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FOURIER TYPE OPERATORS ON ORLICZ SPACES AND

THE ROLE OF ORLICZ LEBESGUE EXPONENTS

MATTEO BONINO, SANDRO CORIASCO, ALBIN PETERSSON,
AND JOACHIM TOFT

Abstract. We deduce continuity properties of classes of Fourier mul-
tipliers, pseudo-differential and Fourier integral operators when acting
on Orlicz spaces. Especially we show classical results like Hörmander’s
improvement of Mihlin’s Fourier multiplier theorem are extendable to
the framework of Orlicz spaces. We also show how some properties of
the Young functions Φ of the Orlicz spaces are linked to properties of
certain Lebesgue exponents pΦ and qΦ emerged from Φ.

0. Introduction

Orlicz spaces, introduced by W. Orlicz in 1932 [12], are Banach spaces
which generalize the normal Lp spaces (see Section 1 for notations). Orlicz
spaces are denoted by LΦ where Φ is a Young function, and we obtain the
usual Lp spaces, 1 6 p < ∞, by choosing Φ(t) = tp. For more facts on Orlicz
spaces, see [14].

An advantage of Orlicz spaces is that they are suitable when solving cer-
tain problems where Lp spaces are insufficient. As an example, consider the
entropy of a probability density function f given by

E(f) = −

∫
f(ξ) log f(ξ) dξ.

In this case, it may be more suitable to work with an Orlicz norm estimate,
for instance with Φ(t) = t log(1 + t), as opposed to L1 norm estimates.

The literature on Orlicz spaces is rich, see e.g. [1,4,8,9,11,13] and the ref-
erences therein. Recent investigations also put pseudo-differential operators
in the framework of Orlicz modulation spaces (cf [19], see also [15, 20] for
further properties on Orlicz modulation spaces). In this paper, we deal with
pseudo-differential operators as well as Fourier multipliers in Orlicz spaces.

Results pertaining to continuity properties on Lp-spaces are well-established.
Our approach is to utilize a Marcinkiewicz interpolation-type theorem by Liu
and Wang in [7] to extend such continuity properties to also hold on Orlicz
spaces. As an initial example, the methods described in the subsequent sec-
tions allow us to obtain the following extension of Mihlin’s Fourier multiplier
theorem (see [10] for the original theorem).
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ondary: 46F10.
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Theorem 0.1 (Mihlin). Let Φ be a strict Young function and a ∈ L∞(Rd \
{0}) be such that

sup
ξ 6=0

(
|ξ||α| |∂αa(ξ)|

)

is finite for every α ∈ N
d with |α| 6 [d2 ] + 1. Then a(D) is continuous on

LΦ(Rd).

In fact, we also obtain Hörmander’s improvement of Mihlin’s Fourier mul-
tiplier theorem (cf [5]) in the context of Orlicz spaces. This result can be
found in Section 3 (Theorem 3.4). In a similar manner, we obtain continuity
results for pseudo-differential operators of order 0 in Orlicz spaces as well,
see Theorem 3.3. Finally, we show a continuity result for a broad class of
Fourier integral operators, under a condition on the order of the amplitude
(that is, a loss of derivatives and decay), see Theorem 3.5.

Section 1 also include investigations of Lebesgue exponents pΦ and qΦ
constructed from the Young function Φ, which are important for the in-
terpolation theorem. These parameters were described in [7], where it was
claimed that

pΦ < ∞ ⇐⇒ Φ fulfills the ∆2 condition (0.1)

and

qΦ > 1 ⇐⇒ Φ is strictly convex. (0.2)

In Section 1, we confirm that (0.1) is correct, but that neither logical impli-
cation of (0.2) is correct. Instead, other conditions on Φ are found which
characterize qΦ > 1 (see Proposition 2.1). At the same time, we deduce a
weaker form of the equivalence (0.2) and show that if qΦ > 1, then there is
an equivalent Young function to Φ which is strictly convex. (see Proposition
2.4).

1. Preliminaries

In this section we recall some facts on Orlicz spaces and pseudo-differential
operators. Especially we recall Lebesgue exponents given in e. g. [7] and
explain some of their features.

1.1. Orlicz Spaces. In this subsection we provide an overview of some basic
definitions and state some technical results that will be needed. First, we
recall the definition of weak Lp spaces.

