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We exploit the presence of moduli fields in the AdS3 × S3 × CY2, where CY2 ¼ T4 or K3, solution to
type IIB superstring theory, to construct a U-fold solution with geometry AdS2 × S1 × S3 × CY2. This is
achieved by giving a nontrivial dependence of the moduli fields in SOð4; nÞ=SOð4Þ × SOðnÞ (n ¼ 4 for
CY2 ¼ T4 and n ¼ 20 for CY2 ¼ K3), on the coordinate η of a compact direction S1 along the boundary of
AdS3, so that these scalars, as functions of η, describe a geodesic on the corresponding moduli space. The
backreaction of these evolving scalars on spacetime amounts to a splitting of AdS3 into AdS2 × S1 with a
nontrivial monodromy along S1 defined by the geodesic. Choosing the monodromy matrix in SOð4; n;ZÞ,
this supergravity solution is conjectured to be a consistent superstring background. We generalize this
construction starting from an ungauged theory in D ¼ 2d, d odd, describing scalar fields nonminimally
coupled to (d − 1) forms and featuring solutions with topology AdSd × Sd, and moduli scalar fields. We
show, in this general setting, that giving the moduli fields a geodesic dependence on the η coordinate of an
S1 at the boundary of AdSd is sufficient to split this space into AdSd−1 × S1, with a monodromy along S1

defined by the starting and ending points of the geodesic. This mechanism seems to be at work in the
known J-fold solutions inD ¼ 10 type IIB theory and hints toward the existence of similar solutions in the
type IIB theory compactified on CY2. We argue that the holographic dual theory on these backgrounds is a
1þ 0 CFT on an interface in the 1þ 1 theory at the boundary of the original AdS3.

DOI: 10.1103/PhysRevD.109.086018

I. INTRODUCTION

Solutions of superstring theory of D ¼ 11 supergravity
with geometry AdSd ×Mint. have been the focus of intense
study because of their relevance to the AdS=CFT corre-
spondence. Type IIB superstring theory, in particular,
features a number of backgrounds of the form AdSd ×
Sd ×M10−2d which are characterized by moduli fields, i.e.
scalar fields which can be assigned an arbitrary constant
value throughout spacetime without affecting its geometry.
These fields are dual to exactly marginal operators in the
dual CFT. The simplest example is AdS5 × S5 on which the
holographic duality was originally conjectured, and whose
moduli fields are the type IIB axion and dilaton fields
which correspond to the complexified coupling constant in

the dual N ¼ 4 SYM theory. Other examples of such
backgrounds, or variants thereof, are the following1:

(i) AdS3 × S3 × T4 describing the near-horizon geom-
etry of a D1-D5 or of an F1-NS5 system, in which
the 5-branes are wrapped around the 4-torus T4;

(ii) AdS3 × S3 × K3 describing the near-horizon geo-
metry of a D1-D5 or of an F1-NS5 system, in which
the 5-branes are wrapped around the K3 manifold;

(iii) AdS5 × S5=Zk describing the near-horizon geo-
metry of a stack of D3-branes at the apex of an
orbifold C3=Zk with k > 1 [4,5].

The backgrounds in (i) can be described within type IIB
superstring theory compactified on T4 to D ¼ 6, which is
described by a maximal six-dimensional supergravity
featuring the global symmetry group SOð5; 5Þ at the
classical level. The classical moduli space of the AdS3 ×
S3 solution of the six-dimensional maximal supergravity is
SOð4; 5Þ=SOð4Þ × SOð5Þ, SOð4; 5Þ being the stabilizer in
SOð5; 5Þ of the brane charges.
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1For a review of the backgrounds AdS3 × S3 × CY2, with
CY2 ¼ T4 or K3, and of their holographic dual descriptions,
see [1–3]. In the present work, we shall not concentrate on the
dual CFT side of these backgrounds.
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The background in (ii) is a solution to type IIB
superstring theory compactified on K3, which is described,
at the classical level, by a half-maximal six-dimensional
supergravity and the classical moduli space is SOð4; 21Þ=
SOð4Þ × SOð21Þ.
Finally, in the last case (iii), the classical moduli space is

SUð1; kÞ=UðkÞ and acts on the k complexified coupling
constants of the dual necklace quiver theory [6,7].
All of these moduli occur in the d-dimensional gauged

supergravity featuring the AdSd factor (d ¼ 3 and 5 in the
above examples) as vacuum solution, as flat directions of
the scalar potential.
Assuming a dependence of these scalar fields on the

spacetime coordinates will in general affect the geometry
of the background in some nontrivial way. In [5,8–10] the
authors investigated spacetime-dependent configurations of
the moduli fields in theWick-rotated moduli space within the
Euclidean version of the theory. The resulting solutions were
described by geodesics in the (pseudo-Riemannian) moduli
space,whichwere classified according to their being lightlike,
spacelike, and timelike, and an interpretation of the corre-
sponding backgrounds, in the dual CFT, was worked out.
Here we shall work in a suitable, ungauged Lorentzian

theory in D ¼ 2d, d odd, exhibiting an AdSd × Sd back-
ground with moduli fields. We show how to construct an
AdSd−1 × S1 × Sd geometry from the AdSd × Sd one by
giving a suitable spatial dependence to the scalar moduli.
The construction proceeds along the following steps. We

first compactify one direction in the boundary of AdSd. Let
us denote by η the coordinate of the corresponding S1. We
then assume a suitable subset φa of the moduli fields to
depend on η only and to describe, in their evolution, a
geodesic in the moduli space as η varies in its defining
interval of values η∈ ½0; T�, T being the length of S1. As a
consequence of the backreaction of the evolving scalar
fields on spacetime, the AdSd × Sd background is trans-
formed into an AdSd−1 × S1 × Sd geometry, with a non-
trivial monodromy along S1. The two solutions cannot be
continuously deformed into one another. If we denote by
M0 ¼ G0=H0 the moduli space spanned by φa, and by O
and P the starting and ending points of the geodesic,
parametrized by φað0Þ and φaðTÞ, respectively, the G0

element g connecting P to O, defines the monodromy:
P ¼ gO. If we assume that G0ðZÞ is a symmetry of the
underlying superstring theory reduced to AdSd × Sd, then
by choosing g∈G0ðZÞ, the backgrounds defined by the
initial and final points of the geodesic would be identified
from the string perspective and the corresponding super-
gravity solution could be conjectured to be a consistent
superstring background. The component of the metric in
the S1 direction is proportional to the squared “velocity”
along the geodesic. Therefore the AdSd−1 × S1 × Sd is not
continuously connected to AdSd × Sd as this velocity is set
to zero and the moduli fields to constant values.

A prototype of this background is the nonsupersymmetric
J fold [11], with geometryAdS4 × S1 × S5, characterized by
an axiodilaton field evolving along a geodesic in their
moduli space SLð2;RÞ=SOð2Þ. In the corresponding J-fold
description, the initial and final points of the geodesic are
connected by a monodromy g ¼ Jn ∈SLð2;ZÞIIB, Jn being
a hyperbolic element of the type IIB global symmetry group.
However, the mechanism analyzed here, of the construction
of AdSd−1 × S1 × Sd U folds by giving the moduli fields a
geodesic dependence on the coordinate of S1, seems to be at
work in the J-fold solutions studied in [11–22] with
geometry AdS4 × S1 × S̃5, S̃5 being a deformed 5-sphere.
We shall further comment on this in the final Discussion
section.
In this paper, we shall focus on solutions of the form

AdS2 × S1 × S3 within type IIB theory compactified on a
CY2 manifold, which can either be T4 or K3. Such back-
grounds feature a richer class of monodromies. In the former
case, CY2 ¼ T4, the solutions have an Oð4; 4;ZÞ mono-
dromy, in the latter,CY2 ¼ K3, the monodromy is chosen in
Oð4; 20;ZÞ. These discrete groups are contained inside the
so-calledU-duality group which is conjectured to encode all
string dualities and to be an exact symmetry of the under-
lying, though yet unknown, unifying quantum theory of
gravity [23]. We shall work extensively on the CY2 ¼ T4

case and construct explicit U-fold solutions within the
effective N ¼ ð2; 2Þ six-dimensional supergravity.
The paper is organized as follows. In Sec. II we describe

the general construction of such AdSd−1 × S1 × Sd back-
grounds.We start from aAdSd × Sd solution of an ungauged
model in D ¼ 2d, d odd, which describes scalar fields,
spanning the symmetric target space of the sigmamodel, and
nonminimally coupled to a set of (d − 1) forms.We discuss,
in Sec. II A, the issue of the boundary conditions along S1 in
relation to the geodesic motion of the moduli fields. In
Sec. II A 1 we also introduce, on such backgrounds, the so-
called χ deformations originally studied, in the context
D ¼ 10 J-fold solutions, in [15,16,20,22]. To give concrete
examples of these solutions, we focus on the type IIB theory
compactified on a 4-torus.We start reviewing, in Sec. III, the
bosonic sector of the resulting ungauged maximal six-
dimensional supergravity. This is the model where we
construct explicit U-fold solutions. Then, in Sec. III B we
review the known AdS3 × S3 solutions and their string
interpretation. Starting from these backgrounds, in
Sec. III C we build the U fold for a certain choice of the
monodromy matrix.
In Appendix Awe review the geometric characterization

of the type IIB string origin of the scalar and tensor fields in
the maximal six-dimensional supergravity. In Appendix B
we review the general construction of a black-string
solution with SOð4Þ symmetry and the attractor mechanism
at work for the extremal ones. In Appendix C we review
the construction of the D1-D5 solution within the maximal
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six-dimensional theory, also in the presence of certain,
radially evolving, moduli fields. In Appendix D we give the
explicit form of the effective potential in the presence of
D1-D5 charges, as a function of the string 0-modes, and
discuss its extremization.

II. THE GENERAL CONSTRUCTION
OF THE AdSd − 1 × S1 × Sd U FOLD

In this section, we show how to build a new class of
solutions with topology AdSd−1 × S1 × Sd (with dimension
D ¼ 2d) by giving the moduli a suitable nontrivial profile.
For the sake of concreteness, we take d odd since we have
in mind the type IIB backgrounds with d ¼ 3 and 5.
We start considering a model, in D-dimensions, describ-

ing n nonchiral p forms CI
ðpÞ (I ¼ 1;…n), with p ¼ d − 1,

coupled to gravity and to a number of scalar fields ϕs,
s ¼ 1;…ns. The latter are described by a sigma model with
homogeneous symmetric, Riemannian target space:

Mscal ¼
G
H
:

We assume the isometry group G of the scalar manifold to
admit a pseudo-orthogonal representation Rp in terms of
Oðn; nÞ transformations. Our analysis will be extended to
models in which the number n of self-dual and m anti-self-
dual d-form field strengths of the p-form fields are differ-
ent. In this case, we require G to admit a representation in
terms of Oðn;mÞ transformations.
In an extended D-dimensional supergravity model, this

geometric feature is built in. As is the case in ungauged
D-dimensional supergravity, the scalar fields are nonmini-
mally coupled to the tensor ones, that is they couple to their
field strengths HI

ðdÞ ≡ dCI
ðpÞ of the latter in their kinetic

terms. The general form of the bosonic action we are
considering is2

L2d ¼ e2d

�
R −

1

2
∂μ̂ϕ

r
∂
μ̂ϕsGrsðϕÞ −

1

2
IðϕÞIJHI ·HJ

−
1

2
RðϕÞIJHI · �HJ

�
; ð2:2Þ

where GrsðϕÞ > 0 is the target space metric of the scalar
sigma model, and eD ¼ e2d ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij detðgμ̂ ν̂Þj
p

. The matrices
I IJðϕÞ > 0 and RIJðϕÞ ¼ −RJIðϕÞ are functions of the

scalar fields and describe the nonminimal coupling between
them and the tensor field strengths HI . We define the dual
field strengths as

GIμ̂1…μ̂d ¼ ϵμ̂1…μ̂dν̂1::ν̂d

∂L2d

∂HI
ν̂1…ν̂d

; ð2:3Þ

which, in matrix form and suppressing the spacetime
indices, reads

G ¼ −I⋆H −RH: ð2:4Þ

In what follows we treat the field strength and the dual field
strength on equal footing and define this column vector

H ¼ ðHMÞ ¼
�
HI

GI

�
: ð2:5Þ

From this the following twisted self-duality condition
follows

⋆H ¼ −ΩMH; ð2:6Þ

where

Ω¼
�
0 I

I 0

�
; MðϕÞ≡

�
I −RI−1R −RI−1

I−1R I−1

�
; ð2:7Þ

Ω is the Oðn; nÞ-invariant matrix, Ω2 ¼ I, and M is a
scalar-dependent pseudo-orthogonal, positive-definite
symmetric matrix: MΩM ¼ Ω. The Maxwell equations
and the Bianchi equations read

dH ¼ 0: ð2:8Þ

The Einstein and scalar field equations of motion for this
model are

Rμν −
1

2
gμνR ¼ TðsÞ

μν þ TðHÞ
μν ;

Dμ̂ð∂μ̂ϕsÞ ¼ ∇μ̂ð∂μ̂ϕsÞ þ Γ̃s
uv∂μ̂ϕ

u
∂
μ̂ϕv

¼ 1

4
Gst HT

∂tMH; ð2:9Þ

where the energy-momentum tensors are defined as

TðsÞ
μ̂ ν̂ ≡ 1

2
Grs

�
∂μ̂ϕ

r
∂ν̂ϕ

s −
1

2
gμ̂ ν̂∂ρ̂ϕr

∂
ρ̂ϕs

�
;

TðHÞ
μ̂ ν̂ ≡ 1

4p!
HT

μ̂μ̂1…μ̂p
MðϕÞHν̂

μ̂1…μ̂p ; ð2:10Þ

and Γ̃s
uvðϕÞ denotes the Levi-Civita connection on the

scalar manifold. The scalar kinetic term can also be written
in the following form

2Throughout the paper we adopt the mostly plus notation for
the metric. Moreover we define

σðpÞ · ωðdÞ ≡ σμ̂1…μ̂dω
μ̂1…μ̂d=d!;

