DNNs often
resorts to fault injection (FI) campaigns at the application
level, assuming hardware-agnostic error models (e.g., random
stuck-at faults on the weights or bit-flips on the feature maps).
Unfortunately, these fault models only describe hardware de-
fects in the system memory [11], leaving unmodeled potential
defects in other hardware structures (e.g., computational units).
Moreover, they do not allow the differentiation of fault effects
among different devices or architectures. Despite the fact there
have been some attempts to model fault effects on hardware

20
24

 IE
EE

 4
2n

d 
V

LS
I T

es
t S

ym
po

si
um

 (V
TS

) |
 9

79
-8

-3
50

3-
63

78
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

V
TS

60
65

6.
20

24
.1

05
38

93
8

979-8-3503-6378-4/24/$31.00 ©2024 IEEE

Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 31,2024 at 10:12:02 UTC from IEEE Xplore.  Restrictions apply. 



accelerators at the application level [13], [14], none of them
considered GPU devices. In fact, Split Computing relies on
embedded GPUs to deploy lightweight head DNN models.
However, embedded GPUs have a limited amount of compu-
tational units, which implies that for a given DNN workload,
a single faulty core can potentially corrupt a higher amount of
neuron computations compared with high-end computational
devices with massive parallelism. It is then fundamental to de-
velop error modeling methods that embrace operative features
of GPU devices (e.g., the algorithm mapping into the hardware
architecture), to enable the effective resilience estimation of
DNNs, including Split Computing models.

In this work, we present the first (to the best of our
knowledge) framework to assess the resilience to hardware
faults in the context of Split Computing (SC) and supervised
compression techniques. In addition, we propose a hardware-
aware error modeling methodology that accurately describes
the propagation effects from faults on Fused Accumulate
Multiply (FMA) cores in embedded GPUs used as mobile
devices in SC applications. Our error model strategy corrupts
the feature maps of the convolutional and linear layers of
DNN architectures, taking into account the GPU device’s size
in terms of computational cores and the mapping strategy of
the algorithm into the GPU device. As a study case to show
the effectiveness and practicality of the proposed solution, we
considered eight split DNN configurations for ResNet50 (six
models using Channel Reduction and Bottleneck Quantization
(CR+BQ) and two models using Variational Autoencoders
(VAE) with entropy encoding). Our results indicate that both
CR+BQ and VAE lead to heavy resilience degradation com-
pared to a non-compressed baseline model, but the VAE
models have a better performance against faults than CR+BQ
techniques. We also unveil that the bottleneck quantization
significantly impacts the reliability of the whole SC system
due to hardware faults.

The rest of this paper is organized as follows. Section II
provides an overview of SC, supervised compression of DNNs,
Graphic processing units, and fault propagation models. Sec-
tion III describes the proposed fault injection methodology.
Section IV describes the experimental setup and presents
the results for several split DNN models. Finally, Section V
concludes the paper and discusses future works.

II. BACKGROUND

A. Split Computing

Split computing (SC) distributes the execution of a Neural
Network task between a low-powered or constrained device
and a compute-capable edge or cloud server. Such a distri-
bution involves splitting the DNN model D consisting of L
layers into two sub-models: head and tail. The head model
consists of the first l layers of D, and the tail model takes the
last L− l layers of the D. The head is executed on the device
side, producing intermediate features that are transmitted over
a wireless link to an edge/cloud server. The latter executes
the tail’s inference, taking the feature maps coming from the

Original Model

Split Model

Head Model (Mobile Device)
Encoder

Tail Model (Edge/cloud Device)

B
ot

tle
ne

ck

Decoder

Fig. 1. A scheme of the feature compression for SC using bottleneck layers
for channel reduction.

device as input. Finally, the inference result is possibly sent
back to the mobile device to complete the task [2], [3].

The general goal of SC is to distribute the computing
load across multiple devices to optimize the trade-off between
energy expense, latency, and task performance. Unfortunately,
splitting the DNN without modifying its architecture does not
necessarily produce effective operating points. In fact, splitting
a network at any of the inner layers often generates high-
dimensional features at the output of the head model mapping
to a large amount of data to be transmitted [3], [5].