Definition 1.1. Let p ∈ (0,∞]. The weak Lp space wLp(Rd) consists of all
Lebesgue measurable functions f : Rd → C for which

‖f‖wLp ≡ sup
t>0

t (µf (t))
1

p (1.1)

is finite. Here µf (t) is the Lebesgue measure of the set {x ∈ R
d ; |f(x) > t| }.

Remark 1.2. Notice that the wLp-norm is not a true norm, since the tri-
angular inequality fails. Nevertheless, one has that ‖f‖wLp 6 ‖f‖Lp . In
particular, Lp(Rd) is continuously embedded in wLp(Rd).
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Next, we recall some facts concerning Young functions and Orlicz spaces.
(See [4, 14].)

Definition 1.3. A function Φ : R → R ∪ {∞} is called convex if

Φ(s1t1 + s2t2) 6 s1Φ(t1) + s2Φ(t2)

when sj, tj ∈ R satisfy sj > 0 and s1 + s2 = 1, j = 1, 2.

We observe that Φ might not be continuous, because we permit ∞ as
function value. For example,

Φ(t) =

{
c, when t 6 a

∞, when t > a

is convex but discontinuous at t = a.

Definition 1.4. Let Φ be a function from [0,∞) to [0,∞]. Then Φ is called
a Young function if

(1) Φ is convex,

(2) Φ(0) = 0,

(3) lim
t→∞

Φ(t) = +∞.

It is clear that Φ in Definition 1.4 is non-decreasing, because if 0 6 t1 6 t2
and s ∈ [0, 1] is chosen such that t1 = st2, then

Φ(t1) = Φ(st2 + (1− s)0) 6 sΦ(t2) + (1− s)Φ(0) 6 Φ(t2),

since Φ(0) = 0 and s ∈ [0, 1].
The Young functions Φ1 and Φ2 are called equivalent, if there is a constant

C > 1 such that

C−1Φ2(t) 6 Φ1(t) 6 CΦ2(t), t ∈ [0,∞].

We recall that a Young function is said to fulfill the ∆2-condition if there is
a constant C > 1 such that

Φ(2t) 6 CΦ(t), t ∈ [0,∞].

We also introduce the following condition. A Young function is said to
fulfill the Λ-condition if there is a p > 1 such that

Φ(ct) 6 cpΦ(t), t ∈ [0,∞], c ∈ (0, 1]. (1.2)

The following characterization of Young functions fulfilling the ∆2-condition
follows from the fact that any Young function is increasing. The verifications
are left for the reader.

Proposition 1.5. Let Φ be a Young function. Then the following conditions

are equivalent:

(1) Φ satisfies the ∆2-condition;

(2) for every constant c > 0, the Young function t 7→ Φ(ct) is equivalent

to Φ;

(3) for some constant c > 0 with c 6= 1, the Young function t 7→ Φ(ct) is

equivalent to Φ.
3



For any Young function Φ, t The upper and lower Lebesgue exponents for
a Young function Φ are defined by

pΦ ≡ sup
t>0

(
tΦ′

+(t)

Φ(t)

)
= sup

t>0

(
tΦ′

−(t)

Φ(t)

)
(1.3)

and

qΦ ≡ inf
t>0

(
tΦ′

+(t)

Φ(t)

)
= inf

t>0

(
tΦ′

−(t)

Φ(t)

)
, (1.4)

respectively. We recall that these exponents are essential in the analysis
in [7]. We observe that for any r1, r2 > 0,

tpΦ . Φ(t) . tqΦ when t 6 r1 (1.5)

and

tqΦ . Φ(t) . tpΦ when t > r2. (1.6)

In order to shed some light on this as well as demonstrate arguments used
in the next section we here show these relations.

By (1.3) we obtain

tΦ′
+(t)

Φ(t)
− pΦ 6 0 ⇔

(
Φ(t)

tpΦ

)′

+

6 0.

Hence Φ(t) = tpΦh(t) for some decreasing function h(t) > 0. This gives

Φ(t) = tpΦh(t) > tpΦh(r1) & tpΦ

for t 6 r1 and
Φ(t) = tpΦh(t) 6 tpΦh(r2) . tpΦ

for t > r2. This shows the relations between tpΦ and Φ(t) in (1.5) and (1.6).
The remaining relations follow in similar ways.

