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Space Navigation

Oliviero Vouch, Student Member, IEEE, Andrea Nardin Member, IEEE, Alex Minetto, Member, IEEE,
Simone Zocca, Member, IEEE, Matteo Valvano and Fabio Dovis, Member, IEEE

Abstract—Ground-based assets traditionally aid space vehicle
navigation, but the need for autonomy is steadily growing to
meet the demands of future deep-space exploration. This paper
proposes a customized Trajectory-Aware Extended Kalman Filter
(TA-EKF) architecture, which conforms to the kinematic ap-
proach for Orbit Determination (OD) based on Global Navigation
Satellite System (GNSS). Challenges at high altitudes, such as
reduced GNSS signal availability and poor geometry, necessitate
advanced filtering architectures leveraging external aiding data.
When the receiver is not expected to interface with on-board
guidance and control subsystems, aiding observations—in the
form of a pre-mission planned spacecraft trajectory—allow to
pursue precise and accurate OD only relying on GNSS measure-
ments. Two alternative TA-EKF designs are formulated, which
foresee observation-domain and state-domain integration of aiding
observations, respectively. While the former design acts directly
on the filter posterior, the latter aims to overcome deficiencies
in the state prediction owing to misspecified process dynamics.
The feasibility of using terrestrial GNSS signals in Earth-Moon
transfer orbits (MTQOs) is thus demonstrated against aiding
observation errors and mismodeling. The developed TA-EKF
models are thoroughly assessed via extensive Monte Carlo (MC)
analyses, comparing their OD performance against a standalone
EKF solution in a dedicated constellation simulator and mission
planner.

Index Terms—Global Navigation Satellite System, Moon, Space
Service Volume, Lunar Missions, Extended Kalman Filter.

I. INTRODUCTION

LTHOUGH Global Navigation Satellite Systems

(GNSSs) were historically conceived to supply accurate
and dependable Positioning, Navigation and Timing (PNT) to
terrestrial users, the momentum taken by the space sector has
made the space environment a new playground for in-orbit
GNSS-based navigation systems. Since the Global Positioning
System Package (GPSPAC) onboard the Landsat 4 mission
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was launched in 1982 [1], major technology progress in
GNSS space-borne receivers allowed to steadily improve
the spectrum of PNT services within the Terrestrial Service
Volume (TSV) [2]. Over the past decade, the increasing
demand for navigation capability for space vehicles has
fostered the expansion of the Space Service Volume (SSV)
well beyond the Low-Earth Orbit (LEO) [3]. Interestingly,
National Aeronautics and Space Administration (NASA)
Magnetospheric Multiscale Mission (MMS) set the highest
record for GNSS signal reception and onboard PNT to about
187000 km, i.e., ~29.3 Earth Radii (RE), away from the
Earth’s surface [4], [5].

At present, navigation, guidance and maneuvering of space
vehicles is typically addressed by heavily relying on ground
segment assets. Cutting-edge Orbit Determination (OD) tech-
niques leverage Direct-to-Earth (DTE) radiometric tracking
data from Deep Space Network (DSN) and employ complex
off-board processing algorithms [6]. Sometimes, observations
retrieved by the aid of a ground-based link are combined
with relative radiometric and optimetric measurements re-
trieved on-board, thus affording a semi-autonomous naviga-
tion paradigm [7]. Similarly, maneuver control operations
are typically accomplished via telecommands from ground
stations [8], [9]. Despite achieving remarkably accurate OD
and guidance, these approaches come with inherent drawbacks.
High operational costs are put on the ground infrastructure,
and fast exhaustion of tracking resources will likely happen
as the number of missions increases. In addition, reliance
on ground-based communication involves inherent limitations
such as physical round-trip delays and data processing de-
lays, which might prevent latency-critical operations from
success [10], [11].

Increased autonomy from Earth-based tracking systems is
thus crucial in spacecraft navigation subsystems to keep pace
with the next decades of deep-space exploration both in terms
of service availability and far-side accessibility [12]. Earth
GNSS signals remain unquestionably pivotal for on-board
autonomous navigation in transfer orbits as well as to assist
in complex maneuvers such as trans-orbital injections or land-
ings [13], [14]. Being GNSS satellite constellations conceived
to only provide Earth coverage, the space environment poses
non-trivial challenges that can hinder performance of space-
borne GNSS receiving terminals. First, reduced GNSS signal
availability is likely to be experienced at high altitudes because
of the very-limited region in the field of view where satellites
can be observed [15]. In addition, the unfortunate distribution
of GNSS constellations increases the linear dependency of
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the retrieved satellite measurements, thus resulting in very-
high Geometric Dilution Of Precision (GDOP) when com-
bined in multilateration solutions. In such a context, it is
worth mentioning that several space agencies are actively
proposing dedicated and scalable lunar-centric communication
and navigation infrastructures; this will benefit the breadth of
lunar-orbiting and surface assets through empowering PNT
capabilities [16].

