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Abstract

The objective of this work is the design of a technological platform for re-
mote monitoring of patients with Chronic Obstructive Pulmonary Disease
(COPD). The concept of the framework is a breakthrough in the state of
medical, scientific and technological art, aimed at engaging patients in the
treatment plan and supporting interaction with healthcare professionals. The
proposed platform is able to support a new paradigm for the management
of patients with COPD, by integrating clinical data and parameters mon-
itored in daily life using Artificial Intelligence algorithms. Therefore, the
doctor is provided with a dynamic picture of the disease and its impact on
lifestyle and vice versa, and can thus plan more personalized diagnostics,
therapeutics, and social interventions. This strategy allows for a more ef-
fective organization of access to outpatient care and therefore a reduction
of emergencies and hospitalizations because exacerbations of the disease can
be better prevented and monitored. Hence, it can result in improvements in
patients’ quality of life and lower costs for the healthcare system.
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1. Introduction1

In the healthcare context, Chronic Obstructive Pulmonary Disease (COPD)2

affects about 5-10% of the adult population, although prevalence as low as3

0.2% and as high as 37% has been reported, depending on country, popula-4

tion, COPD diagnosis and classification methods [1]. COPD is an important5

cause of mortality, comorbidity and social impact. The remote and contin-6

uous monitoring of treatments, as well as the collection of vital parameters7

(such as heart rate, blood oxygenation, sleep and patient movement), are8

necessary to allow for immediate and punctual medical and social interven-9

tions, to reduce short- and long-term clinical consequences of the disease,10

and, in general terms, to improve the quality of life of patients, families and11

population [2, 3].12

In this contribution, we introduce a novel concept for an innovative plat-13

form, called Pneulytics, to monitor and manage patients with COPD. Pneu-14

lytics can be adopted by healthcare systems, clinical centers and Pneumology15

departments and clinics. Platforms which includes patients’ devices to re-16

trieve data about patients’ routine are not widely adopted yet, but it is17

assumed that, by 2025, approximately 75.44 billion of IoT devices will be18

online [4].19

The platform is built upon collection and integration of IoT data and20

clinical data (available from inpatient and outpatient visits) and the analysis21

and aggregation of such data using artificial intelligence (AI) algorithms.22

This new concept of patient monitoring requires the inclusion of new23

services and technologies that will need to be developed and optimized for24

efficacy and usability. Such technologies will contribute to a more effective25

patient management and therefore will support healthcare providers in defin-26

ing strategies to offer care for chronic respiratory pathology. To this end, our27

platform not only involves a thorough patient monitoring via a set of gold-28

standard devices, but it also seeks to minimize the invasiveness of the data29

collection by including a more comfortable wearable device like a smartwatch.30

The remaining of the paper is structured as follows: Section 2 reports31

an overview of the current healthcare scenario in terms of technologies and32

investments, giving a clear context to the objectives of the work. Section 333

reports the current IoT devices and machine learning approaches adopted34

in the healthcare context. Section 4 describes in detail the different com-35

ponents of the proposed framework and considerations regarding security36

and privacy. Section 5 details the adopted explainable AI (XAI) algorithm,37
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i.e., the Logic Learning Machine (LLM), while Section 6 introduces a first38

experimental study involving the integration of several devices involved in39

Pneulytics platform and Section 7 discusses the effect of adversarial attacks40

against the proposed XAI solution. Then, Section 8 reports a preliminary41

study on smartwatch data. Finally, Section 9 concludes the paper and dis-42

cusses possible next steps on the topic.43

2. IoT in healthcare scenarios44

Healthcare is a fertile ground for innovation through digital technology,45

which has the potential to make the health system sustainable. For example,46

Italian spending on health, even if population aging and increased life ex-47

pectancy increase the need for care applications, is still decidedly lower than48

that of other countries [5].49

In recent years, digital healthcare has continued its positive development50

trend. However, the expenditure commitment is not sufficient to bridge the51

overall delay in the digitization of the sector yet. Federsanità, the Italian in-52

stitutional entity that organizes local health authorities and hospitals, points53

out that the primary care management systems (which also include the In-54

dividual Health Card) are present in almost all of the General Medicine and55

Pediatricians’ offices, but they are not integrated with hospital information56

systems, in which the spread of electronic medical records is still very lim-57

ited. In both areas there is also a considerable heterogeneity of the present58

IT solutions.59

In particular, the technological paradigms enabling proximity and terri-60

torial assistance logic are strictly related to the use of IoT and wearables61

that enable remote monitoring and remote assistance services, as reported62

in [6, 7, 8]. Globally, we are witnessing a rapid increase in the use of connected63

and wearable devices both to improve the care of patients within hospitals64

and to speed up recovery times at the patient’s home, through continuous65

remote monitoring of conditions and vital parameters or to delay the transi-66

tion from independent living to assisted living [9]. The digital transformation67

is enabled by some elements, including data security, big data, and AI. In68

particular, the data security issue is closely related to the usage, transmis-69

sion and sharing of health data. This topic is particularly felt in public and70

industrial sectors, because of recent recommendations introduced by the EU71

General Data Protection Regulation (GDPR) policies about personal data.72
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2.1. Digital transformation in Pneulytics73