In our investigations we need to assume that our Young functions are
strict in the following sense.

Definition 1.6. The Young function Φ from [0,∞) to [0,∞] is called strict

or a strict Young function, if

(1) Φ(t) < ∞ for every t ∈ [0,∞),

(2) Φ satisfies the ∆2-condition,

(3) Φ satisfies the Λ-condition.

In Section 2 we give various kinds of characterizations of the conditions (2)
and (3) in Definition 1.6. In particular we show that (2) and (3) in Definition
1.6 are equivalent to pΦ < ∞ and qΦ > 1, respectively. (See Proposition 2.3.)

It will also be useful to rely on regular Young functions, which is possible
due to the following proposition.

Proposition 1.7. Let Φ be a Young function which satisfies the ∆2 condi-

tion. Then there is a Young function Ψ such that the following is true:

(1) Ψ is equivalent to Φ and Ψ 6 Φ;

(2) Ψ is smooth on R+;

(3) Ψ′
+(0) = Φ′

+(0).
4



Proof. Let φ ∈ C∞
0 [0, 1] be such that φ > 0 and

∫ 1
0 φ(s) ds = 1. Put

Ψ(t) =

∫ 1

0
Φ(t− 1

2st)φ(s) ds.

Then using this formula and

Ψ(t) =

∫ t

t/2
Φ(s)φ(s− 2s/t)

t

s
ds,

we reach the result. �

It follows that Ψ in Proposition 1.7 fulfills the ∆2 condition, because Φ
satisfy that condition and Ψ is equivalent to Φ.

Definition 1.8. Let Φ be a Young function. The Orlicz space LΦ(Rd)
consists of all Lebesgue measurable functions f : Rd → C such that

‖f‖LΦ ≡ inf

{
λ > 0 ;

∫

Rd

Φ

(
|f(x)|

λ

)
dx 6 1

}

is finite.

Definition 1.9. Let Φ be a Young function. The weak Orlicz space wLΦ(Rd)
consists of all Lebesgue measurable functions f : Rd → C such that

‖f‖wLΦ ≡ inf

{
λ > 0 ; sup

t>0

(
Φ

(
t

λ

)
µf (t)

)
6 1

}

is finite. Here µf (t) is the Lebesgue measure of the set {x ∈ R
d ; |f(x) > t| }.

In accordance with the usual Lebesgue spaces, f, g ∈ wLΦ(Rd) are equiv-
alent whenever f = g a. e.

1.2. Pseudo-differential operators. Let M(d,Ω) be the set of all d× d-
matrices with entries in the set Ω, and let a ∈ S (R2d) and A ∈ M(d,R)
be fixed. Then the pseudo-differential operator OpA(a) is the linear and
continuous operator on S (Rd), given by

(OpA(a)f)(x) = (2π)−d

∫∫
a(x−A(x− y), ξ)f(y)ei〈x−y,ξ〉 dydξ, (1.7)

when f ∈ S (Rd). For general a ∈ S ′(R2d), the pseudo-differential operator
OpA(a) is defined as the linear and continuous operator from S (Rd) to
S ′(Rd) with distribution kernel given by

Ka,A(x, y) = (2π)−d/2(F−1
2 a)(x−A(x− y), x− y). (1.8)

Here F2F is the partial Fourier transform of F (x, y) ∈ S ′(R2d) with respect
to the y variable. This definition makes sense, since the mappings

F2 and F (x, y) 7→ F (x−A(x− y), x− y) (1.9)

are homeomorphisms on S ′(R2d). In particular, the map a 7→ Ka,A is a

homeomorphism on S ′(R2d).
An important special case appears when A = t · I, with t ∈ R. Here and

in what follows, I ∈ M(d,R) denotes the d× d identity matrix. In this case
we set

Opt(a) = Opt·I(a).
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The normal or Kohn-Nirenberg representation, a(x,D), is obtained when
t = 0, and the Weyl quantization, Opw(a), is obtained when t = 1

2 . That is,

a(x,D) = Op0(a) and Opw(a) = Op1/2(a).

