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Abstract 

This paper introduces an innovative approach for the efficient analysis of composites 

manufacturing processes and phenomena. The method combines low- and high-fidelity 

simulation schemes with limited amounts of experimental data to train surrogate machine 

learning (ML) models. Guided by a novel approach, Spatially Weighted Gaussian Process 

Regression (SWGPR), a predictive model is efficiently constructed and calibrated by 

assigning datapoint-dependent noise levels to simulation points, establishing a multi-scale 

data-driven uncertainty structure. This study demonstrates the effectiveness of the method in 

accurately predicting process-induced deformations (PIDs) for L-shaped cross-ply laminates 

using minimal experimental efforts. The presented method aims to provide a cost-effective 

and broadly applicable framework for understanding and improving the design, development, 

and manufacturing of composites. 
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1. Introduction 

While carbon fiber-reinforced polymer (CFRP) composites are widely utilized in the 

aerospace industry, manufacturers continue to face several challenges, one of which is 

mitigating process-induced deformations (PIDs), which significantly affect assembly of 

aerostructure timelines [1–3]. During high-temperature/pressure processing (e.g., autoclave) 

of composites, residual stresses develop due to complex, interdependent, and multi-scale 

phenomena [1]. Upon demolding, PIDs such as variations in a part’s enclosed angles (e.g., 

spring-in) or warpage of initially flat sections, may emerge to alleviate some stresses [4]. 

Figure 1 schematically illustrates these PIDs for an L-shaped part, a common geometry 

utilized for composite aerostructure components. Both spring-in and warpage can lead to 

assembly joining gaps, extended production timelines and costs, and compromised 

mechanical performance in the final structure [5].  

 Although PIDs are recognized among manufacturers, minimizing undesired 

deformations via process (e.g., cure cycle) optimization remains challenging. These 

difficulties primarily stem from limitations of traditional methods used for manufacturing 

analyses and PID predictions, typically classified into three categories, as depicted in Figure 

1: low-fidelity simulation, high-fidelity simulation, and experimentation. One notable 

constraint of these methods is the trade-off between fidelity/accuracy and time/cost [6].  

At the bottom end of the cost/accuracy spectrum, low-fidelity simulation methods, 

including analytical solutions and/or reduced-order (i.e., 1D/2D) finite element (FE) 

strategies, often provide rapid and easy-to-interpret analyses while requiring minimal 

material characterization and computational efforts [7–9]. However, many of these 

approaches often fail to describe complex processing phenomena (e.g., tool-part interaction 
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[10]), leading to deviations from reality. Positioned in the middle, high-fidelity simulation 

methods (i.e., 3D FE), often provide more precise predictions but require substantial time 

commitments for material characterization, calibration, and validation [11–14]. Moreover, 

despite their improved accuracy, high-fidelity simulations typically neglect processing 

uncertainty and are impractical for optimization problems with large design spaces due to 

higher computational requirements. At the highest cost/accuracy level lies experimentation, 

involving the hands-on manufacturing and analysis of composites. This approach offers 

several advantages, including the ability to bypass material characterization and capture the 

probabilistic nature of composites, but can be extremely time-consuming and expensive for 

large-scale composite structures. 

 The cost/accuracy trade-offs pose a dilemma for manufacturers when selecting 

methods to predict process phenomena and outcomes. One common strategy involves 

generating an extensive set of simulation data alongside a smaller experimental dataset. 

Attempts are then made to calibrate the simulations by connecting virtual and real-world 

domains using deterministic methods (e.g., least-squares). However, due to the difficulties 

and expenses in obtaining large data, the virtual-to-real connection and calibration attempts 

often rely on suboptimal amounts of data, leading to inaccurate manufacturing assessments 

and inefficient process optimization attempts. 