All these crucial elements are incorporated in the Pneulytics framework74

by combining IoT and wearable technologies with innovative data processing75

and AI algorithms, to extract sensitive, dynamic information. AI can be76

used to generate predictive models of the patients’ health status. Instead,77

data collection from personal devices and sensors can be used to monitor78

the patients’ vital parameters, generate alerts, and keep a detailed record79

of patients’ history and state of health. The concept originates from the80

paradigm of the patient’s centrality within the healthcare processes and the81

need to adopt innovative technologies to facilitate daily monitoring of health82

conditions.83

The idea is to renovate the whole patients’ journey experience by inte-84

grating conventional clinical procedures with the innovation brought by new85

technologies, which means combine daily monitoring data with data from86

an optimized hospital or extra-hospital healthcare. Specifically, relevant87

monitoring data in respiratory pathologies include vital parameters, phys-88

ical activity and pharmacological compliance. Some clinical trials, although89

conducted on limited cases, have shown that tools for the administration of90

therapy integrated with ICT platforms are able to improve adherence to the91

treatment and reduce hospital admissions of patients suffering from COPD92

[10].93

Clearly, personalized home therapy, constant monitoring of COPD evolu-94

tion and prevention of possible exacerbations represent fundamental aspects95

in future clinical practice.96

2.2. Aim and Scope97

The main objective of the proposed framework is to create a hardware98

and software platform able to provide improvement of:99

• treatment and assistance related to respiratory pathologies, supporting100

the definition of follow-up plans and promoting personal care;101

• effectiveness of therapy as related to the administration of drugs through102

non-intrusive monitoring of the patient’s behavior and adherence to103

therapy;104

• clinical practice, making it possible to customize and optimize the stag-105

ing of diseases and the areas of intervention over time.106
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The innovation of this platform can ease the workflow in hospital and107

medical contexts, especially considering that the resources allocated to pub-108

lic health are decreasing concerning a rapidly increasing demand. In the long109

term, the proposed technological solution has the potential to generate sig-110

nificant developments in terms of: i) new business opportunities related to111

infrastructures for remote monitoring, technologies and devices for advanced112

biomedical sensors; ii) new generation communication technologies, AI solu-113

tions for data processing and clinical decision support; and iii) improvement114

of the quality of care, medical treatment of COPD, and patient outcomes.115

3. Survey of medical IoT platforms and machine learning approaches116

3.1. Internet of Things117

The state of the art of medical IoT platforms shows a variety of tools118

and interfaces, as briefly summarized below. For our aim, our focus is on119

open source approaches, highlighting progresses will lead to the proposed120

framework. Widespread use of open source health platforms and sensors121

has led to the development of simple, inexpensive and easy to use biometric122

devices, thus, these technologies impact not only from a medical point of123

view, but also in terms of business models for SMEs.124

For instance, Bitalino1 is a popular open source biomedical development125

platform that has a variety of biometric sensors. These sensors include an126

ElectroMyoGraphic sensor (EMG), a sensor for ElectroCardioGraphy (ECG),127

a LUX sensor (to monitor blood volume pulse data), an Electro-Dermal Ac-128

tivity (EDA), and an accelerometer sensor (for dynamic and biomechanical129

motion analysis). In addition, the platform offers an Atmega328 microcon-130

troller for processing sensor readings and a Bluetooth module for wireless131

communication. The LUX sensor can be used together with a light source to132

monitor blood pulse data, while the accelerometer can be used in dynamic133

and biomechanical motion analysis. The heterogeneity of Bitalino sensors is134

a good reference for Pneulytics, even if we intend to specialize our analysis135

on a specific pathology.136

Similar considerations apply to E-Health2, an open source sensor platform137

1More information are available at the following address: http://www.bitalino.com,
accessed on November 2023.

2More information are available at the following address: https://www.postscapes.
com/open-source-e-health-sensor-platform, accessed on November 2023.
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that offers a wide range of features for detecting biological signals for open138

source hardware platforms. E-Health is one of the few, perhaps the only, IoT139

health platforms compatible with both the Arduino and Raspberry Pi archi-140

tectures. E-Health focuses mainly on heart disease, creating many dedicated141

solutions e.g. ECG devices. Several open-source ECG sensors are available:142

they are not invasive and can be used comfortably at home. Their function-143

ing is based on different mechanisms, for example, on photoplethysmography,144

which is frequently used in wearable devices, including fitness trackers.145

Ticuro3 is a closed system for the user and acts as a collector of a vari-146

ety of commercial sensors/devices (to be purchased separately) as well as a147

tele-consultation platform. The ARM4 and Kaa5 architectures allow health-148

care system integrators to establish connectivity between heterogeneous IoT149

devices and implement intelligent features in the devices themselves and the150

related software systems. Regarding the IoT protocols related to network151

connection (e.g., with MQTT and CoAP protocols), these architectures are152

of interest to Pneulytics, but still inadequate in terms of artificial intelligence153

engine.154

An open architecture to developers and manufacturers of sensors and155

devices, as Mysignals6, is particularly suited for building Pneulytics because156

of its flexibility.157

3.2. Adopted IoT devices158

Our research focuses on examining the adoption of smart health solu-159

tions to monitor various personal and environmental variables, particularly160

those related to quality of life and wellbeing. One key aspect we explore161

is Indoor Environmental Quality (IEQ), collecting different measurements162

to assess the indoor environment quality. To achieve this goal, we set up163

an intelligent monitoring system capable of observing, capturing, and pro-164

cessing environmental and body measurements. The integration of Internet165

3More information are available at the following address: https://www.reply.com/

ticuro-reply, accessed on November 2023.
4More information are available at the following address: https://www.arm.com/

glossary/medical-iot, accessed on November 2023.
5More information are available at the following address: https://www.kaaproject.

org/healthcare, accessed on November 2023.
6More information are available at the following address: http://www.my-signals.

com, accessed on November 2023.
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of Things sensors facilitates the seamless retrieval and exchange of data,166

thanks to the interconnected relationship between the sensors and a shared167

data storage platform.168

Regarding the IoT sensors adopted for the platform, our emphasis has169

been on accessing the raw data captured by these sensors. Specifically, we170

have focused on two categories: wearable devices, which are connected and171

actively managed by the patients themselves, and environmental devices that172

are physically installed in the patients’ homes.173

Concerning wearable devices, the adoption of the H&S cloud platform en-174

ables us to access aggregated monitoring data and grant authorized access to175

end-users. Particularly, H&S offers services through its proprietary platform,176