ð�ωÞμ̂1…μ̂D−p
≡ eD

p!
ϵμ̂1…μ̂D−p ν̂1…ν̂pω

ν̂1…ν̂p ; ð2:1Þ

where ϵ0;…D−1 ¼ 1 and ⋆2ωðpÞ ¼ ð−1ÞðD−pÞpþ1ωðpÞ.
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k
8
TrðM−1

∂MM−1
∂MÞ ¼ 1

2
Gst∂μ̂ϕ

s
∂
μ̂ϕt; ð2:11Þ

where the constant k depends of the matrix representation
of M.
It is straightforward to prove, using the above expression

for TðHÞ, that the trace of this tensor vanishes:

TðHÞ
μ̂
μ̂ ¼ 1

8
HT

μ̂MHμ̂ ¼ 1

8
HTM∧⋆H

¼−
1

8
HT ∧MΩMH¼−

1

8
HT ∧ΩH¼ 0: ð2:12Þ

The global symmetry of the above equations in super-
gravity is the invariance under the two-fold action of the
group G on the scalar fields as the isometry group of the
scalar manifold, and on the field strengths H through a
pseudo-orthogonal representation Rp (we suppress all
pseudo-orthogonal indices)3:

g∈G⟶
Rp

Rp½g�∈Oðn; nÞ;
H → H0 ¼ Rp½g�H;

MðϕÞ → Mðϕ0Þ ¼ Rp½g�−TMðϕÞRp½g�−1: ð2:13Þ

In extended supergravities the matrix MðϕÞ obeys the
above transformation property since it is expressed in terms
of the coset representative LðϕsÞ of Mscal in the represen-
tation Rp as follows4:

MðϕÞ ¼ Rp½LðϕÞ�−TRp½LðϕÞ�−1: ð2:14Þ

The transformation property (2.13) of MðϕÞ then follows
from the action of an isometry element g∈G on ϕs:

gLðϕÞ ¼ Lðϕ0Þhðg;ϕÞ; hðg;ϕÞ∈H ð2:15Þ

and the fact that Rp½hðg;ϕÞ�∈OðnÞ × OðnÞ. We now
consider solitonic solutions described only by the scalar
and the tensor fields, with spacetime geometry Md ×w Sd,
where we will choose Md ¼ AdSd−1 × S1. The metric will
read

ds2 ¼ gμνdxμdxν þ gijdξidξj

¼ v21ds
2
AdSd−1

þ v23dη
2 þ v22ds

2
Sd
; ð2:16Þ

where μ ¼ 0;…; d − 1 and i ¼ 1;…; d, ds2AdSd−1 is the
metric of an AdSd−1 space of radius 1 and ds2Sd is the metric
of a Sd-sphere of radius 1. The coefficients v1, v2, v3
are constant and we have split the Md coordinates

ðxμÞ ¼ ðxα; ηÞ, where α ¼ 0…; d − 2 and xd−1 ¼ η. We
shall also define

ẽd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgμνÞj

q
; ed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgijÞ

q
:

The radius v2 of the d-sphere will also be denoted by L.
The general ansatz for the tensor field strengths reads

H ¼ −ΩMΓϵMd
þ ΓϵSd ; ð2:17Þ

where ϵM, ϵSd denote the volume densities of the manifold
Md and Sd:

ϵM ≡ ẽd
d!Ld ϵμ1…μddx

μ1 ∧ …dxμd ;

ϵSd ≡ ed
d!Ld ϵi1…iddξ

i1 ∧ …dξid ;

where we recall that L is the radius v2 of the d-sphere. We
have also denoted by Γ ¼ ðΓMÞ the pseudo-orthogonal
vector of charges:

ΓM ≡ 1

SSd

Z
Sd
HM; ð2:18Þ

where SSd is the surface area of a d-sphere of radius 1. This
ansatz is covariant under (2.13) provided the charge vector
is transformed accordingly:

g∈G; Γ → Γ0 ¼ Rp½g�Γ: ð2:19Þ

Quantum effects would restrict ΓM to belong to an even,
unimodular charge lattice Γn;n and this would, in turn,
break the global symmetry group G to a discrete subgroup
GðZÞ ∼Rp½G� ∩ Oðn; n;ZÞ preserving the lattice Γn;n.
In the effective supergravity description of superstring/
M-theories, this group GðZÞ was conjectured to encode the
known string dualities [23]. Field configurations connected
byGðZÞ should be identified from the string theory point of
view. The values of the D-dimensional scalar fields defin-
ing inequivalent string backgrounds should then span the
manifold:

GðZÞnG=H:

In chiral models, in which the number n of self-dual and
the number m of anti-self-dual d-form field strengths in D
dimensions are different, as is the case of type IIB super-
string theory compactified in K3 to D ¼ 6, the duality
action of the global symmetry group G on the d-form field
strengths is implemented by transformations in Oðn;mÞ:
Rp½G� ⊂ Oðn;mÞ. Quantum corrections break Oðn;mÞ to
Oðn;m;ZÞ leaving the even, unimodular charge lattice Γn;m

invariant. The global symmetry group is consequently

3For the sake of simplicity, we use the shorthand notation
A−T ≡ ðA−1ÞT .

4Here we describe the scalar manifold as a left-coset space.
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broken to GðZÞ. Our construction also applies to this more
general setting.
In the remainder of this paragraph, we shall focus on the

classical description and thus consider the global symmetry
group G to be continuous.
As for the space-time dependence of the scalar fields, we

need first to define the solution’s moduli. We define the
little group, or stabilizer, of the charge vector Γ the
maximal subgroup Gl of G such that

∀ g∈Gl∶ Rp½g�Γ ¼ Γ: ð2:20Þ

If Hl denotes the maximal compact subgroup of Gl, the
moduli fields φu, u ¼ 1;…; nl, are defined as the subset of
scalar fields ϕs spanning the submanifold,

Ml ≡ Gl

Hl
; ð2:21Þ

ofMscal at the origin. We split the scalar fields accordingly:

fϕsg ¼ ðφu;ϕkÞ; u ¼ 1;…; nl; k ¼ 1;…; ns − nl;

by defining the coset representative of Mscal as [24]

LðϕsÞ ¼ LlðφuÞL̂ðϕkÞ; LlðφuÞ∈ Gl

Hl
; ð2:22Þ

where the scalars ϕ̂≡ ðϕkÞ are defined as follows. Consider
the Cartan decomposition of the Lie algebra G ofG into the
Lie algebra H generating H and the coset space K
isomorphic to the tangent space to Mscal at the origin:

G ¼ H ⊕ K: ð2:23Þ

The latter space K supports a representation of H under its
adjoint action. This representation is completely reducible
under the adjoint action of Hl ⊂ H and K splits accord-
ingly in Hl-invariant subspaces

K ¼ Kl ⊕ K̂; ð2:24Þ

where Kl is the coset space of Gl=Hl, while K̂ supports a
representation of Hl. We define

L̂ðϕkÞ∈ eK̂: ð2:25Þ

We note that the scalar fields φu span a symmetric
submanifold Gl=Hl of Mscal only at ϕk ¼ 0. For fixed
ϕ̂ ¼ ðϕkÞ ≠ ð0Þ, φu span a space which is not a symmetric
submanifold Gl=Hl of Mscal since this space does not
support a transitive action of Gl. Indeed, using the short-
hand notation ϕ≡ ðϕsÞ and φl ≡ ðφuÞ, the action of an
element gl ∈Gl on these scalars also affects ϕ̂:

glLðϕÞ ¼ glLlðφlÞL̂ðϕ̂Þ ¼ Llðφ0
lÞL̂ðϕ̂0Þhl; ð2:26Þ

where hl ∈Hl is the compensating transformation in

glLlðφlÞ ¼ Llðφ0
lÞhl

and

L̂ðϕ̂0Þ≡ hlL̂ðϕ̂Þh−1l :

Since, for our analysis, we are interested in a symmetric
submanifold M0 of Mscal at fixed, nonvanishing values
ϕ̂� ≡ ðϕk�Þ of ϕ̂ ¼ ðϕkÞ (to be identified with the extremum
of the scalar potential) we will have to restrict the moduli
fields to a symmetric submanifold G0=H0 of Gl=Hl
(G0 ⊂ Gl; H0 ⊂ Hl) characterized by the property that
½G0;Lðϕ̂�Þ� ¼ 0. To this end, we first reduce ϕ̂� to its
simplest form (normal form), by acting on it using Hl
and then define G0 to be a noncompact, semisimple
subgroup of Gl commuting with Lðϕ̂�Þ. The manifold
M0 ¼ G0=H0,H0 being the maximal compact subgroup of
G0 is now a symmetric submanifold ofMscal at ϕ̂ ¼ ϕ̂� and,
as such, it is totally geodesic.5 Let us denote a point in it by
φ0 ≡ ðφaÞ, a ¼ 1;…; nm, where nm < nl is the dimension
of M0.
Using the ansatz (2.17) and the property of M of being

pseudo-orthogonal symmetric, we can write

HT ∂

∂ϕsMH ¼ 4
∂

∂ϕs Vðϕ;ΓÞL−2d; ð2:27Þ

where

Vðϕ;ΓÞ≡ 1

2
ΓTMðϕÞΓ: ð2:28Þ

The scalar field equations, on the ansatz, read

Dμ̂ð∂μ̂ϕsÞ ¼ ∇μ̂ð∂μ̂ϕsÞ þ Γ̃s
uv∂μ̂ϕ

u
∂
μ̂ϕv

¼ Gst
∂tV L−2d: ð2:29Þ

Notice that, in the chosen parametrization defined by the
coset representative of the form (2.22), the scalar potential
is independent of the moduli fields φu. Indeed, by using
Eqs. (2.14) and (2.20):

Vðφs;ΓMÞ ¼ Vðφu;ϕk;ΓMÞ ¼ Vðϕk;ΓMÞ:

Let us define ϕ̂� ≡ ðϕk�Þ to be the value of the nonmoduli
fields ϕk which extremize the scalar potential V:

5A totally geodesic submanifoldM0 of a Riemannian manifold
Mscal is characterized by the property that a geodesic in Mscal
originating in a point of M0 and initially tangent to M0 lies
entirely in the submanifold itself.
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∂V
∂ϕk

����
ϕk¼ϕk�

¼ 0 ⇒ ϕk� ¼ ϕk�ðΓÞ: ð2:30Þ

The fixed values ϕ̂� ¼ ðϕk�Þ only depend on the quantized
charges and are defined modulo the action of a Hl trans-
formation. In light of our previous discussion, we fix the
action of Hl to bring ϕ̂� to its normal form and then restrict
the moduli fields to the coordinates φa, a ¼ 1;…; nm, of the
symmetric submanifold M0 ¼ G0=H0. The value of the
scalar potential at the minimum is denoted by V� and only
depends on the quantized charges ΓM:

V�ðΓÞ ¼ Vðϕk�;ΓÞ > 0:

We complete our ansatz by choosing

ϕkðxÞ≡ ϕk�; φaðxÞ ¼ φaðηÞ; ð2:31Þ

where η is the coordinate parametrizing S1 in Md ¼
AdSd−1 × S1. All other scalar fields are set to zero. The
scalar field equation reduces to the geodesic equation for
φaðηÞ on M0:

φ̈a þ Γ̃a
bcφ̇

bφ̇c ¼ gηη Gak ∂V
∂ϕk

����
ϕk¼ϕk�

L−2d ¼ 0; ð2:32Þ

where we have used the fact that V is independent of φa and
have defined φ̇≡ dφ=dη. Having assumed the nonmoduli
fields ϕk to be constant and equal to the values that minimize
V, all the derivatives of ϕk on the solution vanish and the
corresponding field equations read

gηηΓ̃k
bcφ̇

bφ̇c ¼ L−2dGkk0 ∂V

∂ϕk0

����
ϕk¼ϕk�

L−2d ¼ 0;

which is satisfied provided Γ̃k
bc ¼ 0 for ϕk ¼ ϕk� and φa

generic. This condition follows from the property of the
moduli spaceG0=H0 of being a totally geodesic submanifold
of G=H.6 7

The moduli fields φaðηÞ, therefore, describe a geodesic
in M0. Let us denote by κ the corresponding line element
(or “velocity”) along it:

κ2 ¼ 1

2
Gabφ̇

aφ̇b: ð2:33Þ

The reader can verify that the tensor-field equations dHM ¼
0 are satisfied by the ansatz.
As far as the Einstein equations are concerned, the only

nonvanishing components of the Riemann and Ricci
tensors are

Rαβγδ ¼ −v−21 ðgαγgβδ − gαδgβγÞ ⇒;

Rαβ ¼ Rαγβ
γ ¼ −

ðd − 2Þ
v21

gαβ;

Rijkl ¼ v−22 ðgikgjl − gilgjkÞ ⇒;

Rij ¼ Rikj
k ¼ ðd − 1Þ

v22
gij: ð2:34Þ

The Einstein equation can be conveniently recast in the
form

Rμ̂ ν̂ ¼
1

2
Grs∂μ̂ϕ

r
∂ν̂ϕ

s þ TðHÞ
μ̂ ν̂ : ð2:35Þ

The components of TðHÞ are

TðHÞ
αβ ¼ −

1

2
V�L−2dgαβ;

TðHÞ
ηη ¼ −

1

2
V�v23L

−2d;

TðHÞ
ij ¼ 1

2
V�L−2dgij: ð2:36Þ

Taking into account the contribution to the energy-momentum
tensor coming from the geodesic motion of the moduli
fields φa, the Einstein equations imply the following
relations:

v21¼
2ðd−2ÞL2d

V�
; v22¼L2¼2ðd−1ÞL2d

V�
; v23¼

2κ2L2d

V�
:

ð2:37Þ

From the second equation, it follows that

L2ðd−1Þ ¼ V�
2ðd − 1Þ ;

and, in terms of L, the radii v1 of AdSd−1 and v3 of S1 read

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 1

r
L; v3 ¼

κffiffiffiffiffiffiffiffiffiffiffi
d − 1

p L:

We notice that the radius v3 of S1 is proportional to
the velocity along the geodesic, that is its constant unit
measure κ.
This solution is to be compared to the known one with

geometry AdSd × Sd in which

6Notice indeed that the coset space K0 ⊂ K of G0=H0 is also
contained in the tangent space K� ≡ L̂ðϕk�ÞKL̂ðϕk�Þ−1 to Mscal at
the point φu ¼ 0;ϕk ¼ ϕk� since K0 ¼ L̂ðϕk�ÞK0L̂ðϕk�Þ−1 ⊂ K�.
Being M0 symmetric, it follows that ½½K0;K0�;K0� ⊂ K0, namely
K0 is a Lie triple system and thus M0 is totally geodesic [25].