For any K ∈ S ′(Rd1+d2), we let TK be the linear and continuous mapping
from S (Rd1) to S ′(Rd2), defined by the formula

(TKf, g)L2(Rd2 ) = (K, g ⊗ f)L2(Rd1+d2 ). (1.10)

It is well-known that if A ∈ M(d,R), then it follows from Schwartz ker-
nel theorem that K 7→ TK and a 7→ OpA(a) are bijective mappings from
S ′(R2d) to the set of linear and continuous mappings from S (Rd) to
S ′(Rd) (cf. e. g. [6]).

In particular, for every a1 ∈ S ′(R2d) and A1, A2 ∈ M(d,R), there is a
unique a2 ∈ S ′(R2d) such that OpA1

(a1) = OpA2
(a2). The following result

explains the relations between a1 and a2.

Proposition 1.10. Let a1, a2 ∈ S ′(R2d) and A1, A2 ∈ M(d,R). Then

OpA1
(a1) = OpA2

(a2) ⇔ ei〈A2Dξ,Dx〉a2(x, ξ) = ei〈A1Dξ,Dx〉a1(x, ξ).

In [18], a proof of the previous proposition is given, which is similar to the
proof of the case A = t · I in [6, 17, 21].

Let r, ρ, δ ∈ R be such that 0 6 δ 6 ρ 6 1 and δ < 1. Then we recall that
the Hörmander class Sr

ρ,δ(R
2d) consists of all a ∈ C∞(R2d) such that

∑

|α|,|β|6N

sup
x,ξ∈Rd

(
〈ξ〉−r+ρ|α|−δ|β||Dα

ξ D
β
xa(x, ξ)|

)

is finite for every integer N > 0.
We recall the following continuity property for pseudo-differential opera-

tors acting on Lp-spaces (see e. g. [22]).

Proposition 1.11. Let p ∈ (1,∞), A ∈ M(R, d) and a ∈ S0
1,0(R

2d). Then

OpA(a) is continuous on Lp(Rd).

In the next proposition we essentially recall Hörmander’s improvement of
Mihlin’s Fourier multiplier theorem.

Proposition 1.12. Let p ∈ (1,∞) and a ∈ L∞(Rd \ 0) be such that

sup
R>0

(
R−d+2|α|

∫

AR

|∂αa(ξ)|2 dξ

)
(1.11)

is finite for every α ∈ N
d with |α| 6 [d2 ] + 1, where AR is the annulus

{ ξ ∈ R
d ; R < |ξ| < 2R }. Then a(D) is continuous on Lp(Rd).

1.3. Fourier integral operators of SG type. We recall that the so-called
SG-symbol class Sm,µ(R2d), m,µ ∈ R, consists of all a ∈ C∞(R2d) such
that ∑

|α|,|β|6N

sup
x,ξ∈Rd

(
〈x〉−m+|α|〈ξ〉−µ+|β||Dα

xD
β
ξ a(x, ξ)|

)

is finite for every integer N > 0. Following [3], we say that ϕ ∈ C∞(Rd ×
(Rd \ 0)) is a phase-function if it is real-valued, positively 1-homogeneous

6



with respect to ξ, that is, ϕ(x, τξ) = τϕ(x, ξ) for all τ > 0, x, ξ ∈ R
d, ξ 6= 0,

and satisfies, for all x, ξ ∈ R
d, ξ 6= 0,

|det ∂x∂ξϕ(x, ξ)| ≥ C > 0, ∂α
xϕ(x, ξ) ≺ 〈x〉1−|α||ξ| for all α ∈ N

d,

〈ϕ′
ξ(x, ξ)〉 ∼ 〈x〉, 〈ϕ′

x(x, ξ)〉 ∼ 〈ξ〉.
(1.12)

In the sequel, we will denote the set of all such phase-functions by Phom
r .

For any a ∈ Sm,µ(R2d) and ϕ ∈ Phom
r , the Fourier integral operator

Opϕ(a) is the linear and continuous operator from S (Rd) to S ′(Rd), given
by

(Opϕ(a)f)(x) =

∫

Rd

eiϕ(x,ξ)a(x, ξ)f̂(ξ) dξ, f ∈ S (Rd). (1.13)

We recall the following (global on R
d) Lp-boundedness result, proved in [3].