HealthPlatform v3 - medical device CE IIA. Such platform is equipped with177

a data center certified ISO 27001 and ISO 13485. The data management178

activities adhere to GDPR regulations and comply with CE Medical Device179

5/2020 standards.180

Among the available devices, our choice includes (i) a dedicated smart-181

phone with the proprietary app (Mhealth, certified IIA class) running on it,182

(ii) an electrocardiogram (ECG) also providing day/night movement moni-183

toring, (iii) a pulse meter providing oximetry monitoring, (iv) a weight scale,184

and (v) a sphygmomanometer for blood pressure monitoring.185

In our tests, we also included surveys for the patients, such as the COPD186

assessment test.187

Instead, regarding environmental monitoring activities, for each environ-188

ment (home, office, etc.), we inbluded in our setup (i) a central node receiving189

data from the other nodes, (ii) a physical device combining multiple sensors,190

(iii) a set of modules demanded to provide connectivity to analog equipment191

like windows or radiators, and, optionally, (iv) an outdoor weather station.192

Particularly, while the central node is represented by a Raspberry Pi 4193

Model B, following sensors types and models have been considered:194

• temperature and humidity (Sparkfun, SI7021)195

• atmospheric pressure (AZ Delivery, BMP180)196

• air speed (Modern Device, Wind Sensor Rev. C)197

• CO measurement (Sparkfun, MQ7)198

• CO2 measurement (Sparkfun, CSS811)199
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• formaldehyde concentration (Seeedstudio, Grove HCHO)200

• concentration of fine dust (Honeywell, HPMA115S0-XXX)201

• redundancy (Bosch, BME680)202

• weather station (PCE Italia, PCE FWS 20)203

To conclude, regarding analog equipment monitoring, we adopted AZDe-204

livery, ESP8266 plus ESP-01 and DHT22 plus AM2302.205

With the sensors we’ve implemented, we can observe and process a vari-206

ety of metrics related to both the patients’ conditions and the surrounding207

environment. Moreover, through AI methodologies, the aggregation and pro-208

cessing of data not only allow for the integration of information from diverse209

components for a comprehensive analysis but also enable the identification210

of potential relationships among the data.211

3.3. Smartwatch-based explainable data analytics212

Nowadays, smartwatches are becoming very popular in smart health mon-213

itoring, being able to measure multiple indicators inherent to different do-214

mains, such as cardiovascular and respiratory health, physical activity sleep215

habits, all in scaled-down devices that can be comfortably wrist-worn by216

people, without being invasive nor requiring dedicated training [11]. Con-217

sequently, these wearables are an important data source for healthcare XAI218

applications, designing transparent models that can provide clinical decision-219

making support to users, either these are clinicians in making diagnosis,220

prognosis or planning therapies. The patients themselves may become more221

aware of their health status as well.222

3.4. Artificial Intelligence223

Noticeably, none of these platforms integrates AI solutions, whereas Pneu-224

lytics, by using AI on integrated patients’ clinical data (e.g., spirometry,225

blood analysis) and sensor data, is able to support personalized healthcare.226

The adoption of statistical methods in medical scenarios is widespread.227

In recent years, with the evolution of big data, the importance of AI in health228

scenario has increased. For example, [12] proposed to extract rules for pleural229

mesothelioma diagnosis. Malignant Pleural Mesothelioma (MPM) is a rare230

highly fatal tumor where the correct diagnosis of MPM is often hampered231
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by the presence of atypical clinical symptoms: these may cause misdiagno-232

sis with either other malignancies (especially adenocarcinomas) or benign233

inflammatory or infectious diseases (BD) causing pleurisies. Cytological Ex-234

amination (CE) may allow to identify malignant cells, but sometimes a very235

high false negative proportion may be encountered due to the high prevalence236

of non-neoplastic cells. Moreover, in most cases a positive result from CE ex-237

amination only does not allow to distinguish MPM from other malignancies238

[13]. Another interesting work is focused on the extraction of a simplified gene239

expression signature for neuroblastoma prognosis [14]. [15] instead proposed240

a convolutional neural network (CNN) algorithm in order to verify if deep241

learning could detect the COPD stage and predict Acute Respiratory Disease242

(ARD) events and mortality in smokers by using a training dataset composed243

by more or less 8000 patients. The results are interesting since the approach244

shows that CNN is able to identify and predict individuals with COPD. [16]245

implemented a decision tree forest classifier able to predict COPD based on246

symptoms by monitoring 16 patients for six months. Another approach is247

adopted in [17], where AI is used to analyze X-Ray dataset in order to recog-248

nize and locate the common disease patterns. In [18], authors implemented249

a recurrent neural networks (RNN) on 260K patients to predict diagnosis by250

performing a multilabel prediction. Artificial intelligence is also applied to251

predict the Parkinson, with interesting results [19].252

4. Pneulytics framework253

4.1. Context and approach254

COPD is a common, preventable and treatable disease characterized by255

persistent respiratory symptoms (dyspnea, cough, expectoration) and airway256

obstruction due to lung damage induced for example by cigarette smoking257

and environmental pollutants. The course of COPD is generally progressive258

and is characterized by recurrent exacerbations and by the presence of con-259

current conditions (e.g. cardiovascular pathology) that increase morbidity260

and mortality (estimated as the 3rd cause of death in 2020 by the WHO7).261

COPD patients typically get benefit from topically administered drugs to262

reduce exacerbations and to relieve symptoms, reducing exercise intolerance263

7More information is available at the following address: https://www.who.int/

healthinfo/global_burden_disease/projections/en/, accessed on November 2023.
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and increasing pulmonary function and life quality. There is still a clear264

