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Abstract—Building on well-known system theoretical results,
simple numerical tools are introduced for the evaluation of the
worst-case voltage droops in Power Distribution Networks (PDN),
in various Power Integrity verification scenarios. Given a PDN
model and suitable bounds on load current values and slew
rates, the proposed approach provides an explicit bound of the
worst-case voltage droop, as well as the particular input current
waveforms that produce it. Validations are provided based on
two realistic PDN models.

I. INTRODUCTION

Power Integrity (PI) verification of any modern computing
system is a mandatory step for ensuring proper functioning
under practical workload conditions [1], [2]. Here we consider
a typical Power Distribution Network (PDN) structure that
connects a platform Voltage Regulator Module (VRM) to
each individual logic block in one or more microprocessors,
by means of a complex interconnect network routed through
board-package-chip, including suitable sets of decoupling ca-
pacitors [3]. No particular system topology is required, so
that the proposed approach is also applicable to heterogeneous
integrated systems [4], provided that the PDN behavior can be
represented as a Linear Time Invariant (LTI) system.

The methodology described in this document applies to
both concept (pre-layout) studies but especially to post-layout
verification, where all PDN parts are defined and a final
verification needs to be performed in order to verify that the
voltage levels at all prescribed locations are within allowed
bounds. Such verification is typically performed through costly
transient simulations that compute all voltage waveforms given
a set of loading current stimuli. Of course, such simulations
inevitably require accurate models for all PDN structures and
components. In this work, we propose a systematic approach
that produces a reduced amount of information, namely only
the largest voltage droop that a generic multiport PDN will
be able to produce under a variety of operating conditions
that are relevant in applications, together with the particular
loading current pattern that produces it. This work extends and
generalizes [5], [6], which demonstrated how to systematically
build the worst-case stimulus under finite rise-time constraints
for single-port PDNs.

No transient simulation is required, but only the application
of a number of well-known system theoretical bounds on
signal and operator norms. The viability of the approach is
enabled by the application of established rational macromod-
eling techniques. These techniques provide a closed form
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Fig. 1. Schematic illustration of a PDN (left) with definition of ports and
output impedance matrix (right).

approximation of the PDN impedance matrix in terms of a
Linear Time Invariant (LTI) system, also when the under-
lying structure can be hardly characterized in terms of a
physics-based lumped equivalent. Furthermore, in case active
or switching components enter the design (e.g. as integrated
voltage regulators, see [2]), the method can still be proficiently
applied for PI verification, as long as the linearized PDN
impedance provides a representative performance indicator.
Our results show that the availability of a surrogate with
LTI structure can provide meaningful information about the
reliability of the underlying design even without relying on
equivalent circuit-based transient simulations.

II. FORMULATION

Let us consider the high-level PDN block description de-
picted in Fig. 1, where the entire PDN structure is represented
in the (N + 1)-port H(s), and where the N output ports
correspond to loading points subjected to independent current
stimuli. In this work we assume that the nominal (DC) solution
is subtracted so that the DC voltage source is replaced by
a short circuit, and both current stimuli ij(t) and output
port voltages vj(t) represent (small-signal) variations around
the nominal operating point. Note that this scenario includes
also locally regulated PDNs by means of banks of Integrated
Voltage Regulators (IVRs), as far as a small-signal description
of the closed-loop (regulated) output impedance applies. In
the following, we collect all port currents and voltages in
vectors i(t), v(t), respectively. With the above assumptions,
the voltage signals are obtained as

v(t) =

∫ t

0

z(τ)i(t−τ)dτ = (z⋆i)(t), V (s) = Z(s)I(s)



in the time and Laplace domain, respectively, where z(t)
is the impulse response matrix corresponding to the output
impedance matrix Z(s). Note that since currents are defined as
entering the PDN, the corresponding voltages represent droops
with respect to the nominal output voltage. In the following,
we analyze various scenarios starting from the simplest case
of a single output port N = 1. This case serves to introduce
the main results and to set notation.

A. The unconstrained single-port case

Let us assume a single-port PDN with N = 1. The port
voltage v(t) and current i(t) are related by a scalar convolution
integral v(t) = (z ⋆ i)(t). We are interested in the worst-
case value Vmax = maxt≥0 v(t) that can be attained by the
voltage, given a constraint on the maximum amplitude of the
load current. Two types of constraints can be considered

|i(t)| ≤ Imax (1a)

0 ≤ i(t) ≤ Imax (1b)

where (1b) is more realistic for PI applications than (1a) given
that current stimuli are necessarily unidirectional.