7By the same token, also the field equations for the moduli
fields φu, u ≠ a, which are set to zero, are satisfied since
Γ̃u

bc ¼ 0, u ≠ a.
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ϕk ¼ ϕk�ðΓÞ ¼ const; φu ¼ const:

In that case, the ansatz for the metric reads

ds2¼ gμνdxμdxνþgijdξidξj¼ v21ds
2
AdSd

þv22ds
2
Sd
; ð2:38Þ

and that for the tensor field strengths has the same general
form (2.17). For this solution, we find

v21 ¼ v22 ¼ L2 ¼ 2ðd− 1ÞL2d

V�
⇒ v1 ¼ L¼

�
V�

2ðd− 1Þ
� 1

2ðd−1Þ
:

ð2:39Þ

Notice that the AdSd−1 × S1 × Sd discussed above and
the known AdSd × Sd solution are not continuously con-
nected. Indeed setting κ ¼ 0 amounts in the former to
shrinking S1 to zero radius. We may say that the AdSd−1 ×
S1 × Sd solution may be obtained from the AdSd × Sd by
compactifying one direction on the boundary of AdSd and
giving the moduli fields φa a geodesic dependence on the
coordinate of the corresponding S1. This procedure
amounts to performing a Scherk-Schwarz reduction on
S1 with a twist matrix described by a hyperbolic element of
G0, as we will show below. It is the backreaction of the
evolving scalar fields on space-time that deforms AdSd
into AdSd−1 × S1.
It is interesting to note that this construction can be

generalized. We can take k directions along the boundary of
AdSd and compactify them, allowing the moduli to depend
on the coordinates η1;…; ηk along these k directions:

φa ¼ φaðηÞ ¼ φaðη1;…; ηkÞ;

where η≡ ðη1;…; ηkÞ, while the nonmoduli fields ϕk are
still fixed at their attractor values ϕk�. We assume d − k > 1.
Let us further assume that there is a symmetric submanifold
of Gl=Hl consisting of the product of k factors:

M0 ¼
G0

H0

¼ G1

H1

×
G2

H2

×… ×
Gk

Hk
; ð2:40Þ

where the elements of G0 ¼ G1 × � � � ×Gk are required to
commute with L̂ðϕ̂�Þ. Then we take φaðη1;…; ηkÞ to
describe k geodesics, one within each factor Gj

Hj
, j ¼

1;…; k, so that

1

2
GabðφðηÞÞ∂ηiφa

∂ηjφ
b ¼ δijκ

2
i:

The backreaction of the moduli on the background yields a
spacetime with geometry:

AdSd−k × S1 ×… × S1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k

× Sd: ð2:41Þ

Writing the metric in the form

ds2 ¼ gμνdxμdxν þ gijdξidξj

¼ v21ds
2
AdSd−k

þ
Xk
j¼1

v22þjdη
2
j þ v22ds

2
Sd
; ð2:42Þ

where η1;…; ηk parametrize the k circles, we find, from the
Einstein equation

v21 ¼
2ðd − k − 1ÞL2d

V�
; v22 ¼ L2 ¼ 2ðd − 1ÞL2d

V�
;

v2jþ2 ¼
2κ2jL

2d

V�
; j ¼ 1;…k: ð2:43Þ

Having assumed d − k > 1, v1 is nonvanishing. The above
equations imply

L2ðd−1Þ ¼ V�
2ðd − 1Þ ; v1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d − 1 − k
d − 1

r
L;

vjþ2 ¼
κjffiffiffiffiffiffiffiffiffiffiffi
d − 1

p L:

In this section, we proved that the general ansatz describing
the new solutions satisfies the field equations. In this, no
role is played by the global properties of the solutions
themselves. In particular, we could have also considered
our backgrounds in the form

AdSd−k ×R ×… ×R|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

× Sd: ð2:44Þ

For d ¼ 5 and k ¼ 1 the background is a singular
instance of Janus solutions [26–29] in type IIB superstring
theory.
However, since the geodesics on the moduli space

G0=H0 are noncompact, if the affine parameter ηj varies
in R, the corresponding geodesic would stretch to the
boundary of the manifold and the solution would not be
regular. Considering the product of k circles S1, we need
to specify, in a consistent way, the corresponding boun-
dary conditions of the bosonic fields.8 We shall expand on
this issue, within superstring theory, in the next subsection.
Let us conclude this section by noting that if we started

from the background EAdSd × Sd in the Euclidean version
of the model, the moduli space would be a pseudo-
Riemannian, Wick-rotated version of the one in the
Lorentzian theory. As such it can also describe timelike
geodesics for which

8Alternatively, we could consider a product of k finite intervals
(Ik) or of k circles.
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1

2
Gabφ̇

aφ̇b ¼ −κ2 < 0: ð2:45Þ

These geodesics would allow for a decomposition of the
d-sphere yielding geometries of the form

EAdSd × S1 ×… × S1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k

× Sd−k: ð2:46Þ

A. Boundary conditions on S1

Consider the solution with spacetime of the form
AdSd−1 × S1 × Sd within superstring theory. Let us
denote by T the length of S1 so that η∈ ½0; TÞ. Since the
dependence of the moduli fields φaðηÞ on η describes a
geodesic on M0 which connects two distinct points as we
move around the circle S1, consistency of the background
as a string theory solution requires the monodromy matrix
connecting the initial and final points to be a string duality,
namely to belong to G0ðZÞ. More precisely, suppose φaðηÞ
describe a geodesic on M0 connecting an initial point,
which we can choose to be the origin of the moduli space
φað0Þ ¼ 0, to a final point in M0 with coordinate φaðTÞ.
The coset representative along the geodesic defines an
η-dependent “twist” matrix in G0=H0:

AðηÞ≡ L0ðφaðηÞÞ: ð2:47Þ

The monodromy matrix reads

M≡AðTÞAð0Þ−1 ð2:48Þ

and maps the coset representative inMscal at η ¼ 0 to that at
η ¼ T:

MLðφað0Þ; ϕ̂�Þ ¼ LðφaðTÞ; ϕ̂�Þ: ð2:49Þ

This matrix is defined modulo a compensating transforma-
tion in the isotropy group of φað0Þ in M0:

M ∼Mh0; h0 ∈L0ðφað0ÞÞH0L0ðφað0ÞÞ−1: ð2:50Þ

We require one representative of the equivalence class ofM
to be an integer matrix:

M∈G0ðZÞ: ð2:51Þ

A conjugation of M by an element of G0ðZÞ can be
reabsorbed by a redefinition of the scalar fields φa in the
background so that it is unphysical. The monodromy
matrix is therefore defined by conjugacy classes of hyper-
bolic elements in G0ðZÞ.
The geodesic on M0 is uniquely defined by the ini-

tial point φ0ð0Þ≡ ðφað0ÞÞ and by a velocity vector
Q∈Tφ0ð0ÞðM0Þ. The latter can be described by a matrix
of the form

Q ¼ L0ðφ0ð0ÞÞQ0L0ðφ0ð0ÞÞ−1;

where Q0, being an element of the coset space of M0 in a
suitable basis of the chosen real matrix representation, is a
symmetric matrix: Q0 ¼ QT

0 . The moduli along the corre-
sponding geodesic φ0ðηÞ≡ ðφaðηÞÞ are solutions to the
matrix equation:

M0ðφ0ðηÞÞ≡ L0ðφ0ðηÞÞL0ðφ0ðηÞÞT
¼ M0ðφ0ð0ÞÞeQTη

¼ L0ðφ0ð0ÞÞeQ0 ηL0ðφ0ð0ÞÞT: ð2:52Þ

In terms of Q0 the velocity κ along the geodesic reads

κ2 ¼ k
8
TrðQ2

0Þ: ð2:53Þ

We can restrict ourselves to geodesics originating in the
origin of M0, φað0Þ ¼ 0, where L0ðφ0ð0ÞÞ ¼ L0ð0Þ ¼ 1.
Having chosenM∈G0ðZÞ, then T andQ0 have to be fixed
so that

M0ðφ0ðTÞÞ¼MM0ðφ0ð0ÞÞMT ¼MMT ¼ eQ0T: ð2:54Þ

In the more general solution (2.41), we have a mono-
dromy matrix Mj associated with each of the k 1-cycles.
Consistency as a string background requires, for each of
these matrices,

Mj ∈GjðZÞ ⊂ GðZÞ; j ¼ 1;…; k: ð2:55Þ

The solutions described here are instances of U folds [30].
They feature noncontractible 1-cycles along which there is
a monodromymatrix in a string duality inGðZÞ. In general,
this duality is a combination of S and T dualities and it is
referred to as U duality.

1. Deformations of the global geometry of the solution

Let us discuss a deformation of the global geometry of
the solution effected by introducing suitable metric moduli.
Since d is an odd number, it is convenient to choose the
following parametrization for Sd:

fξig¼fμI;ϕIg; i¼1;…;d; I¼1;…;p¼dþ1

2
; ð2:56Þ

where μI ≥ 0;ϕI ∈ ½0; 2πÞ, in which its metric reads

ds2
Sd

¼ L2
Xp
I¼1

ðdμ2I þ μ2I dϕ
2
I Þ: ð2:57Þ

The coordinates μI are subject to the constraint
Pp

I¼1μ
2
I ¼1.

Let us now perform, on the solution discussed in the
previous sections, the following local change of variables:
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ϕI → ϕ0
I ¼ ϕI þ χIη:

The resulting solution is locally, though not globally, equiv-
alent to the original one, as discussed in [15,16,20,22].
The parameters χI are metric deformation of the manifold
S1 × Sd which can be understood as follows. Consider the
local torus

Tpþ1 ¼ S1ϕ1
× S1ϕ2

× � � � × S1η;

whereS1ϕI
are the local circles parametrizedbyϕI andS1η is the

circle parametrized byη. For χI ¼ 0,Tpþ1 can bedescribed as
the quotient

Tpþ1 ¼ Rpþ1=Λcubic;

where Λcubic is a cubic lattice generated by an orthonormal
basis of vectorsuI;u. The positionvectorx of a point inTpþ1

is defined modulo a vector in the lattice (summation over the
repeated index I is understood):

x¼ ϕI

2π
uIþ

η

T
u∼xþnIuI þnu; nI;n∈Z; ð2:58Þ

which implies ϕI ∼ ϕI þ 2π and η ∼ ηþ T.
After the deformation, that is for χI ≠ 0, the local torus is

described as

Tpþ1 ¼ Rpþ1=Λ½χI�;

where Λ½χI� is a lattice generated by the nonorthogonal
basis fũI; ũg, where

ũI ≡ uI; ũ≡ χIT
2π

uI þ u:

Now the position vector of a point on the local torus is
subject to the identification:

x ¼ ϕI

2π
uI þ

η

T
ũ ∼ xþ nIuI þ nũ; ni; n∈Z; ð2:59Þ

which implies the same identifications on ϕi; η given
earlier. Defining instead new coordinates ϕ0

I; η
0 with respect

to the old orthonormal basis

x ¼ ϕ0
I

2π
uI þ

η0

T
u;

we have the following relation:

ϕ0
I ¼ ϕI þ χIη; η0 ¼ η:

While in the coordinates fϕI; ηg the parameters χI appear
in the metric, in the coordinates fϕ0

I; ηg, they only appear in
twisted identifications:

ϕ0
I ∼ ϕ0

I þ 2π; η ∼ ηþ T ∧ ϕ0
I ∼ ϕ0

I þ χIT: ð2:60Þ
The deformations χI break the isometry group SOðdþ 1Þ
of Sd to its maximal torus Uð1Þp acting on ϕI as shift
isometries.
This global deformation was originally studied in

[15,16,20,22] in more sophisticated variants of the U folds
described here, for d ¼ 5, and the parameters χI corre-
sponded to exactly marginal deformations of the dual
Supersymmetric conformal field theory (SCFT) at the
boundary.
From the above characterization, it follows that χI are

periodic since

χI → χI �
2π

T
⇒ ũI → ũI; ũ→ ũ� ũI∈Λ½χI�; ð2:61Þ

so that χI ∼ χI � 2π
T .

