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Modeling Subject Scoring Behaviors in Subjective
Experiments Based on a Discrete Quality Scale

Lohic Fotio Tiotsop, Antonio Servetti, Marcus Barkowsky, and Enrico Masala

Abstract—Several approaches have been proposed to estimate
quality in subjective experiments while highlighting peculiar
subject behaviors. However, there is some room for improvement
in existing approaches, both in terms of robustness to noise
and the ability to accurately indicate several peculiar subject
behaviors in subjective experiments. This work advances the
state-of-the-art in three main directions: i) A new approach to
estimate the subjective quality from noisy ratings is proposed
and is shown to be more robust to noise than are four state-of-
the-art approaches; ii) a novel subject scoring model is proposed
that makes it possible to highlight several peculiar behaviors typ-
ically observed in subjective experiments; and iii) our proposed
probabilistic subject scoring model results from the proof of a
theorem, whereas in previous approaches a probabilistic scoring
model is assumed a priori. This represents an important first step
toward models supported by a stronger theoretical foundation.
Numerical experiments conducted on several datasets highlight
the effectiveness of our proposal.

Index Terms—Subjective quality recovery, Subject scoring
model, Discrete quality scale, Subject bias weights, Subject
inconsistency.

I. INTRODUCTION

Several quality scales and rating approaches for conducting
subjective media quality assessments have been proposed and
standardized [1]–[5]. In this work, we focus on modeling
subject scoring behaviors in a subjective experiment run on
a discrete quality scale. Discrete scales are widely used since
they allow for an easier interpretation of the rating task.

The raw individual opinion scores are typically affected
by noise caused by subject inconsistency and/or experimental
context influence factors (IFs). Thus, approaches to analyzing
raw individual ratings to identify subjects with peculiar be-
haviors and to mitigate the effects of noise sources have been
investigated [6]–[10].

In several related studies [7], [8], [11], [12], the authors
argue that the subject behavior can be reasonably captured by
two main characteristics, i.e., subject bias and subject incon-
sistency. Subject bias is defined as the systematic tendency of a
subject to assign lower (negative bias) or greater (positive bias)
quality scores than the actual quality scores. For instance, a
viewer with low visual acuity is likely to be positively biased
and vice versa. Subject inconsistency, instead, captures the
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ability of a subject to provide accurate ratings and to repeat
them if asked to rate the same stimulus several times.

In this work, we also rely on these two main characteristics,
i.e., subject bias and inconsistency, since from our point
of view, this approach possesses a feature that many other
existing approaches lack. In particular, it establishes a clear
and direct link between two well-defined aspects of subject
behavior and the way subjects rate the stimuli. In many other
approaches, instead, “peculiarity” indices are introduced that
are shown to be accurate in measuring how peculiar a given
subject is, but these indices cannot be directly associated with
any specific aspects of the subject behavior, making it difficult
to interpret the noise sources.

This paper contributes to advancing the state of the art in
three ways.

1) We propose an approach called regularized maximum
likelihood estimation (RMLE) of subjective quality from
noisy individual ratings.

2) A novel probabilistic model to explain the choices of a
subject in a subjective test run on a discrete quality scale
is proposed.

3) The proposed probabilistic model is not assumed a priori,
as in previous works. Rather, our model is derived from
the proof of a theorem. This yields an approach with a
stronger theoretical foundation.

This work significantly extends our previous one [13] in
which we introduced only the RMLE approach. Here, we
extend this previous work by better motivating the RMLE
approach and by proposing a novel subject scoring model.

In the proposed RMLE approach, we define and estimate the
quality of a given stimulus by considering the contribution of
each of the opinion scores that can be chosen on the discrete
quality scale. This allows us to model the subject behavior
by directly investigating how the subject interacts with each
opinion score on the quality scale. In fact, we defined the
total attractiveness of each opinion score on the quality scale
and proposed a probabilistic scoring model that provides an
analytical formulation of the choice probabilities of a given
subject.

We conducted several numerical experiments to validate the
effectiveness of our proposals. The RMLE approach showed
greater robustness to noise in individual opinion scores than
did the other four state-of-the-art approaches. We also showed
that the proposed subject scoring model allows automatic iden-
tification of peculiar subject behaviors not directly observable
from the output of other approaches. Finally, unlike previous
approaches in which subject behavior is modeled with a single
bias and inconsistency value for all stimuli regardless of their

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3382483

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

quality, our proposed discrete-choice probability model can
capture the lower inconsistency of the subject at the extremes
of the quality scale.

The paper is organized as follows. In Section II, we discuss
the related work. The RMLE approach is presented in Sec-
tion III, followed by Section IV, where we derive the proposed
subject scoring model. In Section V, the model parameters
are estimated and interpreted. In Section VI, numerical ex-
periments and results are presented; then, in Section VII,
conclusions are drawn, and future research directions are
discussed.

II. RELATED WORK

Several authors have studied the factors that cause noise
to affect raw individual ratings obtained from subjective ex-
periments. Some of these factors include the following: ex-
perimental context influence factors [14], subject fatigue [15],
and subject misunderstanding of the task that might yield, e.g.,
inverted ratings [16].

In an attempt to minimize the effect of noise sources on
raw opinion scores, several approaches have been investigated
to subjectively assess the quality of media content [17]. These
methods include i) single stimulus-based approaches, where
the subject views and rates the processed signal exclusively; ii)
pair comparisons, involving subjects comparing the quality of
stimulus A to that of stimulus B then indicating which one has
superior quality; and iii) double stimulus-based approaches,
which entail showing the source/reference content first then
the processed version and asking the subject to rate the quality
of the processed content relative to the reference content.

It has been empirically observed that pair comparison-
based subjective experiments are likely to yield more accurate
results than those of single stimulus-based experiments [18].
Unfortunately, obtaining a full matrix of comparisons is time
demanding, making it difficult to conduct pair comparison-
based experiments with as many stimuli as can be done
when adopting a single stimulus-based approach. Additionally,
while double stimulus-based methods yield quality scores
with tighter confidence intervals, they require twice the time
needed by single stimulus approaches. Thus, methods aiming
for higher accuracy in raw ratings impose constraints on the
maximum number of stimuli that can be rated.

Beyond the practical limitations imposed by the approaches
that are likely to guarantee greater accuracy of the opinion
scores, there are noise sources that are not under the control of
the researcher when running the subjective test. For example,
a subject rating for a specific video sequence may be signifi-
cantly influenced by their personal preferences for the content,
such as liking or disliking the scene being presented [19].
Therefore, several authors have proposed approaches to model
subject behavior in subjective tests to “clean” the raw opinion
scores from noise effects, regardless of the method used to
collect the scores [6]–[10], [20], [21].

The most basic approach for addressing noise when sub-
jectively measuring quality is to calculate the mean opinion
score (MOS) by averaging individual ratings. However, the
mean operator is highly sensitive to outlier ratings, i.e., those

from peculiar subjects. To address this MOS limitation, various
approaches, including the algorithms recommended by ITU-R
BT.500 [6] and ITU-T P.913 [22], have been proposed for
identifying and excluding peculiar subjects before calculating
the MOS.

However, the subject exclusion-based approach is perceived
by several authors [8], [9] as an approach that throws away
more data than should be discarded. In fact, it is very unlikely
that a subject wrongly evaluated all the stimuli they were
asked to rate. Therefore, by removing the subject from the
dataset, one can lose some reliable ratings. Recently, a few
researchers have proposed relying on advanced statistical
methods to measure how peculiar a subject is and to estimate
the subjective quality of the stimuli without excluding subjects
from the dataset.

In [10], the authors proposed a generalized linear model-
based approach to estimate the actual subjective quality of
the stimuli from noisy individual opinion scores. The authors
in [9] argued that, when rating media quality is considered,
any subject has a certain probability of providing an inaccurate
score. This probability is considered a measure of subject inac-
curacy. The subject rating is then assumed to be sampled from
a mixture of two discrete probability distributions. The first
model considers accurate ratings, while the second captures
unexpected/unreliable ratings. The authors then proposed an
approach to estimate the subject inaccuracy and to recover the
actual subjective quality. Although the probability value, which
is defined as a measure of subject inaccuracy, is shown to be
effective, it is not directly linked to particular characteristics of
the subject behavior. This lack of a direct relationship makes
it difficult to interpret the source of the noise observed in the
data.

Conversely, several authors have embraced methods that
enhance the interpretability of model results by establishing a
direct connection between model parameters and well-defined
subject characteristics. The authors in [7], [8], [11] assumed
that each raw rating of a subject derives from a normal random
variable. The mean of such a normal random variable depends
on the actual quality of the stimulus under evaluation and
on the subject bias, while the variance is determined by the
subject inconsistency and the complexity of the stimulus.

