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A B S T R A C T

The increasing penetration of Electric Vehicles (EVs) presents significant challenges in integrating EV chargers.
To address this, precise smart EV charging strategies are imperative to prevent a surge in peak power demand
and ensure seamless charger integration. In this article, a smart EV charging pool algorithm employing optimal
control is proposed. The main objective is to minimize the charge point operator’s cost while maximizing its
EV chargers’ flexibility. The algorithm adeptly manages the charger pilot signal standard and accommodates
the non-ideal behavior of EV batteries across various vehicle types. It ensures the fulfillment of vehicle owners’
preferences regarding the departure state of charge. Additionally, we develop a data-driven characterization
of EV workplace chargers, considering power levels and estimated battery capacities. A novel methodology
for computing the EV battery’s arrival state of charge is also introduced. The efficacy of the EV charging
algorithm is evaluated through multiple simulation campaigns, ranging from individual charger responses to
comprehensive charging pool analyses. Simulation results are compared with those of a typical minimum-time
strategy, revealing cost reductions and significant power savings based on the flexibility of EV chargers. This
novel algorithm emerges as a valuable tool for accurately managing the power demanded by an EV charging
station, offering flexible services to the electrical grid.
1. Introduction

In recent years, the proliferation of Electric Vehicles (EVs) on roads
signifies a rapid growth in EV penetration. To support this expansion,
22 million charging points need to be added annually [1]. Currently, a
substantial number of EV charging events occur in residential and work-
place locations, posing significant challenges to charging performance.
Consequently, there is a pressing need to develop smart algorithms
capable of effectively managing residential and workplace EV chargers.
These strategies must prevent an increase in peak demand and offer
flexibility to the electrical grid [2].

In the existing literature, numerous studies leverage published EV
data sources to validate charging strategies. However, these datasets
often suffer from limited information, necessitating assumptions for
parameter estimation [3]. Various efforts have been made to classify
and assess multiple EV databases, shedding light on EV owners’ behav-
iors and their favored connection points [4]. Studies have categorized
EV charging sessions based on both systematic and non-systematic
patterns of owners’ behavior [5]. The classification of connection points
encompasses domestic [6], public, shopping centers, workplaces [7],
and commercial for EV fleets [8]. While a preference for workplace
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charging is notable, particularly among EV owners residing far from
their workplace [9], it is noteworthy that a comprehensive catego-
rization of workplace charger behaviors is markedly absent in the
existing literature. In addition to location-based classification, charging
sessions are further categorized based on their duration [10]. These
datasets have been instrumental in various research endeavors. For
example, a data-driven framework aimed at assessing the quality of
experience for each EV charger is formulated in [11], utilizing metrics
to understand the utilization of charging infrastructure in the public
sector. Another data is employed to conduct a thorough assessment
of energy use patterns and charging load profiles for light-duty EV
fleets in Beijing [12]. Despite the evident importance and impact of EV
workplace chargers, it is striking that a specific categorization of this
sector, outlining the various charger behaviors, is noticeably lacking in
the current literature.

In the realm of EV charging strategies, scholars emphasize the
importance of implementing smart charging algorithms to mitigate the
impact on peak demand. These algorithms, classified as centralized,
decentralized, and hierarchical control architectures [13], contribute
to reducing operating costs for EV Charge Point Operators (CPOs) by
vailable online 15 March 2024
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optimizing consumption periods. The work presented in [14] showcases
the reduction of operational costs in microgrids through the optimiza-
tion of electric power dispatch for EVs. Minimizing the cost for EV
owners is achieved by forecasting the energy required for the next
trip [15], as explored in the relevant literature. In [16], the evaluation
of benefits and remuneration levels for EV users in the context of
smart charging strategies is discussed. Smart charging strategies for
EV car-sharing, grounded in real data, not only effectively manage EV
fleets but also integrate renewable sources and electrical loads [17].
Additionally, multi-objective strategies, exemplified by the work in [8],
aim to maximize revenues from providing energy services while mini-
mizing the cost associated with parking. The methodology presented
in [18] focuses on minimizing the total annual scheduling costs for
multiple vehicle types in public transport. Real-time simulators, as
evidenced by [19], are instrumental in testing Energy Management
Systems (EMS) in microgrids, thereby minimizing costs for both EV
owners and workplace chargers. Other sophisticated approaches, like
state–space methods for frequency regulation [20] or Model Predictive
Control (MPC) for reducing losses in the grid and enhancing the comfort
of EV users [21], have been explored. In [22], the evaluation of the
welfare maximization-based soft actor–critic model to mitigate trans-
former overload in distribution systems due to the high penetration of
EVs is presented. However, a common limitation among most existing
algorithms is the oversight of crucial implementation features, such as
actual EV Supply Equipment (EVSE) output levels and non-ideal EV
battery responses. This gap highlights the need for charging algorithms
that comprehensively consider these practical aspects for more effective
and accurate results.

A pivotal factor for EV smart algorithms lies in the flexibility
capacity that an EV charger can offer to the electrical grid. In [23],
EV charger flexibility is defined based on nominal EV battery charg-
ing profiles. This flexibility can be measured in terms of connection
duration and energy [24] or solely in time duration, representing the
difference between the time the EV is connected and the time it needs
for charging [25]. Workplace chargers’ dynamic flexibility is delineated
in [26], considering the actual upward and downward flexibility an
EV can provide to the system operator at any connection time. Recent
research delves into how plug-in behaviors influence flexibility capac-
ity [27]. Moreover, due to its flexibility, EVs can participate in ancillary
services [28]. In [29], a compensation mechanism enabling EV users
to receive compensation for flexibility services is presented. However,
none of these studies consider both the charging profiles of individual
EV batteries and the evaluation of flexibility across different categories
of workplace EVSE.

This article addresses critical gaps in the literature by aiming to
comprehensively cover: (i) a specific categorization of EV workplace
charger behavior; (ii) identification of non-ideal EV battery profiles;
(iii) a smart charging algorithm that considers actual implementation
features, such as EVSE output levels and non-ideal EV battery re-
sponse; (iv) evaluation of flexibility in different categories of workplace
chargers. Consequently, we propose an EV charging algorithm for an
EV CPO based on optimal control, incorporating a cost-minimization
and maximum flexibility strategy [23]. While some research evaluates
non-ideal EV battery behavior, considering factors like preprocessing
datasets and training regression models [30], or reviewing battery
thermal management systems [31], the integration of these findings
into smart charging strategies is often overlooked. Our enhanced al-
gorithm considers actual EVSE pilot signal standards and non-ideal EV
battery responses, estimated through a data-driven process. Operating
on Model Predictive Control (MPC), the algorithm manages multiple
vehicle types, accommodating diverse EV battery capacities and rated
powers. Inputs include arrival and departure times, arrival State-of-
Charge (SoC), and requested energy for each EV. We also develop a
data-driven categorization for workplace chargers based on historical
energy delivery data, contributing to the understanding of workplace
2

charger behavior. Additionally, EV arrival SoCs are not reported in
the charging sessions; in the literature, some approaches have been
followed to suggest the arrival of SoCs. In [32], the arrival SoC is set
to be 50% for all EVs; in [33], the arrival SoC is assumed to be sent by
an EV app to the charging station operator; while in [34] the arrival
SoC is taken between 40% and 55%. We propose a new data-driven
straightforward methodology for estimating EV arrival SoC distribu-
tions. The paper concludes with an analysis of workplace chargers’
flexibility, considering idle periods, power levels, and different arrival
SoCs, showcasing higher flexibility capacities with higher arrival SoCs.