Considering (1a), we see that

|v(t)| ≤
∫ t

0

|z(τ)| · |i(t− τ)|dτ ≤ Imax

∫ t

0

|z(τ)|dτ. (2)

By extending the integration limit to t → ∞ we obtain the
well-known bound [5], [7] for the worst-case voltage droop

Vmax,∞ = Imax

∫ ∞

0

|z(τ)| dτ = Imax||z||1 (3)

in terms of the L1 norm of the impulse response. On a
finite interval [0, t] the worst case is achieved by choosing
the excitation

iw,∞(t− τ) = Imax sign{z(τ)}, (4)

which is basically a sequence of ideal (positive and negative)
steps placed at the zeros of the time-reversed impulse response,
centered at time t, and scaled to an amplitude equal to the limit
current. This input makes the first inequality in (2) an equality
since the convolution integrand becomes nonnegative.

The constraint (1a) gives a similar result,

Vmax,+ = Imax

∫ ∞

0

|z(τ)|+ dτ (5)

where |x|+ is equal to x if x ≥ 0 and is 0 otherwise. Since
|x|+ = 1

2 (|x|+ x), we have

Vmax,+ =
Vmax,∞ + ImaxZdc

2

where Zdc = Z(0) =
∫∞
0

z(τ)dτ is the input impedance at
DC (f = 0). In this situation, the finite time worst case current
stimulus results

iw,+(t− τ) =
1

2
Imax (sign{z(τ)}+ 1), (6)

namely a shifted version of (4) attaining values Imax or 0.

B. Single-port with slew rate constraints on load currents

In practical systems, any load current step is not instanta-
neous but is characterized by a maximum slew rate, in fact
equivalent to a bound ∆max on the local derivative of i(t)∣∣∣∣di(t)dt

∣∣∣∣ ≤ ∆max, (7)

which for a step transition 0 ↔ Imax implies a finite rise time
τr ≥ Imax/∆max. This constraint is not compatible with the
worst-case stimuli (4) or (6), which are locally discontinuous.
A derived input signal that fulfils (7) can be readily obtained
as the convolution

ı̂w,ν(t) = (iw,ν ⋆ gτr )(t) (8)

with ν = {∞,+} and where gτr (t) is a unit-area square pulse
having width τr. The contribution of this smoothing filter can
be embedded in the system transfer function as

Ẑ(s) = Z(s)Gτr (s), Gτr (s) =
1− e−sτr

sτr
.

Applying the procedure of Sec. II-A to ẑ(t) = L−1{Ẑ(s)}
will result in a worst-case current excitation in form (4)-
(6), that when subjected to the smoothing operator (8) will
produce an excitation ı̂w,ν(t) with finite rise time for the PDN
impedance Z(s). This signal is only an approximation of the
true worst-case finite-derivative input discussed in [6], whose
construction is however more involved.

C. Multi-port case, identical stimuli

Extension to the multiport N > 1 case with the constraint
of identical and synchronous inputs is straightforward. This
scenario is typical in voltage droop verification at multiple
ports of a single microprocessor core, assuming a unique
switching pattern of all loads. In this case, the input current
vector can be expressed in terms of a single scalar excitation
as i(s) = 1 i(t), the vector of output voltages is readily
obtained as V (s) = Z(s) · 1I(s) = Zc(s)I(s) with Zc(s)
denoting the column sum of the impedance matrix. Application
of the procedure of Sec. II-A or II-B to each element of
zc(t) = L−1{Zc(s)} leads to the worst-case current excitation
and to an array of corresponding worst-case voltage droops,
from which the largest is trivially computed.

D. Multi-port case, quasi-synchronous switching

A more realistic situation occurs when the same switching
pattern is applied with port-dependent delays τj . In such
scenario one can write I(s) = T (s)I(s) where T (s) is a N×1
vector with components e−sτj . Also in this case we can embed
in the impedance elements all delays as ZT (s) = Z(s) ·T (s),
resulting in V (s) = ZT (s)I(s). All above derivations extend
to this case by processing zT (t) = L−1{ZT (s)}.



E. General multi-port case

In the general multi-port case with all input currents con-
sidered as independent stimuli, we have

vi(t) =

N∑
j=1

∫ t

0

zij(τ)ij(t− τ)dτ, 0 ≤ ij(t) ≤ Ij,max.

Similarly to (2), we can write

|vi(t)| ≤
N∑
j=1

∫ t

0

|zij(τ)| · |ij(t− τ)|dτ ≤
N∑
j=1

Ij,max||zij ||1

where the worst-case is obtained by processing each com-
ponent of the impulse response matrix as in Sec. II-A or
Sec. II-B. Note that in this situation the worst-case signal
and voltage droop may depend on the particular port i that
is observed.