Given the outlined challenges, there exists an opportunity to explore alternative and 

more efficient process analysis approaches for composites. This paper introduces one such 

approach, which follows the subsequent workflow for a case study focused on PIDs of L-

shaped composite parts. First, a low-fidelity FE simulation scheme, based on 1D thermo-

chemical and 2D thermo-mechanical analyses, is used to rapidly compute PIDs for composite 
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laminates in a defined design space. The low-fidelity virtual data is then mapped to a theory-

guided domain using Classical Laminated Plate Theory (CLPT), Bayesian Information 

Criterion (BIC), and the probabilistic machine learning technique, Gaussian Process 

Regression (GPR). The theory-guided GPR model is then iteratively calibrated by 

incorporating limited amounts of high-fidelity 3D simulation data, based on 1D models and 

the Carrera Unified Formulation (CUF), and select experimental results. Each calibration 

step involves assigning noise levels to simulation datapoints through a novel Gaussian 

distance-decay weighing mechanism, creating an adaptive probabilistic model with a data-

driven uncertainty structure. The effectiveness of the TGML method is assessed by predicting 

PIDs of L-shaped laminates made from Toray’s T800S/3900-2B aerospace-grade material 

system. The strategies presented offer an alternative, cost-efficient, and broadly applicable 

framework for solving manufacturing problems of composites using multi-fidelity simulation 

and limited experimental data.   

2. Material and Methods 

2.1. Process Specifications 

 The composite material utilized in this work was Toray T800S/3900-2B 

unidirectional (UD) prepreg with a resin content of 35.5% by weight, a common primary 

structural material in major aircraft such as the Boeing 787 [15,16]. Figure 2 presents the 

geometry and terminology used for composite parts in this study. Before processing, each 

part was laid-up in an L-shaped configuration with eight T800S/3900-2B plies, a flange 

length of 154.2 mm, a width of 50.8 mm, a corner radius of 15.875 mm, and a corner angle 

of 90°. All parts in this study were processed according to the Manufacturer’s Recommended 

Cure Cycle (MRCC), consisting of heating to 180 °C at 2 °C/min, holding at 180 °C for 120 
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minutes, then cooling to room temperature at 2.78 °C/min. Curing was performed under a 

combined autoclave and vacuum pressure of approximately 0.7 MPa. 

After curing and demolding, L-shaped parts may deform into various configurations 

with diverse spring-in and warpage magnitudes and directions [17]. Figure 2 provides two 

examples of cured and deformed L-shaped parts to serve as reference throughout this paper. 

As illustrated, positive spring-in values represent angle enlargements between flanges, while 

negative values signify angle enclosures. Likewise, positive and negative warpages represent 

concave-down and concave-up flange distortions, respectively.  

2.2. Low-fidelity Simulation 

 In this section, we outline the low-fidelity numerical model for predicting PIDs, 

drawing on an analytical strategy from Takagaki et al. [7]. The model uses the in-situ shear 

and bending moduli of a laminate, free strains during cure, and geometric parameters of L-

shaped parts as inputs to estimate incremental stresses and deformations during processing. 

Input properties were derived by simulating the degree of cure (DoC) and glass transition 

temperature (Tg) throughout the MRCC using a well-established cure kinetics model [18], 

then computing thermo-mechanical properties using piecewise models from bi-material 

beam (BMB) testing [14]. The Cure Hardening Instantaneously Linear Elastic (CHILE) 

assumption was then applied to predict the final corner spring-in, tip spring-in, and maximum 

warpage of the L-shaped parts. The entire curing and deformation analysis was executed 

using a custom Python [19] code.  

2.3. High-fidelity Simulation 

This section presents the high-fidelity simulation approach for predicting PIDs. Since 

the method is well-established and validated, only a brief overview is provided, while a more 
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detailed description can be found in [20]. This high-fidelity scheme utilizes a refined 1D 

kinematic model rooted in the Carrera Unified Formulation (CUF) [21,22] and CHILE 

assumptions [13], for efficient layer-wise (LW) modeling and accurate 3D representations of 

residual stresses and PIDs. The model utilizes bending and shear moduli (E and G), Poisson’s 

ratio (ν), coefficient of thermal expansion (α), and cure shrinkage-induced strain (Δεcs) in 

each of the three principal directions, sourced from published literature [15,18,20,23] and a 

BMB validation test. After each high-fidelity simulation, geometric analyses were performed 

to derive corner spring-in, tip spring-in, and maximum warpage at the center and edge of 

each laminate. 