In summary, the main contributions of this article are:

• Enhanced EV Smart Charging Algorithm: Introducing an optimized
algorithm for EV smart charging that accounts for non-ideal
EV battery responses, accommodates multiple vehicle types, and
adheres to the EVSE pilot signal standard.

• Non-ideal EV Battery Response Estimation: Employing data-driven
processes for the accurate estimation of non-ideal EV battery
responses.

• Workplace EV Charger Categorization: Utilizing a data-driven strat-
egy to categorize workplace EV chargers, providing a systematic
framework for understanding their diverse behaviors.

• Methodology for Arrival SoC Distributions: Proposing a novel method
ology for estimating the distributions of arrival State-of-Charge
(SoC) for workplace chargers, including the distributions of ar-
rival and departure times.

• Analysis of EV Charger Flexibility and Maximum Power Reduction:
Conducting a comprehensive analysis of the flexibility exhib-
ited by EV chargers, coupled with the computation of maximum
power reduction for identified workplace charger categories.

The subsequent sections detail the challenges faced by an EV CPO,
the non-ideal EV battery estimation, and workplace data-driven charac-
terization (Section 2). Section 3 thoroughly describes our enhanced EV
charging algorithm, and Section 4 presents and compares the results
with a standard strategy. Finally, Section 5 discusses the conclusions
and outlines avenues for future work.

2. Challenges and data-driven processes of an EV CPO

This section outlines the challenges encountered by an Electric
Vehicle (EV) charging algorithm operated by a workplace Charger
Point Operator (CPO). Subsequently, it delves into the identification
of actual EV battery charging profiles derived from real-world data.
The analysis covers various arrival and departure times, along with the
energies delivered. Leveraging this energy data, we formulate a strategy
to determine the State of Charge (SoC) of the EVs upon arrival. The
resulting EV battery profiles, connection times, energies, and arrival
SoCs collectively serve as inputs for the CPO charging algorithm.

2.1. CPO challenges

The challenge faced by the CPO lies in effectively overseeing the
entire charging pool, encompassing all Electric Vehicle Supply Equip-
ments (EVSEs), i.e., all its chargers. This involves defining distinct
charging profiles for each EV while accommodating EV owner pref-
erences, optimizing operational costs, and mitigating peak power de-
mands.

As illustrated in Fig. 1, the schematic diagram depicts the various
elements within the charging pool that are managed by the CPO,
including different types of EVs. These EVs may possess varying bat-
tery capacities and distinct input power specifications. Furthermore,
the actual charging profiles of EV batteries are non-ideal, exhibiting
variations over time based on the EVSE pilot signal and the power
accepted by the EV Battery Management System (BMS). Consequently,
the charging algorithm must be capable of effectively handling diverse
EV types equipped with non-ideal batteries and considering different

EV arrival SoC distributions.
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Fig. 1. General scheme for a workplace changing pool managed by a CPO. The EV charging algorithm operates the pool, taking into account charger scheduling, energy prices,
and the real-time responses of both vehicles and chargers (EVSE).
Furthermore, the majority of commercial EVSEs only support a
discrete set of pilot signals. For instance, one of the common standards
used in the United States is the SAE J1772 [35]. According to this
standard, when an EV is charging, the minimum pilot current is 6 A,
and the maximum is 80 A, with discrete control operating in steps of
1 A.

The EV CPO should have the capability to reduce its operating costs
and receive incentives for providing flexibility services or reducing
peak power. These profits are maximized by understanding the features
of EV users and their charging behaviors, leading to a more effective
schedule concerning energy prices.

2.2. Data-driven methodology

In this subsection, we propose the methodology employed by the
CPO to address its challenges. This involves identifying actual EV
charging profiles based on real-world data, calculating diverse arrival
and departure times, and delivered energies, as well as estimating the
arrival SoC of EVs. These inputs are crucial for feeding the optimal
charging algorithm.

The methodology considers six phases, as illustrated in Fig. 2. It
initiates with data preparation, focusing on clean data. Subsequently,
various charging profiles are identified, considering non-ideal battery
model parameters. Following this, a data-driven process is executed
to classify workplace chargers based on the identified charging types,
providing distributions of EV behaviors. The selected category or cat-
egories for evaluation are then computed and the arrival SoC dis-
tributions are estimated. Finally, utilizing these distributions and the
non-ideal battery parameters, the schedule for the chargers is formu-
lated to feed the optimal algorithm. The algorithm receives the scenario
information and is subsequently executed, with its solution compared
to a benchmark strategy. In the following subsections, each phase of
the methodology is outlined.

2.2.1. Data preparation
The EV charging dataset ACN-Data [36] is analyzed, specifically fo-

cusing on the Caltech site (California Institute of Technology, Pasadena,
CA, USA). This site encompasses 55 EVSEs and provides data spanning
from April 25, 2018, to September 14, 2021. The dataset reports vital
3

information such as user ID, obtained through a Mobile App; station ID,
corresponding to the EVSE ID; connection time; done charging time;
disconnection time; energy delivered; and energy requested, among
other details. the time series of the charging events are documented
with a non-constant sample time of approximately 4 s.

To delineate typical EV user charging profiles, a pre-processing
analysis is conducted. The data horizon considered excludes the period
of strict lockdown during the pandemic due to the negligible EV usage.
Therefore, data from February 1, 2020, to November 18, 2020 (the first
data reported after the pandemic) are not taken into account. In this
evaluated period, 15,249 charging events from 555 users are reported.

2.2.2. Non-ideal EV battery estimation
The EVSEs in the database adhere to the Society of Automotive

Engineers standard SAE J1772 for level 2 charging. Consequently,
by considering not only the current time-series but also the current
limits specified in the standard, the database is categorized into three
distinct types of charging profiles. Upon analyzing the current time-
series and recognizing three maximum currents reported (32 A, 16 A,
and 10 A), we delineate the database into three charging profile types,
distinguished by the maximum current consumption of the EVs (see
Fig. 3).