B. Supervised compression of DNNs

Supervised compression methods tackle the problem of
reducing the intermediate features to be transmitted between
the mobile device and the servers. Such improvement is
obtained by inserting encoder-decoder layers at the split point
of the DNN, such that the encoder becomes part of the head
executed at the mobile device while the decoder is part of the
tail model at the edge server.

Fig. 1 depicts a conceptual diagram of intermediate feature
compression by inserting bottleneck layers (with a small
number of nodes) in the early stages of the network [2]. There
exist two primary supervised compression techniques for Split
computing based on knowledge destination: i) the In-network
neural compression (a.k.a Channel Reduction and Bottleneck
Quantization (CR+BQ) [6] and ii) Variational Autoencoders
(VAE) with Entropy Encoding [15]. The CR+BQ encoder-
decoder architecture comprises a stacked interconnection of
convolution, normalization, and ReLu layer operations. The
VAE encoder resorts to an interleave interconnection of con-
volution and Generalized Divisive Normalization - (GND)
operations, whereas the decoder uses inverse GND for the
feature maps reconstruction.

C. Graphic Processing Units

A Graphic Processing Unit (GPU) comprises a hierarchical
structure of computational units called Streaming Multipro-
cessors (SMs). Each SM integrates several Scalar/Streaming
Processors (SPs) to perform integer, floating-point, and
trigonometric operations. Every SM implements the Single-
Instruction Multiple-Thread (SIMT) paradigm, scheduling one
instruction for a group of 32 threads (i.e., a Warp) per clock
cycle. Additionally, an SM includes Local Memories and
Register File banks to support the parallel thread execution.
Every parallel application (e.g., a CNN) resorts to multiple

Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 31,2024 at 10:12:02 UTC from IEEE Xplore.  Restrictions apply. 



Input
activations

Weights

Multiple errors
on a thread in a

warp
Multiple thread corruptions

on a tile

Multiple corrupted
tiles

Corrupted
Activations

Tiling Matrix
Multiplication

Thread Block TileWarp TileThread TileFMA core
operation

FMA Error

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SP SP SP SP

SM

Workload  
Distribution

Error
Propagation

Fault at the
harware level

Error at the
application level

Fig. 2. Illustrative description of error propagation of a faulty GPU’s FMA on the tiling Matrix Multiplication

GPU kernels. These kernels consist of several parallel threads
organized into ”Thread-Blocks” (TBs) groups. When the GPU
executes a kernel, the block scheduler submits several TBs in a
queue to each SM to optimize the performance. Subsequently,
the SM schedules several thread groups (warps) into the
SPs, and every SP executes the instructions of a thread in a
warp, adhering to the SIMT parallel execution model. Recent
advances in semiconductor technologies allow to incorporate
low-power GPUs in mobile devices, supporting basic machine
learning tasks that, in turn, are enhanced by SC techniques [2].

D. Fault propagation and application level errors
In SC scenarios, it is commonly assumed that mobile

devices have low-power Commercial Off-the-Shelf (COTS)
GPUs [2], [3] that are not developed for safety-critical appli-
cations. Hence, the probability that they could be affected by
physical defects produced by multiple phenomena (including
fabrication imperfections, manufacturing process variation, or
aging phenomena [7]) is not negligible. Such defects can pro-
duce faults, which may occur at any time during the system’s
operation and are categorized as permanent or transient ac-
cording to their behavior during the system’s operation. Once
a fault occurs, it can propagate its effect up to the component’s
outputs, generating errors that might be perceived in software
as hard or Silent Data Errors (SDEs) [16], [17].

These errors can propagate through the execution of the
application and eventually induce a failure of the system
(e.g., the system produces a wrong output). In fact, the
work in [8] indicates that single permanent faults in data-
path cores of GPUs mostly produce single bit-flips at the
unit’s output at the gate level, and once such fault syndromes
are propagated to the instruction level, the DNNs workloads
exhibit around 20% of wrong prediction rates when deployed
on high-end GPUs. Note that an error may also be masked
during propagation through the layers of the full system (i.e.,
technology, architectural, or software level). Thus, only those
fault effects, in the form of errors that reach the software level,
can impact the correct execution of the application [18], [19].
In fact, the implementation details of the software layer can
determine how a fault-induced error propagates or vanishes
during the system’s operation. Hence, simulating errors at the
software layer provides an acceptable estimation of the impact
of hardware faults on the resilience of a DNN.