In this paper, we adopt a similar perspective as in [7],
[8], [11]; i.e., we assume that the subject behavior can be
reasonably modeled by bias and inconsistency concepts. In
these previous papers, subject bias is defined as a single real
number. A positive (negative) number indicates a systematic
tendency of the subject to choose high (low) opinion scores on
the quality scale. Unfortunately, this approach to defining bias
does not take into account the fact that a subject might also
have a systematic tendency to choose opinion scores that are
significantly far apart on the quality scale. Instead, we define
subject bias by a vector of weights. Each weight indicates
the subject tendency to prefer each opinion score over the
others. This enables our approach, as shown in Section VI,
to highlight behaviors due to positional bias, e.g., ternary
and bimodal annotators, that cannot be identified by previous
approaches. Moreover, our approach introduces a per-stimulus
measure of inconsistency, while in previous approaches only
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the overall inconsistency of a subject across a whole dataset
can be calculated. Our approach makes it possible to automat-
ically identify specific stimuli for which the ratings of a given
subject might be questionable. Finally, unlike previous authors
who used bias and inconsistency as the main parameters of
a probabilistic scoring model which they assumed a priori,
our proposed scoring model is mathematically derived, thus
yielding an approach with a stronger theoretical foundation.

We note that our proposed scoring model allows us to
estimate the probability that the perceptual quality of a
given content appeals to a subject with certain characteristics.
In this respect, our work resembles classical recommender
systems [23]. With the advent of deep learning, significant
progress has been made toward the design of effective recom-
mender systems [24]. However, the problem we are consider-
ing remains difficult to address with new deep learning-based
recommender systems given that the subjectively annotated
datasets in media quality assessments generally have a limited
size, which prevents the effective use of deep learning. Our
work does consider the question of data denoising, i.e., ground
truth quality recovery, which, from our point of view, goes
beyond the typical scope of a recommender system.

III. THE PROPOSED RMLE APPROACH

In this section, we describe our proposed RMLE approach
for estimating subjective quality from noisy individual ratings.
First, we introduce the notation used in this paper. Then, we
motivate our proposal. Finally, the steps for obtaining the
estimated subjective quality are summarized.

A. Notation and Motivation

In this paper, we assume that subjective quality is evaluated
by using a standard discrete quality scale with a finite number
of available opinion scores. For instance, in the case of the
five-point absolute category rating (ACR) scale, the subject
is offered the following five opinion scores: Bad, Poor, Fair,
Good and Excellent.

We introduce the following sets and quantities:
• I: the set of stimuli that have been rated;
• J : the set of subjects that rated the stimuli in I;
• K: the set of opinion scores available on the quality scale;
• F : the set of influencing factors that might affect the

ratings of a subject;
• rji : the rating of the subject j ∈ J for the stimulus i ∈ I;
• R: all the ratings collected during the subjective test;
• nik: the number of subjects in J for whom the opinion

score for stimulus i ∈ I is k ∈ K.
For the reader’s convenience, we summarize the above

notation and the definitions of the main parameters considered
by the scoring model proposed in this paper in Table I.

The MOS of any stimulus i ∈ I can be expressed as:

MOSi =
∑
j∈J

1

|J |
· rji =

∑
k∈K

nik

|J |
· k (1)

The first equality in Eq (1) indicates the main issue with the
MOS: when considering the MOS as the actual quality of a

stimulus, all individual ratings have the same importance, i.e.,
each one of them is weighted with 1

|J | . This is problematic
because it implies that potentially unreliable ratings have an
equal impact on determining the quality of the stimulus as
reliable ratings.

From the second equality, we can conclude that by weight-
ing each opinion score k ∈ K with the fraction nik

|J | , one
obtains a subjective quality estimator (the MOS) that attributes
the same importance to noisy and noiseless ratings.

Here, our main concern is to find a better way to weight the
different opinion scores offered by the quality scale to obtain a
more robust estimate of the quality. Specifically, our goal is to
introduce a weighting scheme that assigns less importance to
potentially noisy opinion scores while augmenting the weight
of reliable opinion scores, thus enhancing their contribution to
quality determination.

We therefore define the quality Qi of the stimulus i ∈ I as
follows:

Qi =
∑
k∈K

wik · k (2)

in which the weights wik, k ∈ K are different from the
fractions nik

|J | in Eq. (1) and are computed in the next section.

B. Mathematical Formulation of the RMLE Approach

Let us assimilate the weight wik to the unknown probability
of choosing the opinion score k ∈ K when rating the stimulus
i ∈ I, i.e., the probabilities of the choices that are estimated
from a noiseless dataset.

If the raw ratings in R were noiseless, then the probability
of obtaining the observed ratings, also known as the likelihood
function, would be expressed as:

L(w) =
∏
i∈I

∏
k∈K

wnik

ik (3)

where w denotes a vector containing all the values wik, ∀i ∈
I, k ∈ K. The logarithm of L(w), called the log-likelihood
function, would be expressed as:

LL(w) =
∑
i∈I

∑
k∈K

nik · log(wik). (4)

The weights wik would then be obtained by finding the vector
w that maximizes the log-likelihood function LL(w).

Unfortunately, real datasets include noisy ratings. Without
any additional input, the MLE framework would consider all
ratings in the dataset reliable; hence, the obtained weights
would not be robust to noise. In fact, maximizing the LL(w)
function would result in estimating each weight wik as equal to
the fraction nik

|J | , as in the noiseless case. However, we have
already noted that this weighting scheme is not particularly
robust to noisy ratings.

To incorporate the noisy nature of the dataset into the MLE
framework, we introduce a regularization term as an additional
input to the estimation process of the weights wik.

This term is designed to penalize what we refer to as
“surprising events” for a particular stimulus, meaning opinion
scores on the quality scale that seem to be chosen very

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2024.3382483

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

infrequently when rating that stimulus. We believe that noisy
ratings for a specific stimulus occur only sporadically, while
accurate ratings tend to cluster around a set of opinion scores
that are commonly selected.

To quantify how surprising the choice of opinion score k ∈
K is for stimulus i ∈ I, we introduce the quantity Cik, which
is defined as follows:

Cik = −log

(
nik

|J |

)
. (5)

We observe that quantifying the surprise of an event based
on the logarithm of its probability is a well-established ap-
proach in information theory [25]. The formula in Eq (5) is
therefore not considered a peculiarity of this work.

We propose the following regularization term:

R(w) =
∑
i∈I

∑
k∈K

Cik · wik (6)

to be subtracted from the log-likelihood function LL(w) to
obtain the optimization problem whose solution yields the
weights wik ∀i ∈ I k ∈ K that we are seeking. The weights
wik ∀i ∈ I k ∈ K are therefore obtained by solving the
following optimization problem:

max
w

[LL(w)− λ ·R(w)]

s.t.
∑
k∈K

wik = 1 ∀i ∈ I (7)

where λ is the regularization coefficient whose calibration is
discussed in Section VI.

Let us interpret the optimization problem in Eq (7) to clarify
how the proposed regularization term enables a noise-aware
estimation of the weights w.

From the definition in Eq (5), Cik assumes large values if
the opinion score k is not frequently selected, i. e., when nik

is close to 0, the logarithm outputs a large number.
By subtracting the regularization term R(w) from the log-

likelihood function LL(w), each value Cik is considered by
the optimization problem as a virtual cost to be paid by
the objective function, depending on the value attributed to
the weight wik of the opinion score k when estimating the
quality of the stimulus i. Therefore, to maximize the objective
function, for each stimulus i, opinion scores (those with
large values of Cik) which are not frequently chosen; hence,
potentially noisy scores, receive less weight (lower value of
wik) in the optimal solution so that the total virtual cost to be
paid, expressed by the regularization term, is minimized.