Fig. 4 provides an illustrative example profile for each type. The
gray areas depict the duration of the EV connection, while the blue
profiles showcase the actual EV current profiles.

The three identified charging types adhere to the EV battery charg-
ing profile depicted in Fig. 5, which encompasses three stages. Firstly,
a Pre-Charge (PC) current 𝐼𝑝𝑟𝑒 is applied after the EV’s connection and
lasts for 𝛥1. Subsequently, Maximum Current (MC) 𝐼𝑐ℎ𝑔 and Charging
Tail (CT) stages are executed, operating for durations 𝛥2 and 𝛥3,
respectively. At the end of the CT stage, the current arrives at 𝐼𝑒𝑛𝑑
before dropping to zero current. However, it is observed that not all
stages are present in all EV charging profiles in the actual data.

Table 1 presents the estimated EV battery charging parameters,
maximum energy, and power injected into the EVs for each type. The
typical current levels at each stage, i.e., the mean currents of 𝐼𝑝𝑟𝑒,
𝐼𝑐ℎ𝑔 , and 𝐼𝑒𝑛𝑑 , are computed. Most 𝐼𝑝𝑟𝑒 values are zero (not considered
for the values in the table), indicating that charging events typically
commence in the MC stage. Therefore, time 𝛥1 is zero for 𝐼𝑝𝑟𝑒 = 0.
Concerning 𝛥 in MC, the table reports a time range because this stage
2
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Fig. 2. General methodology followed by the EV CPO. The methodology is divided
into six phases, each presented in different box colors and explained in the following
subsections.

exhibits high variability depending on the arrival and departure SoCs of
the EVs. Regarding the time 𝛥3 in the CT stage, the table presents mean
values of tails between 5 and 20 min (representing the majority of the
data). However, as indicated in [37], the CT stage can have durations of
around one hour. Moreover, different amounts of maximum powers and
energies can be appreciated, from 2.5 kW to 6.9 kW, and from 10 kWh
to 76 kWh, respectively. The power is computed with the 208 V of the
EVSE reported by ACN [38]. Therefore, several EVs that charge at level
2 are identified and clustered into the three types.

2.2.3. Classification and EV chargers occupancy
In this phase, the three charging types undergo classification into

several categories, facilitating the subsequent computation of EV charger
occupancy for each category by assessing the arrival, departure, and
duration time distributions (see to Fig. 6).

For the categorization of each charging type, the number of users for
each type (refer to the Users quantity in Table 1) is weighted, resulting
in nine categories encompassing all charging types. This includes five
4

Fig. 3. Second phase of the methodology. Non-ideal EV battery estimation. Refer to
the yellow box in the methodology presented in Fig. 2.

Table 1
Actual EV battery charging parameters.

Feature Type 1 Type 2 Type 3

Users quantity [%] 67.1 30.6 2.3
Current 𝐼𝑝𝑟𝑒 [A] 7.7 8.3 8.6
Current 𝐼𝑐ℎ𝑔 [A] 31.7 16.4 10.6
Current 𝐼𝑒𝑛𝑑 [A] 4.0 4.1 3.2
Time 𝛥1 in PC 56’’ 49’’ 47’’
Time 𝛥2 in MC [1’ – 15h53’] [5’ – 9h26’] [20’ – 1h16’]
Time 𝛥3 in CT 11’ 10’ 0’
Max Energy [kWh] 75.5 36.5 9.7
Max Power [kW] 6.9 3.4 2.5

clusters for Type 1 (67.1% of users), three clusters for Type 2 (30.6% of
users), and one cluster for Type 3 (2.3% of users). These nine categories
are formulated by considering the maximum EV energy consumed by
the EVs in each type. Table 2 illustrates the categories with distinct
energy ranges for each type. Subsequently, the arrival and departure
time distributions of each category are evaluated.

In Fig. 7, Fig. 8, and Fig. 9, the Probability Distribution Func-
tion (PDF) for each EV category is depicted. Each subset of figures
corresponds to Type 1, Type 2, and Type 3. Notably, categories 2,
3, 4, 6, 7, 8, and 9 exhibit a distinct propensity for specific arrival
times in the morning and departure times in the afternoon. Specifically,
categories 2, 3, 4, 6, and 7 show EVs with a high probability of arriving
between 8:00 and 10:00, and departing between 16:00 and 18:00.
The occupancy duration periods for categories 2, 3, and 4 display two
main tendencies, with the first being less than 1 h and the second
around 7 h. Conversely, the occupancy duration for categories 6 and
7 is typically 1 and 8 h, respectively. Moreover, category 8 comprises
EVs that prefer to arrive between 7:00 and 8:00, depart between
20:00 and 21:00, and consider two occupancy periods, the first lasting
less than 1 h and the second around 12 h. In contrast, Category 9
involves EVs that favor arrival between 10:00 and 11:00, and departure
between 19:00 and 20:00, with an occupancy period of around 12 h.
Additionally, categories 1 and 5 encompass EVs with dual tendencies
for both arrival and departure hours. Specifically, EVs from Category 1
generally arrive between 9:00 and 10:00 or between 13:00 and 17:00,
and depart between 12:00 and 13:00 or between 16:00 and 17:00, with
an occupancy period of around 1 h. Meanwhile, EVs from Category 5
typically arrive between 9:00 and 10:00 or between 18:00 and 19:00,
depart between 18:00 and 19:00 or between 23:00 and 24:00, and have
an occupancy period of around 1 or 6 h.
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Table 2
Identified EVs per categories.

Type Category Quantity Energy Power Battery

Total [%] Type [%] [kWh] [kW] [kWh]

1 8.4 13.7 [0.7 – 8.9] 7.2 10.8
2 29.2 42.1 [9.3 –26.4] 6.6 30.0

1 3 16.6 24.1 [27.5 – 43.9] 7.4 50.0
4 10.8 16.7 [45.0 – 58.9] 7.4 66.0
5 2.1 3.4 [59.8 – 75.5] 7.4 86.4

6 23.2 76.5 [1.25 – 13.0] 3.7 14.9
2 7 6.4 20.6 [13.5 – 17.7] 3.7 20.0

8 1.0 2.9 [18.3 – 36.5] 3.6 40.0

3 9 2.3 100 [0.5 – 9.7] 2.8 10.8
Fig. 4. Examples of the identified EV batteries charging profiles per type. The gray
areas denote the period when the EV is connected, while the blue profiles depict the
actual EV current profiles with a maximum charging current of 32 A for Type 1, 16 A
for Type 2, and 10 A for Type 3.