Error injections at the application level have been widely
adopted to study the reliability of DNNs with respect to
hardware faults since it is several orders of magnitude faster
than detailed low-level hardware fault simulation [11], [18],
[20]. Nonetheless, defining accurate error models at the ap-
plication or system level may result in challenging endeavors
without considering the HW/SW interaction. In consequence,
in this work, we propose a methodology to describe at the
application-level Silent Data Errors (SDEs) produced by dif-
ferent phenomena at the hardware level (e.g., timing defects,
wear-out, or permanent defects) affecting the Fused-Multiply-
Accumulate (FMA) cores on single SMs of GPU devices.
Also, this error model allows the evaluation of SC DNNs when
executed in different configurations of mobile GPU devices
with different amounts of parallel resources.

III. FAULT INJECTION METHODOLOGY

This section describes the methodology and the framework
we devised to assess the resilience of supervised compres-
sion methods for SC. The proposed approach relies on fault
injection (FI) campaigns at the application level, resorting
to error perturbations that model the silent effects of the
faults in the underlying hardware. It is worth noting that the
proposed evaluation method and the simulation framework can
be extended to other DNN architectures that use high levels
of customization, similar to the ones used for SC.

A. Evaluation flow

As stated before, mobile devices in SC configurations
incorporate embedded GPUs, which are dedicated to executing
the inference of compact head models. Such devices typically
correspond to relatively unreliable COTS components; Hence,
they have a non-negligible probability of failing during their
operational life. For this work, we assume that hardware
faults on the mobile device side are the only threat to the
reliability of an SC system (although other threats may exist,
for example, connected to software bugs not contemplated in
this study); we also assume that the communication system
and the edge/cloud server always operate correctly since there
might be the possibility to have redundant execution of the
tail model of the SC system.

In the proposed solution, we rely on FI campaigns by
injecting errors at the application level of the head model only,

Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 31,2024 at 10:12:02 UTC from IEEE Xplore.  Restrictions apply. 



propagating their effects through the full DNN architecture
during the inference stage. The evaluation of the injected errors
on the DNN is conducted by comparing a golden fault-free
inference result with the results obtained from the inference
of the perturbed model. This error assessment may depend on
the application. In this work, we employed image classification
tasks, categorizing the effects of every injected error for every
image as i) Masked, ii) SDC-Safe, and iii) SDC-Critical. The
first one indicates that the injected error does not change the
inference outputs. The second indicates a silent data corruption
without prediction changes, and the last one indicates that the
injected error induced a misclassification.

B. GPU-aware error modeling for convolution and linear
layers

In DNN computations, including SC DNNs, the convolu-
tional and linear layers demand extensive use of dot product
operations [21]. The GPUs provide the computational capa-
bilities to support such costly operations by distributing the
workload into multiple threads that, in turn, use specialized
Multiply-Accumulate (MAC) or Fused Multiply-Accumulate
(FMA) cores. However, the continuous utilization of these
hardware structures (up to 80% more than other hardware
structures [21]) may accelerate their wear out or aging, exac-
erbating the probability of faults during the system operation.

Furthermore, the intensive use of these computational units
also increases the probability that a fault can be activated and
propagated, reaching the application in the form of SDEs,
for example, due to manufacturing defects, or timing faults.
Inspired by the work presented by [8], we propose to model
FMA SDEs as single bit-flips corrupting specific regions of
the feature maps of convolutional or liner layers. The region
of the feature maps to be affected is selected by taking into
account the GPU device features (i.e., number of cores, SMs,
clusters, etc.), the target algorithm mapped to GPU devices
(e.g., Matrix Multiplication), and the algorithm configurations
(e.g., degree of parallelism, number of threads, etc).