Theorem 1.13. Let p ∈ (1,∞), m,µ ∈ R be such that

m ≤ −(d− 1)

∣∣∣∣
1

p
−

1

2

∣∣∣∣ and µ ≤ −(d− 1)

∣∣∣∣
1

p
−

1

2

∣∣∣∣ , (1.14)

and suppose that a ∈ Sm,µ(R2d) is such that |ξ| ≥ ε, for some ε > 0, on the

support of a. Then Opϕ(a) from S (Rd) to S ′(Rd) extends uniquely to a

continuous operator on Lp(Rd).

Remark 1.14. As it is well-known, in view of the presence of a phase function
ϕ ∈ Phom

r , assumed different from ϕ(x, ξ) = x · ξ (for which (1.13) actually
becomes a pseudo-differential operator), the uniform boundedness of the am-
plitude a is, in general, not enough to guarantee that Opϕ(a) continuously
maps Lp into itself, even if the support of f is compact (see the celebrated
paper [16]), except when p = 2. This is, of course, in strong contrast with
Proposition 1.11. Notice, in (1.14), the loss of decay (that is, the condition
on the x-order m of the amplitude), together with the well-known loss of

smoothness (that is, the condition on the ξ-order µ of the amplitude). No-
tice also that no condition of compactness of the support of f is needed in
Theorem 1.13 (see [3] and the references quoted therein for more details).

2. The role of upper and lower Lebesgue exponents for Young

functions

In this section we investigate the Orlicz Lebesgue exponents pΦ and qΦ
and link conditions on these exponents to various properties on their Young
functions Φ. Especially we show that both implications in (0.2) involving
qΦ are wrong (see Proposition 2.4). Instead we deduce other conditions Φ
which characterize qΦ > 1 (see Propositions 2.1 and 2.3).

In the following proposition we list some basic properties of relations be-
tween Young functions and their upper and lower Lebesgue exponents.

Proposition 2.1. Let Φ be a Young function which is non-zero outside the

origin, and let qΦ and pΦ be as in (1.4) and (1.3). Then the following is

true:

(1) 1 6 qΦ 6 pΦ;

(2) pΦ = 1, if and only if Φ is a linear map;

7



(3) pΦ < ∞, if and only if Φ fulfills the ∆2-condition;

(4) qΦ > 1, if and only if there is a p > 1 such that
Φ(t)
tp increases.

Remark 2.2. Taking into account that Φ in Proposition 2.1 is a Young func-
tion, we find that (4) is equivalent to

(4)′ qΦ > 1, if and only if there is a p > 1 such that
Φ(t)
tp increases,

lim
t→0+

Φ(t)

tp
= 0 and lim

t→∞

Φ(t)

tp
= ∞.

Most of Proposition 2.1 and Remark 2.2 are well-known. In order to be
self-contained we here present a proof.

Proof of Proposition 2.1. Since Φ and its left and right derivatives are in-
creasing, the mean-value theorem gives that for some c = ct ∈ [0, 1], we
have

Φ(t) = Φ(t)− Φ(0) 6 tΦ+(ct) 6 tΦ+(t).

This gives (1).

If Φ is linear, then tΦ′(t)
Φ(t) = 1, giving that qΦ = pΦ = 1. Suppose instead

that pΦ = 1. Then
tΦ′(t)

Φ(t)
= 1,

in view of (1) and its proof. This implies that Φ(t) = Ct for some constant
C, and (2) follows.

In order to prove (3), we first suppose that pΦ < ∞. Then

tΦ′
+(t)

Φ(t)
6 R ⇔ tΦ′

+(t)−RΦ(t) 6 0,

for some R > 0. Since Φ(0) = 0, we obtain

Φ(t) = tRh(t), t > 0,

for some positive decreasing function h(t), t > 0. This gives

Φ(2t) = (2t)Rh(2t) 6 2RtRh(t) = 2RΦ(t),

and it follows that Φ satisfies the ∆2-condition when pΦ < ∞.
Suppose instead that Φ satisfies the ∆2-condition. By the mean-value

theorem and the fact that Φ′
+(t) is increasing we obtain

Φ′
+(t)t 6 Φ(2t)− Φ(t) 6 Φ(2t) 6 CΦ(t),

for some constant C > 0. Here the last inequality follows from the fact that
Φ satisfies the ∆2-condition. This gives

tΦ′
+(t)

Φ(t)
6 C,

giving that pΦ 6 C < ∞, and we have proved (3).
Next we prove (4). Suppose that qΦ > 1. Then there is a p > 1 such that

tΦ′
±(t)

Φ(t)
> p

for all t > 0, which gives

tΦ′
±(t)− pΦ(t) > 0.