The substantial variations in arrival and departure times, as well
as occupancy periods, significantly impact the effective power man-
agement of the chargers when operating in a coordinated strategy to
5

achieve reliability.
2.2.4. EV arrival SoCs estimation
In this phase, distributions of the arrival SoC are estimated for

each category based on the historical energy consumed by EVs. The
EV arrival SoC is a critical variable when determining the amount of
energy to inject into an EV. However, this variable is typically not
reported, and calculating it is a challenging part of the Battery Man-
agement System (BMS) [39]. To estimate the arrival SoC of the EVs, we
make assumptions about different EV battery capacities based on the
historical energy consumed by each EV. We assume that the reported
delivered energy is sufficient to achieve a fully charged battery, i.e., the
EV departure SoC is always 100% (this information cannot be obtained
from the database). Then, the arrival SoC of the EV𝑗 can be estimated
as:

𝑆𝑜𝐶𝑗,𝑎𝑗 = 𝐶𝑗 − 𝐸𝑗 , (1)

where 𝐸𝑗 is the delivered energy and 𝐶𝑗 is the capacity of EV𝑗 ’s battery.
The capacity is calculated in Eq. (2), considering the maximum reported
energy scaled by a factor 𝛾. We assume that the historical maximum
delivered energy from an EVSE to an EV corresponds to an arrival SoC
between 10% and 20%. Therefore, 𝛾 is a factor between 1.1 and 1.2 to
align with a typical commercial EV battery.

𝐶𝑗 = 𝛾 𝑚𝑎𝑥{𝐸𝑗} (2)

Table 2 provides the nominal power and battery capacities of com-
mercial EVs that align with the maximum power and energy of each
category (refer to Table 1). This encompasses EVs with battery capaci-
ties ranging from 10.8 kWh to 86.4 kWh. The column labeled ‘‘Energy’’
outlines the range of energy delivered to the EVs in each category. It is
noteworthy that the maximum energy falls between 80% and 90% of
the commercial battery capacity reported in the last column.

By considering the commercial capacities from Table 2 and the
energy data from the database, we can establish the distribution of the
arrival SoC in each category. Fig. 10, Fig. 11, and Fig. 12 illustrates
the arrival SoC distribution across the nine categories. Each subset of
figures corresponds to Type 1, Type 2, and Type 3.

In particular, the distributions can be divided by SoC probability
level as follows:

• Low SoC: Categories 1 and 7 exhibit a high probability of arriving
with a low SoC between 10% and 20%. These SoCs, for instance,
follow a Log-normal distribution.

• Middle SoC: EVs from categories 8 and 9 typically arrive with
around 30% and 50% of the battery capacity. These SoCs, for
example, follow a Weibull distribution.

• High SoC: In categories 3 and 4, the most probable arrival SoC is
between 70% and 80%. These SoCs, for instance, follow a Beta
distribution.

• General SoC: In categories 2, 5, and 6, a wide distribution is
observed between 10% and 100%, with a higher probability in
lower SoCs. Users in these categories lack a common pattern;
they charge at any battery SoC. These SoCs, for example, follow
a Chi-squared distribution.
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Fig. 5. Identified EV battery charging profile, considering three stages: PC, MC, and CT.
Fig. 6. Third phase of the methodology. Classification and EV Chargers Occupancy.
Refer to the gray box in the methodology presented in Fig. 2.

Therefore, these arrival SoC distributions will provide crucial in-
formation for implementing smart EV algorithms and evaluating the
flexibilities of different categories.

2.2.5. Chargers’ scheduler
This phase aims to schedule the EVs in the workplace charging pool

(see Fig. 13). Considering the comprehensive data from the preceding
phases, the total number of charging events is allocated to the spe-
cific types or categories chosen. Subsequently, the individual charging
events are randomly selected from the designated data, capturing the
arrival and departure times, generating the arrival SoCs, and computing
the battery capacities. Following this, the arrival and departure times
are discretized into steps based on the simulation sample time, denoted
as 𝛥𝑡. Finally, EVs are scheduled on the EV chargers, ensuring no
overlap and maintaining at least one time slot between successive EV
connection periods.

2.2.6. Algorithm execution and comparison
The final phase involves the execution of the algorithm, taking into
6

account the schedule of EV chargers and energy prices (see Fig. 14). The
optimal power profiles generated by the algorithm are then compared
with the power profiles of the benchmark strategy. Various charging
response metrics are subsequently computed, including the idle period.

The algorithm proposed is presented in the next section, along with
the details of the benchmark strategy.

3. Smart EV charging strategy

In this section, we introduce the algorithm executed in the sixth and
final phase of the methodology, as illustrated in Fig. 2. Smart charg-
ing (V1G) strategies outlined in the literature often neglect essential
implementation features, such as the actual outputs of EVSE or the non-
ideal battery responses. Furthermore, several standards for electrical
connectors in EVs lack information regarding the SoC at the time of EV
arrival. Neglecting these crucial features can lead to inaccuracies in co-
ordination strategies, potentially causing issues in the electrical grid. To
address these challenges, we propose a Model Predictive Control (MPC)
algorithm designed to coordinate EV charging. This algorithm takes
into account actual EVSE outputs, non-ideal battery responses, and the
proposed EV arrival SoC distributions from the previous section.

3.1. Strategy features for charging EVs

The proposed MPC algorithm is designed to address the integration
of EV chargers into the electrical grid, taking into account both the
preferences of EV owners and the actual flexibility of the system. Con-
cerning the actual EVSE output, the MPC algorithm considers the finite
set of pilot signals outlined in the SAE J1772 standard. Specifically, the
pilot signal can be either 0 A or a finite value ranging between 6 A and
32 A. The ACN-Data provides information on the EVSE pilot signal,
revealing that the EV BMS generally charges at a lower current rate
than the one set by the EVSE pilot. As a result, the algorithm restricts
the EVSE’s current to the actual delivered values reported in the data,
assuming that the EV BMS will conform to the current imposed by the
EVSE.

Furthermore, the algorithm models the EV battery as a non-ideal
battery, considering the identified charging profiles presented in Fig. 4.
It is crucial to note that the ideal battery response involves a constant
power input from the arrival time until reaching full charge, essentially
following only the Maximum Current (MC) stage (as depicted in Fig. 5).
Given the absence of information from both the SAE J1772 standard
and an EV app regarding the EV arrival SoC, the MPC algorithm utilizes
the distributions proposed in the previous section (refer to Fig. 10,

Fig. 11, and Fig. 12) as input for its operations.
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Fig. 7. Distributions of arrival, departure, and duration in the identified EV categories for Type 1.

Fig. 8. Distributions of arrival, departure, and duration in the identified EV categories for Type 2.
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Fig. 9. Distributions of arrival, departure, and duration in the identified EV category
for Type 3.