Typically, convolution and linear DNNs’ operations are
efficiently implemented in GPUs by resorting to Matrix Mul-
tiplication (MM) algorithms. Such implementations divide the
MM computation into sub-matrices called tiles, which, in
turn, are distributed among the GPU’s parallel cores. Fig. 2
depicts an exemplification of the tiling workload distribution
at different levels in a GPU device. First, the full MM is
divided into several thread block tile computations, which also
are divided into smaller tiles at the warp and thread levels
inside the GPU’s SMs. This tiling implementation forces every
thread in a warp to compute up to four small MM tiles of
size 4X4 [22]. Thus, when one SM has a faulty FMA core,
the resulting error might propagate to one or more threads
per warp, producing multiple data corruptions that are also
distributed at the output of the tile. Thus, when more than
one tile is executed on the faulty SM, a similar effect will be
observed on the results of such tiles.

Considering this error propagation mechanism, we define
additional parameters that better describe the error behavior

considering different GPU systems. First, we take the tensor
output of a target convolutional layer and create a virtual
representation of a tiling MM by using three main parameters:
the tail size (TS), the block error rate (BER), and the neuron
error rate (NER). TS corresponds to the size of every Thread
Block tile in the layer. BER corresponds to the portion of
tiles executed in a faulty SM (eq. 1), and NER corresponds
to the fraction of neurons within Thread Block corrupted due
to one faulty FMA (eq. 2). Finally, specific locations of the
feature maps are corrupted by injecting random single bit-
flips according to the coordinates defined by the selected tiles
assigned to a given SM, which are obtained from the virtual
tiling representation.

BER =
SMs/GPU

TotBlockT iles
(1)

NER =
DotProd/Thread× Threads/BlockT ile

FMAcores/SM ×WarpT iles×WarpT ileSize
(2)

C. Fault injection framework

Based on the approach we described earlier, we developed
an in-house framework that wraps highly customized DNNs
for SC and automatically orchestrates the error simulation
campaigns by creating, organizing, and storing simulation re-
ports with detailed information about every injected error. The
simulation environment extends the capabilities of PyTorchFI
by adding the hardware-aware perturbation models we listed
in the previous section. The FI environment comprises four
main modules: i) launcher, ii) simulation manager, iii) injector
controller, and iv) reports generator. The first module config-
ures and initiates a FI campaign using a configuration file that
contains the operational specifications, such as the DNN target
model, the layer or set of layers subject to perturbations, the
error model parameters (e.g., tile sizes, number of GPU cores,
number of warp tiles, etc), and the split point location for
the SC models. The simulation manager orchestrates the FI
campaigns over all the errors considered for the evaluation.
The injection controller provides an interface between the
simulation manager and the customized PyTorchFI tool. This
component handles the status of the FI and dispatches the
inference results to the reports generation module. For the
sake of reproducibility, our framework is publicly available 2.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results stemming
from the adoption of the proposed framework on a sample test
case. In particular, we performed a set of FI campaigns at the
application level, considering several split configurations based
on the ResNet50 architecture for image classification tasks. We
evaluated six SC configurations using the Channel Reduction
+ Bottleneck Quantization (CR+BQ) and two configurations
using VAE with entropy encoding. The CR+BQ configurations
use channel reduction on the bottleneck to 1, 2, 3, 6, 9, and
12 channels, and all apply a point-wise 8-bit quantization
function to the floating-point bottleneck feature outputs. The

2https://github.com/divadnauj-GB/SC Fault injections.git

Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 31,2024 at 10:12:02 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
MEAN ACCURACY DEGRADATION RESULTS FOR THE FAULT SIMULATION

CAMPAIGNS WITH DIFFERENT SPLIT CONFIGURATIONS
FI MRAD (%)

Campaign BaseLine CR+BQ VAE
CR(1) CR(2) CR(3) CR(6) CR(9) CR(12) β=0.08 β=5.12

Weights 4.99 8.53 8.29 8.42 8.28 8.36 8.26 8.28 8.61
FMaps 16.10 46.92 49.84 48.18 48.30 49.26 48.02 43.58 39.13

VAE models correspond to two different compression rates
defined as β = 0.08 and β = 5.12 [15]. We used pre-trained
split DNN models taken from a publicly available repository3.
The DNN models were trained on the ImageNet dataset. For
the evaluations, every perturbation was applied on every DNN
model while performing the inference of 5,000 images, which
corresponds to 5 samples per class of the ImageNet dataset.