8



Hence
tpΦ′

±(t)− ptp−1Φ(t)

t2p
> 0,

or equivalently (
Φ(t)

tp

)′

±

> 0.

Hence, the result now holds. If we instead suppose that Φ(t)
tp is increasing for

some p > 1, then applying the arguments above in reverse order now yields
qΦ > p > 1. �

For the equivalence in (4) of Proposition 2.1 we note further.

Proposition 2.3. Let Φ be a Young function which is non-zero outside the

origin, and let qΦ be as in (1.4). Then the following conditions are equivalent:

(1) qΦ > 1;

(2) there is a p > 1 such that
Φ(t)
tp increases;

(3) there are p, q > 1 such that
Φ(t)
tp increases near the origin and

Φ(t)
tq

increases at infinity;

(4) there is a p > 1 such that for every t > 0 and every c ∈ (0, 1],
Φ(ct) 6 cpΦ(t).

Proof. The equivalence of (1) and (2) was established in Proposition 2.1.

Trivially, (2) implies (3). Moreover, Φ(t)
tp increases if and only if for any t > 0

and any c ∈ (0, 1],
Φ(ct)

(ct)p
6

Φ(t)

tp

which is equivalent to (4), hence (2) is equivalent to (4). We will now show
that (3) implies (1), yielding the result.

Suppose that (3) holds. Then by assumption, there are R1, R2 > 0 such
that Φ(t) is increasing for t ∈ (0, R1) ∪ (R2,∞),

q1 = inf
t∈(0,R1)

(
tΦ′

+(t)

Φ(t)

)
> p > 1 and q3 = inf

t∈(R2,∞)

(
tΦ′

+(t)

Φ(t)

)
> q > 1.

Let q2 = inft∈[R1,R2]
tΦ′

+
(t)

Φ(t) . We want to show that q2 > 1, which will in turn

yield qΦ = inf{q1, q2, q3} > 1, completing the proof.
Let ϕ1(t) = k1t − m1 and ϕ2(t) = k2t − m2, with kj = Φ′

+(Rj) and mj

chosen so that ϕj(Rj) = Φ(Rj), j = 1, 2. Given that Φ is a Young function,
is convex, and fulfills (3), it is clear that k1 6 k2, m1 6 m2 and mj > 0 for
j = 1, 2.

We now approximate Φ(t) with linear segments forming polygonal chains
for R1 6 t 6 R2. Pick points R1 = t0 < t1 < · · · < tn = R2 and define func-
tions fj(t) = ajt − bj such that fj(tj) = Φ(tj) and fj(tj+1) = Φ(tj+1). Let
Φn(t) be the polygonal chain on [R1, R2] formed by connecting the functions
fj, meaning Φn(t) = fj(t) whenever t ∈ [tj, tj+1].

Since Φ is convex and increasing, we have k1 6 aj 6 k2 and m1 6 bj 6 m2

for all j = 1, . . . , n. Hence, for any j = 1, . . . , n,

inf
t∈[tj ,tj+1]

(
t(fj)

′
+(t)

fj(t)

)
= inf

t∈[tj ,tj+1]

(
1 +

bj
ajtj − bj

)
> 1 +

m1

Φ(R2)
,

9



where the last inequality follows from the fact that bj > m1 and ajtj − bj =
fj(tj) 6 fn(tn) = Φ(R2). From this, it is clear that

qΦn = inf
t∈[R1,R2]

(
t(Φn)

′
+(t)

Φn(t)

)
> 1 +

m1

Φ(R2)

independent of the choice of n and the points tj , j = 1, . . . n−1, and therefore

q2 = lim
n→∞

qΦn > 1 +
m1

Φ(R2)
> 1.

This gives (1), completing the proof. �

The following proposition shows that the condition qΦ > 1 cannot be
linked to strict convexity for the Young function Φ.

Proposition 2.4. Let Φ and Ψ be Young functions which are non-zero out-

side the origin, and let qΦ be as in (1.4). Then the following is true:

(1) if qΦ > 1, then there is an equivalent Young function to Φ which is

strictly convex;

(2) Φ can be chosen such that qΦ > 1 but Φ is not strictly convex;

(3) Φ can be chosen such that qΦ = 1 but Φ is strictly convex.