2.4. Experimentation  

 This section outlines procedures used to generate experimental PID data. The process 

involved fabricating L-shaped parts using an autoclave, then quantifying PIDs using laser 

profilometry. Each experimental round included the fabrication of three identical parts to 

integrate the effects of material and processing uncertainties into the prediction scheme. A 

6.35 mm-thick A-36 steel tool covered with one layer of fluorinated ethylene propylene 

(FEP) release film was used as the layup mold. Three parts with dimensions specified in 

Figure 2 were laid up evenly across the tool’s width, vacuum sealed using standard bagging 

procedures, placed in an autoclave, and subjected to the MRCC.  

After each autoclave cycle, the cured L-shaped parts were demolded and 2D spatial 

profiles were obtained at three locations using a Keyence LJ-X8400 laser scanner. One 

profile was scanned just inside each edge, and another was captured at the center of each part. 

Schematic representations of the layup and laser scanning procedures can be referenced in 

[17]. Following the scans, profiles were overlaid onto plots featuring the premeasured tool 
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profile at the respective location. A custom Python code was then used to extract spring-in 

and warpage values at the center and edges of each part. 

2.4. TGML Prediction Methodology 

 In this section, we present a novel methodology for efficient analysis of composites 

manufacturing phenomena using multi-fidelity simulation data, experimental data, and 

theory-guided machine learning (TGML) [6,17,24–27]. This paper focuses on introducing 

the method through a relatively simple case study of predicting PIDs for L-shaped parts with 

eight-ply layups comprised solely of zero- and ninety-degree plies, cured according to the 

MRCC. The outlined procedures are designed to be general, allowing for potential expansion 

to include other manufacturing methods and variables. 

The prediction process starts with generating low-fidelity simulation data for a design 

space, as outlined in Section 2.2. Focusing on eight-ply cross-ply layups, simulations were 

conducted for 28 = 256 potential laminates with zero- and ninety-degree plies. Utilizing the 

low-fidelity scheme, predictions for corner spring-in, tip spring-in, and maximum warpage 

were efficiently obtained in approximately 24 minutes on a standard desktop. 

 After constructing the low-fidelity dataset, initialization of predictive models for each 

PID type (i.e., corner spring-in, tip spring-in, and warpage) begins. To start this process, 

numerical values serving as parametric inputs for each lamination must be obtained. Using 

methods from prior studies [17], we apply closed-form physical theories for parametrization 

to promote smoothness in the predictive model. This approach also serves to provide physics-

based “guidance” to the domain and enhance the model’s accuracy [6,17,24,27], forming the 

basis of our “theory-guided” machine learning approach.  
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 In this study, parametrization was achieved using Classical Laminated Plate Theory 

(CLPT) [28], leveraging established connections between stiffnesses and PIDs of composites 

[7–9]. Employing CLPT and publicly available material properties [15,18,20,23], all 

elements of the extensional (A), coupling (B), and bending stiffness (D) matrices were 

computed for each laminate. This yielded a high-dimensional dataset of 27 stiffness 

coefficients and three PID predictions (i.e., corner spring-in, tip spring-in, and warpage). 

 Training a model on a highly parametrized design space with a large input-to-output 

ratio is prone to overfitting, computationally demanding, and challenging in terms of 

interpretation. To address these constraints, input parameters must be refined to an optimal 

number. This task was accomplished using a strategy inspired by [29,30] and termed Focused 

Bayesian Information Criterion (FBIC). To balance accuracy and interpretability of the 

model, we first employ the Bayesian Information Criterion (BIC) [29], a well-established 

parameter selection method. BIC assesses the appropriateness of input subsets by 

maximizing the likelihood function on the training data and penalizing the number of 

parameters to prevent overfitting. To consider computational time, we introduce an additional 

term to create a custom parameter selection method, the FBIC: 

𝐹𝐵𝐼𝐶 = −2 ln 𝐿 +  𝑘𝑡 ln(𝑛) (1) 

where 𝐿 is the model’s maximized likelihood function (~ accuracy on training data), 𝑘 is the 

number of parameters, 𝑛 is the number of datapoints, 𝑡 is the computational time needed for 

model training, and models with lower FBIC values are preferred.  