The FI experiments were performed acting on the DNN
parameters and the output feature maps of the convolutional
layers of the head model by injecting errors, as described in
the previous section. The parameters’ FIs follow the standard
statistical approach using a confidence level of 98%, and an
error margin of 5% [23]. The injection of errors on the feature
maps used the following parameter configurations: tile size
(TZ) of 32X32, Neuron Error Rates (NER) per tile of 2%,
4%, 6%, 8%, and 10%. For the experiments, we arbitrarily
selected five different Block Error Rate (BER) configurations
(i.e., 20%, 40%, 60%, 80%, and 100%), where 100% BER
describes an embedded GPU device with only one SM (e.g.,
Jetson Nano GPU), implying that all tiles of the convolution
are susceptible to errors due to a faulty FMA, while 20% BER
represents more powerful embedded devices including more
SMs (e.g., Jetson AGX Orin with 16 SMs).

For every configuration, we run 65 trials, each time ran-
domly selecting the bit-flip position to be modified. All the
experiments were conducted on a workstation HP Z2 G5 with
an Intel Core i9-10800 CPU with 20 cores, 32 GB of RAM,
and equipped with an RTX 3060TI GPU platform including an
NVIDIA Ampere architecture with compute capability (CC)
8.6. The FI campaigns lasted around 1,200 hours for all split
configurations.

We used the Mean Relative Accuracy Degradation (MRAD)
to evaluate the impact of the injected errors on the performance
of every split configuration. MRAD measures the degree of
accuracy degradation induced by the injected faults compared
to the fault-free scenarios [24]. In addition, we compared
the resilience to faults of the split DNN modes with an FI
campaign performed on the first four layers of the original
version of the ResNet50 model as a baseline.

Table. I reports the MRAD for all SC configurations for
every FI campaign targeting the head model of the network.
The results show that split models using both CR+BQ and
VAE are highly susceptible to hardware faults affecting the
weights of the DNN model. In fact, the average accuracy
degradation exceeds 8% for all the evaluated configurations,
whereas the same evaluation on the baseline model without
any compression reports less than 5% of MRAD. The table
shows that regardless of the compression technique, the hard-

3https://github.com/yoshitomo-matsubara/sc2-benchmark.git

192021222324252627282930
Bit-flip Position

0

20

40

60

80

100

M
RA

D 
(%

)

Split Config
BaseLine
CR+BQ(1)
CR+BQ(2)
CR+BQ(3)
CR+BQ(6)
CR+BQ(9)
CR+BQ(12)
VAE-B0.08
VAE-B5.12

Fig. 3. MRAD for all DNN configurations vs. the bit-flipped position on the
feature maps outputs

ware faults inducing data corruption on the parameters induce
similar performance degradation (< 1%) on the accuracy of
all split models. On the other hand, when considering our
SDEs model at the feature maps, the compressed split models
show a high MRAD degradation regardless of the compression
approach (> 38%), which is quite significant compared to the
original model that exhibits a maximum MRAD of 16.1% for
the same experiments. Interestingly, the SC models using VAE
seem to be more resilient to SDEs than the CR+BQ approaches
by around 9%.

A. Evaluation of SDEs in the Feature Maps

Fig. 3 reports the analysis, at the bit level, of the effect of the
proposed GPU-aware SDE modeling applied to convolutional
layers of the head part of an SC DNN, assuming the usage
of an embedded GPU for computations. It must be noted that
bit 30 was removed from the analysis since it always induced
100% of MRAD for all the evaluated models, including the
baseline. At first glance, we observe that SDEs corrupting
the exponent bits of neuron computations heavily reduce the
accuracy performance for all the SC configurations. In fact,
when corrupting the bits 25th to 29th, all the compressed
models exhibit more than 90% of MRAD, except for VAE-
B5.12, which presented around 70% of MRAD. On the other
hand, the baseline model presents more resilience to the same
SDE corruptions of the exponent (i.e., up to 20% MRAD).