F. Practical evaluation of the L1 norm

Evaluation of worst-case droops in all above-described
scenarios requires the computation of the L1 norm of some
impulse response h(t), whereas the determination of the
corresponding worst-case input signals involves finding all
zeros of h(t). In this work, we propose to perform the
above operations based on a closed form approximation of the
impulse response of interest, obtained via frequency domain
rational macromodeling. Specifically, we assume that a char-
acterization for the PDN impedance matrix Z(s) is available
in terms of frequency samples sk = jωk retrieved within a
finite bandwidth ωk ∈ Ω = [0, ωmax]. These samples are used
to drive the Vector Fitting iteration [8], which returns a closed
form rational approximation Z̃(s) of the PDN impedance
matrix and an associated state-space realization

Z̃(s) = C (sI−A)−1B ≈ Z(s),

together with the corresponding PDN impulse response

z̃(t) = L−1{Z̃(s)} = C eA t B ≈ z(t). (9)

The same modeling strategy can be applied to obtain approx-
imations of the functions Ẑ(s), Zc(s) and ZT (s) and of the
corresponding impulse responses, as defined in Sec. II-B–II-D.

Once a closed form approximation of a given h(t) is ob-
tained via macromodeling, the L1 norm can be estimated, e.g.,
using the algorithm introduced in [9]. Alternatively, numerical
integration routines can be directly applied to the impulse
response (9) to compute (3) or (5). The worst-case inputs (4)
or (6) are obtained from the zeros of the impulse response.

III. NUMERICAL VERIFICATION

The proposed approach is illustrated on two test cases.
The first is a template PDN structure with N = 9 output
ports, which includes only passive interconnect models loaded
with a suitable set of decoupling capacitors. Selected output
impedance responses are depicted with the corresponding
rational macromodel responses in Fig. 2. The three panels
of Fig. 3 depict the worst-case bound for the voltage droop
and the actual response to the worst-case stimulus, for three

Fig. 2. Template PDN: comparison between VF model and impedance data
samples.

different verification scenarios: identical stimuli at all ports
(Sec. II-C, panel (a)); real worst-case with independent worst-
case excitation at all ports (Sec. II-E, panel (b)); and inde-
pendent worst-case excitation at all ports with finite rise time
(5 ns) for all input transitions (realized as in Sec. II-B, panel
(c)). All three panels show that the actual response reaches
the worst-case bound in finite time. Note that the bounds
are in fact different for different scenarios, the largest value
corresponding to the unconstrained case (Vmax,+ = 274mV).
Adopting a finite rise time constraint has the effect of lowering
the worst-case droop (Vmax,+ = 209mV) due to the low-pass
filtering effect of the smoothing operator gτr .

The second example is a simplified PDN model of an
actual product, namely a high-end server platform whose
details are found in [2]. For present analysis we selected a
portion of the PDN corresponding to a single core with a
total of N = 10 loading ports. The PDN is locally regulated
through a bank of per-core multiphase Fully Integrated Voltage
Regulators (FIVRs) equipped with suitable output voltage
sensing circuitry and associated feedback compensators. The
PDN interconnect at board and package level are modeled
through full-wave solvers and cast as rational macromodels
through Vector Fitting. The PDN is completed by inductor
models and MIM capacitance models for the FIVR part, and
by the full set of decoupling capacitors.

For present analysis, we consider the closed-loop (regulated)
output impedance linearized around the nominal operating
point. One representative element of this impedance is de-
picted in Fig. 4 with the corresponding rational macromodel
response. Figure 5 depicts the worst-case bound Vmax,+ as-
suming a maximum current excitation of 1 A/port, with no
constraints on the input waveforms. One representative worst-
case current stimulus is depicted by the red line, which as
expected is given by a sequence of transitions between zero
and Imax occurring at the impulse response zeros. The blue
line depicts the actual voltage droop response at the same port,
which attains the worst-case bound in finite time, as expected.

In terms of runtime, the evaluation of the worst-case voltage
droops through numerical L1 norm estimation was achieved
for the two test cases in 7 and 30 seconds, respectively.



(a) constrained identical input stimuli, τr = 0

(b) independent stimuli, τr = 0

(c) independent stimuli, τr = 5 ns

Fig. 3. Template PDN: worst-case voltage droop bound Vmax,+ (dashed
black line) and a selected voltage droop port response (blue line). In all cases
the maximum current of all ports is set to 10 A.

IV. CONCLUSIONS

A simple methodology for estimating the worst-case voltage
droop in PDN models was proposed, which does not require
any transient simulation. The estimation is performed through
a numerical evaluation of the L1 norm of a suitably defined
set of impulse responses. The latter depend on the particular
scenario of interest for Power Integrity verification. The run-
time required for the estimation is negligible with respect to
any realistic transient analysis. As a byproduct, the proposed
method also produces a set of input current stimuli that, when
applied to the PDN, induce a voltage droop waveform that
reaches the worst-case bound in finite time. A verification was
demonstrated on two different PDN testcases.

Fig. 4. Server PDN model: comparison between sampled impedance and
fitted VF model.

Fig. 5. Server PDN: worst case input (red line, left axis labels) and
corresponding response (blue line, right axis labels) for a single-core example
with 10 load ports. The maximum current is set to 1 A/port.
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