B. Examples in type IIB superstring theory

1. Type IIB in D= 10

The first setting where our construction can be applied is
type IIB theory in ten dimensions [31]. The global
symmetry group of the classical low-energy supergravity
description is G ¼ SLð2;RÞIIB within which only GðZÞ ¼
SLð2;ZÞIIB is a symmetry of the superstring theory. It is
known that this theory admits maximally supersymmetric
background of the form AdS5 × S5 in which the three-form
field strengths vanish and the self-dual five-form field
strength F̂ð5Þ ¼� F̂ð5Þ has a nonvanishing flux, related to the
radii of the AdS5 and S5. The construction discussed earlier
applies with d ¼ 5, p ¼ 4. In this case the representation is
Rp ¼ R4 ¼ 1, namely it is the singlet representation since
the electric and magnetic five-form field strengths coincide
G ¼ F ¼ H ¼ F̂ð5Þ, MðϕÞ ¼ 1. Moreover, G0 ¼ G and
the scalar manifold

Mscal ¼
G
H

¼ SLð2;RÞIIB
SOð2Þ

coincides with the moduli space M0 ¼ G0=H0 and
describes the axion Cð0Þ and the dilaton ϕ. In our pre-
vious notation we identify φa ¼ ðϕ; Cð0ÞÞ and the (left)
coset representative in the 2 of SLð2;RÞ is L ¼ L0ðφaÞ ¼
Lð2Þðϕ; Cð0ÞÞ, where Lð2Þ is defined in Eq. (3.6) below.9

9In this representation, the action from the left of a matrix ðac b
dÞ,

with ad − bc ¼ 1, amounts to the following transformation
on the complex axion-dilaton field ρ ¼ Cð0Þ þ ie−ϕ: ρ → ρ0 ¼
ðdρþ cÞ=ðbρþ aÞ.
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The background with geometry AdS4 × S1 × S5 was con-
structed in [11]. The axion and the dilaton describe a
geodesic on Mscal. This background is nonsupersymmetric
and unstable. The solution in [11] can be generalized by
considering a geodesic in the moduli space originating in a
generic point ϕð0Þ; Cð0Þð0Þ with velocity κ:

eϕðηÞ ¼ coshð
ffiffiffi
2

p
κηÞeϕð0Þ;

Cð0ÞðηÞ ¼ e−ϕð0Þ tanh ð
ffiffiffi
2

p
κ ηÞ þ Cð0Þð0Þ: ð2:62Þ

This solution, however, does not satisfy the appropriate
boundary conditions for it to be a possible solution to type
IIB superstring theory: the monodromy matrix as η →
ηþ T must be in SLð2;ZÞIIB. Choosing, for instance,10

M¼ Jn≡−ST n¼
�

n 1

−1 0

�
; n∈Z;n> 0; ð2:63Þ

and Cð0Þ ¼ ϕð0Þ ¼ 0, solving Eq. (2.54), we find the
following solution:

eϕðηÞ ¼ n sinh ð ffiffiffi
2

p
κηÞffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 4
p þ cosh ð

ffiffiffi
2

p
κηÞ;

Cð0ÞðηÞ ¼ −
2 sinh ð ffiffiffi

2
p

κηÞffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 4

p
cosh ð ffiffiffi

2
p

κηÞ þ n sinh ð ffiffiffi
2

p
κηÞ ;

T ¼ 1ffiffiffi
2

p
κ
cosh−1

�
n2

2
þ 1

�
: ð2:64Þ

Defining the complex field ρ ¼ Cð0Þ þ ie−ϕ one can verify
that

ρðTÞ ¼ −
1

ρð0Þ þ n
; ð2:65Þ

which is the effect of the transformation Jn ¼ −ST n on
ρð0Þ. Notice that, on this solution

M ¼ AðTÞAð0Þ−1h0 ¼ Lð2ÞðϕðTÞ;
Cð0ÞðTÞÞLð2Þðϕð0Þ; Cð0Þð0ÞÞ−1h0;

where the compensating transformation h0 reads

h0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2
p

�
n 1

−1 n

�
∈SOð2Þ: ð2:66Þ

We could start from the background of the form [4,6,7]

AdS5 × S5=Zk; ð2:67Þ

which preserves 16 supercharges. The classical super-
gravity description features the following moduli space:

Mscal ¼
SUð1; kÞ

Uð1Þ × SUðkÞ : ð2:68Þ

It describes k complex scalars dual to the complexified
coupling constants τi of the dual N ¼ 2 supersymmetric
Ak−1 quiver gauge theory. Also in this case Rp ¼ R4 ¼ 1,
G ¼ F ¼ H ¼ F̂ð5Þ, MðϕÞ ¼ 1, and G0 ¼ G ¼ SUð1; kÞ.
Applying our construction to this situation would require
the monodromy matrix to belong to the quantum duality
which generalizes the SLð2;ZÞ symmetry for the k ¼ 1
case to k > 1. For a discussion on the definition of this
group and its relation to the classical symmetry SUð1; kÞ of
the supergravity moduli space see, for instance, [6,32].

2. Type IIB on T4 or K3

The six-dimensional theory resulting from the compac-
tification of type IIB superstring theory on a 4-torus T4 is
described, in its low-energy limit, by the maximal
N ¼ ð2; 2Þ six-dimensional supergravity [33]. This theory
features a solution with spacetime AdS3 × S3, describing
the near-horizon geometry of a system of D1-D5-branes
with two common Neumann directions (at the boundary of
AdS3) and the 5-branes wrapping the 4-torus. Alternatively,
in an S-dual picture, the same background describes the
near-horizon geometry of an F1-NS5 system.
The global symmetry group G of the classical six-

dimensional supergravity is spinð5; 5Þ, double cover of
SOð5; 5Þ. Quantum effects break this group to GðZÞ ¼
spinð5; 5;ZÞ, which is conjectured to encode superstring U
dualities. This group acts on the charge lattice Γ5;5. The
bosonic sector of the theory describes n ¼ 5 two-forms, 25
scalar fields in the coset (in the classical theory)

Mscal ¼
G
H

¼ spinð5; 5Þ
½ðSpinð5Þ × spinð5ÞÞ=Z2�

;

and 16 vector fields in the 16 of spinð5; 5Þ. The ten self-
dual and anti-self-dual components of the three-form field
strengths HM

μ̂ ν̂ ρ̂, M ¼ 1…; 10, transform under the action
of the classical global symmetry group SOð5; 5Þ in the
representation R2 ¼ 10. On the bosonic backgrounds
under consideration, the vector fields vanish. Since we
shall be focusing on the bosonic sector only, the global
symmetry group G will be described as SOð5; 5Þ. The

10In the definition of Jn, S ≡ ð0
1
−1
0
Þ and T ≡ ð1

1
0
1
Þ. Jn is an

elliptic element of SLð2;ZÞ for n ¼ 0; 1, parabolic for n ¼ 2 and
hyperbolic for n > 2. It was shown that hyperbolic elements of
SLð2;ZÞ, modulo conjugations, can be either brought to the
standard form Jn, n > 2, or to coincide with sporadic mono-
dromies, see [30].
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charge vector ΓM of the D1-D5 system has little group
Gl ¼ SOð4; 5Þ ⊂ G in the classical supergravity. The
coset space K of Mscal, under the adjoint action of Hl ¼
SOð4Þ × SOð5Þ splits into Kl ⊕ K̂ in the representation
ð4; 5Þ ⊕ ð1; 5Þ, see Eq. (2.24). The nonmoduli scalar fields
ϕ̂k are chosen to be parameters of K̂ in the (1; 5) of Hl. As
discussed earlier, we fix SOð5Þ to rotate ϕ̂k to their simplest
form. This corresponds to the parameter of a Cartan
generator in the coset space. Next, we consider a group
G0 commuting with the corresponding element L̂ðϕ̂kÞ.
Our choice for G0 needs not to be maximal. The maximal
choice of G0 is SOð4; 4Þ and thus of the moduli space
M0 ¼ G0=H0 ¼ SOð4; 4Þ=SOð4Þ × SOð4Þ.
The D5-branes of the D1-D5 system wrap the whole T4

and the D1, D5 charges d1, d5 belong to a Γ1;1 sublattice of
Γ5;5, which thus decomposes as [34]

Γ5;5 ¼ Γ1;1 ⊕ Γ4;4:

The subgroup G0 acts on Γ4;4 leaving Γ1;1 invariant.
Choosing one direction along AdS3 to be compact and

fixing the dependence φaðηÞ of the moduli fields φa in the
space G0=H0 on the compact boundary coordinate η, to
describe a geodesic in G0=H0, the backreaction of these
moduli deforms AdS3 × S3 into AdS2 × S1 × S3 as dis-
cussed earlier. Consistency as a string background requires
the monodromy matrix M, connecting the starting and
ending points of the geodesic, to be a hyperbolic element of
SOð4; 4;ZÞ:

M≡ L0ðφaðTÞÞL0ðφað0ÞÞ−1 ∈SOð4; 4;ZÞ: ð2:69Þ

We could also choose the geodesic describing the moduli,
to lie in a nonmaximal symmetric subspace ofMscal such as

M0 ¼
G0

H0

¼
�
SLð2;RÞ
SOð2Þ

�
4

⊂
SOð4; 4Þ

SOð4Þ × SOð4Þ ⊂ Mscal:

In this particular case, M has the general form

M ¼ M1M2M3M4; ð2:70Þ

where Mj, j ¼ 1;…; 4, is an element of the SLð2;ZÞ
subgroup of the corresponding SLð2;RÞ factor in G0. We
shall expand on this class of U-fold solutions in the
maximal six-dimensional theory in the next section.
Considering type IIB superstring theory compactified on

K3, this is a six-dimensional (2,0) ungauged supergravity
[1]. The group G is Oð5; 21Þ and the charge lattice is Γ5;21.
Considering a D1-D5-brane system in which the D5-branes
wrap the whole K3, the little group Gl of corresponding
charge vector ΓM is Oð4; 21Þ, yielding 84 moduli fields in
Gl=Hl ¼ SOð4; 21Þ=SOð4Þ × SOð21Þ. According to our
construction, we do not consider geodesics within this

manifold, but rather within a smaller one M0 ¼ G0=H0.
The maximal choice ofG0 isOð4; 20Þ. The D1, D5 charges
d1, d5 belong to a Γ1;1 sublattice of Γ5;21, which thus
decomposes as [34]

Γ5;21 ¼ Γ1;1 ⊕ Γ4;20:

The subgroup G0 acts on Γ4;20 leaving Γ1;1 invariant. The
only nonvanishing moduli fields φa in the solution are
required to describe a geodesic in G0=H0. The monodromy
matrix is then chosen as follows:

M∈G0ðZÞ ⊂ Oð4; 20;ZÞ: ð2:71Þ

III. THE BOSONIC SECTOR OF THE
N = ð2;2Þ; D= 6 THEORY

In this section, we shall describe an instance of U fold of
the form AdS2 × S1 × S3, obtained applying the construc-
tion discussed in Sec. II to the maximal six-dimensional
model obtained from type IIB supergravity upon compac-
tification on a 4-torus and dualization of all forms are
dualized to lower-order ones. As pointed out above, this
model, in its classical limit, features a scalar manifold of the
form

Mscal ¼
SOð5; 5Þ

SOð5Þ × SOð5Þ : ð3:1Þ

Let us start reviewing the general mathematical description
of the model. We recall that the scalar fields originating
from toroidal dimensional reduction toD ¼ 6 consist in the
moduli of the internal metric Gij, the axion-dilaton field
ρ ¼ Cð0Þ þ ie−ϕ, the scalars Bα

ij ¼ ðCij;−BijÞ, α ¼ 1; 2,
originating from the ten-dimensional two-forms Cð2Þ; Bð2Þ
and the scalar Cijkl ¼ cϵijkl from the four-form. As
mentioned earlier, the five two-form fields and their
duals transform, under the global symmetry group
SOð5; 5Þ, in its fundamental representation Rð2Þ ¼ 10.
They are Bα

μν¼ðCμν;−BμνÞ, their duals B̃αμν¼ðC̃μν;−B̃μνÞ
and the six Cijμν. The identification of the D ¼ 6 scalar
fields and two-forms with the above type IIB fields is
effected by decomposing the adjoint and the fundamental
representations of SOð5; 5Þ with respect to the subgroup
SLð4;RÞ × SOð1; 1Þ × SLð2;RÞIIB, where SLð4;RÞ ×
SOð1; 1Þ is the group of acting transitively on the metric
moduli of the torus:

AdjðSOð5; 5ÞÞ → AdjðGLð4;RÞÞ þ AdjðSLð2;RÞIIBÞ
þ ð6; 2Þþ1 þ ð1; 1Þþ2

þ ð60; 2Þ−1 þ ð1; 1Þ−2;
10 → ð1; 2Þ−1 þ ð6; 1Þ0 þ ð1; 2Þþ1; ð3:2Þ
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where the grading refers to the SOð1; 1Þ factor. The scalars
Bα
ij parametrize the nilpotent generators in the ð6; 2Þþ1, c

the highest-grading generator ð1; 1Þþ2. As for the two-
forms, Bα

μν and B̃α μν are defined by the ð1; 2Þ−1 and ð1; 2Þþ1

representations in the branching of the 10, while Cijμν

transform in the ð6; 1Þ0.
Besides these fields, the bosonic sector also consists of

16 vector fields which, however, will not play a role in our
analysis.
Below we describe the subsector of the maximal D ¼ 6

theory describing the graviton, the scalar fields, and the
two-forms. We shall collectively denote by CI

ð2Þ, I ¼
1;…; 5 the tensor fields and by ϕs the 25 scalar fields.
The corresponding Lagrangian (2.2) reads

L6 ¼ e6R6 −
e6
12

ðI IJHI
μ̂ ν̂ ρ̂H

J μ̂ ν̂ ρ̂ þRIJHI
μ̂ ν̂ ρ̂

⋆HJμ̂ ν̂ ρ̂Þ

− e6
Tr
8
ðM−1

∂MM−1
∂MÞ; ð3:3Þ

where μ̂ ¼ 0;…; 5 and I; J ¼ 1;…; n. The matrices IðϕÞ ¼
ðIðϕÞIJÞ ¼ IðϕÞT > 0 and RðϕÞ ¼ ðRðϕÞIJÞ ¼ −RðϕÞT
were introduced earlier in Sec. II, together with the
symmetric, positive-definite Oð5; 5Þ-matrix ðMÞ¼MMN ,
where M;N ¼ 1;…; 10, see Eq. (2.7).

A. An explicit parametrization of the scalar manifold

In this section, we review the explicit description of the
scalar manifold Mscal in terms of the so-called solvable or
Borel one [35,36] parametrization, in which the type IIB
origin of the 25 scalar fields is manifest. A detailed account
of this parametrization, for this model, is also given in [37].
Here we use, for the description of the type IIB theory in
D ¼ 10, the conventions defined in Appendix B of [11].
The basis of the Rð2Þ ¼ 10 is chosen as follows11:

VM ¼ ðVα; Vij; VαÞ; ð3:4Þ

where the components Vα; Vij; Vα transform in the ð1; 2Þ−1,
ð6; 1Þ0, and ð1; 2Þþ1, respectively. In this basis, the
SOð5; 5Þ invariant matrix in the fundamental reads

ΩMN ≡
0
B@

0 0 δαβ
0 ϵijkl 0

δαβ 0 0

1
CA: ð3:5Þ

In the solvable parametrization of the scalar manifold
the scalar fields are defined as parameters of the Borel
subalgebra of soð5; 5Þ.
We start by discussing the axion-dilaton system and then

describe the rest of the scalar fields.