Our decision to regularize the likelihood function rather than
to utilize other established regularization techniques was pri-
marily driven by empirical findings. The maximum likelihood
estimation framework has demonstrated its effectiveness in the
development of subjective quality recovery methods [8], [9],
[11]. Our approach is to capitalize on this empirical evidence
to create a more robust quality recovery method. We needed
a new regularization term that aligns with the characteristics
of our problem with a similar order of magnitude as our
likelihood function to avoid unbalancing the objective function
of the optimization problem in Eq (7). As we could not find

TABLE I
SUMMARY OF THE NOTATION

Parameter Definition
I Set of stimuli
J Set of subjects
K Set of discrete opinion scores
F Set of all influence factors
rji Rating of the subject j for stimulus i

R Set of all ratings rji , i ∈ I, j ∈ J
nik Number of subjects in J that chose the opinion score

k ∈ K for stimulus i ∈ I
Qi Ground truth quality of the stimulus i
wik Weight of the opinion score k ∈ K in the determination

of the ground truth quality of stimulus i ∈ I
Uj
ik Total attractiveness of the opinion score k ∈ K for the

subject j ∈ J when rating stimulus i ∈ I
µj
k Bias weight of the subject j ∈ J towards the opinion

score k ∈ K
θjik Stochastic effect of all the influence factors in F that

might affect the choice of the opinion score k ∈ K by
the subject j ∈ J when rating the stimulus i ∈ I

βj Parameter modeling the effect of influence factors on the
inconsistency of subject j ∈ J

pjik Probability that the subject j ∈ J choose the opinion
k ∈ K when rating the stimulus i ∈ I

bj Overall bias of the subject j ∈ J
σj Overall inconsistency of the subject j ∈ J

any existing regularization term meeting these criteria, we
opted to design one from scratch.

While the RMLE approach is primarily designed for discrete
quality scales, it can also be adapted for analyzing data on
continuous scales. This may involve dividing the continuous
scale into intervals and using the RMLE to weigh the ratings
within each interval. However, evaluating this adaptation is
beyond the scope of this paper.

As already mentioned, the weight wik can be interpreted as
the ground truth probability that the opinion score k ∈ K is
chosen when rating the quality of the stimulus i ∈ I. Hence,
the ground truth standard deviation of the opinion scores on
the quality of the stimulus i ∈ I can be expressed as:

stdi =

√√√√√
∑

k∈K

k2wik −

(∑
k∈K

kwik

)2
 (8)

Therefore, the 95% confidence interval (CI) of the recovered
quality of the stimulus i ∈ I can be estimated as follows:

CIQi
= Qi ± 1.96 · stdi√

|J |
(9)

IV. A NOVEL SUBJECT SCORING MODEL

A. The Attractiveness of Opinion Score

In this paper, we consider that when assessing a stimulus,
each subject mentally evaluates the attractiveness of each
opinion score on the quality scale. This attractiveness is not
directly observable, as some of its aspects are inherently
subjective. However, we contend that this attractiveness is
influenced by i) the ground truth quality of the stimulus, ii) the
subject systematic preference for specific opinion scores over
others, and iii) the subject level of inconsistency. Therefore,
we introduce:
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• U j
ik, as the overall attractiveness attributed to the opinion

score k ∈ K by the subject j ∈ J when asked to rate the
stimulus i ∈ I.

To propose an analytical expression of attractiveness U j
ik, let

us first recall some well-known peculiar subject behaviors
observable in subjective tests run with a discrete quality scale.
The authors in [16] identified the following eight main types
of behaviors:

1) Positively biased annotators: subjects who tend to as-
sign high opinion scores;

2) Negatively biased annotators: subjects who tend to
assign low opinion scores;

3) Unary annotators: subjects who tend to assign the same
opinion score;

4) Binary annotators: subjects who tend to assign only the
lowest or the highest opinion score;

5) Ternary annotators: subjects who tend to assign the
lowest, middle and highest opinion scores;

6) Adversary annotators: subjects who assign inverted
ratings;

7) Spammer annotators: subjects whose data were ran-
domly assigned;

8) Competent annotators: subjects who are very accurate.

Clearly, these behaviors are not mutually exclusive, as
a subject may exhibit multiple behaviors during the same
experiment. Nevertheless, they provide a solid foundation for
designing subjective scoring models. Here, we present them to
better introduce and to motivate our proposed scoring model.
We describe them in more detail in Section VI.

When examining the first five behaviors in the list, a crucial
observation becomes evident: When modeling the subject
scoring behavior, it is essential to acknowledge that subjects
may have inherent tendencies to favor specific opinion scores
over others, regardless of the stimulus. For example, unary,
binary, and ternary annotators prefer only one, two, or three
opinion scores from those available on the quality scale.
Positively biased subjects lean toward higher opinion scores,
while negatively biased subjects tend to prefer lower scores.

To address the fact that a subject might systematically favor
certain opinion scores at the expense of others, we introduce
the following position bias weights:

• µj
k, i.e., the systematic tendency of subject j ∈ J to

choose opinion score k rather than another
that contributes to determining total attractiveness U j

ik.
With the exception of “Spammer annotators,” all other types

of annotators are supposed to make their choices on the quality
scale based on the ground truth subjective quality of the
stimuli they are assessing. Consequently, we consider that the
attractiveness U j

ik also depends on the following:
• wik, i.e., the quality weight, computed by the RMLE

approach, quantifies the importance of the opinion score
k in determining the quality of the stimulus i ∈ I.

Finally, to address subject inconsistency and to encompass
possible behaviors resembling ”spammer annotators”, we as-
sume that the attractiveness U j

ik also depends on a random
variable:

• θjik models the effect of all the influencing factors that
might affect the choice of opinion score k ∈ K by subject
j ∈ J when rating the stimulus i ∈ I.

Summarizing the previous observations in a formula, we
express the total attractiveness of the opinion score k for
subject j when rating stimulus i as follows:

U j
ik = wik + µj

k + θjik. (10)

Let us denote by θjikf the random variable representing the
relevance of the influence of the specific factor f ∈ F . In
practice, the number of IFs that might affect the choice of the
subject is truly large. Moreover, these factors are not expected
to have similar impacts on subject choice at all times. More
precisely, we believe that, in a given context, an IF might
be considered the most relevant. Hence, we assume that the
subject choice on the quality scale is mainly determined by
the IF with the greatest relevance.

Therefore, the stochastic term θjik of the attractiveness in
Eq (10) can be written as

θjik = max
f∈F

θjikf . (11)

The attractiveness of opinion score k for subject j when
evaluating stimulus i can be reformulated as follows:

U j
ik = wik + µj

k +max
f∈F

θjikf (12)

In practice, the complexity of IFs makes it difficult to
hypothesize a specific probability distribution that any of the
random variables θjikf , f ∈ F should follow. We therefore
assume that such a distribution is unknown. In the next
section, under a mild assumption about the shape of this
unknown probability distribution, we derive the probability of
a particular subject selecting a specific opinion score on the
quality scale when evaluating a given stimulus. This derivation
forms the basis for modeling the choices of each subject and,
in turn, our proposed subject scoring model.

B. Deriving the Proposed Subject Scoring Model

Since the number of IFs that might affect the choices of a
subject during a subjective test is truly large, it is reasonable
to assume that the cardinality |F| of the set F of IFs tends to
infinity.

Let us denote by pjik the probability that subject j ∈ J
chooses the opinion score k ∈ K when asked to rate the
stimulus i ∈ I. The expression of such a probability is the
subject scoring model we are looking for.

To derive the probability pjik and thus our proposed scoring
model, we make a mild assumption on the shape of the
unknown probability distribution of each random variable θjikf
to model the effect of the IF f ∈ F .

In particular, let us denote by F j
ik(x) the unknown cumula-

tive probability distribution of any random variable θjikf f ∈
F . We assume that two constants exist, α|F| and βj > 0, such
that ∀i ∈ I,∀j ∈ J ,∀k ∈ K:

lim
|F|→+∞

F j
ik

(
1

βj
x+ α|F|

)|F|

= exp
(
−e−x

)
∀x ∈ R.

(13)
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At first, the assumption presented in Eq. (13) may appear to
be restrictive. However, this is not the case, as it holds true for
numerous commonly used probability distributions, including
the Gaussian, logistic, log-normal, exponential, Laplace, and
Gumbel distributions, as shown in [26]. Therefore, by making
this assumption, we are not substantially limiting the applica-
bility of our proposed subject scoring model.

Let us note that the constant β is indexed by j ∈ J . This
finding is therefore subject specific. In particular, we later
show that this inconsistency is related to the subject. The
constant α|F| has no practical interpretation, as it is introduced
only to implement a simple normalization trick that is useful
for the proof of Theorem 1, yielding our proposed subject
scoring model.

Theorem 1. Under the assumption in Eq (13) and assuming
that the random variables θjikf f ∈ F are independent, as the
number of IFs tends to infinity, i.e., |F| → +∞, the probability
that subject j chooses the opinion score k when rating the
stimulus i is:

pjik =
eβj(wik+µj

k)∑
k∈K eβj(wik+µj

k)
, k ∈ K, j ∈ J , i ∈ I. (14)

Proof. The opinion score k of the quality scale can be chosen
by the subject j when rating the quality of the stimulus i if
and only if the subject identifies that opinion score as one of
those having the greatest attractiveness.