Applying Equation 1 and enforcing the constraint 𝑘 = 3 to allow the models to be 

interpretable as 3D surfaces, training was conducted on various two-input parameter subsets 

(e.g., A11 and B22) to predict simulated PIDs. Gaussian Process Regression (GPR), a 
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probabilistic machine learning technique, was employed for model fitting [31]. During GPR 

training, an underlying function is predicted as the mean of a distribution over functions that 

is dependent on the values of inputs, outputs, and Gaussian measurement noise (i.e., 

uncertainty). This initial GPR training phase was completed using a summation of the Radial 

Basis Function (RBF) and white noise kernels in Python’s scikit-learn library [19,32].  

With 27 potential input parameters, there were 351 potential subset combinations for 

each PID output, all of which GPR modeled in approximately four minutes. Afterward, using 

Equation 1, the FBIC was computed for each model. The two-parameter input subset yielding 

the lowest FBIC was considered optimal, leading to the exclusion of the remaining 25. It is 

critical to note that input parameter subsets were not equally optimal for all three PID types 

and thus the process was repeated to build GPR models for each.  

 After constructing GPR models, a calibration process begins by iteratively replacing 

low-fidelity simulation data with high-fidelity simulation and experimental data. This process 

was guided by assigning noise levels to different data types in the model based on the 

proximity of low- and high-fidelity simulation points to the experimental data. This approach 

enables the GPR model to consider data from various sources differently, placing greater 

“trust” in and near experimental points. Conversely, in regions lacking experiments, the 

model exhibits heighted uncertainty. This establishes a GPR model with a spatially weighted 

uncertainty structure, termed Spatially Weighted Gaussian Process Regression (SWGPR).  

To illustrate the SWGPR approach, consider a simple space with data from one 

experiment and one lower-fidelity virtual source, where the outputs (e.g., PIDs) are assumed 

to be a function of some arbitrary parameter (Figure 3a). Similar to assuming that PID 

magnitudes are alike for nearby inputs, a smoothness in noise or uncertainty can also be 
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assumed. To incorporate this, we declare that as the distance between a lower-fidelity and 

experimental datapoint increases, the influence or weight of the low-fidelity point on the 

model’s predictions decreases following a Gaussian distance-decay function: 

𝑤 = 𝑒 × ,  (2) 

where 𝑤  is the weight of each lower-fidelity datapoint, 𝑑  is the Euclidean distance 

between a lower-fidelity and experimental datapoint, ℎ is a decay factor influencing the rate 

of weight decay, and 𝑑 ,  is the maximum distance between two datapoints in the domain.  

Figure 3a illustrates the Gaussian distance-decay function for various ℎ values, where 

the magnitude is a direct reflection of the uncertainty in a data source. If there is high 

uncertainty in modeling, material properties, or other variables, this knowledge can be 

implemented by specifying a smaller ℎ value. Once weights are determined, a distance-

weighted sum is calculated when multiple experimental points are present. These weights are 

then directly translated into noise levels using the following equation: 

𝛼 = ln (1 𝑤 ) ⁄  (3) 

where 𝛼  is considered the variance of additional Gaussian noise surrounding a datapoint. 

Figure 3b depicts normal distributions corresponding to Gaussian noises for various decay 

factors and interpoint distances. After establishing 𝛼  for each lower-fidelity point, these 

values are incorporated into the GPR framework, altering its prediction scheme to: 

𝑓(𝑥) ~ 𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥 ) + 𝛼(𝑑)𝐼) (4) 

where 𝑓(𝑥) is a function to be predicted, 𝒢𝒫 is the Gaussian Process, 𝑚(𝑥) is the mean 

function, 𝑘(𝑥, 𝑥 ) is the kernel function describing covariance between points 𝑥 and 𝑥 , 𝛼(𝑑) 

is an array of distance-dependent noise levels for each datapoint, and 𝐼 is the identity matrix.  
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During fitting, 𝛼 values are added to the kernel matrix’s diagonal to introduce point-

specific noise and a multiscale uncertainty structure in the model. Figure 3c illustrates 

SWGPR predictions for various decay factors, where dashed lines indicate its mean response, 

shaded areas represent 95% confidence bounds, and global covariance is modeled as the 

summed RBF and white noise kernels. For one extreme (ℎ = 0.1), there is high uncertainty 

in lower-fidelity data, resulting in strong reliance and tight convergence around the 

experiment. Conversely, when ℎ = 1.0, uncertainties are similar among fidelities and SWGPR 

predicts closely with the traditional GPR without 𝛼(𝑑) terms. 