1. Axion-dilaton system

The dilaton ϕ and the axion field Cð0Þ, in the ten-
dimensional theory, span the coset SLð2;RÞIIB=SOð2Þ. The
corresponding coset representative is chosen of the follow-
ing form:

Lð2Þ ¼ ðLα
βÞ ¼

�
eϕ=2 0

Cð0Þ eϕ=2 e−ϕ=2

�
: ð3:6Þ

This allows us to define the matrix

mαβ ≡ ðLð2ÞLT
ð2ÞÞαβ ¼

1

ImðρÞ
�

1 ReðρÞ
ReðρÞ jρj2

�
: ð3:7Þ

2. The SOð5;5Þ=SOð5Þ × SOð5Þ manifold

As mentioned above, the scalars Bα
ij and c parametrize

the generators tijα ; t of the Borel subalgebra of soð5; 5Þ in
the representations ð6; 2Þþ1 and ð1; 1Þþ2 of GLð4;RÞ,
respectively. In the basis (3.4), these generators read

B ¼ 1

2
Bα
ij t

ij
α ¼

0
B@ 0 0 0

Bαij 0 0

0 −Bα
ij 0

1
CA;

C ¼ ct ¼

0
B@ 0 0 0

0 0 0

cϵαβ 0 0

1
CA; ð3:8Þ

where

Bαij ≡ ϵαβB
β
ij ¼ ðBij; CijÞ; Bα

ij ≡ 1

2
ϵijklBαkl: ð3:9Þ

Next we write the coset representatives Lð2Þ;Lð4Þ of
SLð2;RÞIIB=SOð2Þ and GLð4;RÞ=SOð4Þ in the same
representation:

Lð2Þ ¼

0
B@

L−T
ð2Þ 0 0

0 1 0

0 0 Lð2Þ

1
CA;

Lð4Þ ¼

0
B@G−1

41 0 0

0 2G−1
4E½ikEj�k 0

0 0 G
1
41

1
CA; ð3:10Þ

where G≡ detðGijÞ, the metric Gij being in the D ¼ 10

Einstein frame and Ei
k being the vielbein matrix: Gij ¼

Ei
kEj

k (summation over k is understood). The SOð5;5Þ
SOð5Þ×SOð5Þ

coset representative is then written as

LM
N ¼ eC · eB · Lð4Þ · Lð2Þ: ð3:11Þ11In this representation the coefficient k in (2.11) is equal to 1.
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We can now compute the components of M ¼ LLT :

Mαβ ¼ G−1
2mαβ;

Mij
β ¼ G−1

2mαβ Bαij;

Mα
β ¼ G−1

2cασmσβ;

Mij;kl ¼ G−1
2ð2Gi½kGl�j þmαβBαijBβ;klÞ;

Mαij ¼ G−1
2ðcαβmβσBσij − Bα

klGkiGljÞ;

Mαβ ¼ G−1
2

�
cασcβγmσγ þ 1

2
Bα

ijBβ
klGikGjl þGmαβ

�
;

ð3:12Þ

where

cαβ ≡ cϵαβ −
1

4
BαijBβ

ij: ð3:13Þ

We refer to Appendix A for more details about the solvable
parametrization of the scalar manifold as well as the
description of the tensor fields in terms of the soð5; 5Þ
weights of the 10.

B. AdS3 × S3 solution of type IIB theory on T4

In Appendix C we present a general discussion of the
static black-string solutions in the presence of nontrivial
moduli. A known instance is the D1-D5 system in which
the D1- and D5-branes have only two common Neumann
directions, defining the worldsheet of the black string in
D ¼ 6, and the D5-branes wrap the whole T4. This solution
is of particular importance in string theory since it provided
the setting for the first successful black hole entropy
calculation through string microstate counting [38].
The charge vector reads

ΓM ¼ ðd5; 0; 0; 0; 0; 0; 0; 0; d1; 0Þ; ð3:14Þ

where d5, d1 are taken to be both positive and denote the
D5- and the D1-brane charges, respectively. Through a
(charge-dependent) change of basis, see Appendix D, the
above vector can be brought to the form

Γ0M ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jd1d5j

p
; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ: ð3:15Þ

In this new basis, the invariant pseudo-orthogonal metric
reads

Ω0 ¼ diagðþ1;þ1;þ1;þ1;þ1;−1;−1;−1;−1;−1Þ:
ð3:16Þ

The above form of Γ0 makes its little group Gl ¼ SOð4; 5Þ
manifest: it is the subgroup of G acting nontrivially only on
the entries 2; 3;…; 10. The matrix representation of Gl in

the original basis (3.14) is d1, d5 dependent. As explained
in Secs. II and II B, the coset spaceK ofMscal splits into Kl

and K̂ supporting the representations (4; 5) and (1; 5) of
Hl ¼ SOð4Þ × SOð5Þ. The nonmoduli fields ϕk parame-
trize the five-dimensional K̂ and can be brought to a normal
form ϕk ¼ ðg; 0; 0; 0; 0Þ, through the action of SOð5Þ, in
which the only nonvanishing scalar g parametrizes the
Cartan generator:

h ¼ diagð1; 0; 0; 0; 0; 0; 0; 0;−1; 0Þ: ð3:17Þ
The scalar field g is identified as follows: eg ¼ eϕG

1
2, where

G≡ detðGijÞ, see Appendix A.
The effective potential V for the D1-D5 system, and its

extremization, is discussed in Appendix D. The maximal
subgroup of SOð5; 5Þ commuting with h is SOð4; 4Þ, which
represents the maximal choice of G0 ⊂ Gl. The maximal
moduli space M0 is

M0 ¼
SOð4; 4Þ

SOð4Þ × SOð4Þ ;

parametrized by Cij and G̃ij ¼ e−
ϕ
2Gij, see Appendix A.

Had we chosen the system of F1 and NS5-branes dual to
the D1-D5 one, the maximal moduli space M0 would be

spanned by Bij; G
ðsÞ
ij ≡ e

ϕ
2Gij, whereG

ðsÞ
ij is the torus metric

in the string frame. The Oð4; 4;ZÞ global symmetry group
would, in this case, encode the T dualities along directions
of T4, and transformations in Oð4; 4;ZÞ=SOð4; 4;ZÞ
would map the type IIB and type IIA descriptions of the
same F1-NS5 solution.
Coming back to the D1-D5 system, when we only switch

on the moduli fields Cij, G̃ij and the field g, the matrix M
is the product of two commuting symmetric matrices:

Mðφa; gÞ ¼ M0ðφaÞM̂ðgÞ; ð3:18Þ
where

M̂ðgÞ ¼ diagðeg; 1; 1; 1; 1; 1; 1; 1; 1; e−g; 1Þ; ð3:19Þ
and ΓTMðφa; gÞΓ ¼ ΓTM̂ðgÞΓ, so that the effective poten-
tial reads

V ¼ 1

2
ðd21 e−g þ d25 e

gÞ: ð3:20Þ

By further fixing the moduli fields Cij ¼ 0; G̃ij ¼ δij, we
have g ¼ 2ϕ and the solution takes the known form (see
Appendix C 1)

ds2 ¼ ðZ1Z5Þ−1
2ð−dt2 þ dx2Þ þ ðZ1Z5Þ12ðdxidxiÞ; ð3:21Þ

eg ¼ e2ϕ ¼ log

�
Z1

Z5

�
;

dxidxi ¼ dr2þ r2dΩ2
3; Z1 ¼ 1þ d1

2r2
; Z5 ¼ 1þ d5

2r2
:

ð3:22Þ
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To avoid the factor 1=2 in the harmonic functions, it can
be convenient to define rescaled charges: d1 ¼ 2Q1;
d5 ¼ 2Q5. The charges d1 and d5 are defined in
Eq. (D1). At the horizon the Z functions become

Z1 ¼
d1
2r2

¼ Q1

r2
; Z5 ¼

d5
2r2

¼ Q5

r2
: ð3:23Þ

This background is AdS3 × S3, which is the throat of the
D1-D5 system. The nonmoduli scalars are attracted toward
configurations that extremize the potential. We give a
general discussion in Appendix D. In this particular case,
in which we set Cij ¼ 0; G̃ij ¼ δij, the scalar field g ¼ 2ϕ
is fixed at the horizon, through the attractor mechanism, to
the value

g ¼ 2ϕ ¼ log

�
d1
d5

�
¼ log

�
Q1

Q5

�
: ð3:24Þ

At the minimum the effective potential has the value

V� ¼ d1d5: ð3:25Þ

The near-horizon metric is conveniently written in the
following form:

ds2 ¼ r2

L2
ð−dt2 þ dx2Þ þ L2

r2
dr2

þ L2½dψ2 þ sin2 ψðdθ2 þ sin2 θdω2Þ�; ð3:26Þ

where L2 ¼
ffiffiffiffiffiffiffi
d1d5

p
2

, as obtained in Eqs. (2.39), (3.25).

C. AdS2 × S1 × S3 U folds

In this section, we apply the general construction of
Sec. II to the construction of U-fold solutions with
geometry AdS2 × S1 × S3 in type IIB theory on T4.
As discussed in Sec. II, we only switch on the field
eg ¼ eϕG

1
2 and the moduli fields φa spanning either the

manifold SOð4; 4Þ=½SOð4Þ × SOð4Þ�, parametrized by

G̃ij ¼ e−
ϕ
2Gij; Cij, or a symmetric submanifold M0 ¼

G0=H0 of it. We start with a metric of the form

ds2 ¼ −k1
r2

L2
dt2 þ k1

L2

r2
dr2 þ k2dη2

þ L2½dψ2 þ sin2 ψðdθ2 þ sin2 θdω2Þ�; ð3:27Þ

where k1, k2 are positive constants and we compactify the η
direction: η∈ ½0; T�. Just as in the D1-D5 solution, we turn
on the charges d1, d5. The ansatz for the three-form field
strength is again

H ¼ −γΩMΓdt ∧ dη ∧ drþ ζðθ;ψÞΓdψ ∧ dθ ∧ dω;

ð3:28Þ

which is duality covariant. On the three-form field we
need to impose the twisted self-duality condition, the
Maxwell equations, and the Bianchi equations, which read
respectively

⋆H ¼ −ΩMH; dH ¼ 0: ð3:29Þ

These are all solved if we pick

γ ¼ k1
ffiffiffiffiffi
k2

p
L3

; ζðθ;ψÞ ¼ sin θsin2 ψ : ð3:30Þ

The moduli φa inM0 are switched on along a geodesic arc,

φa ¼ φaðηÞ; ð3:31Þ

with velocity κ and affine parameter η, so that

1

2
Gab∂ηφ

a
∂ηφ

b ¼ κ2: ð3:32Þ

Thanks to the ansatz for the field strength H (3.28), the
equation of motion for the scalars has the same form as
Eq. (2.9), where Vðϕ;ΓÞ ¼ Vðg;ΓÞ is given in Eq. (3.20).
The scalar equation of motion is solved if we extremize the
potential as

g ¼ log ðeϕG1
2Þ ¼ log

�
d1
d5

�
¼ const; ð3:33Þ

since we forced the moduli fields φa to evolve in η along a
geodesic.
The last equation to check is the trace-reversed Einstein

equation. The computation of the energy-momentum part
which involves the three-form H gives

TðHÞ
μ̂ ν̂ ¼ d1d5

2L4
diag

�
k1r2

L4
;−

k2
L2

;−
k1
r2

; 1; sin2ðψÞ; sin2ðθÞsin2ðψÞ
�
; ð3:34Þ
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where the second element on the diagonal is the ðη; ηÞ
component of the tensor and has to be canceled, in the
Einstein equation, by the only nonvanishing component of
the scalar energy-momentum tensor, which equals the left-
hand side of Eq. (3.32), namely κ2. The Einstein equation
then completely fixes the coefficients as follows:

k1 ¼
1

2
; k2 ¼

κ2
ffiffiffiffiffiffiffiffiffiffi
d1d5

p
4

; L2 ¼
ffiffiffiffiffiffiffiffiffiffi
d1d5

p
2

: ð3:35Þ

To give an instance of a geodesic curve described by
string 0-modes, we can restrict the moduli fields φa to the
submanifold

M0 ¼
G0

H0

¼
�
SLð2;RÞ
SOð2Þ

�
2

; ð3:36Þ

which is obtained by restricting the moduli G̃ij ¼
e−

ϕ
2Gij; Cij to the following nonvanishing fields:

e−ϕ12 ≡ G̃11¼ G̃22; e−ϕ34 ≡ G̃33¼ G̃44;C12;C34: ð3:37Þ

The metric of the scalar manifold restricted to g,
ϕ12;ϕ34; C12; C34 reads

ds̃2 ¼ dg2

2
þ dϕ2

12 þ dϕ2
34 þ e2ϕ12 dC2

12

þ e2ϕ34 dC2
34: ð3:38Þ

The geodesic can be chosen as the product of two geodesics
spanned by ϕ12; C12 and by ϕ34; C34, respectively,
unfolding in the two factors of M0. The monodromy
matrix M will be the product M ¼ M1M2, of two
elements M1, M2 in the two factors SLð2;ZÞ in
G0ðZÞ ¼ SLð2;ZÞ2. Choosing, for instance,

M1 ¼ Jn1
; M2 ¼ Jn2

;

the geodesic reads

eϕ12ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 þ 4

p
cosh

	
ηcosh−1ð1

2
ðn2

1
þ2ÞÞ

T



þ n1 sinh

	
ηcosh−1ð1

2
ðn2

1
þ2ÞÞ

T



ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 þ 4

p ;

C12ðηÞ ¼ −
2 sinh

	
ηcosh−1ð1

2
ðn2

1
þ2ÞÞ

T



ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
1 þ 4

p
cosh

	
ηcosh−1ð1

2
ðn2

1
þ2ÞÞ

T



þ n1 sinh

	
ηcosh−1ð1

2
ðn2

1
þ2ÞÞ

T


 ;

eϕ34ðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 þ 4

p
cosh

	
ηcosh−1ð1

2
ðn2

2
þ2ÞÞ

T



þ n2 sinh

	
ηcosh−1ð1

2
ðn2

2
þ2ÞÞ

T



ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 þ 4

p ;