Remark 2.5. In [7] it is stated that (1) in Proposition 2.4 can be replaced by

(1)′ qΦ > 1, if and only if Φ is strictly convex.

This is equivalent to that the following conditions should hold:

(2)′ if qΦ > 1, then Φ is strictly convex;

(3)′ if Φ is strictly convex, then qΦ > 1.

(See remark after (1.1) in [7].) Evidently, the assertion in [7] is (strictly)
stronger than Proposition 2.4 (1). On the other hand, Proposition 2.4 (2)
shows that (2)′ can not be true and Proposition 2.4 (3) shows that (3)′ can
not be true. Consequently, both implications in (1)′ are false.

Proof of Proposition 2.4. We begin by proving (1). Therefore assume that
qΦ > 1. Suppose that Φ fails to be strict convex in (0, ε), for some ε > 0.
Then Φ′′(t) = 0 when t ∈ (0, ε). This implies that Φ(t) = ct when t ∈ (0, ε),
for some c > 0, which in turn gives qΦ = 1, violating the condition qΦ > 1.
Hence Φ must be strict convex in (0, ε), for some choice of ε > 0.

Let

Ψ(t) =

∫ t

0
Φ(t− s)e−s ds.

Then

Ψ′′(t) = Φ′(0) +

∫ t

0
Φ′′(t− s)e−s ds ≥

∫ t

t−ε
Φ′′(t− s)e−s ds > 0,

since Φ′′(t−s) > 0 when s ∈ (t−ε, t). This shows that Ψ is a strictly convex
Young function.

Since Φ is increasing we also have

Ψ(t) 6 Φ(t),

because

Ψ(t) =

∫ t

0
Φ(t− s)e−s ds ≤ Φ(t)

∫ t

0
e−s ds ≤ Φ(t)

∫ ∞

0
e−s ds = Φ(t).

10



This implies that

Φ1(t) ≡ Φ(t) + Ψ(t)

is equivalent to Φ(t). Since Ψ is strictly convex, it follows that Φ1 is strictly
convex as well. Consequently, Φ1 fulfills the required conditions for the
searched Young function, and (4) follows.

In order to prove (2), we choose

Φ(t) =





2t2, when t 6 1

4t− 2, when 1 6 t 6 2

t2 + 2, when t > 2

which is not strictly convex. Then

qΦ = inf
t>0

(
tΦ′(t)

Φ(t)

)

= min

{
inf
t61

(
4t2

2t2

)
, inf
16t62

(
4t

4t− 2

)
, inf
t>2

(
2t2

t2 + 2

)}
=

4

3
> 1,

which shows that Φ satisfies all the searched properties. This gives (2).
Next we prove (3). Let

Φ(t) = t ln(1 + t), t > 0.

Then Φ is a Young function, and it follows by straight-forward computations
that qΦ = 1. We also have Φ′′(t) > 0, giving that Φ is strictly convex.
Consequently, Φ satisfies all searched properties, and (3) follows.

This gives the result. �

3. Continuity for pseudo-differential operators, Fourier

multipliers, and Fourier integral operators on Orlicz

spaces

In this section we extend properties on Lp continuity for various types
of Fourier type operators into continuity on Orlicz spaces. Especially we
perform such extensions for Hörmander’s improvement of Mihlin’s Fourier
multiplier theorem (see Theorem 3.4). We also deduce Orlicz space continu-
ity for suitable classes of pseudo-differential and Fourier integral operators
(see Theorems 3.3 and 3.5). Our investigations are based on a special case of
MarcinKiewicz type interpolation theorem for Orlicz spaces, deduced in [7].

We now recall the following interpolation theorem on Orlicz spaces, which
is a special case of [7, Theorem 5.1].

Proposition 3.1. Let Φ be a strict Young function and p0, p1 ∈ (0,∞] are

such that p0 < qΦ 6 pΦ < p1, where qΦ and pΦ are defined in (1.4) and

(1.3). Also let

T : Lp0(Rd) + Lp1(Rd) → wLp0(Rd) + wLp1(Rd) (3.1)

be a linear and continuous map which restricts to linear and continuous map-

pings

T :Lp0(Rd) → wLp0(Rd) and T : Lp1(Rd) → wLp1(Rd).