 Building on prior discussions, a three-fidelity TGML prediction scheme requires 

specifying ℎ values for each virtual data source. To achieve this, we assume that uncertainties 

in simulation datapoints primarily stem from material properties referenced during modeling. 

In simpler terms, inaccuracies in virtual data are hypothesized to be mostly attributed to 

numerical inputs rather than modeling capabilities, given the challenging nature of 

composites characterization and using publicly-sourced properties. Consequently, we set ℎ 

equal to the inverse of the number of material properties used as inputs: ℎ = 1/3 = 0.33 for 

low-fidelity and ℎ = 1/15 = 0.07 for high-fidelity simulation. It is crucial to note that a smaller 

ℎ value for high-fidelity simulation does not imply lower accuracy but acknowledges a larger 

margin for error due to a higher number of inputs. 

 After establishing ℎ for each virtual data source, the TGML prediction method enters 

its final stage. At this point in the case study, a GPR model trained on 256 low-fidelity 

simulations is available for each PID type. The last step involves calibrating these models by 

conducting targeted high-fidelity simulations or experiments until a specified accuracy is 
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achieved. The overarching goal is to attain desired accuracy with the minimum number of 

experiments and high-fidelity simulations to keep the model cost-effective. 

To initiate calibration, one experiment is performed with parameters exhibiting the 

highest uncertainty in the GPR model. The experimental results replace the low-fidelity 

datapoint with the same input parameters, and other virtual points are weighed per Equations 

2 and 3. The SWGPR model is then retrained to predict PIDs and identify a new location 

with the highest uncertainty. Next, the parameters for which SWGPR are most uncertain are 

fed into the high-fidelity simulation scheme, PIDs are predicted, and the model is retrained. 

If the addition of high-fidelity simulation data improves accuracy, the process repeats with 

the high-fidelity simulation scheme. If accuracy remains unchanged or decreases, the process 

halts, and another experiment is conducted and added to the model. This process continues 

until the model meets accuracy requirements, where in this study, SWGPR must predict PIDs 

within the standard deviation of six testing laminates. 

3. Results and Discussion 

In this section, we initially illustrate the training of an SWGPR model as we aim to 

predict the tip spring-in at the center of six L-shaped composite parts with layups and input 

parameters listed in Table 1. Then, we extend the SWGPR approach to predict post-curing 

deformed L-shapes. The L-shape prediction involved predicting all PID types (corner spring-

in, tip spring-in, and warpage at the center and edge of each part), then generating interpolated 

profiles from these values.  

 Figure 4 displays an SWGPR model and its predictions for tip spring-in of L-shaped 

laminates (a) before and (b) after undergoing calibration. The model’s progressive evolution 

at various phases can also be referenced in Video 1. Red points in the left-side plots represent 
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low-fidelity simulations, blue squares are high-fidelity simulations, and black stars are 

experiments used for model training. Multi-colored surfaces depict the SWGPR models’ 

mean predictions, while grey surfaces are 95% confidence bounds. Tip spring-in is plotted 

against B11 and D22, identified as optimal parameters using the FBIC. In Video 1, high-

fidelity simulations are incrementally added in multiples of twenty for clarity. The right side 

of the graphics display tip spring-in predictions for the six testing laminates, with black 

outlined bars and error bars representing average experimental values and standard 

deviations, respectively.  