C34ðηÞ ¼ −
2 sinh

	
ηcosh−1ð1

2
ðn2

2
þ2ÞÞ

T



ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
2 þ 4

p
cosh

	
ηcosh−1ð1

2
ðn2

2
þ2ÞÞ

T



þ n2 sinh

	
ηcosh−1ð1

2
ðn2

2
þ2ÞÞ

T


 ;

which satisfy the equations explicitly presented in Appen-
dix C, after the appropriate coordinate transformations to
bring the target metric (3.38) in the form (C1). It is
straightforward to verify that, as η → ηþ T the complexi-
fied fields ρ12 ≡ C12 þ ie−ϕ12 ; ρ34 ≡ C34 þ ie−ϕ34 trans-
form under the action of the monodromies Jn1

, Jn2
,

respectively:

ρ12 → −
1

ρ12 þ n1

; ρ34 → −
1

ρ34 þ n2

:

In this case, we have

κ2 ¼ 1

2T2

�
cosh−1

�
n2
1

2
þ1

�
þ cosh−1

�
n2
2

2
þ1

��
: ð3:39Þ

Along the same lines, we can construct the AdS2 × S1 × S3

T-fold starting from the near horizon geometry of an
F1-NS5 system with charges

ΓM ¼ ð0; n5; 0; 0; 0; 0; 0; 0; 0; f1Þ:

This solution is obtained by applying an S-duality
S ∈SLð2;ZÞIIB to the D1-D5 U fold. As pointed out
earlier, the maximal choice SOð4; 4Þ=SOð4Þ × SOð4Þ for

the moduli spaceM0 is spanned by Bij; G
ðsÞ
ij ≡ e

ϕ
2Gij, where

GðsÞ
ij is the torus metric in the string frame, while

M̂ ¼ diagð1; eg; 1; 1; 1; 1; 1; 1; 1; e−gÞ; ð3:40Þ

with eg ¼ e−2ϕ6 ≡ e−ϕG
1
2, see Appendix A. Since now the

monodromy matrix is an element of Oð4; 4;ZÞ, which is
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now the T-duality group associated with the internal
4-torus, the resulting U fold is a T fold.
We can choose a monodromy matrix M∈Oð4; 4;ZÞ=

SOð4; 4;ZÞ, which is not connected continuously to the
identity. This can be achieved by describing S1 through two
open patches: one consisting of S1 minus the point η ¼ 0,
the other obtained by subtracting to S1 the point η ¼ T=2.
Within each patch the evolution of the scalar fields is
geodesic. However, in the interval ð0; T=2Þ the moduli
fields are described in both patches by12 L0ðφaðηÞÞ while
in ðT=2; TÞ they are described in the first patch by
L0ðφaðηÞÞ and in the second one by O · L0ðφaðηÞÞ,
where O ∈Oð4; 4;ZÞ=SOð4; 4;ZÞ, O2 ¼ 1. The twist
matrix has the following property: Að0Þ ¼ L0ðφað0ÞÞ,
AðTÞ ¼ O · L0ðφaðTÞÞ, so that M, given by Eq. (2.48),
is in Oð4; 4;ZÞ=SOð4; 4;ZÞ. This T-fold solution with
NS-NS charges is therefore described in one patch within
the type IIB theory and in the other one within the type IIA
one, the transition function being a pseudo-orthogonal
matrix with a negative determinant.
In the next subsection, we review the action of a duality

transformation on the general, duality covariant, ansatz
discussed in Sec. II.

1. Duality

Let us discuss here the action of the duality symmetry on
a generic solution. Consider a duality transformation

O ¼ ðOM
NÞ∈SOð5; 5Þ ⇔ OΩOT ¼ Ω: ð3:41Þ

Its action on the scalar fields is described by the trans-
formation property of the matrix MðϕÞ:

ϕ≡ ðϕsÞ⟶O ϕ0 ≡ ðϕ0sÞ ⇔ O−TMðϕÞO−1

¼ Mðϕ0Þ; ð3:42Þ

while the corresponding action on H≡ ðHMÞ reads

H0 ¼ OH ¼ −ΩO−TMðϕÞO−1OΓϵð3Þ þOΓϵ̃ð3Þ
¼ −ΩMðϕ0ÞΓ0ϵð3Þ þ ΘΓ0ϵ̃ð3Þ: ð3:43Þ

A particular instance of duality symmetry, which we shall
use in the sequel, is S duality, implemented, in the basis we
are using, by the following matrix:

Θ ¼

0
BB@

θαβ 0 0

0 2δ kl
ij 0

0 0 θ̃ β
α

1
CCA; ð3:44Þ

where

θαβ ¼
�

0 1

−1 0

�
; θ̃ β

α ¼
�

0 1

−1 0

�
; ð3:45Þ

such that θ̃ β
α ¼ ðθ−1Þβα. Besides being pseudo-orthogonal,

Θ is orthogonal as well: ΘΘT ¼ 1. From Eq. (3.42) we
deduce the following transformation rule for the scalar
fields:

B0
α ¼ θ̃ β

α Bβ ¼
�

0 1

−1 0

��
B1

B2

�
¼
�

B2

−B1

�
; ð3:46Þ

c0ϵασ ¼ cðθ−1Þβαϵβγθ̃ γ
σ ¼ cϵασ; ð3:47Þ

ρ0 ¼ −
1

ρ
; ð3:48Þ

all other fields being invariant.

IV. FINAL REMARKS AND DISCUSSION
OF THE SOLUTION

In this work, we discuss the general construction of
a U-fold solution with AdSd−1 × S1 × Sd geometry and a
monodromy along S1 in the duality group, within theories
admitting a AdSd × Sd background with moduli fields.
More in general we build U-fold backgrounds of the form

AdSd−k × S1 × � � � × S1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k

× Sd; ð4:1Þ

with d − k > 1.
This was achieved by introducing an appropriate spatial

dependence of the scalar moduli along a compact direction
which, in the original AdSd × Sd solution, is in the
boundary of AdSd. The effect of the backreaction of the
evolving moduli on the geometry is to split AdSd into
AdSd−1 × S1. The geodesic arc connects two distinct points
in the classical moduli space. Consequently, the consis-
tency of this background in superstring theory requires the
initial and ending points to be identified in the string
moduli space.
Since the dependence of the fields, in the U-fold

solution, on the S1-coordinate η is factorized in the action
of a twist matrix AðηÞ∈G0 on the fields, it is natural to
expect this background to be a solution of the D ¼ 2d-
dimensional model compactified along S1 á la Cremmer-
Scherk-Schwarz [39] to (2d − 1) dimensions, with a twist
matrix AðηÞ in the global symmetry group G0. Indeed the
only fields in the solution transforming nontivially under
G0 are the moduli fields φa. We extensively discussed,
as a concrete application of our general construction,
type IIB superstring theory compactified on T4 to six
dimensions, and utilized the moduli fields present in the
AdS3 × S3 × T4 solution to create a U fold with geom-
etry AdS2 × S1 × S3 × T4. This construction involves12Recall that L0 is in the identity sector of the isometry group.
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introducing a nontrivial geodesic dependence of the moduli
fields in SOð4; 4Þ=SOð4Þ × SOð4Þ, or in a symmetric
submanifold M0 thereof, on a compact direction S1 along
the boundary of AdS3.
Cremmer-Scherk-Schwarz reduction of maximal N ¼

ð2; 2Þ six-dimensional supergravity to five dimensions
admit Minkowski five-dimensional vacua only if the twist
matrix is compact, that is in spinð5Þ × spinð5Þ. In this
case the reduction was originally studied in [40,41] and,
more recently, in [37,42] in relation to the study of
black hole solutions. Our setting, however, is substantially
different since it relies on the moduli fields describing a
geodesic in M0 ¼ G0=H0, which requires the twist matrix
AðηÞ∈G0=H0 to be intrinsically noncompact. This is
necessary for the evolving moduli to backreact on the
geometry through a nonvanishing component of the

energy-momentum tensor: TðSÞ
ηη ≠ 0.

The general mechanism analyzed here in detail, under-
lying the construction of AdSd−1 × S1 × Sd U folds, seems
to be at work in the more sophisticated class of J-fold
solutions with geometry AdS4 × S1 × S̃5, which have
recently attracted considerable interest [11–22,43]. All
these solutions correspond to AdS4 vacua of maximal
four-dimensional supergravity with gauge group G ¼
½SOð6Þ × SOð1; 1Þ� ⋉ T12. Aside from the nonsupersym-
metric J fold with SOð6Þ symmetry mentioned earlier and
found in [11], which fits the general class discussed in
Sec. II, in all other solutions the axion-dilaton system
features a dependence on the coordinates ξi of the deformed
5-sphere S̃5 and on η. The former is sourced by three-form
field strengths while the latter describes a geodesic arc in
the moduli space, as noticed in [17]. In the present work,
we have highlighted this common feature of all these
solutions and generalized it to the case d ≠ 5, showing that
the geodesic dependence of the moduli fields on the η
coordinate of an S1 at the boundary of AdSd is sufficient to
split this space into AdSd−1 × S1, where the ratio of the
warp factors multiplying the metric AdSd−1 and dη2 is a
suitable constant.
An important issue to address is the supersymmetry and

stability of the AdS2 × S1 × S3 solution discussed in this
work. Secondly, it would be of considerable interest to
construct variants of these solutions, with geometry
AdS2 × S1 × S̃3, where S̃3 is a deformed 3-sphere, in which
the moduli fields φa, aside from the geodesic dependence
on η, also feature a dependence on the coordinates of S̃3

sourced by two-form field strengths. These new solutions
would be the counterpart inD ¼ 6 of theN ¼ 1; 2, and 4 J
folds in D ¼ 10. In analogy with the latter solutions, we
may argue that these AdS2 × S1 × S̃3 U folds should be
dual to the IR limit of a 1þ 1 SCFT compactified along one
spatial direction, with an interface localized along this
direction and an Oð4; 4;ZÞ monodromy acting on the
exactly marginal operators dual to φa, when crossing the

interface. Although we do not expect the solutions AdS2 ×
S1 × S3 to be supersymmetric, we expect their variants
AdS2 × S1 × S̃3 to preserve some supersymmetry, in anal-
ogy with the D ¼ 10 J-fold counterparts. It would also be
interesting to relate generalizations of our backgrounds to a
compactified version of the Janus solutions found in [44]
which were also put in correspondence with an inter-
face CFT.
Similar to the Janus solutions, the approach outlined in

this paper is relevant for the supersymmetric wormhole
solutions recently found in [45]. The existence of moduli,
or scalar fields becoming moduli near the wormhole’s neck
might be a crucial element in constructing such wormhole
solutions.
We leave these projects to a future investigation.
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APPENDIX A: TYPE IIB SUPRGRAVITY ON T4:
GEOMETRIC CHARACTERIZATION OF THE

SCALAR AND TENSOR FIELDS

In the solvable parametrization of the scalar manifold,
the ten-dimensional dilaton ϕ and the radial moduli σi,
i ¼ 1;…; 4, of T4, parametrize the Cartan subalgebra of
soð5; 5Þ while the remaining scalar fields are parameters of
the shift generators Eα corresponding to the positive roots
α. The latter are conveniently expressed in terms of the
simple roots which, in a suitable orthonormal basis ϵi; ϵ5,
are chosen to have the following form:

α1 ¼ ϵ1 − ϵ2;α2 ¼ ϵ2 − ϵ3;α3 ¼ ϵ3 − ϵ4;α4 ¼ ϵ3 þ ϵ4;α5

¼ a ¼ −
1

2

�X4
i¼1

ϵi
�
þ ϵ5: ðA1Þ

The generators tαij; t of the solvable Lie algebra generat-
ing the coset, which enter the definition (3.11) of the
coset representative, correspond to the following shift-
generators Eα:

tα¼1
ij ¼Eaþϵiþϵj ; tα¼2

ij ¼Eϵiþϵj ; t¼Eaþϵ1þϵ2þϵ3þϵ4 :

ðA2Þ

The six positive roots ϵi − ϵj, i < j, are the positive roots
of the GLð4;RÞ group of the 4-torus and enter the
definition of the vielbein matrix E≡ ðEi

kÞ. The latter
can be written as

U FOLDS FROM GEODESICS IN MODULI SPACE PHYS. REV. D 109, 086018 (2024)

086018-17



E ¼ Ê ·R;

where

Ê ¼
Y
i<j

eγi
j Eϵi−ϵj ; R≡ ðδijeσjÞ; ðA3Þ

and the generators Eϵi−ϵj are meant, in the above formula,
as 4 × 4 nilpotent matrices in the 4 of GLð4;RÞ. The
dependence of the coset representative on the dilatonic
scalars ϕ; σi is through the matrix

Ldil ≡ exp

�X4
i¼1

σi

�
Hϵi þ

1

2
Hϵ5

�
−
ϕ

2
Ha

�
: ðA4Þ

The dependence of the kinetic term of the nondilatonic scalar
(γij; Bα

ij; c4) on the dilatonic ones, in the Lagrangian, is
through the characteristic exponential e−2h·α, where

h≡
�X4

i¼1

σi

�
ϵi þ

1

2
ϵ5
�
−
ϕ

2
a

�
;

and α is the positive root associated with the scalar.
Similarly to the nondilatonic scalars we can associate

each of the ten three-form field-strength HM with weights
wM of the 10 of soð5; 5Þ which, the chosen conventions,
read

wM ¼ ðwα;wij;wαÞ; ðA5Þ

where

wα ¼ ðw0;−ϵ5Þ; wij ¼ w0 þ ϵi þ ϵj;

wα ¼ −wα; w0 ≡ −
1

2

X4
i¼1

ϵi: ðA6Þ

The dependence of the kinetic term of HM on the dilatonic
scalars in the Lagrangian is through the characteristic
exponential e−2h·w.
The d5, d1 charges are associated with the weights �w0.

The Cartan generator h in (3.17) is defined by the
component of h along W0 and is spanned by the scalar g:

eg ¼ e−h·w0 ¼ gsG
1
2:

The roots of SOð5; 5Þ which are orthogonal to w0 define an
SOð4; 4Þ algebra representing the maximal choice of G0,
subgroup of G which commutes with h. The positive roots
of SOð4; 4Þ and the corresponding nondilatonic scalars are

aþ ϵi þ ϵj ↔ Cij;

ϵi − ϵj; ði < jÞ ↔ γi
j:

As for the dilatonic scalar fields, these are the components
of h along the orthonormal basis vi ≡ a

2
þ ϵi, orthogonal

to w0:

σ̃i ¼ h · vi ¼ σi −
ϕ

4
: ðA7Þ

The scalars γi
j; σ̃i define the components of the matrix

G̃ij ≡ e−
ϕ
2Gij.