Therefore, for a given stimulus i ∈ I, by subtracting or
adding the same constant to the attractiveness U j

ik of each
opinion score, the choice probabilities pjik of the subject
j remain unchanged. Hence, without loss of generality, the
attractiveness of each opinion score k can be modified by
subtracting from it the constant α|F| introduced in Eq (13)
and can be written as a function of |F| as follows:

U j
ik(|F|) = wik + µj

k +max
f∈F

θjikf − α|F| (15)

The probability pjik can then be expressed as follows:

pjik = P
[
U j
ik(|F|) = max

k∈K
U j
ik(|F|)

]
(16)

Applying the total probability theorem [27], one can write:

pjik = P
[
U j
ik(|F|) = max

k∈K
U j
ik(|F|)

]

=

∫ +∞

−∞
P

 ⋂
h∈K,h̸=k

U j
ih(|F|) ≤ x


(
P
[
U j
ik(|F|) ≤ x

])′
dx (17)

Now, let us consider the probability

P
[⋂

h∈K,h ̸=k U
j
ih(|F|) ≤ x

]
, which holds:

lim
|F|→∞

P

 ⋂
h∈K,h ̸=k

U j
ih(|F|) ≤ x


= lim

|F|→∞
P

 ⋂
h∈K,h ̸=k

wik + µj
k +max

f∈F
θjikf − α|F| ≤ x


= lim

|F|→∞
P

 ⋂
h∈K,h ̸=k

max
f∈F

θjikf ≤ x− wik − µj
k + α|F|


= lim

|F|→∞

∏
h∈K,h̸=k

P
[
max
f∈F

θjikf ≤ x− wik − µj
k + α|F|

]
(18)

= lim
|F|→∞

∏
h∈K,h̸=k

F j
ih((x− qih − µj

h) + α|F|)
|F| (19)

=
∏

h∈K,h ̸=k

exp(−e−βj(x−qih−µj
h)) (20)

where for the equality in Eq (18) and (19), we exploited the
independence of the random variables θjikf . To obtain (20), we
exploit the assumption in Eq (13).

From Eq (18) and (19), it is not difficult to observe that
P
[
U j
ik(|F|) ≤ x

]
= F j

ik((x−wik−µj
k)+α|F|)

|F|. Therefore,
by using Eq (13), the following limit holds:

lim
|F|→+∞

P
[
U j
ik(|F|) ≤ x

]
= exp(−e−βj(x−wik−µj

k)). (21)

By inserting Eq (21) and Eq (20) in Eq (17) and by defining
Aj

i =
∑

k∈K eβj(wik+µj
k) as |F| → +∞, it follows that

pjik = P
[
U j
ik(|F|) = max

k∈K
U j
ik(|F|)

]
=

∫ +∞

−∞

∏
h∈K,h ̸=k

exp(−e−βj(x−qih−µj
h))(βje

−βj(x−wik−µj
k)

exp(−e−βj(x−wik−µj
k)))dx

=

∫ +∞

−∞
βj exp(−Aj

ie
−βjx)e−βj(x−wik−µj

k)dx

= eβj(wik+µj
k)

∫ +∞

−∞
βj exp(−Aj

ie
−βjx)e−βjxdx

=
eβj(wik+µj

k)

Aj
i

∫ +∞

−∞
βjA

j
ie

−βjx exp(−Aj
ie

−βjx)dx

=
eβj(wik+µj

k)

Aj
i

=
eβj(wik+µj

k)∑
k∈K eβj(wik+µj

k)
. (22)

This proves the Theorem.

Therefore, motivated by Eq (14), we argue in this paper that
the rating rji of the subject j for the stimulus i is a realization
of a discrete random variable that can assume |K| possible
values on the quality scale, i.e.,

rji = DRV

(
pjik =

eβj(wik+µj
k)∑

k∈K eβj(wik+µj
k)
, k ∈ K

)
(23)
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where DRV represents a discrete random variable.
Eq (23) represents our proposed subject scoring model. In

this model, the choice probability pjik considers the impact of
the ground truth quality of the stimulus through the weights
wik, the subject bias via the weights µj

k, and the subject
inconsistency through the parameter βj , which characterizes
the probability distributions of IFs.

V. ESTIMATING AND INTERPRETING THE PARAMETERS OF
THE MODEL

The scoring model presented in Eq (23) incorporates the
bias weights µ and the parameters β, both of which need
to be estimated for each subject. In this section, we outline
our methodology for parameter estimation, and we provide
insights into the appropriate interpretation. Additionally, we
introduce several indices used by our scoring model to objec-
tively identify peculiar behaviors from individual raw ratings.

A. Bias Weight Estimation

To estimate the bias weights µj
k for subject j ∈ J and each

opinion score k ∈ K, we represent the rating rji of subject
j ∈ J for stimulus i ∈ I with the array Rj

i containing |K|
values defined as follows:

Rj
i (k) =

{
1 if k = rji
0 otherwise

(24)

For instance, in an experiment using the five-point ACR scale,
the representation of the opinion score ”Bad” is the array [1
0 0 0 0], while ”Poor” is represented as [0 1 0 0 0], and so
forth.

We then compute the deviation weights of the rating of
subject j from the actual quality of stimulus i for opinion
score k as follows:

µj
ik = Rj

i (k)− wik. (25)

The bias weight µj
k is estimated as follows:

µj
k =

∑
i∈I µj

ik

|I|
. (26)

In brief, µj
k is estimated as the average deviation between the

importance that the subject j attributed to the opinion score
k (expressed by Rj

i (k)) and the actual importance wik of that
opinion as computed by the RMLE approach.

Let us note that the sum of the bias weights µj
k of a given

subject j over all the possible opinion scores is equal to 0:∑
k∈K

µj
k = 0 ∀j ∈ J (27)

since, by definition,
∑

k∈K Rj
i (k) = 1 and

∑
k∈K wik = 1.

Hence, Eq (27) implies that for each subject and each stim-
ulus, certain bias weights are positive, signifying a preference
for the associated opinion scores, while others are negative, in-
dicating a tendency to avoid selecting those particular opinion
scores.

We define the overall bias of the subject j ∈ J as follows:

bj =
∑
k∈K

k · µj
k. (28)

We argue that, by using the values of the bias weights µj
k and

the overall bias bj derived from the raw individual ratings, it is
possible to identify the behavioral characteristics of annotators,
such as unary, binary, ternary, positively biased, and negatively
biased ones. This is shown in more detail in Section VI.

Although the proposed model does not involve parameters
that directly and explicitly capture the behavior of adversary
annotators, by exploiting the bias weights in Eq. (25), we
formulate an index that can also identify annotators with
adversarial behavior.

More precisely, our idea is to first invert the ratings of all
subjects on the quality scale, i.e., to transform all subjects into
adversary annotators. By doing so, a subject that was originally
an adversary annotator becomes a very accurate subject; hence,
his or her ratings deviate less from the actual quality than those
of all the other subjects who are now adversary annotators.
In other words, the deviation weights µj

ik from the actual
quality weights for that observer become small in absolute
value, while those of the other subjects assume larger values
in general.

Exploiting the observations made in the previous paragraph,
we define the index Ijadv , which establishes whether subject j
should be considered an adversary annotator as follows:

Ijadv =

(
1

|I||K|
∑
i∈I

∑
k∈K

|µ̄j
ik|

)−1

(29)

where µ̄j
ik represents the deviation weights computed as in

Eq (25) after inverting the ratings of all the subjects in the
dataset.

By taking the inverse of the average deviation from the
actual quality, we expect that the index Ijadv assumes large
values for adversary annotators and a lower value for all the
other subjects. This is verified in Section VI.

B. Parameter β and Subject Inconsistency

In this section, we discuss the link between subject inconsis-
tency and parameter β. Subsequently, we derive an analytical
expression for subject inconsistency within the framework of
our proposed subject scoring model. Finally, we detail our
methodology for estimating the parameter β for each subject.

Considering the scoring model in Eq (14), for a given
subject j ∈ J , the following holds:

lim
βj→0

pkik = lim
βj→0

eβj(wik+µj
k)∑

k∈K eβj(wik+µj
k)

=
1

|K|
. (30)

Hence, if the parameter βj of the subject j is close to 0,
this indicates that the subjects vote by choosing at random one
opinion score among the |K| scores available on the quality
scale. In other words, subjects whose β parameters assume low
values are likely to be inconsistent. However, if βj assumes a
large value and the subject is not particularly biased toward a
specific set of opinion scores, i.e., the bias weights µj

k are very
close to 0, then the main factors determining the subject choice
probabilities are the weights wik. Hence, subject j would
be particularly consistent, as his or her choices are strongly
based on the actual quality of the stimulus under evaluation.
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In any case, if a subject is not inconsistent, the β parameter
does not tend to 0; therefore, the probability of choosing a
certain opinion score (see Eq (23)) is mainly determined by
the total attractiveness (see Eq (12)) of that opinion score for
that subject.