discrepancy between patients’ outcomes in clinical research and outcomes in265

real life due to poor adherence to treatments and wrong use of drug inhalers266

[20]. The number of critical errors in the use of inhalers is associated with267

increased risk of COPD exacerbations and the combination of poor adherence268

and misuse of inhalers may increase the risk of death up to three times269

[20, 21].270

Technological improvements have recently led to the creation of new de-271

vices that allow remote monitoring [22, 23], patient engagement and remote272

interaction with the healthcare providers.273

Smart inhalers are capable to record and digitize key aspects of care, such274

as drug intake and inhaler mode of use (inspiratory peak flow, duration of275

the inspiratory phase, inhaler’s orientation). Thanks to these smart inhalers,276

doctors are able to acquire information on adherence to the treatment and277

on proper/improper use of the inhaler.278

Figure 1: The concept of the Pneulytics platform

Unfortunately, the use of these devices is not widespread and currently279

this type of intervention is highly managed by a direct doctor-patient (or ser-280

vice center-patient) relationship, thus missing the opportunity to implement281

continuous monitoring, multivariate/multimodal clinical evaluation, remote282

monitoring, remote consultation on large patient cohorts. Moreover, the ac-283

cessibility to the data recorded by the devices is perhaps one of the most284

important aspects regarding data integration.285
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The Pneulytics framework aims to contribute by addressing these issues286

and by increasing patients’ involvement in the treatment plan and support287

interaction (including remote interaction) with the healthcare providers. The288

prototype hardware architecture for the collection and management of data,289

obtained with different IoT devices, is based on the available types of sig-290

nals and communication protocols available, their size and, consequently, the291

processing capacity necessary for the correct application of the specific AI292

algorithms.293

The proposed technological platform is composed of different technologies294

and algorithms, as the conceptual scheme in Fig. 1 illustrates.295

Candidate patients will be equipped with wearable sensors that monitor296

relevant biomedical parameters both indoor and outdoor throughout their297

daily life. Additional sensors will be installed in the patients’ home envi-298

ronment to detect relevant environmental parameters, such as air quality,299

humidity, temperature and pressure, and a sleep quality monitoring system.300

In the outdoor environment, contextual information related to the level and301

type of patient’s activity will be collected by using consumer devices, such302

as smartphones or smartwatches.303

Using ad-hoc AI algorithms, the platform will monitor functional and304

physiological parameters, such as blood oxygenation, heart rate, physical305

activity, sleep and lung function, as well as adherence to therapy through306

smart inhalers. The data collected will be also exploited to develop predictive307

models that will be useful to define follow-up plans and interventions.308

4.2. Personal health records309

The system will integrate all the data from sensors and personal devices310

with the medical history and clinical data, as available from the hospital311

databases and will be able, in future developments, to interact directly with312

existing systems of Personal Health Records and with information extracted313

from biomedical images recorded in the hospital information systems and314

Picture Archiving and Communication System (PACS).315

Two aspects need to be addressed here: on one hand, a management316

and decision support system has to be designed, where all the internal and317

external heterogeneous data are organized and accessed. On the other hand,318

analysis techniques from computer vision and graphics (some of them based319

on AI approaches) may be applied in order to characterize and measure320

specific areas of biomedical images and 3D reconstructed models that are321

useful for the diagnosis, monitoring and follow-up of COPD. Annotation322
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methods may also be used to code such extracted information, index 2D323

and 3D resources in compliance with semantic web paradigms, and finally324

integrated into Pneulytics platform. A similar approach has been applied to325

musculoskeletal pathologies in [24, 25].326

4.3. Cyber-security and privacy considerations327

IoT devices provide the ability to automate and enhance people’s daily328

lives. Being a pervasive technology embedded in critical locations, the IoT329

phenomenon is often coupled with privacy issues: as such sensors often pro-330

cess sensitive information, security becomes a very critical topic. In particu-331

lar, if IoT sensors are adopted to monitor and control the health parameters332

of patients, data security becomes extremely critical due to potential expo-333

sure to privacy leaks. For the scope of the proposed work, patients’ health334

parameters are managed and manipulated through IT systems. For this335

reason, it is crucial to guarantee appropriate security and privacy, especially336

because of potential cyber-attacks able to steal, retrieve or infer clinical data.337

In order to guarantee user data privacy, different data anonymization338

techniques are available, also considering ethical aspects of sensitive data339

management. Indeed, in literature, several anonymization algorithms are340

found, while some of them exploit different techniques that make the data341

difficult to de-anonymize [26, 27, 28, 29]. Instead, in the context of data342

re-identification and de-anonymization, machine learning methods can be343

adopted. From one side, a well-known and “classic” (unsupervised) cluster-344

ing approach to data privacy is k-anonymity [30, 31, 32, 33]. In this case,345

the k-mean algorithm can be used for different applications: [34] adopts it to346

de-anonymize and extract geo-localization data from mobility traces, while347

[35] makes use of the k-mean to extract potentially sensitive information348

from social networks. Similarly, [36] adopts the k-mean to profile Facebook349

users, analyzing the interaction of their account, in terms of reactions, likes,350

or other social interactions. [37] makes instead use of the k-mean algorithm351

to preserve privacy when datasets are composed of different attributes, while352

[38] proposes a variant of the k-means algorithm to preserve the privacy of353

information by using as input encoded data. [39] also extends the k-means,354

by proposing M-Shuffle, a novel algorithm, based on k-means, to avoid infor-355

mation de-anonymization. By considering the same approach, a clustering356

approach based on k-means could be adopted to theorize a privacy breaking357

attack, aimed to reveal potentially sensitive information from anonymized358

data.359
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From another side, a different and more advanced (unsupervised) method360

could be inherited from the topic of the neural network, in order to conceptu-361