3.2. EVSE model with non-ideal EV battery

The algorithm employs the charger model 𝑥𝑖,𝑘 to predict the future
output EV charger powers, where 𝑖 represents the 𝑖th charger at the
time slot 𝑘, as shown in Eq. (3). This model takes into account the dy-
namics of the single EVSE as presented in [33]. The model encompasses
three possible conditions at step 𝑘 based on the arrival 𝑎 and departure
8

𝑗

𝑑𝑗 times of the 𝑗th EV, along with a binary variable 𝜉𝑖,𝑘 indicating
whether the 𝑖th charger has a plugged-in EV.

𝑥𝑖,𝑘+1=

⎧

⎪

⎨

⎪

⎩

𝑆𝑜𝐶𝑗,𝑎𝑗 if 𝑘 = 𝑎𝑗
𝑥𝑖,𝑘+𝛥𝑡𝑃𝑖,𝑘 if 𝑎𝑗 < 𝑘 < 𝑑𝑗
0 if 𝜉𝑖,𝑘=0 ∨ 𝑘=𝑑𝑗

(3)

The first condition of the model relates to the estimated arrival SoC,
denoted as 𝑆𝑜𝐶𝑗,𝑎𝑗 . The second condition pertains to the evolution of
the energy stored in the EV battery, assuming a duration 𝛥𝑡 for the time
slot 𝑘. The third condition is applied when there is no EV connected or
when an EV is departing.

Typically, existing literature assumes that the EVSE nominal power
represents the maximum power the EV battery can receive at any
given moment, assuming ideal EV batteries. However, in this study, we
propose an enhancement to the EVSE model that considers the non-
ideal EV battery response observed in the data-driven characterization
discussed in Section 2.2.2. As a result, we suggest limiting the EVSE
power 𝑃𝑖,𝑘 with a maximum power 𝑃𝑖,𝑘,max. It is important to note
that this power is not constant but varies over time, following the
battery charging profile illustrated in Fig. 5. In essence, the proposed
constraint in Eq. (4) assumes that the EVSE voltage 𝑉 remains constant
Fig. 10. Arrival SoC distributions in the identified EV categories for Type 1.
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Fig. 12. Arrival SoC distribution in the identified EV category for Type 3.

cross all EV battery charging stages.

𝑖,𝑘,max=

⎧

⎪

⎨

⎪

⎩

𝑉 𝐼𝑝𝑟𝑒 if 𝑘 ≤ 𝛥1
𝑉 𝐼𝑐ℎ𝑔 if 𝑘 > 𝛥1 ∧ 𝑥𝑖,𝑘 ≤ 𝑥𝐶𝑇
𝑉 𝐼𝑐ℎ𝑔−𝑚𝑥𝑖,𝑘 if 𝑥𝑖,𝑘 > 𝑥𝐶𝑇

(4)

Moreover, drawing insights from [40], which indicates that the
transition from the MC stage to the CT stage depends on the actual
EV battery SoC, our constraint accommodates this by considering that
the MC stage charges the batteries up to an SoC level 𝑥𝐶𝑇 , followed by

gradual current decrease with a slope 𝑚.
In any scenario, it is essential that the maximum power 𝑃𝑖,𝑘,max

emains within the bounds of the EVSE nominal output power 𝑃𝑖,nom,
xpressed as follows:

≤ 𝑃𝑖,𝑘,max ≤ 𝑃𝑖,nom. (5)

It is noteworthy that this enhancement to the non-ideal battery
odel applies to various EVSE dynamic models that assume ideal

atteries. This is because the model itself remains unchanged, and only
ts maximum dispatchable power is adjusted.

.3. Optimal control with minimum cost and maximum flexibility algorithm

This smart charging strategy proposes an enhancement to a charging
oordinator previously introduced in Ref. [23]. We chose to improve
9

his algorithm due to its potential benefits in flexibility capacity for the
ystem operator, scalability, and granularity of decisions—providing
ptimal charging power for each charger at every time slot. In this
tudy, we introduce an MPC algorithm that not only incorporates the
mproved EV battery model from the previous section but also accounts
or the actual EVSE response and the maximum reduction in power
emand. This reduction functions as an energy service and can be
ctivated or deactivated.

The Optimal Control with Minimum Cost and Maximum Flexibil-
ty (OCCF) algorithm is formulated as an optimal control aiming to
aximize charging flexibility while minimizing the operational cost of

he EV CPO. The cost function is presented in Eq. (6), wherein two
emuneration factors 𝜋𝑈 and 𝜋𝐿 are considered for upward (𝑈𝑖,𝑘) and
ownward (𝐿𝑖,𝑘) flexibilities.

𝑡
𝐻−1
∑

𝑘=0

(

𝑐𝑘
𝐼
∑

𝑖=1
𝑃𝑖,𝑘 − 𝜋𝑈

𝐼
∑

𝑖=1
𝑈𝑖,𝑘 − 𝜋𝐿

𝐼
∑

𝑖=1
𝐿𝑖,𝑘

)

(6)

Regarding the definition of the EVSE standard output, the power
output is dependent on allowed discrete current levels, given by:

𝑃𝑖,𝑘 = 𝑉 𝐼, 𝐼 ∈ {0, 6, 7,… , 32}. (7)

In this strategy, we ensure the minimum 𝑆𝑜𝐶𝑗, 𝑑𝑗 and maximum
𝑆𝑜𝐶𝑗, 𝑑𝑗 state of charge at the departure time 𝑑𝑗 as determined by the
EV owner:

𝑆𝑜𝐶𝑗,𝑑𝑗 ≤ 𝑥𝑖,𝑑𝑗 ≤ 𝑆𝑜𝐶𝑗,𝑑𝑗 (8)

The SoC capacity of the EV batteries is non-negative and relies on
the individual EV battery’s capacity. The nominal EV battery capacity
is considered as the maximum capacity 𝑥𝑖,max.

0 ≤ 𝑥𝑖,𝑘 ≤ 𝑥𝑖,max (9)

The EV charger power is constrained within the time slot 𝑘 by
the upward and downward flexibilities. Additionally, the power is
restricted by the maximum power defined by the algorithm.

𝐿𝑖,𝑘 ≤ 𝑃𝑖,𝑘 ≤ 𝜉𝑖,𝑘(𝑃𝑖,𝑘,max − 𝑈𝑖,𝑘) (10)

The flexibility bounds are defined as positive and not higher than
the EVSE maximum power, as presented in Eq. (11).

0 ≤ 𝑈 ≤ 𝑃 ∧ 0 ≤ 𝐿 ≤ 𝑃 (11)
𝑖,𝑘 𝑖,max 𝑖,𝑘 𝑖,max
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Fig. 13. Fifth phase of the methodology. Chargers’ scheduler. Refer to the purple box in the methodology presented in Fig. 2.
Fig. 14. Sixth phase of the methodology. Algorithm execution and comparison. Refer to the red box in the methodology presented in Fig. 2.
In addition, the constraint presented in Eq. (12) can be activated to
provide Energy Services (ES), i.e., for reducing the power demanded in
the EV charging pool.
𝐼
∑

𝑖=1
𝑃𝑖,𝑘 ≤ 𝑃𝑇 ,ES, ∀𝑘 (12)

Notice that Eq. (12) acts as a limit for the power demand of
the station at any time slot. Then, it can be activated for flexibility
evaluation or for limiting the power station. In addition, the rebound
effect can be avoided by limiting the power up to a period when the
EV demand is low.