For instance, for subjects who tend to provide lower (larger)
scores that are accurate, i.e., correlated with the ground truth
quality of the stimuli under evaluation, the bias weights
corresponding to low (high) opinion scores on the quality
scale are significantly greater than those of the others. As a
consequence, from Eq (12), we conclude that low (or high)
opinion scores are more attractive for this type of subject.
Therefore, since this type of subject is not inconsistent, i.e.,
β does not tend to 0, our scoring model in Eq (23) simply
indicates that they have a high probability of choosing a lower
(or higher) opinion score when evaluating the quality of any
stimulus. Thus, our scoring model can perfectly capture their
tendency to provide lower (respectively higher) scores.

Let us note that a subject inconsistency in rating a particular
stimulus is influenced not only by the stimulus quality but also
potentially by the subject bias. For instance, subjects tend to
exhibit lower inconsistency when rating stimuli that are of
extremely low or high quality. Additionally, a subject with a
strong positive bias may predominantly use the upper part of
the quality scale, leading to reduced variance in their choices.
Consequently, we should not consider that a single parameter,
βj , can account for all aspects of the inconsistency of subject
j.

In fact, we define the inconsistency σ2
ij of subject j ∈ J on

stimulus i ∈ I as a function of parameter βj , quality weights w
and subject bias weights µ. More precisely, we use the variance
of the discrete probability distribution determined by the |K|
probabilities pjik, k ∈ K as the measure of the inconsistency
of the subject j on the stimulus i. The variance is computed
as follows:

σ2
ij(β, µ, w) =

∑
k∈K

k2 · pjik −

(∑
k∈K

k · pjik

)2

(31)

We define the overall inconsistency of the subject j ∈ J
as the average of the values σ2

ij(β, µ, w), i ∈ I over all the
stimuli, i.e.,

σ2
j (β, µ, w) =

1

|I|
∑
i∈I

σ2
ij(β, µ, w) (32)

To estimate the parameter βj for each subject j ∈ J , we
rely on a least squares approach. In particular, we estimate the
parameter βj such that the theoretical overall inconsistency
defined in Eq (32) is as close as possible to the variance in
the differences between the actual quality scores of the stimuli
and the ratings of the subject. Therefore, we first compute:

s2j = Var(Q−Rj) (33)

where Var represents the variance of a set of values and Q
and Rj are two arrays containing the actual subjective quality
of all stimuli computed by the RMLE approach and all the
ratings of the subject, respectively j.

We then estimate βj as the value that minimizes the function
l(βj) defined as follows:

l(βj) =
(
s2j − σ2

j (βj , µ, w)
)2

(34)

Let us note that when estimating the parameter βj , the quality
weights w and the bias weights µ are already known, which
is why the function l in Eq (34) depends only on βj .

VI. RESULTS

In this section, we evaluate the effectiveness of our approach
through a series of computational experiments.

A. Experimental Settings

For the experiments, we considered five datasets, namely,
the VQEG-HD1, the VQEG-HD3, the VQEG-HD5 [28], the
Netflix Public [8] and the ITS4S [29] datasets. Each VQEG
dataset comprises ratings from 24 subjects for approximately
160 stimuli. In contrast, the Netflix public dataset contains
ratings from 26 subjects for 70 processed video sequences,
and the ITS4S dataset includes ratings provided by 27 subjects
on the quality of 514 stimuli.

Since there were cases where for a given stimulus, no
subject chose a specific opinion score k (for instance, when
the quality of a given stimulus was particularly poor, no one
chose Excellent), we need to compute Cik, which involves the
logarithm of zero (see Eq (5)), when the number of subjects
was nik = 0. In this case, we set the ratio nik

|J | to a very
small real number ϵ = 10−16. We experimentally determined
that there is no advantage to using a number smaller than that
value.

To use our proposed RMLE approach in practice, the regu-
larization weight λ must be estimated. To do so, we considered
λ to be i) directly proportional to the number of stimuli rated
by each subject to account for noise stemming from subject
fatigue; ii) inversely proportional to the number of subjects,
as larger subject pools provide more informative datasets;
thus, the log-likelihood function LL(w) should carry more
weight than the regularization term R(w); and iii) directly
proportional to the number of possible opinion scores on the
quality scale, which accounts for the expectation that subjects
tend to vote more consistently when they have fewer options
on the quality scale, as seen in the greater reliability of subjects
in pair comparison-based tests.

Therefore, in our experiments, the value of λ was set to

λ =
1

2
· |I||K|

|J |
(35)

The constant 1
2 was experimentally determined to be a

reasonable proportionality factor for ensuring that our RMLE
approach is more robust to noise than are the other quality
estimation approaches used in our experiments.

Let us note that this method for estimating λ may not
be the optimal choice. Nonetheless, our results, obtained
with this straightforward approach to estimating λ, are highly
promising, as shown in the following sections.
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We compared the proposed RMLE approach to four differ-
ent state-of-the-art approaches to estimate the subjective qual-
ity from noisy raw individual ratings: the MOS, the ITU-T Rec
BT.500, the approach proposed in [8], [11] as implemented in
the publicly available Netflix SUREAL software [30] and a
very recent quality recovery approach called ZREC proposed
in [12].

For the sake of completeness, SUREAL software is built
upon a subject scoring model in which the rating rji provided
by subject j for stimulus i follows a Gaussian distribution,
i.e.,

rji = qi + bj +N(0, σj) (36)

where qi is the actual quality of the stimulus i and bj is the
bias of the subject j. σj is the inconsistency of the subject j,
and N(0, σj) is a realization of a Gaussian random variable
with a mean equal to 0 and a standard deviation equal to σj .

To estimate the parameters of the above model, the
SUREAL software exploits an iterative algorithm called al-
ternating projection (AP). The AP algorithm initializes the
ground truth quality values with the MOS values. During each
iteration, each subject bias and inconsistency are estimated
with the mean and standard deviation of the differences
between the subject ratings and the current ground truth
quality values, respectively; the ground truth quality values
are then updated by performing a weighted sum of the subject
ratings after removing their bias. The weight or contribution
of each subject in determining the ground truth quality of
each stimulus is defined as the inverse of the square of their
inconsistency. The iterative procedure continues as long as the
Euclidean norm of the difference between the quality values
calculated in two successive iterations is greater than 10−8.

It is important to highlight that the AP algorithm utilized by
the SUREAL software was endorsed by the ITU in 2021 as the
most comprehensive method for subjective quality recovery
(as per Section 12.6 of ITU-R P.913 [22]). As the latest
standardized approach, the AP algorithm has recently served as
the primary benchmark for evaluating newly proposed methods
by various authors [12], [31]. Consequently, in the results
section, we also consider SUREAL software as the primary
benchmarking approach. In particular, in all our numerical
experiments, we use the latest version of the SUREAL soft-
ware, i.e., the one implementing the AP algorithm.

B. Effectiveness of the Proposed RMLE Approach

We compared the robustness of each of the considered
methods to noise. In practice, following the approach in [9], we
added synthetic noise to four datasets and evaluated, for each
quality recovery approach, the root mean square error (RMSE)
between the ground truth quality (the MOS obtained from
the scores in the original dataset without any modifications)
and the estimated quality scores from the noisy dataset. The
primary objective was to show that the RMLE approach, when
applied to noisy ratings, can yield a more accurate estimate
of the ground truth quality than can the other methods under
consideration. This form of comparison is a standard practice
in the literature for assessing the effectiveness of subjective
quality recovery methods [8], [9].

As in [8], [9], [11], the robustness of the MOS as a quality
recovery method was also tested. In fact, as already mentioned,
the MOS computed from the original dataset without adding
synthetically simulated noise to the dataset was considered
the ground truth or reference quality. Then, noise was added
to the dataset. The MOS computed after adding the noise to
the dataset was evaluated against the ground truth quality, i.e.,
the MOS obtained from the noiseless dataset. For instance,
looking at Figure 1a, it can be said that when replacing 8%
(0.08 on the x-axis) of the opinion scores of all subjects
in the VQEG-HD1 dataset with a random integer number
sampled between 1 and 5, the RMSE between the MOS values
computed from the original dataset and those computed on the
corrupted dataset is approximately 0.16 (y-axis). By repeating
this process with different percentages of random ratings, we
obtained the curves for the MOS shown in Figure 1 and 2.
These curves allow us to evaluate the robustness of the MOS
to added noise.