The NS-NS charges n5, f1, associated with the NS
5-brane and the fundamental string, respectively, corre-
spond to the weights∓ ϵ5. The scalar g parametrizing h and
entering Eq. (3.40) is now given by

eg ¼ eh·ϵ5 ¼ g−1s G
1
2 ¼ e−2ϕ6 ;

where the six-dimensional dilaton is defined as eϕ6 ≡
eϕ det ðGðsÞ

ij Þ−
1
4 and GðsÞ

ij ≡ e
ϕ
2Gij is the torus metric in the

string frame. The dilatonic scalar fields in the SOð4; 4Þ=
SOð4Þ × SOð4Þ coset are given by the components of h
along the orthonormal basis

vi ≡ ϵi; i ¼ 1;…; 4:

They are

σðsÞi ≡ h · vi ¼ σi þ
ϕ

4
;

and are the radial moduli in the string frame. On the other
hand, the positive roots which are orthogonal to ϵ5 are

ϵi þ ϵj ↔ Bij;

ϵi − ϵj; ði < jÞ ↔ γi
j:

This proves that the manifold SOð4; 4Þ=SOð4Þ × SOð4Þ is
spanned by the moduli GðsÞ

ij ; Bij.

APPENDIX B: THE TYPE IIB STATIC BLACK
STRING SOLUTIONS

Let us study the most general ansatz for a static black-
string solution with SOð4Þ symmetry. The corresponding
metric has the following general form:

ds2 ¼ AðrÞ2ð−dt2 þ dx2Þ þ AðrÞ−2dr2
þ BðrÞ2½dψ2 þ sin2 ψðdθ2 þ sin2 θdω2Þ�; ðB1Þ

where r, ψ , θ, ω are the polar coordinates of the four-
dimensional space transverse to the string world volume
and the last three angles parametrize a 3-sphere S3. The
coordinates xμ̂, μ̂ ¼ 0;…; 6 naturally split into
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xμ ¼ ft; x; rg; xμ̃ ¼ fψ ; θ;ωg;

where μ ¼ 0; 1; 2 and μ̃ ¼ 3; 4; 5.
The Ricci tensor is

Rtt ¼ −Rxx ¼ A2

�
AA00 þ 3

AA0B0

B
þ 2A02

�
;

Rrr ¼
1

A2B
½−3AðA0B0 þ AB00Þ − 2BðAA00 þ A02Þ�;

Rψψ ¼ Rθθ

sin2 ψ
¼ Rωω

sin2 ψsin2 θ

¼ −3ABA0B0 − A2½ðBB00 þ 2B02Þ�:

We emphasize that this ansatz described the most general
static black-string solution coupled to any number of scalar
fields. The constant charge vector Γ≡ ðΓMÞ is defined as

ΓM ¼ 1

2π2

Z
S3
HM;

and characterizes the solution. Let us consider the already
introduced (2.17) ansatz for the tensor field

H ¼ −ξðrÞΩMΓdt ∧ dx ∧ drþ χðθ;ψÞΓdψ ∧ dθ ∧ dω;

ðB2Þ
and this solves the twisted self-duality condition, the
Maxwell equations, and the Bianchi equations if

ξðrÞ ¼ A
B3

; χðθ;ψÞ ¼ sin2 ψ sin θ: ðB3Þ

With this choice, the energy-momentum tensor reads

Ttt ¼ −Txx ¼ −A4Trr ¼
A2

2B6
V; ðB4Þ

Tψψ ¼ V
2B4

: ðB5Þ

On the inverse trace of Einstein’s equation

Rμ̂ ν̂ ¼ TðHÞ
μ̂ ν̂ þ 1

2
Gts∂μ̂ϕ

t
∂ν̂ϕ

s; ðB6Þ

we impose the consistency requirement ϕ ¼ ϕðrÞ and the
equations explicitly read

Rt
t ¼ Rx

x ¼ −
V
2B6

; ðB7Þ

Rr
r ¼ −

V
2B6

þ 1

2
Gts∂rϕ

t
∂
rϕs; ðB8Þ

Rψ
ψ ¼ Rθ

θ ¼ Rω
ω ¼ V

2B6
: ðB9Þ

These equations force some consistency relations such that

Rt
t ¼ Rx

x; Rψ
ψ ¼ Rθ

θ ¼ Rω
ω; ðB10Þ

which are already verified, but there is another condition
that we still have to impose, i.e.

Rt
t þ Rψ

ψ ¼ 0 →
1

2
ðA2B2Þ00 þ ðABÞ02 − 2 ¼ 0: ðB11Þ

Posing AB ¼ � ffiffiffi
u

p
this condition becomes

d2u
dr2

þ 1

2u

�
du
dr

�
2

− 4 ¼ 0: ðB12Þ

To solve this we define

ΩðuÞ ¼ du
dr

; Ω̇ ¼ d
du

Ω; ðB13Þ

and we get the Bernoulli equation

ΩΩ̇þ Ω2

2u
− 4 ¼ 0; ðB14Þ

with solutions

Ω ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 4u2

u

r
: ðB15Þ

We choose the “þ” sign and, from Eq. (B13), we have

r − c ¼
Z

duffiffiffiffiffiffiffiffiffiffi
aþ4u2

u

q ¼
2u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4u2
a þ 1

q
3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a
u þ 4u

p 2F1

�
1

2
;
3

4
;
7

4
;
−4u2

a

�
;

u ¼ AðrÞ2BðrÞ2: ðB16Þ

The extremal solutions are recovered with a → 0. In fact,
this gives

ðr − cÞ2 ¼ AðrÞ2BðrÞ2; ðB17Þ

from which we can recognize the structure of the double
coincident horizon at r ¼ c.
At radial infinity, r and u go to þ∞, while, near the

horizon r ∼ c and u ∼ 0. In these parametrizations, how-
ever, the inner and outer horizons do not appear. Now with
a little abuse of notation we regard A and B as functions of
u and we trade B with u in the metric:

ds2 ¼ AðuÞ2ð−dt2 þ dx2Þ

þ uAðuÞ−2
�

du2

aþ 4u2
þ dΩ2

S3

�
: ðB18Þ
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The affine parameter τ can be defined by the differential
equation

dτ
du

¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 4u2

p ; ðB19Þ

which can be solved as follows:

uðτÞ ¼ −
ffiffiffi
a

p
2 sinhð ffiffiffi

a
p

τÞ : ðB20Þ

Notice that we have chosen the sign of uðτÞ so that, since
u ≥ 0, τ will be nonpositive. At radial infinity (u → ∞)
τ → 0− and near the horizon (u → 0) τ → −∞.
In terms of the affine parameter and defining AðuÞ ¼

eUðτÞ the nonextremal metric is

ds2 ¼ e2Uð−dt2 þ dx2Þ

þ 1

2

ffiffiffi
a

p
sinhð ffiffiffi

a
p

τÞ e
−2UðτÞ

�
1

4

a
sinh2ð ffiffiffi

a
p

τÞ dτ
2 þ dΩ2

S3

�
:

ðB21Þ

Regularity requires a > 0. Einstein’s equations and the
scalar fields equations are

Ü ¼ e4U
V
2
; ðB22Þ

ϕ̈s þ Γ̃s
tuϕ̇

tϕ̇u ¼ e4UGst
∂sV; ðB23Þ

3a
8

¼ U̇2 − e4U
V
4
þ 1

8
Gtsϕ̇

tϕ̇s; ðB24Þ

where the dots are the derivatives with respect to the affine
parameter τ. The first two equations can be deduced from
the effective action

Seff ¼
Z

dτ

�
U̇2 þ 1

8
Gsuϕ̇

sϕ̇u þ e4U
V
4

�
; ðB25Þ

while the third one can be interpreted as a Hamiltonian
constraint, with energy 3a

8
.

The near horizon limit can be obtained by taking
τ → −∞ and the metric reads

ds2 ¼ e2Uð−dt2 þ dx2Þ
þ ffiffiffi

a
p

e
ffiffi
a

p
τe−2UðτÞ

	
ae−2

ffiffi
a

p
τdτ2 þ dΩ2

S3



: ðB26Þ

To have a finite horizon area, we must require the following
behavior:

e−2U ∼
�
AH

2π2

�
2=3 1ffiffiffi

a
p

e
ffiffi
a

p
τ
; as τ → ∞: ðB27Þ

The two horizons can be described by changing the radial
variable into a new one ρ defined through the relation

sinh2ð ffiffiffi
a

p
τÞ ¼ a

ðρ − ρ0Þ2 − a
¼ a

4u2
; ðB28Þ

which can be solved in the two variables as follows:

ρ ¼ ρ0 −
ffiffiffi
a

p
cothð ffiffiffi

a
p

τÞ;

τ ¼ 1

2
ffiffiffi
a

p log

�
ρ − ρþ
ρ − ρ−

�
; ðB29Þ

where we have denoted by ρ� the radial location of the two
horizons defined as

ρ� ≡ ρ0 �
ffiffiffi
a

p
: ðB30Þ

Therefore, the metric near the horizon reads

ds2 ¼
�
AH

2π2

�
−2=3 ffiffiffi

a
p

e
ffiffi
a

p
τð−dt2 þ dx2Þ

þ
�
AH

2π2

�
2=3

ðae2 ffiffiap
τdτ2 þ dΩ2

S3Þ: ðB31Þ

The existence of a timelike killing vector ξ ¼ ∂t guarantees
the existence of the Komar mass for this class of solutions,
which is given by

M ¼ c2

8πG

Z
S3∞

ffiffiffi
g

p jθ;ϕ;ωϵθϕωμν∇μξν ¼ πc2

4G
lim
τ→0−

U̇ : ðB32Þ

This allows us to fix the following conditions at infinity:

Uð0Þ ¼ 0; U̇ð0Þ ¼ M
4G
πc2

: ðB33Þ

1. Attractor mechanism for extremal solutions

If a ¼ 0 we have

τ ¼ −
1

2u
; ρ − ρ0 ¼ −

1

τ
¼ 2r2; ðB34Þ

and the two horizons coincide, ρ� ¼ ρ0. The metric reads

ds2¼e2Uð−dt2þdx2Þþ 1

ð−2τÞe
−2U
�
dτ2

4τ2
þdΩ2

S3

�
: ðB35Þ

The horizon is again at u → 0 and τ → −∞ and the near
horizon behavior of the function e−U is now given by

e−2U ¼
�
AH

2π2

�
2=3

ð−2τÞ; as τ → ∞: ðB36Þ
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Since the area of S3 is AH ¼ 2π2L3, we can also replace AH
with the radius of the 3-sphere L. The coordinate which
defines the proper spatial distance from the horizon is

dζ ¼ e−Uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−8τ3Þ

p dτ ¼ −
L
2
d logð−τÞ: ðB37Þ

Thanks to the regularity condition in Eq. (B36) and fixing a
not-useful constant we find

ζ ¼ −
L
2
logð−τÞ þ const; ðB38Þ

while the position of the horizon is now at ζ → −∞. Again,
we require the scalar fields to be regular at the horizon

lim
ζ→−∞

ϕsðζÞ ¼ ϕs� < ∞: ðB39Þ

If the functions ϕs are uniformly continuous this request
necessarily implies that the derivatives

lim
ζ→−∞

dk

dζk
ϕs ¼ 0: ðB40Þ

This implies

lim
τ→−∞

τ
d
dτ

ϕs ¼ lim
τ→−∞

τ2
d2

dτ2
ϕs ¼ … ¼ 0: ðB41Þ

The scalar field equation (B23) can be rewritten as

τ2∂2τϕ
s þ Γ̃s

uvðτ∂τϕuÞðτ∂τϕvÞ ¼ Gst
∂tVL−6: ðB42Þ

Taking the limit at the near horizon and applying the rule
for regularity (B41) we get the attractor mechanism13

equation,

lim
ϕs→ϕs�

∂tV ¼ 0: ðB43Þ

The scalar fields which V depends on are attracted toward
fixed value extremizing the potential, while the others are
called flat directions. Therefore, the attractor mechanism
forces the effective potential V to have an extremum at the
horizon, namely for ϕs ¼ ϕs�:

ΓT
∂sMΓjhorizon ¼ 0: ðB44Þ

We can also find the explicit critical value of the black hole
potential at the horizon. To do this, we note that the
function U near the horizon is explicitly given by

U ¼ −
1

2
logðL2ð−2τÞÞ: ðB45Þ

If we insert this result inside Eqs. (B22)–(B24) we get that
the value of the black hole potential V at the horizon is fixed
to be

Vhorizon ¼ V� ¼ 4L4: ðB46Þ

Restoring the coordinate r, and setting c ¼ 0, the metric at
the horizon takes the form

ds2 ¼ r2

r2H
ð−dt2 þ dx2Þ þ L2

r2
dr2 þ L2dΩS3 ; ðB47Þ

which describes an AdS3 × S3 geometry.