alize a novel attack against data privacy. Particularly, Restricted Boltzmann362

Machines (RBM) could potentially be used for data breaking purposes. Even363

in this case, RBM is nowadays adopted for different scopes: for instance, for364

simulations [40], to identify multivariate geochemical anomalies [41], or to365

categorize users [42]. In addition, they could be adopted similarly to its366

usage for user categorization: while known applications focus on the cate-367

gorizations of users, for instance for marketing purposes (e.g. if a user U1368

bought A, and previous users also bought B, hence, U1 may also be inter-369

ested to purchase B), it is potentially possible to adopt RBM to categorize370

users due to their belonging of categories including other (not-anonymized)371

users. This is accomplished in RBM by relating each user to the belonging372

of one or more hidden features.373

Instead, regarding security of Internet of Things systems, devices may374

communicate through standard networks, such as Wi-Fi or ethernet, or build375

a dedicated network to communicate with other sensors, called Wireless Sen-376

sor Network (WSN). In this regard, a real standard is not commonly adopted377

yet [43]. Currently, there are different protocols providing communication378

between sensors: some of them are based on pre-existing protocols (Wi-Fi,379

6LowPan, MQTT or LoRa), while others provide the creation of new ad-hoc380

infrastructures (ZigBee, Z-Wave). Although different IoT protocols may be381

adopted, IoT devices are often exposed to security attacks since the data382

exchanged in this context are sensitive. Being exchanged information ex-383

tremely sensitive due to the nature of devices and networks, the security384

about IoT devices and networks should be investigated in order to identify385

possible vulnerabilities and to protect the IoT context from them.386

In order to protect IoT devices and network, well-known [44] and inno-387

vative [45, 46] attacks against IoT ad-hoc communication protocol are in-388

vestigated to protect sensitive information from malicious purposes. Also,389

[47] considers hardware and software limitations of IoT systems, by creating390

a taxonomy of weaknesses. Instead, [48] analyzes the security of IoT net-391

works by identifying crucial aspects related to common vulnerabilities, while392

[49] focuses on the security challenges to be addressed in the IoT field, also393

proposing protection solutions. Similarly, [50] focuses on security issues on394

environments such as healthcare, smart home or vehicles management.395

In the context of this work, security and privacy aspects affecting IoT396

devices and networks need to be analyzed in detail to avoid possible loss of397
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sensitive information and to ensure a secure exchange of information between398

the devices and the platform developed.399

5. The adopted explainable AI approach400

The data collected from the mentioned set of sensors is analysed via401

the lens of explainable Artificial Intelligence (XAI). This term refers to a402

broad category of techniques aimed at providing intelligible interpretations403

to machine learning-based decisions [51], thus allowing anyone to enter their404

logic and increase trust in the knowledge inferred: one of the main XAI405

categorizations distinguishes between post-hoc XAI, where interpretations406

are provided to a previously trained black-box model, and transparent-by-407

design XAI, where the model making predictions is natively explainable. In408

this work, our focus is on the latter group, and in particular on rule-based409

models [52].410

The setting considered here is that of a supervised machine learning clas-411

sification task. The dataset is represented as the set X × Y = {(xi, yi)}Ni=1412

where xi ∈ X ⊆ R is the set of input measurements for sample i and413

yi ∈ Y = 0, . . . , K − 1 is a label associated to it. The objective is to learn414

the best function f : X −→ Y able to separate the input points according415

to their labels. In our study, the derivation of f is made through a specific416

rule-based model, called Logic Learning Machine (LLM) [53], which is the417

fast implementation of Switching Neural Networks.418

In the LLM algorithm, the classification function f is learnt through three419

steps, as described in [53]. In the first phase (discretization and latticization)420

each input is converted into a string of binary data in a proper Boolean lat-421

tice, using the inverse only-one code binarization. All the generated strings422

are then concatenated into a single large string per each sample. In the423

second phase (shadow clustering) a set of binary structures, namely the im-424

plicants, are individuated, allowing the identification of groups of samples425

associated to a specific class. During the third phase (rule generation), all426

implicants are converted back to the original feature space, forming a collec-427

tion of conditions, and eventually are combined into a set of if-then rules.428

The LLM classifier is thus described by a set of m intelligible rules rk, k =429

1, . . . ,m, of the type if (premise) then (consequence), where (premise) is the430

logical conjunction (AND, ∧) of dk conditions clk , with lk = 1k, . . . , dk,431

and (consequence) provides the class label ŷ associated to the rule.432

A condition clk of rule rk can have one of the following forms:433
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1. xπ(l) > λ434

2. xπ(l) ≤ µ435

3. λ < xπ(l) ≤ µ436

being λ, µ ∈ X and π : N −→ N denotes the permutation of the indexes437

of feature vector x that maps rule lk-th condition with the corresponding438

feature component.439

For each rule generated by the model, a confusion matrix can be com-440

puted, showing true and false positives, TP (rk) and FP (rk), defined as the441

number of examples (xi, yi) which satisfy all the conditions in rule rk with442

ŷ = yi and ŷ ̸= yi, respectively, and true and false negatives, TN(rk) and443

FN(rk), being the number of examples (xi, yi) which do not satisfy at least444

one condition in rule rk, with ŷ ̸= yi and ŷ = yi, respectively. Useful445

quantities can be derived from the confusion matrix, such as the covering446

C(rk) = TP (rk)
TP (rk)+FN(rk)

and the error E(rk) = FP (rk)
FP (rk)+TN(rk)