The noise was synthetically added to each dataset by using
two different procedures: i) All subjects have a small proba-
bility of providing an inaccurate rating when scoring quality;
thus, a fraction of the ratings of each subject corresponding
to this probability was randomly selected to be replaced with
a random integer number between 1 and 5; ii) The ratings
of 50% of the subjects were kept unchanged, whereas the
ratings of the other subjects were modified as described above.
We believe that our first procedure reasonably simulates the
introduction of noise, particularly in subjective experiments
involving non-expert annotators or those conducted in un-
controlled settings such as crowdsourcing experiments. Our
approach also applies well to experiments with a large number
of stimuli where subject fatigue may influence the quality of
ratings of all subjects. The second approach might be more
suitable for simulating noise in subjective experiments that
involve both highly competent annotators, such as experts,
and naive subjects, who might occasionally provide inaccurate
ratings due to the complexity of the stimuli they are assessing.

Figures 1 and 2 present the obtained results when simulating
the noise when using the first and the second procedures,
respectively. For the first noise simulation procedure shown in
Figure 1, the less noisy condition consisted of assuming that all
subjects provided inaccurate scores with a probability of 0.04,
i.e., 4% of the opinion scores of all subjects were converted
into random integers between 1 and 5. The probability of all
subjects incorrectly scoring a stimulus was then progressively
increased to 0.1, i.e., 10% of the ratings of all subjects were
modified. A similar interpretation holds for Figure 2, but in
this case, the noise affects only 50% of the subjects. Addition-
ally, higher probabilities of providing inaccurate ratings were
considered, up to 0.25.

When noise affects the score of all subjects (see Figure 1),
for almost all considered noise levels, the proposed RMLE
approach recovers quality scores with the lowest RMSE with
respect to the ground truth. In fact, the RMLE curve lies below
all the others, showing that the robustness of our proposal
to noise is the greatest among the other approaches. For the
case in which only the ratings of half of the subjects in the
original dataset are affected by noise (see Figure 2), our RMLE
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(a) VQEG-HD1 (b) VQEG-HD3 (c) VQEG-HD5 (d) Netflix Public dataset

Fig. 1. Robustness of the different approaches to synthetically adding noise to individual ratings. All the subjects are assumed to have a certain probability
(x-axis) of scoring inaccurately. The experiment was run with 30 different seeds. The average RMSE and the 95% confidence interval computed from the 30
RMSE values are shown. Let us note that the curves related to MOS, ZREC and SUREAL overlap in Figure 1a

(a) VQEG-HD1 (b) VQEG-HD3 (c) VQEG-HD5 (d) Netflix Public dataset

Fig. 2. Robustness of the different approaches to synthetically adding noise to individual ratings. Fifty percent of the subjects are assumed to have a certain
probability (x-axis) of scoring inaccurately. The experiment was run with 30 different seeds. The average RMSE and the 95% confidence interval computed
from the 30 RMSE values are shown.

approach showed the best performance, while the SUREAL
software and ZREC outperformed the MOS and the ITU-T
Rec. BT.500. In general, the SUREAL software and ZREC
showed similar performances. This is not surprising because
both approaches use the inverse of the inconsistency to weight
the contribution of each subject to the determination of the
ground truth quality. The main difference is that SUREAL
analyzes the scores as gathered on the quality scale, while
ZREC works on Z scores that are obtained by subtracting
from the original ratings the MOS and dividing the result by
the standard deviation of the ratings.

C. Identifying Peculiar Subject Behaviors

In this section, we assess the ability of our approach to iden-
tify annotators with peculiar scoring behaviors by comparing
it to the model used in the SUREAL software and the ITU-T
Rec BT.500. We simulate the ratings of annotators displaying
unary, binary, ternary, adversary, and spammer behaviors,
which are five of the eight behaviors outlined in Section IV.
The other three behaviors (positively biased, negatively biased
and competent annotator) can easily be recognized, as detailed
later, from the data gathered during an actual subjective
experiment. For this reason, in this experiment, we considered
the ratings collected during an actual subjective test, i.e., the
Netflix public dataset. We also simulated an additional peculiar
scoring behavior typically observed in subjective tests, that we
named “bimodal annotator”, i.e., subjects that tend to avoid the
extremes of the quality scale [32] and provide ratings normally
distributed around Poor and Good depending on whether they
judge the quality as not satisfying or satisfying.

For our analysis, we augmented the Netflix Public dataset,
which originally included 26 real subjects, by introducing
six virtual subjects. These virtual subjects were designed to
simulate the behaviors of a unary, binary, bimodal, ternary,

adversary, or spammer annotator. We subsequently applied
the SUREAL software, ITU-T Rec BT.500, and our proposed
approach to the integrated dataset. This method allowed us to
assess the ability of the three approaches to accurately identify
the simulated peculiar behaviors.

To simulate the ratings of the six virtual subjects, we first
identified the most accurate annotator, i.e., the real subject with
the lowest bias and inconsistency (subject #17 in Figure 3a and
Figure 3b). We refer to this subject as “gold subject” in the
following. By using the gold subject ratings, we generated the
following six virtual subjects:

Unary annotator: These subjects tend to score as Fair for
almost all stimuli; we randomly selected 90% of the ratings
of the gold subject and set them equal to 3. The remaining
10% were kept unchanged.

Binary annotator: These subjects tend to choose Bad or
Excellent: we randomly selected 90% of the ratings of the gold
subject. Selected ratings less than or equal to 2 were set to
1, those equal to 3 were changed to either 1 or 5, and those
greater than or equal to 4 were set to 5. The remaining 10%
of the ratings were kept unchanged.

Bimodal annotator: These subjects feel that they are not
experts and therefore tend to avoid the extremes of the quality
scale, i.e., Bad and Excellent. Instead, they prefer to select
Poor when judging the quality as not satisfying and Good
otherwise. To simulate the ratings, we randomly chose 90%
of the ratings of the gold subject. Any selected rating smaller
than 3 was turned into 2, any rating greater than 3 was changed
into 4, and any rating equal to 3 was changed into either 2
or 4 with equal probability. The remaining 10% of the ratings
were kept unchanged.

Ternary annotator: These subjects tend not to express
intermediate opinion scores, i.e., Poor and Good. To simulate
the ratings, we again chose 90% of the ratings of the gold
subject at random. A rating of 2 was turned into either 1 or
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(a) Subject overall bias (bj ) (b) Subject overall inconsistency (σ2
j (β, µ,w))

(c) Bias weights (µj
k) (d) Index to identify adversary annotators (Ijadv)

Fig. 3. Comparison of the output of the SUREAL software (red bars in Figure 3a and Figure 3b) to that of our proposed approach on the Netflix public dataset
integrated with the simulated ratings of peculiar subjects. In addition to the bias and inconsistency values computed by both approaches, our proposal also
outputs the matrix of bias weights in Figure 3c and the index in Figure 3d. Such additional output makes our approach more complete than is the SUREAL
software, as it enables us to determine the source of the inconsistency of any particular subject.

3 with equal probability, and a rating of 4 was turned into
either 3 or 5. The remaining 10% of the ratings were kept
unchanged.

Adversary annotator: We simply inverted all the ratings
of the gold subject on the quality scale; e.g., when the gold
subject rated as 1 (Bad), we turned it into 5 (Excellent) and
vice versa, as well as 2 into 4 and vice versa.

Spammer annotator: The simulated ratings were obtained
by substituting 90% of the rating of the gold subject with a
random integer number uniformly sampled in the range from
1 to 5.

Figure 3 presents the outcomes achieved by applying both
the SUREAL software and our proposed approach to the Net-
flix Public dataset, which was augmented with the simulated
ratings of peculiar virtual subjects as previously described.
The ratings of these virtual subjects were generated by using
30 different random seeds. As such, except for the adversary
annotator, where randomness was not a factor in the simula-
tion, the statistics shown in Figure 3 for the virtual subjects
represent the average of 30 values.

First, we investigated the overall subject bias and incon-
sistency values computed by both approaches, as shown in
Figure 3a and Figure 3b, respectively. The results showed

that, for all subjects, both approaches estimated similar overall
subject bias values. Although the overall inconsistency values
computed by the two approaches are not equal in absolute
terms, the Spearman rank order rank correlation coefficient
(SROCC) is 0.99. In other words, given a pair of subjects,
both approaches always agree on which one is the most
inconsistent. Therefore, if one limits the analysis to overall
subject bias and inconsistency, the two approaches can be
considered quite similar.