Interestingly, SDEs affecting the two least significant bits
of the exponents (i.e., bits 23 and 24) show a moderated
but not negligible MRAD that varies from configuration to
configuration between 5% (VAE-B0.08) to 35% (CR+BQ(2)).
In contrast, the baseline model seems to be resistant to such
a kind of errors. In addition, the corruption of the mantissa’s
bits (i.e., bits 20 down to 0) slightly impacts the accuracy of
the SC and baseline models (< 5% MRAD). Further analysis
in terms of the BER is presented in Fig. 4. The obtained
results show that for an embedded GPU with 20% of the
corrupted tiles (i.e., a GPU with few SMs), all the split models
have less than 40% MRAD. Moreover, results suggest that in
embedded GPUs with a single SM (BER 100%), the MRAD
increases by ≈ 5%. Interestingly, the split configurations using
VAE compression strategies show more resilience than their
CR+BQ counterparts. In general, all the split DNN configu-
rations increase their vulnerability to hardware-induced error
as long as the BER increases. However, the VAE β = 5.12
increased the MRAD by 2% more than the other evaluated
configurations when the BER reached 100%.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 31,2024 at 10:12:02 UTC from IEEE Xplore.  Restrictions apply. 



20.0 40.0 60.0 80.0 100.0
BER (%)

0

10

20

30

40

50

M
RA

D 
(%

)
Split Config

BaseLine
CR+BQ(1)

CR+BQ(2)
CR+BQ(3)

CR+BQ(6)
CR+BQ(9)

CR+BQ(12)
VAE-B0.08

VAE-B5.12

Fig. 4. MRAD for all configurations under different block error rates (BER).

Further analysis indicated that the quantization schemes
for the bottlenecks play a crucial role in the reliability of
SC models, significantly reducing the resilience of the model
to SDE. In fact, the SC with CR+BQ compression uses a
simple quantizer to transform floating point representations
to 8-bit integers. This quantization heavily distorts the data
transmitted to the tail when the magnitude of the corrupted
data increases significantly due to SDE affecting the exponent
of the upstream layers. Similarly, effects are observed for
the SC using VAE compression strategies; still, the stochastic
behavior of the VAE architecture benefits the resilience of the
model when SDE induces a magnitude of error lower than
2. These preliminary observations indicate that possible mit-
igation strategies should target the quantization functions by
either adopting alternative quantization techniques or including
fault-aware saturation mechanisms.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a GPU-aware fault model and
a framework to assess the resilience to hardware faults of
supervised compression techniques used in DNNs for Split
Computing (SC) contexts. To the best of our knowledge, this
is the first study considering reliability issues in SC systems
and providing a solution that allows the designer to take it
into account when selecting the best system configuration.
Moreover, the error model enables the assessment of the
reliability of any SC with different GPU configurations or
algorithm implementations. Using the proposed approach, we
studied two supervised compression techniques for SC: Chan-
nel Reduction + Bottleneck Quantization (CR+BQ) and Varia-
tional Autoencoder with Entropy Quantization. The evaluation
resorts to application-level FI campaigns to study Silent Data
Errors induced by embedded GPU devices while executing
the head part of a split DNN. The results indicate that
SC DNNs exhibit less resilience to hardware faults than a
non-compressed baseline model. The results of the evaluated
compression techniques indicate that the VAE architectures
show more resiliency to hardware faults than the CR+BQ
counterparts. Finally, we observed that the quantization algo-
rithms used by the compression models amplify the distortion
induced by hardware faults inducing SDE on the head layers,
causing such a high resilience degradation.

In future works, we plan to enhance the bottleneck quantiza-
tion function of the CR+BQ by adding saturation or intelligent
quantization interval detection in order to improve the fault
resilience of the overall system.

REFERENCES

[1] G. Abdelkader et al., “Connected vehicles: Technology review, state of
the art, challenges and opportunities,” Sensors, vol. 21, no. 22, 2021.

[2] A. E. Eshratifar et al., “Bottlenet: A deep learning architecture for
intelligent mobile cloud computing services,” in IEEE/ACM Int. Symp.
on Low Power Electronics and Design (ISLPED), 2019, pp. 1–6.

[3] Y. Matsubara et al., “Split computing and early exiting for deep learning
applications: Survey and research challenges,” ACM Comput. Surv., mar
2022.