Initially, the SWGPR model trained on 256 low-fidelity simulations without spatial 

weighing exhibited a large root mean squared error (RMSE) of 27.7° in predicting tip spring-

in for the six testing laminates. Upon adding the first experiment, the model’s mean response 

and confidence bounds converged around the experiment and loosely followed low-fidelity 

data with additional Gaussian noises. Integrating high-fidelity simulation data then led to an 

evolving structure with increasing accuracy until approximately 40 simulations were added 

and the RMSE plateaued at 4.4°. Another experiment was then required near the model’s 

bounds, suggesting inaccuracies in the high-fidelity simulation scheme and the need for 

multiple experiments in the domain. After calibration, the SWGPR model incorporated 114 

low-fidelity simulations, 138 high-fidelity simulations, 4 experiments, achieved a minimal 

RMSE of 0.1°, and predicted within the standard deviation for all six testing laminates. Most 

notably, the calibrated SWGPR structure was dominated by virtual simulation data and only 

required a minimal number of experiments for accuracy convergence. Overall, this illustrates 

that the SWGPR approach can effectively utilize virtual and real-world datatypes for accurate 

and cost-efficient analysis of composites manufacturing phenomena.  
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Figure 5 shows average experimental profiles for the cured L-shaped parts compared 

with SWGPR predictions after the calibration process. As previously mentioned, 

experimental profiles were generated through laser scanning the L-shaped coupons, where 

two photos of which are also shown in the figure. All PID types necessitated four 

experiments, with minimal variation in the number of high-fidelity simulations to meet 

accuracy specifications. Overall, Figure 5 demonstrates that similar to the convergence 

observed in tip spring-in predictions, the SWGPR method achieves highly accurate 

predictions of the L-shaped parts with minimal material characterization and experimental 

efforts, showing promise in better understanding PIDs and other facets of composites 

manufacturing. 

4. Summary and Conclusions 

This study introduced an innovative approach for accurate and efficient analysis of 

composites manufacturing by combining multi-fidelity simulations, experimentation, and 

theory-guided machine learning (TGML). The method initiates with a low-fidelity simulation 

scheme to rapidly predict processing outcomes in a defined design space. These solutions are 

then mapped to a reduced-order domain using closed-form physical theory and Gaussian 

Process Regression (GPR). The theory-guided GPR model then undergoes iterative 

calibrations using high-fidelity simulation and targeted experimental results. During 

calibration, numerical datapoints are assigned point-specific noise levels using a novel 

Gaussian distance-decay weighing mechanism, creating a Spatially Weighted Gaussian 

Process Regression (SWGPR) model. The SWGPR approach accurately predicts spring-in 

and final deformed shapes of cured L-shaped laminates after integrating just four experiments 
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and bypassing complex material characterization. The strategies presented hold promise for 

further investigation, understanding, and improvement of composites manufacturing. 
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Figure 1. Schematics of process-induced deformations (PIDs) in an L-shaped composite part 
and the trade-off between time/cost and fidelity/accuracy in analysis methods. 

 

 
Figure 2. Geometry and terminology used to characterize L-shaped composite parts. 
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Figure 3. (a) Gaussian distance-decay weight and uncertainty, (b) Gaussian noise, and (c) 
SWGPR predictions for different uncertainty levels in a lower-fidelity data source.  

 
Figure 4. SWGPR model (a) before and (b) after calibration and its predictions of tip spring-
in for L-shaped composite parts. 
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Figure 5. Comparison between experimental PIDs and predictions using calibrated SWGPR 
models. 

 

Video 1. Progressive evolution of the SWGPR model and its predictions of tip spring-in 
throughout the calibration process. 

 

Table 1. Layups and input parameters of testing laminates for evaluating the accuracy of 
SWGPR models. 

Laminate Layup B11 × 10-3 (Pa·m2) D22 (Pa·m3) 
1 [90/90/90/90/0/0/0/0] 40.05 23.23 
2 [0/90/0/90/90/0/90/0] 0.00 15.63 
3 [90/0/0/90/0/90/90/0] 0.00 23.24 
4 [0/0/0/0/0/0/0/0] 0.00 2.95 
5 [90/0/90/0/90/90/0/90] -2.50 31.16 
6 [0/0/0/0/0/0/90/90] -30.04 20.70 

 