Nevertheless, examining overall bias and inconsistency
alone may not provide a comprehensive analysis of subject
behavior. In fact, looking only at those values, it is not possible
to distinguish between the simulated peculiar behaviors. For
instance, from the results in Figure 3b, we surmise that
both approaches identified the spammer and the adversary
annotator as being very inconsistent. If the analysis is limited
to the overall bias and inconsistency values, these two subjects
are considered equivalent, and their ratings have a very low
contribution to the determination of the ground truth quality
since they are both considered very inconsistent. Instead, with
more information that makes it possible to explain the source
of inconsistency between the two subjects, the ratings of the
adversary annotator can be easily recovered, and only the
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ratings of the spanner annotator can receive low consideration.
The previous example compares and illustrates the limits of

approaches that rely on only an overall bias and inconsistency
value, such as the SUREAL software, to analyze each subject
behavior. However, our approach introduces the bias weights
shown in Figure 3c and the index in Figure 3d, which make
it possible to distinguish between peculiar behaviors.

Figure 3c shows the bias weights introduced in Eq (26).
Interpreting these weights makes it possible to identify the
simulated unary, binary, bimodal, and ternary annotators. It
is evident that these subjects assign substantial positive bias
weights to the single, double, and triple opinion scores they
are predisposed to choose. Hence, after observing the overall
inconsistency values in Figure 3b, examining the bias weights
in Figure 3c may make it possible to determine whether
the observed inconsistency derives from one of these four
behaviors.

In fact, when looking at the output of the SUREAL software
in Figure 3a and in Figure 3b, one might erroneously conclude
that the Bimodal and Ternary annotators are not peculiar
subjects since their inconsistencies are comparable to those of
several other real subjects. However, through the bias weights
in Figure 3c, our approach clearly highlights the strong ten-
dency of these two annotators to use only 2 and 3 opinion
scores, respectively. It is clear that a unary or binary annotator
might be more prejudicial than a bimodal or ternary annotator.
However, from our point of view, it is still important to
have approaches that can automatically highlight bimodal and
ternary annotators. Bimodality generates, for example, slight
inaccuracies in subject ratings at the extremes of the quality
scale. In fact, a bimodal annotator would choose Poor as the
opinion, with high probability, even when shown a stimulus for
which Bad would be a better fit. Ternary annotators quantize
the quality scale and thus implicitly use a different scale than
the one proposed by the test designer.

The index for identifying adversary annotators, defined in
Section V, is shown in Figure 3d. As expected, corresponding
to the simulated adversary annotator, the proposed index
assumes a very large value compared to those of the other
subjects. This shows that the proposed index can effectively
determine whether an observed overall subject inconsistency
derives from an adversarial behavior.

With regard to the ITU-T Rec BT.500, we calculated the
number of times it managed to recognize and to reject each
type of peculiar behavior during the 30 repetitions of the
experiment. The unary, bimodal and ternary annotators were
never rejected. The binary annotator was rejected 24 times out
of the 30 repetitions, whereas the adversary and the spammer
annotators were rejected 21 and 17 times, respectively. Hence,
the ITU-T Rec BT.500 clearly showed lower performance than
did our approach, which recognized all the simulated peculiar
behaviors.

As mentioned in Section IV, when subjects rate stimuli, it
is unlikely that they consistently adopt only one of the six
behaviors simulated in this section. Their actual behavior may
be a combination of several of these peculiar behaviors. For
example, a subject might be competent at the beginning of
a test but turn into a spammer annotator toward the end due

to fatigue. Consequently, the bias weights of actual subjects
in Figure 3c may not be sufficient to entirely characterize
a subject’s behavior. Nevertheless, they do provide valuable
insights in some cases that can be subject to further analysis.

For instance, from the overall bias values shown in Fig-
ure 3a, let us note that subject #10 is particularly positively
biased. Considering the matrix of bias weights in Figure 3c,
this bias can be explained by the high tendency of the subject
to select Excellent as the opinion score. In fact, the bias
weights of subject #10 for Bad, Poor and Fair are all negative,
which indicates that the subject tends not to use the left part
of the quality scale. In contrast, positive bias weights are
observed for Good and, in particular, for Excellent, yielding
an overall positive bias.

Figure 3b shows that subjects #6, #7 and #14 had the
highest overall inconsistency values. According to the bias
weights in Figure 3c, subject #6 is slightly more attracted by
the opinion scores at the extremes of the quality scale, i.e.,
Bad and Excellent, since positive bias weights are observed
only in correspondence with these opinion scores. Therefore,
one might hypothesize that the observed inconsistency can
be partly explained by potential binary annotation behavior.
For subject #7, the negative bias weights corresponding to
Excellent show that the subject tends not to choose that
opinion score. Unfortunately, this is not fully compensated
for by the choice of the closest opinion score to Excellent,
i.e., Good. Instead, Fair is chosen. This may explain the
inconsistency observed. Finally, looking at the bias weights
of subjects #14, a similar pattern can be observed as in the
case of a unary annotator. In particular, the opinion score Fair
exhibits a positive bias weight, while all the other bias weights
are negative. This indicates that subject inconsistency might
partially derive from a high tendency to choose Fair.

In summary, our proposed approach, which introduces bias
weights and allows for analysis at the level of each single
opinion score, offers a preliminary means of investigating the
sources of overall inconsistency and bias in a subject. This
approach goes beyond the output of the SUREAL software,
which, by design, does not provide guidance on explaining
the observed overall inconsistency so that potential issues in
the subjective experiment can be addressed. When using our
approach to analyze raw ratings, in addition to estimating the
actual quality of the stimuli with the RMLE approach, to gain
insights into the scoring behavior of each individual rater, we
recommend to also conduct the analysis shown in Figure 3 on
the dataset being examined.

D. Modeling Subject Behavior at the Extremes of the Quality
Scale

Empirical observations have shown that subjects tend to
exhibit less inconsistency when rating stimuli of very low or
very high quality. In [33], the authors argued that a second-
order polynomial function is suitable for linking the MOS and
the standard deviation of the opinion score (SOS), which is
considered a measure of inconsistency between subjects. This
is known within the media quality assessment community as
the “SOS hypothesis”.
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(a) VQEG-HD1 (b) VQEG-HD3 (c) VQEG-HD5 (d) Netflix Public dataset

Fig. 4. The standard deviation of the opinion score (SOS) (seen as a measure of inconsistency) as a function of the MOS. Each point corresponds to one
stimulus in the corresponding dataset. The blue curves are a second-order polynomial least square fitting. As expected, subjects showed lower inconsistency
at the extremes of the quality scale.

(a) VQEG-HD1 (b) VQEG-HD3 (c) VQEG-HD5 (d) Netflix Public dataset

Fig. 5. Average inconsistency of the subjects, computed according to our proposed method, as function of the quality of the stimulus being rated. The blue
curves are a second-order polynomial least square fitting. The proposed subject scoring model captures the fact that subjects are expected to rate the stimuli
more consistently, with either very low or very high quality.

(a) SUREAL scoring model (b) Proposed scoring model

Fig. 6. The inconsistency of each subject as a function of the quality of the stimulus. SUREAL software computes an overall subject inconsistency value
that does not depend on the quality of the stimulus under evaluation. However, our proposed model captures the lower inconsistency of the subjects at the
extremes of the quality scale.

Fig. 7. CIs estimated by the SUREAL software (left) and the proposed RMLE
method (right) as a function of the recovered quality of the stimuli in the
ITS4S dataset. qSUREAL and qRMLE are the qualities recovered by the
SUREAL software and the proposed RMLE approach, respectively.

In Figure 4, we analyzed the link between the SOS and the
MOS in four datasets. Each point in the figure represents a
stimulus. The blue curves are obtained by performing a least
square fitting of the MOS values to the SOS values by using
a second-order polynomial function.

In accordance with the SOS hypothesis, the shape of the
blue curves in Figure 4 clearly illustrates that lower SOS
values are prevalent at the extremes of the quality scale in all
four subjective experiments. This implies that subjects tend
to provide similar opinion scores when rating stimuli of very
high or very low quality.

At the individual level, each subject is therefore expected to
exhibit lower inconsistency at the extremes of the quality scale.
An effective subject scoring model should capture this aspect
of subject behavior. However, it is worth noting that, by design,
the scoring model employed by the SUREAL software does
not account for that aspect of the subject scoring behavior. In
fact, the model in Eq (36) assumes that the rating rji of subject
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TABLE II
COMPARING THE PROPOSED RMLE APPROACH TO THE SUREAL SOFTWARE IN TERMS OF UNCERTAINTY ON THE ESTIMATED SUBJECTIVE QUALITY.
THE RECOVERED QUALITIES BY THE TWO METHODS ARE FIRST COMPARED USING THE PLCC, THE SROCC AND THE RMSE. THE UNCERTAINTY IS

MEASURED BY THE AVERAGE OF THE SIZES OF THE CIS OF THE ESTIMATED QUALITY (AVG CIS SIZE). WE ALSO REPORT BY HOW MUCH (IN
PERCENTAGE) EACH METHOD REDUCES ON AVERAGE THE SIZE OF THE CIS THAT CAN BE COMPUTED FROM THE RAW DATA, THAT IS, WITH THE MOS

AND SOS OF THE RATINGS (CI REDUCTION (%)).