To summarize, the OCCF formulation considers the following con-
straints: the EVSE model presented in Eq. (3), the maximum variable
power limit of Eq. (4), the EV charger output standard in Eq. (7),
the minimum departure SoC decided by the owner in Eq. (8), the EV
battery capacities in Eq. (9), the limits of the power in Eq. (10), and
10
the upward and downward flexibility limits per EVSE in Eq. (11). The
last constraint, i.e., Eq. (12), is activated only in case of providing an
energy service.

The algorithm is executed for every time slot up to the total op-
eration time 𝛽. At each slot, the algorithm runs for 𝑘 = 1, 2,… ,𝐻 ,
considering 𝑖 = 1, 2,… , 𝐼 chargers, and 𝑗 = 1, 2,… , 𝐽 EVs (𝐽 is not
always the same; it depends on the vehicles connected at every time
slot). 𝐻 is the MPC prediction horizon.

The complexity of the problem followed in the paper is greater than
in [23], in which the algorithm deals with a Linear Programming (LP)
problem. In fact, our improved algorithm follows a Mixed-Integer Non-
linear Programming (MINLP) problem that has as decision variables the
optimal profiles 𝑃𝑖,𝑘; the 𝑈𝑖,𝑘 and 𝐿𝑖,𝑘 flexibilities of the 𝑖th charger; and
the maximum power limit 𝑃𝑖,𝑘,max. Notice that 𝑃𝑖,𝑘 depends on a set
of discrete values of 𝐼 (see Eq. (7)), while 𝑃𝑖,𝑘,max depends on three
possible state (see Eq. (4)). Besides, the maximum power reduction
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𝑃𝑇 ,ES is calculated in an iterative optimization, maximizing its value
nd achieving a feasible solution.

The complexity of the problem can be summarized as follows:

• The size of the state and decisions variables, 𝑥𝑖,𝑘, 𝑃𝑖,𝑘, 𝑈𝑖,𝑘, 𝐿𝑖,𝑘,
and 𝑃𝑖,𝑘,max respectively, is 𝐼 ⋅𝐻 .

• The number of constraints in 𝑥𝑖,𝑘 is 3 ⋅ 𝐼 ⋅ 𝐻 , for each time slot;
⋅𝐼 ⋅𝐻 allocated for the lower and the upper bounds, and the other
for the charger dynamics.

• The number of constraints in 𝑃𝑖,𝑘 is 3 ⋅ 𝐼 ⋅ 𝐻 , for each time slot,
𝐼 ⋅𝐻 for the lower bounds, 𝐼 ⋅𝐻 for the upper bounds, and 𝐼 ⋅𝐻
for the integer power outputs.

• The number of constraints in 𝑃𝑖,𝑘,max is 3 ⋅𝐼 ⋅𝐻 , for each time slot,
𝐼 ⋅𝐻 for the lower bounds, 𝐼 ⋅𝐻 for the upper bounds, and 𝐼 ⋅𝐻
for the power that depends on the EV battery charging period.

• The number of constraints in 𝑈𝑖,𝑘 and 𝐿𝑖,𝑘 is 2 ⋅𝐼 ⋅𝐻 per each one,
for each time slot, half for the lower bounds, and a half for the
upper bounds.

• The number of constraints in the minimum SoC requirement
𝑆𝑜𝐶𝑗,𝑑𝑗 depends on the number of EV connected.

The problem’s complexity increases linearly with 𝐻 , indicating that
n expansion in the number of chargers would result in a proportional
ncrease in the number of constraints and decision variables.

Contrary to the approach in Ref. [23], the CVX package is inade-
uate for solving this problem because of the nonlinearities introduced
y the piecewise functions in Eq. (4). Consequently, alternative solvers
re essential, and in this study, the Gurobi solver is employed.

.4. Minimum time

In this strategy, power is treated as a continuous variable, defined
s:

This subsection presents an uncoordinated charging strategy that
ooks for charging the EVs in the charging pool with the maximum
llowed power 𝑃𝑖,𝑘,𝑚𝑎𝑥 until the EV reaches its full capacity 𝑆𝑜𝐶𝑖,𝑚𝑎𝑥 or
arlier if the EV is desired to be disconnected. In this strategy, power
s treated as a continuous variable, defined as:

𝑖,𝑘,max = 𝑉 𝐼𝑐ℎ𝑔 (13)

This guarantees the Minimum Time (MT) for the charging event,
here the delivered power abruptly transitions from maximum power

o zero when there is no EV connected or when the EV is fully charged.
otice that this strategy does not consider the time-varying energy
rice, nor the possibility of adjusting its energy consumption.

.5. Idle period for flexibility

The flexibility of EV power capacity is contingent on the idle time of
he EV. Consequently, this idle time is calculated as the time difference
etween the parking time and the charging completion time in the
ncoordinated (MT strategy). The idle period of the 𝑗th EV, expressed
s a percentage, is defined as:

𝑗,𝑖𝑑𝑙𝑒 =
𝑑𝑗,𝑑𝑜𝑛𝑒 − 𝑎𝑗
𝑑𝑗 − 𝑎𝑗

100, (14)

where 𝑑𝑗,𝑑𝑜𝑛𝑒 is the time when the EV is charged. Notice that 𝑑𝑗,𝑑𝑜𝑛𝑒 and
𝑗 are not necessarily at the same time.

. Simulation results

In this section, we introduce various case studies involving EV
hargers in workplace scenarios. We begin by outlining the imple-
entation details of the case studies. Subsequently, we conduct a

omprehensive analysis, ranging from single charger responses to an
verall assessment of the charging pool managed by the CPO. The
ssessment of the charging pool is accomplished through multiple
11

c

Fig. 15. Hourly electrical energy price sequence.

simulation campaigns, exploring the responses of different EV types
and categories. The simulations demonstrate the effectiveness of the
EV charging algorithm by presenting results related to maximum power
reduction and cost savings for workplace EV chargers.

4.1. Implementation of the case studies

The simulations adhere to the methodology outlined in the flow
diagram illustrated in Fig. 2. Charging events are specifically selected,
focusing on those with parking periods ranging from 30 min to 12 h,
collectively representing 95% of all charging events. The average daily
count of charging events is computed at 67, with individual EVSEs
accommodating between 1 and 3 charging events daily. Notably, a
single charger can host a maximum of 7 charging events in a day.