[4] J. Karjee et al., “Split computing: Dnn inference partition with load
balancing in iot-edge platform for beyond 5g,” Measurement: Sensors,
vol. 23, p. 100409, 2022.

[5] S. Singh et al., “End-to-end learning of compressible features,” in IEEE
Int. Conf. on Image Processing (ICIP), 2020, pp. 3349–3353.

[6] Y. Matsubara and M. Levorato, “Neural compression and filtering for
edge-assisted real-time object detection in challenged networks,” in 25th
Int. Conf. on Pattern Recognition (ICPR), 2021, pp. 2272–2279.

[7] G. Tshagharyan et al., “Modeling and testing of aging faults in finfet
memories for automotive applications,” in IEEE Int. Test Conf. (TC),
2018.

[8] J. E. Rodriguez Condia et al., “A multi-level approach to evaluate the
impact of gpu permanent faults on cnn’s reliability,” in IEEE Int. Test
Conf. (TC), 2022.

[9] F. F. d. Santos et al., “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability,
vol. 68, no. 2, pp. 663–677, 2019.

[10] R. Possamai Bastos et al., “Assessment of tiny machine-learning com-
puting systems under neutron-induced radiation effects,” IEEE Trans.
Nucl. Sci., vol. 69, no. 7, pp. 1683–1690, 2022.

[11] A. Ruospo et al., “Investigating data representation for efficient and reli-
able convolutional neural networks,” Microprocessors and Microsystems,
vol. 86, p. 104318, 2021.

[12] M. Sadi and U. Guin, “Test and yield loss reduction of ai and deep
learning accelerators,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 41, no. 1, pp. 104–115, 2022.

[13] “Salvagednn: salvaging deep neural network accelerators with perma-
nent faults through saliency-driven fault-aware mapping,” Philosophical
Transactions of the Royal Society, vol. 378, no. 2164, p. 20190164,
2020.

[14] E. Ozen and A. Orailoglu, “Architecting decentralization and customiz-
ability in dnn accelerators for hardware defect adaptation,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 41, no. 11, pp. 3934–
3945, 2022.

[15] Y. Matsubara et al., “Sc2 benchmark: Supervised compression for split
computing,” 2023.

[16] A. Avizienis et al., “Basic concepts and taxonomy of dependable and
secure computing,” IEEE Trans. Dependable Secure Comput., vol. 1,
no. 1, pp. 11–33, 2004.

[17] A. D. Singh, “Silent error corruption: The new reliability and test
challenge,” in IEEE Latin American Test Symp. (LATS), 2023, pp. 1–2.

[18] A. Mahmoud et al., “Pytorchfi: A runtime perturbation tool for dnns,” in
50th Annu. IEEE/IFIP Int. Conf. on Dependable Systems and Networks
Workshops (DSN-W), 2020, pp. 25–31.

[19] M. Kooli et al., “Cache- and register-aware system reliability evaluation
based on data lifetime analysis,” in IEEE VLSI Test Symposium (VTS),
2016.

[20] G. Li et al., “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in Int. Conf. for High
Performance Computing, Networking, Storage and Analysis, 2017.

[21] J.-D. Guerrero-Balaguera et al., “Effective fault simulation of gpu’s
permanent faults for reliability estimation of cnns,” in IEEE Int. Symp.
on On-Line Testing and Robust System Design (IOLTS), 2022, pp. 1–6.

[22] J. Huang, C. D. Yu, and R. A. van de Geijn, “Implementing
strassen’s algorithm with cutlass on nvidia volta gpus,” arXiv preprint
arXiv:1808.07984, 2018.

[23] A. Ruospo et al., “Assessing convolutional neural networks reliability
through statistical fault injections,” in Design, Automation & Test in
Europe Conf. & Exh. (DATE), 2023.

[24] S. Hong et al., “Terminal brain damage: Exposing the graceless degrada-
tion in deep neural networks under hardware fault attacks,” in USENIX
Conference on Security Symposium (SEC’19), 2019, p. 497–514.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on May 31,2024 at 10:12:02 UTC from IEEE Xplore.  Restrictions apply. 