Dataset
Recovered Quality Similarity SUREAL CIs RMLE CIs
PLCC SROCC RMSE Avg CI Size CI Reduction (%) Avg CI Size CI Reduction (%)

VQEG-HD1 1.00 1.00 0.07 0.46 6.93% 0.42 15.58%
VQEG-HD3 1.00 1.00 0.08 0.48 14.82% 0.47 16.46%
VQEG-HD5 1.00 1.00 0.11 0.49 14.97% 0.48 16.10%
NETFLIX PUBLIC 1.00 1.00 0.06 0.45 13.88% 0.48 9.86%
ITS4S 0.99 0.99 0.14 0.49 13.87% 0.42 27.10%

j for any stimulus i is affected by the inconsistency (σj).
Therefore, according to the SUREAL scoring model, given
two stimuli obtained from the same source, one with very low
quality and the other with a quality score in the middle of the
scale, a subject would show the same level of inconsistency
when asked to rate these two stimuli. However, this finding
contrasts with the observations made from the results shown
in Figure 4 and thus with the SOS hypothesis.

However, our proposed subject scoring model considers
subject inconsistency at the level of the single opinion score.
Indeed, the random variable θjik, as introduced in Eq (10) to
represent subject inconsistency, is defined for each opinion
score k ∈ K. This feature allows our approach to locally model
subject inconsistency along the quality scale.

Figure 5 shows the average inconsistency of each subject as
defined in Eq (31), as a function of the quality of the stimulus.
On average, the proposed subject scoring model estimated
lower inconsistency values for stimuli whose quality is in the
range from 1 to 1.5 and from 4.5 to 5, compared to what
happens in the middle of the quality scale. Hence, the proposed
model captures the lower inconsistency of the subjects at the
extremes of the quality scale.

Figure 6 shows the link between the quality of the stimulus
and the estimated inconsistency for each individual subject
in the Netflix public dataset, including the peculiar subjects
simulated and discussed in the previous section, both for the
SUREAL software (Figure 6a) and for our proposed model
(Figure 6b). As already mentioned, the SUREAL software
outputs a constant inconsistency over the whole quality scale
(see Figure 6a). This precludes the possibility of locally
analyzing the accuracy of the subject on the quality scale. In
Figure 6b, instead, one can observe the ability of our approach
to predict lower inconsistency for each individual subject at
the extremes of the quality scale. For instance, subject #7
is particularly inconsistent when rating stimuli of very high
quality. This finding is consistent with the observations made
on his or her behavior in the previous section; i.e., the subject
tends not to use Excellent as an opinion score but does not
choose Good as the direct alternative.

Interestingly, observing how the analysis in Figure 6b
brings to light the sections of the quality scale where the six
simulated peculiar subjects are prone to exhibit higher levels
of inconsistency. As anticipated, the adversary and spammer
annotators display substantial inconsistency across the entire

quality scale. Conversely, the unary annotator, by frequently
selecting Fair, exhibited somewhat lower inconsistency in
the middle of the quality scale. The binary annotator shows
significant inconsistency in the middle of the quality scale.

E. Assessing the Uncertainty on the Estimated Subjective
Quality

In this section, we used our proposed RMLE approach
and SUREAL software to estimate the quality of subjectively
annotated datasets without adding synthetic noise, as described
in Section VI-B. For the experiment, we considered five
different datasets, i.e., the four datasets used in Section VI-B
plus the ITS4S dataset [29]. Even without the addition of
synthetic noise, the ratings in these datasets exhibit some level
of noise due to inherent subject inconsistency. For example,
in [34], the authors identified a processed video sequence
(PVS) in the Netflix public dataset where a subject rated the
quality as Bad, while the mode of the ratings for that PVS
was Excellent. With respect to stimuli in the ITS4S dataset,
the same authors identified a PVS where subjects uniformly
chose opinion scores ranging from Poor to Excellent. In these
cases, the MOS does not provide a suitable estimate of quality.
Therefore, these examples also emphasize the importance of
applying quality recovery approaches to datasets collected in
highly controlled environments.

Following the approach of [11], [12], [35], we benchmarked
the performance of our proposed quality recovery approach on
real datasets by showing that its estimated subjective quality
suffers lower uncertainty than that estimated by the SUREAL
software. As in the aforementioned previous papers, here,
the level of uncertainty in the estimated subjective quality is
measured by the size of the CI. In particular, the larger the CI
is, the greater the uncertainty in the estimated quality.

Table II summarizes the results of the experiment. After
running the SUREAL software and the proposed software
on each dataset, we first evaluated the similarity between
the quality recovered by the two methods by computing the
Pearson linear correlation coefficient (PLCC), the Spearman
rank order correlation coefficient (SROCC), and the RMSE.
The results in Table II show that, in general, both approaches
recovered very similar subjective qualities. In fact, very large
correlation coefficients (> 0.99) and low RMSE values
(< 0.14) were observed. This highlights the consistency of
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our proposal with the prior art on data gathered in highly
controlled environments.

We now delve into the results concerning the sizes of the
confidence intervals (CIs) for the estimated subjective quality
when using both methods. As shown in Table II, it is evident
that, in general, the proposed RMLE method results in smaller
CIs on average. Thus, although both approaches yield very
similar estimates of subjective quality on the analyzed datasets,
our method produces estimations that tend to be associated
with lower uncertainty.

As in [12], in Table II, we provide the percentage by
which the application of each of the two methods reduces
the size of the CIs in comparison to what would be obtained
from the MOS and the SOS of the raw data. For example,
the application of our RMLE approach to the ITS4S dataset
yielded subjective quality estimates with CIs whose size was
reduced on average by 27%. The percentages in Table II can
therefore be considered an indication of how much noise has
been removed from the data by the applied quality recovery
method. Higher values therefore indicate better performance:
for 4 out of 5 datasets, our proposal did better than did the
SUREAL software.

Figure 7 shows the CIs estimated by the SUREAL software
and our method as a function of the recovered quality on the
ITS4S dataset. Our proposal yielded small CIs on average (see
the legends), as already mentioned. An interesting observation
that can be drawn from Figure 7 is that, for extremely low-
quality stimuli, the proposed RMLE approach calculates CIs
that are smaller than those of other stimuli. This highlights the
crucial aspect that, in the computation of CIs, our approach
considers the high accuracy of subjects when rating stimuli of
very low quality. In contrast, the SUREAL software computes
CIs of uniform sizes regardless of the quality of the stim-
uli being assessed. Consequently, the CIs computed by the
SUREAL software may be less realistic than those obtained
from the proposed RMLE approach.

VII. CONCLUSION

In this paper, we focused on modeling subject behavior
in subjective tests conducted on a discrete quality scale. An
approach called regularized maximum likelihood estimation
(RMLE) was first proposed to estimate the actual subjective
quality from noisy individual ratings. The proposed RMLE
approach combines the traditional MLE framework with a
regularization term that is meant to attribute less weight to
ratings that are potentially noisy in the dataset. The model
then outputs the actual contribution/weight of each opinion
score to the determination of the actual subjective quality of
each stimulus.

An analytical expression of the overall attractiveness of each
opinion score for each subject was proposed by using the qual-
ity weights estimated by the RMLE approach together with the
introduction of subject inconsistency and bias weights. Under
the reasonable assumption that the subject select the opinion
score with the highest attractiveness, we analytically derived
a novel subject scoring model that provides the probability
of choosing each opinion score on the quality scale when a

subject with specific characteristics is asked to rate a given
stimulus.

Computational experiments showed that the proposed
RMLE approach is more robust to noise in individual opinion
scores than are four state-of-the-art alternative approaches.
Moreover, the analysis of bias weights introduced by our
proposed approach provides potential insights into the peculiar
behavior underlying an observed subject inconsistency. Finally,
the proposed subject scoring model effectively captures the
typical quadratic link between subject inconsistency and stim-
ulus quality.

Future work includes finding a better theoretical foundation
for the estimation of the regularization coefficient. Further-
more, although our model allows for a more detailed analysis
of the data, as evidenced by the computational results, it
also involves a greater number of parameters than does the
model implemented by the SUREAL software. We plan to
develop a more parsimonious model in terms of the number
of parameters.
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