Within the charger scheduler, the total number of charging events is
categorized into the selected types or categories. Subsequently, specific
charging events are randomly chosen from this dataset, incorporating
arrival and departure times, generating arrival SoCs, and calculating
battery capacities. These times are then discretized into steps based
on the simulation sample time, denoted as 𝛥𝑡. Following this, EVs are
scheduled at the EV chargers. Finally, the proposed OCCF algorithm is
executed, taking into account the EV chargers’ schedule and the energy
prices. The power profiles generated by the OCCF algorithm are then
compared with those derived from the MT strategy.

The sequence of electrical energy prices is sourced from the Entso-e
Transparency Platform [41]. By analyzing one year of data, the mean
prices per hour are computed. This mean price, depicted in Fig. 15, is
uniformly applied across all case studies.

A crucial parameter to configure is the CT stage of the EV battery
charging profile (refer to Fig. 5). As previously assessed, the CT stage
commences after reaching a specific SoC level in the EV battery.
However, not all EVs have the same SoC level at this switching point.
For instance, Ref. [42] establishes that the SoC for switching to the CT
stage in a lithium-ion battery is close to 85%. Furthermore, in [43],
lithium-ion batteries are considered, indicating that the switching SoC
depends on the EV battery technology. Therefore, for the case studies,
switching SoC 𝑥𝐶𝑇 is defined as a random variable with a uniform
distribution between 85% and 100%.

4.2. Single EVSE evaluation

The initial simulation campaign is designed to showcase the effec-
tiveness of the strategy by evaluating the response of a single EVSE.
The simulation considers all types of data. To assess the enhanced
OCCF algorithm’s performance, the strategy’s results are compared not
only with the benchmark MT strategy but also with the OCCF strategy
introduced in [23], denoted as OCCF𝐼𝑑𝑒𝑎𝑙 in this study. The EV CPO
peration time is presented between 6:00 and 24:00 h.

The response of the single EVSE is depicted in Fig. 16. This EVSE

harges four EVs during the evaluated period. Specifically, Fig. 16(a)
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Fig. 16. Power demand and energy consumption for each strategy at a single charger.

illustrates the power profiles defined by each strategy. The MT strat-
egy’s response is represented in red, demonstrating how the strategy
charges the EVs with a constant maximum power from the arrival time
𝑎𝑗 to the full charge time 𝑑𝑗,𝑑𝑜𝑛𝑒. The original OCCF strategy, OCCF𝐼𝑑𝑒𝑎𝑙,
is presented in yellow, showcasing different levels of power. Due to
lower prices, the third and fourth EVs charge with maximum power
near the departure time. However, this presents an issue because these
EV batteries might not charge up to the desired departure SoC due to
the actual battery performance allowing lower power near 100% SoC.

Additionally, the figure presents the decision variables of the pro-
posed enhanced OCCF algorithm: the maximum power 𝑃𝑖,𝑘,max in purple
nd the output power 𝑃𝑖,𝑘 in blue. Concerning the maximum power, it
s evident how the identified EV battery charging profile is generated
ith the PC, MC, and CT stages. Furthermore, the EVSE output power

hows how this algorithm aims to inject power during low-energy price
eriods while charging the EVs with a medium power value, allowing
he provision of upward and downward flexibility if requested. Notably,
his proposed strategy considers the non-ideal battery response, result-
ng in lower power injection near 100% SoC. The jumps in power align
ith the discrete current values defined in Eq. (7).

On the other hand, Fig. 16(b) depicts the energy evolution in the
Vs (up to 100% charge). The figure intentionally omits to display the
ercentage of SoC to enable the reader to observe the diverse EV battery
apacities. Notably, the MT strategy reaches the departure SoC first. In
ontrast, both OCCF algorithms achieve the departure SoC nearly at the
eparture time, gaining an advantage to enhance the flexibility of the
VSE.

.3. Charging pool analysis

In this subsection, an evaluation of the power demanded by the
harging pool is performed. The simulation implementation considers
ll types of data, and the parameters employed in the simulation are
etailed in Table 3.
12
Table 3
EV charging pool simulation parameters.

Name Symbol Value Notes

EV charging pool sample time 𝛥𝑡 10 min –
Operation time of the station 𝛽 24 h 144 iterations
Prediction horizon 𝐻 12 h 72 iterations
Battery capacity in EV𝑗 𝐶𝑗 {10.8 − 86.4} –
Nominal EVSE output power 𝑃𝑖,nom 7.4 kW Level 2
Minimum SoC in EV𝑗 at departure 𝑆𝑜𝐶𝑗,𝑑𝑗 100% 𝑥𝑖,𝑑𝑗 = 𝐶𝑗

Remuneration price 𝜋𝑈 , 𝜋𝐿 𝑐𝑘 –
Number of EVSEs 𝐼 55 –
Number of EVs 𝐽 67 –

Fig. 17. Power demanded by the chargers considering all EV types.

The results are evaluated not only for both strategies, OCCF and
MT, but also for the OCCF with maximum power reduction, denoted as
OCCF max. In this case study, the maximum power reduction 𝑃𝑇 ,ES that
can be requested as an ES, is assumed as the maximum reduction from
the peak power of the uncoordinated strategy 𝑃𝑇 ,un,max in an operation
period. Note that this power limit is a parameter in Eq. (12), and these
simulations aim to demonstrate the potential for reducing peak power.
Then, the power is computed as:

𝑃𝑇 ,ES = 𝑃𝑇 ,un,max −
𝐼
∑

𝑖=1
𝑃𝑖,𝑘. (15)

Fig. 17 presents the results of the strategies. It is important to note
that the delivered energy is the same between the strategies but in
different time slots, enabling peak reduction for safe grid operation and
a reduction in the operation costs of the CPO that manages the charging
pool. Furthermore, the power reduction achieved by OCCF max is espe-
cially beneficial for distribution grids with connected commercial loads,
as described in [44]. These loads typically maintain high and constant
power demand between 8:00 and 19:00. Therefore, implementing this
strategy to control workplace chargers can effectively mitigate morning
peak power.

Table 4 presents the key results of this simulation in the column
named General, showcasing a significant peak reduction of 22.0%
achieved by implementing the OCCF strategy. However, the OCCF
max strategy demonstrates an even more substantial peak reduction,
reaching up to 51.2%—effectively cutting the peak demand in half
and mitigating risks to the electrical grid. It is noteworthy that this
effective power management relies on the judicious utilization of EVSE
flexibility, which is influenced by the idle time of EVs. The workplace
chargers exhibit an average idle period of 43%.

Moreover, the OCCF max strategy exhibits no rebound effect due
to its constrained limit, ensuring normal operation after providing the
service, facilitated by the occupancy distribution in workplace chargers
(see Fig. 7, Fig. 8, and Fig. 9).