APPENDIX C: STRING SOLUTIONS IN THE
DOUBLE COMMUTING SLð2;RÞ

SOð2Þ TRUNCATION

We can now write the solutions of Eqs. (B22)–(B24) by
minimizing the potential V, as discussed in Appendix D.
After this minimization, to solve the equations we just need
the moduli to move along geodesics on the target space.
Here we discuss the case of two commuting SLð2;RÞ of the
scalar manifold, for which the potential and the metric
reads

ds̃ ¼ dϕ2 þ dψ2 þ dφ2 þ eφ−
ffiffi
2

p
ψþϕðdC12Þ2

þ eφþ
ffiffi
2

p
ψþϕðdC34Þ2; ðC1Þ

V ¼ eφ

2
ðd21e−ϕ þ d25e

ϕ−2φÞ; ðC2Þ

where B1
12 ¼ C12 and B1

34 ¼ C34. From the perspective of
the 10D, the metric in Einstein’s frame is

ds210 ¼ e2αφds26 þ e2βφðe2γψdθ21 þ e2γψdθ22

þ e−2γψdθ23 þ e−2γψdθ24Þ; ðC3Þ

C2 ¼ C̃2 þ C12dθ1 ∧ dθ2 þ C34dθ3 ∧ dθ4; ðC4Þ

where α ¼ 1=4 ¼ −β and γ2 ¼ 1=8. In this case the ein-
stein equations are directly from Eqs. (B22)–(B24):

13The attractor mechanism was first found for D ¼ 4 asymp-
totically flat extremal black holes in [46,47].
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ÜðτÞ−1

4
eφðτÞþ4UðτÞðd21e−ϕðτÞ þd25e

ϕðτÞ−2φðτÞÞ ¼ 0;

ϕ̈ðτÞþ1

2
eφðτÞþ4UðτÞð−d25eϕðτÞ−2φðτÞ þd21e

ϕðτÞÞ

−
1

2
eφðτÞ−

ffiffi
2

p
ψðτÞþϕðτÞðĊ12ðτÞ2þe2

ffiffi
2

p
ψðτÞĊ34ðτÞ2Þ¼ 0;

φ̈ðτÞþ1

2
e4UðτÞðd25eϕðτÞ−φðτÞ−d21e

þφðτÞ−ϕðτÞÞ

−
1

2
eφðτÞ−

ffiffi
2

p
ψðτÞþϕðτÞðĊ12ðτÞ2þe2

ffiffi
2

p
ψðτÞĊ34ðτÞ2Þ¼ 0;

ψ̈ðτÞþ 1ffiffiffi
2

p eφðτÞ−
ffiffi
2

p
ψðτÞþϕðτÞðĊ12ðτÞ2−e2

ffiffi
2

p
ψðτÞĊ34ðτÞ2Þ¼ 0;

C̈12ðτÞþ Ċ12ðτÞðφ̇ðτÞ−
ffiffiffi
2

p
ψ̇ðτÞþ ϕ̇ðτÞÞ¼ 0;

C̈34ðτÞþ Ċ34ðτÞðφ̇ðτÞþ
ffiffiffi
2

p
ψ̇ðτÞþ ϕ̇ðτÞÞ¼ 0: ðC5Þ

In order to separate the moduli from the other scalars we
introduce the functions

φ ¼ hðτÞ − gðτÞ
2

; ϕ ¼ hðτÞ þ gðτÞ
2

; ðC6Þ

therefore, the system totally splits into two different sets of
equations. This is due to the diagonal form of the metric,
see Eq. (C1), in this particular truncation. The first
equations are for the scalars which are not modules,

ÜðτÞ − 1

4
e4UðτÞ−gðτÞðd21 þ d25e

2gðτÞÞ ¼ 0; ðC7Þ

g̈ðτÞ þ e4UðτÞ−gðτÞðd21 − d25e
2gðτÞÞ ¼ 0; ðC8Þ

and the second system is for the moduli

ḧðτÞ − ehðτÞ−
ffiffi
2

p
ψðτÞðĊ12ðτÞ2 þ e2

ffiffi
2

p
ψðτÞĊ34ðτÞ2Þ ¼ 0; ðC9Þ

ψ̈ðτÞ þ 1ffiffiffi
2

p ehðτÞ−
ffiffi
2

p
ψðτÞðĊ12ðτÞ2 − e2

ffiffi
2

p
ψðτÞĊ34ðτÞ2Þ ¼ 0;

ðC10Þ

C̈12ðτÞ þ Ċ12ðτÞðḣðτÞ −
ffiffiffi
2

p
ψ̇ðτÞÞ ¼ 0; ðC11Þ

C̈34ðτÞ þ Ċ34ðτÞðḣðτÞ þ
ffiffiffi
2

p
ψ̇ðτÞÞ ¼ 0: ðC12Þ

1. D1-D5 solution

When the moduli are equal to zero, to solve the first
system we can define the superpotential to be

W ¼ e−
gðτÞ
2 ðd1 þ d5egðτÞÞ: ðC13Þ

Thanks to this definition we can prove that the system can
be cast into a first-order system

ġðτÞ − 2e2UðτÞ
∂gðτÞW ¼ 0; ðC14Þ

U̇ðτÞ −We2UðτÞ

4
¼ 0: ðC15Þ

Now it is easy to see that the solution is given by

UðτÞ ¼ −
1

4
log½ð1 − d1τÞð1 − d5τÞ�; ðC16Þ

−φðτÞ ¼ ϕðτÞ ¼ 1

2
log
�
1 − d1τ
1 − d5τ

�
; ðC17Þ

ψðτÞ ¼ c12ðτÞ ¼ c34ðτÞ ¼ 0; ðC18Þ

for which the metric reads

ds2 ¼ ð−dt2 þ dx2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið−d1τ þ 1Þð−d5τ þ 1Þp
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið−d1τ þ 1Þð−d5τ þ 1Þp
ð−2τÞ

�
dτ2

4τ2
þ dΩ2

S3

�
: ðC19Þ

We can now define the usual radial coordinate τ ¼
ð−2r2Þ−1 and we end up with the usual form of the
D1-D5 system,

ds2 ¼ ðZ1Z5Þ−1
2ð−dt2 þ dx2Þ þ ðZ1Z5Þ12ðdxidxiÞ; ðC20Þ

dxidxi ¼ dr2 þ r2dΩ2
3; Z1 ¼ 1þQ1

r2
; Z5 ¼ 1þQ5

r2
;

ðC21Þ

where Q1 ¼ d1=2 and Q5 ¼ d5=2. At the horizon the Z
functions become

Z1 ¼
Q1

r2
; Z5 ¼

Q5

r2
; ðC22Þ

and the physical distance from the horizon is

ρ ¼ log

�
r
l

�
: ðC23Þ

This background is AdS3 × S3, which is the throat of the
D1-D5 system. Now, the scalars are attracted toward
configurations that extremize this potential, called critical
points,

∂ϕV ¼ 0 → V ¼ V� ¼ d1d5: ðC24Þ

Since we are in the near-horizon region where this critical
point is reached by the scalar fields, we have V ¼ V� and
the energy-momentum tensor for the scalars is zero
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TðSÞ
μ̂ ν̂ ¼ 0. The near-horizon metric is conveniently written

in the following form:

ds2 ¼ r2

L2
ð−dt2 þ dx2Þ þ L2

r2
dr2

þ L2½dψ2 þ sin2 ψðdθ2 þ sin2 θdω2Þ�; ðC25Þ

where L2 ¼
ffiffiffiffiffiffiffi
d1d5

p
2

. Einstein’s equations boil down to

Gν
μ ¼−

1

2
V0δ

ν
μ ¼TðHÞν

μ ; Gν̄
μ ¼

1

2
V0δ

ν̄
μ̄ ¼TðHÞν̄

μ̄ ; ðC26Þ

solved by the condition L2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
Q1Q5

p
.

2. D1-D5 solution with nontrivial moduli

The equations for the moduli (C9)–(C12) are consistent
with all of them to be zero; this was the matter of the last
Sec. C 1 which describes the D1-D5 system. In this
subsection, we consider a solution in which some of the
moduli fields are allowed to evolve in the radial variable τ.
The resulting solution, however, is not related to the general
construction considered in this work, in which the evolu-
tion of the moduli is on one of the boundary coordinates
instead.
We can still keep part of the solution we wrote before,

UðτÞ ¼ −
1

4
log½ð1 − d1τÞð1 − d5τÞ�; ðC27Þ

gðτÞ ¼ log

�
1 − d1τ
1 − d5τ

�
; ðC28Þ

while the moduli remain to be fixed now. If we now
introduce

sðτÞ¼ hðτÞþ
ffiffiffi
2

p
ψðτÞ; tðτÞ¼ hðτÞ−

ffiffiffi
2

p
ψðτÞ; ðC29Þ

the equations decouple into two independent systems:

ẗðτÞ−2etðτÞċ12ðτÞ2¼0; c̈12ðτÞþ ċ12ðτÞṫðτÞ¼0; ðC30Þ

s̈ðτÞ−2esðτÞċ34ðτÞ2¼0; c̈34ðτÞþ ċ34ðτÞṡðτÞ¼0: ðC31Þ

We can directly integrate c12 and c34 as

c12ðτÞ ¼ c1

Z
e−tðτÞdτ;

c34ðτÞ ¼ c3

Z
e−sðτÞdτ; ðC32Þ

while the remaining equations are

̈tðτÞ ¼ 2c21e
−tðτÞ; ̈sðτÞ ¼ 2c23e

−sðτÞ; ðC33Þ

where c1 and c3 are constants. The whole system can now
be integrated and the solution reads

t ¼ log
�
−2c21ðcoshðτÞ − 1Þ�; c12 ¼

coth
 ffiffiffiffi

6a
p
2
τ
�

2c1
;

s ¼ log
�
−2c23ðcoshðτÞ − 1Þ�; c34 ¼

coth
 ffiffiffiffi

6a
p
2
τ
�

2c3
:

In terms of the field appearing in the truncation given by
(C1), the solution is

φ¼ 1

4

�
−2 log

�
1−d1τ
1−d5τ

�

þ log

4c12c32ðcoshð

ffiffiffiffiffiffi
6a

p
τÞ− 1Þ2��;

ϕ¼ 1

4

�
2 log

�
1−d1τ
1−d5τ

�

þ log

4c12c32ðcoshð

ffiffiffiffiffiffi
6a

p
τÞ− 1Þ2��;

ψ ¼
log

− c3

c1

�
ffiffiffi
2

p ; c12 ¼
coth

 ffiffiffiffi
6a

p
2
τ
�

2c1
; c34 ¼

coth
 ffiffiffiffi

6a
p
2
τ
�

2c3
:

This solution is nonextremal. We can directly build other
solutions using the S-duality transformation given by
Eqs. (3.46)–(3.48).

APPENDIX D: EXTREMIZATION OF THE
EFFECTIVE SCALAR POTENTIAL

In this section, we wish to discuss the extremization of
Vðϕ;ΓÞ. To this end, we first need to explicitly construct
M in terms of the scalar fields by using the solvable
parametrization of the coset manifold. Using the explicit
dependence of MMN on the dimensionally reduced type
IIB fields we can derive the moduli space of the AdS3 × S3

background. We can derive the expression for the potential
V by first writing the charge vector ΓM in components:

ΓM ¼ ð nα Dij nα Þ; ðD1Þ
where nα ¼ ðd5; n5Þ, nα ¼ ðd1; f1Þ, being d1, d5 the D1,
D5 charges and f1, n5 the charges of the fundamental string
and of the NS 5-brane, respectively, while Dij are the
D3-brane charges. We then restrict ourselves to the D1-D5
charges and obtain

2V ¼ ΓMMMNΓN ¼ G−1
2

gs

�
d1 −

1

8
ϵijklBijBkld5

�
2

þ gsG−1
2

��
d1 −

1

8
ϵijklBijBkld5

�
Cð0Þ

−
�
c −

1

8
ϵijklBijCkl

�
d5

�
2

þ gsG
1
2

�
1

2gs
BijBklGikGjl þ 1

�
d25: ðD2Þ
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The mass formula for the D1-D5 system given in [48] is
obtained by adding an invariant, constant-shift term to the
potential V, that is ΓMΩMNΓN=2. The minimizing con-
ditions over the moduli space are the following:

c −
1

8
ϵijklBijCkl ¼ gsG

1
2Cð0Þ; ðD3Þ

gsG
1
2 þ 1

8
ϵijklBijBkl ¼

d1
d5

; ðD4Þ

G
1
2BijGikGjl ¼ 1

2
Bijϵ

ijkl: ðD5Þ

With these conditions the potential at the minimum is

V� ¼ d1d5; ðD6Þ

which, after the mentioned shift, becomes exactly double.
The initial space for the scalar manifold is SOð5; 5Þ=
ðSOð5Þ × SOð5ÞÞ; due to the attractor mechanism, five of
these scalars are fixed at theminimumof the potential. These
conditions are explicitly given in (D3), (D4), and (D5). Then,
the scalar manifold reduces to SOð4; 5Þ=ðSOð4Þ × SOð5ÞÞ
as required by CFT duality (see Ref. [49]). To see this, let us
show that SOð4; 5Þ is the little group of the charge vector ΓM

when only the D1-D5 charges are switched on:

ΓM ¼ ðd5; 0; 0; 0; 0; 0; 0; 0; d1; 0Þ: ðD7Þ

Supersymmetry requires d1d5 > 0. Let us perform the
following duality transformation:

ΓM → Γ0M ¼ OM
NΓN; ðD8Þ

where

OM
N ¼ diag

 ffiffiffiffiffi
d1
d5

s
; 1; 1; 1; 1; 1; 1; 1;

ffiffiffiffiffi
d5
d1

s
; 1

!
∈SOð5; 5Þ:

ðD9Þ

The new charge vector reads

Γ0M ¼
ffiffiffiffiffiffiffiffiffiffi
d1d5

p
ð1; 0; 0; 0; 0; 0; 0; 0; 1; 0Þ: ðD10Þ

Changing the basis of the representation space by a Cayley
transformation

CMN ¼ 1ffiffiffi
2

p
�
1 1

1 −1
�
;

the invariant matrix becomes

Ω→ CtΩC¼ diagð1;1;1;1;1;−1;−1;−1;−1;−1Þ ðD11Þ
and the charge vector acquires the following form:

Γ → CΓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2d1d5

p
diagð1; 0; 0; 0; 0; 0; 0; 0; 0; 0Þ: ðD12Þ

From the above form of the charge vector, it is straightfor-
ward to identify the SOð4; 5Þ subgroup of SOð5; 5Þ which
leaves it invariant. It consists of those matrices which have a
trivial action of the first entry of the vector.
In the non-BPS case in which d1d5 < 0 (e.g. D1-anti-D5

system), the same transformation yields the vector:

CΓ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jd1d5j

p
diagð0; 0; 0; 0; 0; 0; 0; 0; 1; 0Þ: ðD13Þ

The stabilizer being still SOð4; 5Þ. This orbit, as opposed to
the BPS one, is characterized by the invariant property
ΓtΩΓ < 0.
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