. The covering447

may also be adopted as a measures of relevance for a rule rk; as a matter of448

fact, the larger is the covering, the higher is the generality and the correctness449

of the corresponding rule.450

5.1. Feature and value ranking451

Some preliminary results, reported in [54], have shown that the LLM is452

more performing than most of the known learning techniques of the same453

kind. Moreover, the computational complexity of the method is kept low454

thanks to the adoption of proper greedy procedures. Therefore the LLM455

model may be adopted also in the analysis of large datasets (i.e. having456

many inputs and/or examples). Notice that the LLM approach presents457

further interesting features such as the possibility of dealing with categorical458

inputs and the determination of the relevance of each variable. This last459

property allows the identification and elimination of redundant attributes.460

Feature ranking (FR) deals with ranking the input variables based on their461

influence in determining the model’s prediction, as calculated by an impor-462

tance measure. The starting point is to compute a relevance value R(clk) for463

a single condition, by measuring the difference in the rule error by including464

and excluding that condition, i.e., it holds that R(clk) = (E(r′k)–E(rk))C(rk),465

where r′k denotes the rule without condition clk . As previously stated, each466

condition clk refers to a specific input variable xπ(l) and is satisfied by some467

values νxπ(l)
∈ X . The importance Rν(νxπ(l)

) of these values is given by:468
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Rν(νxπ(l)
) = 1−

∏
k

(1−R (clk)) (1)

where the product is over rules rk that include a condition clk verified469

when xπ(l) = νxπ(l)
. Taking values in [0, 1], it can be thought as the probability470

that value νxπ(l)
occurs to predict ŷ. A ranking in descending order of Rν for471

all possible intervals νxπ(·) is referred to as Value Ranking (VR).472

Also, by aggregating the relevances for all different intervals νxπ(·) of the473

variable of interest, an overall measure of its importance can be computed.474

Finally, the descending ordering of these importance metrics generates the475

feature ranking.476

5.2. Classification scoring477

In the inference phase, when applied to a generic input x, the LLM model478

computes a score for each output class. Let us recall that any condition clk of479

a rule defines a domain Dlk in the input space, corresponding to an interval480

for feature xπ(l). Let us consider the set of rules verified by x and predicting481

a label y, i.e., Ry
x={rk|xπ(l) ∈ Dlk for each lk and ŷ = y}. A score for y is482

then defined as:483

wy =

∑
rk∈Ry

x
C(rk)(1− E(rk))∑

rk∈Ry C(rk)(1− E(rk))
, (2)

where Ry is the set of all rules generated for class y. A label is thus assigned484

to x by solving the following problem:485

ŷ = argmax
y

wy (3)

6. Multi-Sensor Application486

6.1. Previous results487

In our previous work on the topic [6], we have shown the usage of the LLM488

as a prediction tool for following therapy in respiratory diseases. Patients489

with COPD are subjected to a monitoring period, using an inhalation tracker.490

The data obtained include the daily measurements taken by the inhalation491

tracker and patients’ characteristics. The CAT8 has been taken as a reference.492

8More information are available in the following address: https://www.mdcalc.com/

copd-assessment-test-cat, access on November 2023.
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It is a self-report questionnaire that assesses the impact of COPD on health493

status. The higher the CAT score, the higher the perceived impact of the494

disease. Observing the LLM rules, we provided inference about adherence to495

treatment over time in terms of CAT.496

6.2. Data Collection497

Here, we show results with respect to monitoring through the devices out-498

lined in subsection 3.2. Moreover, we show how adversarial machine learning499

may be used to provide fake indications that are still deemed plausible and500

suitable for further analysis by the clinical experts. Our first analysis regards501

the original dataset, without any adversarial machine learning corruption,502

and aims at providing the baseline rules generated by the LLM model.503

The following quantities were daily collected for two consecutive months,504

and structured in a database for further LLM training9.505

506

oxygen, body temperature, heart rate (from oximeter), heart rate507

master (from sphygmomanometer), weight, Body Mass Index, FEV1, PEF,508

MAP, diastolic blood pressure , systolic blood pressure509

510

In detail, oxygen is the blood oxygen saturation (i.e., the SpO2). Heart511

rate is measured via both the oximeter and the sphygmomanometer: the512

feature corresponding to the latter device is denoted by the suffix ’master’513

(i.e., heart rate master). The Forced Expiratory Volume in 1 second (FEV1)514

is the amount of air (in liters) that can be exhaled in the first second during515

forced exhalation after maximal inspiration. MAP, or mean arterial pressure,516

is defined as the average blood pressure in a patient’s arteries during one517

cardiac cycle. It is considered a better indicator of perfusion to vital organs518

than systolic blood pressure.519

Peak Expiratory Flow (PEF) is the maximum flow (or velocity) that can520

be achieved when performing a forced exhalation that is initiated after a full521

inspiration, measured in liters per minute or liters per second. This variable522

is used to set the target of the classification problem. Specifically, the dataset523

was labelled with ‘low’ for PEF ≤ 400L/min or ‘high’ for PEF > 400 L/min.524

The threshold of 400 was determined under suggestion of the clinical expert.525

9The Rulex platform has been used, http://www.rulex.ai
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The dataset here described is available at https://github.com/saranrt95/526

Medical_IoT_ML, along with smartwatch data presented later in Section 8.527

6.3. Statistical validation528

Table 1: Contingency frequencies matrix between the output variable (classification) and
a rule R

Contingency Matrix
Output

output output

Rule R y|R ¬y|R
not Rule R y|¬R ¬y|¬R

We use the Fisher’s Exact Test (FET) to test the statistical significance529

of rules obtained. The FET, indeed, is more accurate than other test of530

independence when the expected numbers are small, and it can be adopted531

to overcome the small sample size problem. The FET, in general, examines532

the significance of the association between two kinds of classification. In our533

case, we compare the distribution of a rule R, and its complementary ¬R,534

in the output classes y,¬y, obtaining a contingency matrix, as in Table 1535

above. Then, considering the independence between the distribution of the536

Output and the distribution of the rule R as null hypothesis, we compute the537

p-value. If the p-value is greater than 0.05, we accept the null hypothesis,538

otherwise, we prove the significance of rule R in detecting the output classes.539