Concerning operational costs, there is a marginal reduction of about
2.8% and 1.3%. However, it is important to note that we have not
considered the revenues generated from flexibility availability or the
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Fig. 18. Power demanded by the chargers per type.

ncome derived from providing energy services. Therefore, the OCCF
lgorithm not only avoids increasing operational costs but also enables
he station to participate in energy services, resulting in significant
ncome generation.

.4. Types evaluation

In this subsection, we assess the three identified EV types. Three
imulations are conducted: the first considering only EVs from Type 1,
he second only Type 2, and the third only Type 3. As in the previous
imulation, the implementation is carried out following the parameters
eported in Table 3.

The results are depicted in Fig. 18 and reported in Table 4. It can be
bserved that the delivered energy is higher in Type 1, while in Type 3,
t is lower. This is an expected result due to the power level delivered
o each type.

The average idle period for Type 1 is almost half of the time the
Vs are connected. Typically, EV users parking in workplace chargers
13
Fig. 19. Power demanded by the chargers per set of arrival SoC.

have similar occupancy periods; thus, in Type 1, the injected power is
higher than in the others, charging Type 1 EVs first in the MT strategy
and allowing a longer idle time. Notice that this type has the majority
of EV users, which helps increase flexibility and reduce the peak power
in the OCCF max strategy by 51.5% compared to the MT strategy.

The OCCF algorithm is effective in reducing the CPO operation cost,
which depends on energy price variations. However, the algorithm

attempts to inject power at every time slot to maximize its ability
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Table 4
Smart charging response performance.

Feature General Types Arrival SoC probability

1 2 3 Low Middle High General

Delivered Energy [kWh] 902.0 937.9 731.4 702.9 507.7 762.2 1,046.4 1,158.9
Average idle period [%] 43.6 48.7 31.9 33.9 35.5 38.4 42.8 37.5
Peak power in MT [kW] 136.6 138.0 95.5 102.5 79.0 117.5 213.9 131.4
Peak power in OCCF [kW] 106.5 117.1 75.3 92.1 70.7 101.1 128.5 136.7
Peak power in OCCF max [kW] 66.7 67.0 46.5 63.1 35.6 61.3 74.9 88.2
OCCF power reduction [%] 22.0 15.1 21.2 10.1 10.5 14.0 39.9 −4.0
OCCF max power reduction [%] 51.2 51.5 51.3 38.5 55.0 47.8 65.0 32.9
Cost in MT [e/kWh] 290.9 300.6 235.4 225.5 166.6 243.9 338.7 366.8
Cost in OCCF [e/kWh] 282.8 293.8 221.8 218.5 160.1 232.9 329.4 356.7
Cost in OCCF max [e/kWh] 287.2 299.7 225.2 221.9 160.0 236.7 332,4 363.3
Charging savings in OCCF [%] 2.8 2.3 5.8 3.1 3.9 4.5 2.8 2.8
Charging savings in OCCF max [%] 1.3 0.3 4.3 1.6 3.9 3.0 1.9 0.9
to provide energy services across most time slots. Consequently, the
station can charge EVs during periods of high energy prices, generating
income from energy services during these periods.

It is noteworthy that the peak power in Type 3 is higher than
in Type 2, which is unexpected given the injected power at each
type. However, this is due to the parking hours in Type 3 having less
variance, leading to a concentration of charging events around midday,
whereas Type 2 has more evenly distributed parking hours, resulting in
a more distributed energy consumption throughout the day.

4.5. Categories assessment

In this subsection, the study focuses on different EV categories.
Four simulations are conducted, considering the category sets outlined
in Section 2.2.4, which account for arrivals with low SoC, middle
SoC, high SoC, and general SoC. As in the previous simulation, the
parameters used are detailed in Table 3.

The results are presented in Fig. 19 and summarized in Table 4.
The low arrival SoC set, encompassing categories 1 and 7, comprises
EVs with small batteries that require minimal energy capacities, rep-
resenting a large SoC for these EVs. This suggests that some of these
users likely own hybrid plug-in EVs. Consequently, the energy delivered
in this set is small, irrespective of whether the EVs arrive with a low
SoC. In contrast, the high SoC set features EVs with large batteries that
demand high energy capacities, indicating lower initial SoCs. This may
imply that these users are more conservative, aiming to maintain a
higher battery SoC.

Concerning the idle period, the high SoC set exhibits the most ex-
tended idle period at 42.8%, resulting in a substantial power reduction
of 65% in the OCCF max strategy. This implies that EVs in this set
require minimal time for charging in the MT strategy, allowing the
OCCF algorithm to leverage high flexibility. Conversely, the low SoC
set shows the shortest idle period, as these EVs spend most of their
time charging their batteries.

The OCCF power reductions align with expectations: higher arrival
SoC corresponds to greater power reduction due to increased flexible
charging time. However, the OCCF max power reductions do not follow
the same pattern. In the middle SoC set, the peak power reduction is
lower than in the low SoC set, which is unexpected. This is attributed to
high EV penetration occurring for a brief period in the morning when
users in the low SoC set arrive at work. Consequently, the charger’s
output power can be shifted. In contrast, the middle SoC set experiences
more evenly distributed EV penetration over an extended period.

5. Conclusion

A sophisticated Electric Vehicle (EV) charging pool algorithm man-
aged by a workplace Charger Point Operator (CPO) has been proposed.
This algorithm adeptly handles the non-ideal responses of EV batteries
and adheres to the EV charger pilot signal standard. Developed through
14
a model predictive control framework, the algorithm seeks to minimize
EV CPO costs while maximizing the charger’s flexibility. The model
formulation is enhanced by constraining the maximum power of the
EV charger based on the identified EV battery response, leading to
improved and precise dispatch powers.

To better understand workplace chargers’ behavior, a categorization
strategy based on data-driven approaches is introduced. Nine categories
are established, considering user energy consumption and three identi-
fied power levels. A methodology for estimating EV battery arrival state
of charge distributions is defined. These categories are then grouped
based on the arrival state of charge, impacting the flexibility each group
offers to the system.

Several simulation campaigns validate the effectiveness of the EV
charging algorithm. Comparative analyses with a typical minimum
time strategy show notable reductions in peak power, with up to
51.2% reduction in a typical scenario and 65% in scenarios where EVs
arrive with a high state of charge. Importantly, these power reductions
exhibit no rebound effect. Cost reductions, ranging from 0.3% to 5.8%,
are observed in the evaluated scenarios. However, this article does
not consider remuneration payments for the flexibility services, which
would further increase the CPO’s income.

This innovative tool facilitates the integration of EV charging pools
into the electrical grid without compromising CPO operations and
ensures economic benefits. Future work will focus on assessing the re-
muneration calculation for the flexibility provided by the optimal algo-
rithm. Additionally, adjustments will be made to enable vehicle-to-grid
operations.
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