11



Then (3.1) restricts to linear and continuous mappings

T : LΦ(Rd) → LΦ(Rd) and T : wLΦ(Rd) → wLΦ(Rd). (3.2)

Remark 3.2. Let Φ and T be the same as in Proposition 3.1. Then the
continuity of the mappings in (3.2) means

‖Tf‖LΦ . ‖f‖LΦ , f ∈ LΦ(Rd)

and

‖Tf‖wLΦ . ‖f‖wLΦ , f ∈ wLΦ(Rd).

A combination of Propositions 1.11 and 3.1 gives the following result on
continuity properties for pseudo-differential operators on LΦ-spaces.

Theorem 3.3. Let Φ be a strict Young function, A ∈ M(d,R) and a ∈
S0
1,0(R

2d). Then

OpA(a) : L
Φ(Rd) → LΦ(Rd) and OpA(a) : wL

Φ(Rd) → wLΦ(Rd)

are continuous.

Proof. By Proposition 2.1 it follows that qΦ > 1 and pΦ < ∞. Choose
p0, p1 ∈ (1,∞) such that p0 < qΦ and p1 > pΦ. In view of Remark 1.2 and
Proposition 1.11,

‖Op(a)f‖wLpj 6 ‖Op(a)f‖Lpj 6 C‖f‖Lpj , f ∈ Lpj(Rd), j = 0, 1. (3.3)

Then it follows that OpA(a) extends uniquely to a continuous map from
Lp0(Rd) + Lp1(Rd) to wLp0(Rd) + wLp1(Rd) (see e. g. [2]). Hence the con-
ditions of Proposition 3.1 are fulfilled and the result follows. �

By using Proposition 1.12 instead of Proposition 1.11 in the previous proof
we obtain the following extension of Hörmander’s improvement of Mihlin’s
Fourier multiplier theorem. The details are left for the reader.

Theorem 3.4. Let Φ be a strict Young function and a ∈ L∞(Rd \0) be such

that

sup
R>0

(
R−d+2|α|

∫

AR

|∂αa(ξ)|2 dξ

)
(3.4)

is finite for every α ∈ N
d with |α| 6 [d2 ] + 1, where AR is the annulus

{ ξ ∈ R
d ; R < |ξ| < 2R }. Then a(D) is continuous on LΦ(Rd) and on

wLΦ(Rd).

Finally, employing Theorem 1.13, we prove the following continuity result
for Fourier integral operators on LΦ-spaces.

Theorem 3.5. Let Φ be a strict Young function, ϕ ∈ Phom
r a phase function,

a ∈ Sm,µ(R2d) an amplitude function such that

m < Td,Φ and µ < Td,Φ, (3.5)

where

Td,Φ = −(d− 1)max

{∣∣∣∣
1

pΦ
−

1

2

∣∣∣∣ ,
∣∣∣∣
1

qΦ
−

1

2

∣∣∣∣
}
.

Moreover, assume that |ξ| ≥ ε on the support of a, for some ε > 0. Then,

Opϕ(a) : L
Φ(Rd) → LΦ(Rd) and Opϕ(a) : wL

Φ(Rd) → wLΦ(Rd)
12



are continuous.

Remark 3.6. Notice the strict inequality in (3.5), differently from condi-
tion (1.14) in Theorem 1.13 for the Lp-boundedness of the Fourier integral
operators in (1.13). The sharpness of condition (3.5) will be investigated
elsewhere.

Proof. As above, by Proposition 2.1 it follows that qΦ > 1 and pΦ < ∞.
Choose p0, p1 ∈ (1,∞) such that p0 < qΦ and p1 > pΦ, and, as it is possible,
by continuity and the hypothesis (3.5), such that

m < −(d− 1)

∣∣∣∣
1

pj
−

1

2

∣∣∣∣ and µ < −(d− 1)

∣∣∣∣
1

pj
−

1

2

∣∣∣∣ , j = 0, 1.

In view of Remark 1.2 and Theorem 1.13,

‖Opϕ(a)f‖wLpj 6 ‖Opϕ(a)f‖Lpj 6 C‖f‖Lpj , f ∈ Lpj(Rd), j = 0, 1.
(3.6)

By Proposition 3.1, the claim follows, arguing as in the final step of the proof
of Theorem 3.3. �
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