6.4. Baseline540

The following rules are inferred by the LLM and validated by the FET541

test:542

543

if ((heart rate < 74) ∧ (diastolic pressure > 67)) then high (C=43%) (E=4.5%)544

if ((FEV 1 < 2.23)) then low (C=41%) (E=4.7%),545

546

where C and E denote their covering and error expressed in percentage.547

Both rules provide clear indications about the status of the breath (through548

the PEF classification): one may argue that the knowledge extracted from549

them is trivial, since it puts in relation a good or bad breath performance550
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with blood pressure and heart rate, which may be expected even by non ex-551

perts. However, we highlight the following elements about the role of XAI.552

First of all, its adoption reveals useful to determine which of the several553

devices the monitoring path should focus on, by analyzing which variables554

more frequently occur within the rules. Moreover, it is difficult even for an555

expert to find the exact thresholds describing the output classes, jointly with556

all the input variables involved. In this perspective, XAI acts as an artificial557

predictor, namely, the rules map the measurements into the output class at558

the end of the observation period. Once the rules are available, they may be559

used by the medical staff at any time as predictors of the quality treatment560

in the near future and may drive proper decisions, such as contact the patient561

at home when the measurements lie in the outlined ranges of bad treatment.562

7. Adversarial machine learning563

In this section, we introduce further analysis with respect to adversarial564

machine learning (AML). Although known to experts in the sector, in recent565

years it had an exponential growth due to the continuous development of new566

machine learning applications in various sectors. As for many other fields,567

in the healthcare sector it plays a key role, for this reason we decided to568

consider possible AML attacks within Pneulytics project framework.569

A very important aspect in the healthcare context is data security. An570

increasingly present thread in the security landscape is linked to attacks on571

the machine learning algorithm. Specifically, these attacks are called adver-572

sarial machine learning [55] where the aim of adversarial machine learning573

is to fool models by supplying deceptive input to cause a malfunction in a574

machine learning model. The problem is motivated by the fact that machine575

learning techniques were not originally designed to compete with adaptive576

and intelligent adversaries; therefore, in principle, the security of the entire577

system could be compromised by exploiting specific vulnerabilities of these578

algorithms, through a careful manipulation of the data that are supplied. A579

classic example of an adversarial machine learning attack is related to the580

context of image classification. The algorithm learns to classify images dur-581

ing the training phase based on the dataset used. An attacker could insert582

noise into the image to be classified (invisible to the human eye) to make the583

machine learning algorithm classify the image incorrectly. Several examples584

of image adversarial machine learning were studied and presented [56, 57, 58].585
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As previously described, in the healthcare sector, data is of primary im-586

portance as it can be used to predict a disease or manage remotely treatments587

and cures by using machine learning algorithms. An attack of this nature588

could lead to serious consequences as the manipulation by an attacker of the589

data could lead to an incorrect classification of the disease or to the admin-590

istration of a drug when necessary. In the extreme case, the identification of591

a fatal disease only in an advanced state when the medical treatments are592

no longer effective.593

For these reasons we decided to investigate the adversarial machine learn-594

ing in our project in order to verify if the machine learning system developed595

in Pneulytics is able to resist the variations of the dataset and to equally596

correctly classify the disease. In order to achieve this results, we imple-597

mented a simple adversarial machine learning algorithm on the dataset used598

in Section 6.2 and compared the results. The adversarial machine learning599

attack works by adding a Gaussian noise Z ∼ N (0, 0.8) to the original600

data. We selected this small range since the variation of the dataset must be601

invisible (or not simply identifiable) by the statistician analyzing the data.602

Subsequently, the data were processed again with the techniques used in Sec-603

tion 5, to verify how the algorithm behaves with the dataset affected by the604

adversarial attack. The following rules are obtained.605

606

if ((heart rate master ∈ [62, 75]) ∧ (diastolic pressure > 67)) then high (C=77%) (E=5%)607

if ((oxygen < 96) ∧ (heart rate ∈ [66, 93]) ∧ ((FEV 1 ∈ [1.11, 2.39]))) then low (C=43%) (E=4%)608

if ((systolic pressure ∈ [98, 103])) then low (C=38%) (E=4%)609

610

They are similar to the baseline in terms of features and reference inter-611

vals, in a such a way that the medical staff does not recognize the presence612

of an adversarial inside the machine learning engine. A subtle question nat-613

urally arises: how to set the adversarial setting in order to move the medical614

staff to a wrong diagnosis? This would lead to further investigation with615

clinicians. Moreover, how to prevent an attack like this? Is it possible to616

circumvent the behaviour of legitimate rules in order to understand the pres-617

ence of an adversarial attack? All of these issues are argument of our ongoing618

research.619
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8. Smartwatch example620

A Fitbit Versa 3 smartwatch was considered, which is equipped with many621

sensors, e.g., among others, GPS, red/infrared sensors for SpO2 registration,622

and movement sensors (3-axis accelerometer, gyroscope), which make it a623

very versatile instrument. Data are transmitted via Bluetooth Low Energy624

(BLE) technology to the dedicated smartphone app associated to the device625

and are stored into the Fitbit user account, remaining available for data626

query.627

8.1. Dataset collection and clinical problem definition628

From the Fitbit smartwatch, we collected one month of measurements629

from a subject who was following a pharmaceutical therapy for COPD.630

Specifically, these quantities were:631

1. Heart-related daily measurements:632

• Average heart rate HRmean and standard deviation HRstd.633

• amount of time spent in different heart-rate zones, which are634

defined as percentage ranges of the maximum heart rate esti-635

mated for the subject (maxHR hereon): below zone, i.e., < 50%636

maxHR; fat burn zone (50-69% maxHR); cardio zone (70-84%637

maxHR); peak zone (> 85%).638

• heart rate variability (HRV) during sleep: rmssd-HRV, NonREM-HR639

and entropy-HRV are values aiming at describing different aspects640

of the beat-to-beat intervals variations.641

2. Respiratory measures during sleep:642

• Blood oxygen saturation, average SpO2, and its lower and upper643

bounds.644

• Infrared to red ratio average IRtoRedMean and its standard devi-645

ation IRtoRedMeanStd, which reflect the estimated oxygen varia-646

tion via pulse oximetry principles [59].647

• Average respiratory rate.648

3. Daily minutes of activity performed at different levels of intensity:649

sedentary minutes, lightly active minutes, moderately active650

minutes, very active minutes.651
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These quantities were then used to build a comprehensive dataset for a652

period of 32 days of observation.653

The aim of our preliminary study was to assess which of the considered654

measurements exhibited the main variations when the involved patient was655

treated with 1 puff/day of the COPD drug or 2 puffs/day. To this end,656

we decided to disregard the activity-related measurements from the input657

variables, since they were related to the subject’s behavior and not to its658

physiological status. To make the dataset suitable for supervised machine659

learning-based analysis, we labelled the samples with labels resembling the660

therapy followed by the patient, i.e., assigning‘1’ for 1 puff/day or ‘2’ for661

2 puffs/day. Lastly, we selected a rule-based binary classifier to predict the662

dose of therapy, specifically a Logic Learning Machine model. Due to the663

limited size of the dataset, statistical validation of rules was carried out664

through Fisher Exact Test. In addition, several random shuffles of the data665

were performed and a separate LLM classifier was trained on them.666

8.2. Preliminary results667

As a first step in the analysis, features distributions were explored to as-668

sess the feasibility of adopting a rule-based model to discriminate the classes.669

As an example, we show the histograms related to the average SpO2 and670

meanHR quantities (Fig. 2).

Table 2: LLM rules obtained on 5 random shuffles of the Fitbit dataset, after their statistical validation
via FET test, along with their covering (C [%]) and error (r [%])

Shuffle Validated Rules C [%] E [%]

1
if averageSpO2 ≤ 93.25 then therapy = 1 77 0

if averageSpO2 > 92.80 ∧ 11.064 < HRstd ≤ 15.040 then therapy = 2 89 0

2
if HRmean > 71.252 ∧ IRtoRedMean ≤ 0.404 then therapy = 1 100 0

if 89.5 < LowerBoundSpO2 ≤ 94.7 ∧ HRmean ≤ 74.696 then therapy = 2 90 0

3
if rmssd-HRV ≤ 46.065 ∧ HRmean > 71.83 then therapy = 1 91 0

if averageSpO2 > 93.1 ∧ 11.249 ≤ HRstd ≤ 17.383 then therapy = 2 91 0

4
if HRmean > 71.570 ∧ IRtoRedMean ≤ 0.404 then therapy = 1 100 0

if HRmean ≤ 72.551 then therapy = 2 92 0

5
if averageSpO2 ≤ 93.25 then therapy = 1 100 0
if averageSpO2 > 93.25 then therapy = 2 91 0

671

The figures show that in both cases the two classes are pretty well distin-672

guishable: also, as expected, a higher dose of therapy improves the average673

SpO2 and lowers the heart rate. However, specific cut-off values on these674
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(a) Average SpO2

(b) Average Heart Rate

Figure 2: Class distributions for two exemplary features

measurements and further knowledge were discovered through the usage of675

XAI. The LLM model was then trained on 5 random shuffles of the dataset,676

and, after the FET statistical validation, 2 rules were generated for each677

shuffle, as reported in Table 2. The average model accuracy over the shuffles678

reached the 74%. The feature rankings reported below give an idea about679

the most important variable for decision making as well as how the ranking680

may be sensitive to data variations (shuffles). Future research include larger681
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time horizon of patient monitoring to achieve stable assessment of model682

suggestions.683

(a) Shuffle 1 (b) Shuffle 2

(c) Shuffle 3 (d) Shuffle 4

(e) Shuffle 5

Figure 3: LLM feature rankings for the 5 data shuffles

Despite the ranking sensitivity to data variations, as well as the 15 fea-684

tures gien in input to the LLM, the model generated short rules, with no more685

than 2 conditions each. This would improve their interpretability. Over-686
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all, a few factors emerged as the most influent in predicting the therapy,687

namely averageSpO2, HRmean and IRtoRedMean. Indeed, these attributes688

were present in the feature ranking for at least 3 out of 5 shuffles (Fig. 3).689

Overall, the XAI approach gives interesting insight into the problem, thus690

providing promising indications for future research.691

9. Conclusions and future work692

In this paper, we introduce Pneulytics, a novel framework designed to693

use innovative technologies such as the Internet of Things (IoT) and Artifi-694

cial Intelligence (AI), combined with security and privacy aspects, to collect695

and process heterogeneous data from environmental and wearable sensors to696

monitor patients’ health. We believe that the approach is feasible and can697

be used to monitor patients’ outcomes and adherence to treatment and to698

better understand the factors that influence individual outcomes.699

Preliminary tests in [6] and in this paper show that the combination of700

clinical data and IoT allows to monitor the therapy and to understand the701

factors that influence it.702

Future works may be focused on the operative development of the plat-703

form, while exploring new directions, spanning from extending the sensing704

scenario to the environment (e.g., how air quality may impact the treatment?)705

to the joint study of AI and privacy. The last relevant topic is General Data706

Protection Regulation (GDPR) EU regulation10 and involves brand new ap-707

proaches, as accurate statistical models of correlation may accidentally reveal708

more information about the patients than intended11.709
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[25] A. Agibetov, E. Jiménez-Ruiz, M. Ondrésik, A. Solimando, I. Banerjee,808

G. Guerrini, C. E. Catalano, J. M. Oliveira, G. Patanè, R. L. Reis, et al.,809
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