In order to pursue ground-segment independent yet precise
OD using GNSS signals, the well-documented dynamic ap-
proach to precise OD considers to combine the standalone
GNSS state-estimation filter with a mathematical model of
orbital dynamics [17]. This orbital propagator, which acts as
a dead-reckoning sensor based on known physics of orbital
motion, is useful both to constrain the coarse GNSS-only
PNT solutions and to bridge position fixing gaps (e.g., if
fewer than four satellites are available and a batch estimator is
employed). The resulting hybrid architecture is often referred
to as Orbital Filter (OF), as first introduced by a pioneer
study on the design of an Extended Kalman Filter (EKF)
algorithm for GNSS-based OD in Earth-Moon transfer orbits
(MTOs) [18]. Alternatively, deterministic process dynamics in
the state-estimation filter can be characterized via a reduced
dynamic orbital model [19]. Then, flaws in the orbital model
are captured by augmenting the process model with stochastic
components (a.k.a., empirical accelerations). First adopted in
the Global Positioning System (GPS) demonstration receiver
for the TOPEX/Poseidon mission [20], this approach has been
later resumed in the context of MTO navigation [21]. However,
the augmented state-space reflecting the integration of an
orbital model as part of the state dynamics increases the com-
putational load; this might be a concern given the limited com-
putational resources on-board a spacecraft. Moreover, these
architectures require deterministic a-priori information (e.g.,
control inputs from Guidance, Navigation & Control (GNC)
subsystems) to accomplish optimal process state propagation.

As opposed to these and other approaches, this study
attempts to demonstrate the feasibility of GNSS-based OD
under the operational assumption that the state-estimation filter
has access to minimal amount of a-priori information about
process dynamics. This assumption finds tangible application
in the design of the GNSS receiver involved in the upcoming
Lunar GNSS Receiver Experiment (LuGRE) mission. Such
a scientific mission is based on a joint NASA-Italian Space
Agency (ASI) demonstration payload which will be carried
on the Firefly Blue Ghost Mission 1 (BGM1) with the goal of
demonstrating multi-GNSS-based PNT in cis-lunar space and
at Moon altitudes [22], [23]. The LuGRE GNSS receiver is not
expected to interface with the spacecraft GNC subsystem while
only relying on GNSS observables and aiding data (i.e., GNSS
ephemeris and planned spacecraft trajectory) provided from its
ground segment. Among the driving scientific investigations
identified to respond to the LuGRE objectives, it is considered
the performance assessment of filtering-based PNT solutions
obtained both onboard throughout the mission and via ground-
based post-processing of the multi-GNSS observables col-
lected throughout MTO up to Moon altitudes (i.e., about 62
RE) [24]-[26].

In light of the foregoing, this contribution addresses the
problem of GNSS-based spacecraft navigation adopting a
kinematic approach [27] which best fit with the operational
assumption for missions such as the aforementioned LuGRE,
although the proposed methodology can effectively accommo-
date more sophisticated physical models of orbital motion. As
such, a plain formulation of an EKF filter with oversimplified
constant-velocity process dynamics is considered. Then, aiding
information in the form of a pre-mission planned spacecraft
trajectory—loaded as a configuration file in the spacecraft
microprocessor board—is leveraged to enhance the filter pos-
terior estimate. The developed aided architecture, namely a
Trajectory-Aware EKF (TA-EKF), envisages two alternative
designs to accommodate spacecraft-state observations (i.e.,
aiding observations) in the state-estimation filter. On the
one hand, these aiding observations can be integrated in the
filter measurement model by augmenting the observables’ set;
hence, an observation-domain integration is pursued. On the
other hand, aiding observations can be optimally combined
with the time-propagated estimate to overcome deficiencies
in the state prediction owing to neglected orbital dynamics;
in this case, a state-domain integration is pursued. These
contributions significantly extend our previous work in [28]
with the rigorous formulation and the extensive analysis of
two alternative designs of aided EKF-based models tailored
to GNSS-based PNT in MTOs.

The developed TA-EKF architectures offer multiple advan-
tages. First, they can enable GNSS-based OD with minimal
amount of a-priori process information, thus not requiring
integration of external input controls from onboard GNC
subsystems. Moreover, the adoption of a simplified model for
state dynamics represents an attractive alternative to resource-
intensive designs of filtering-based estimators embedding com-
plex physical models. By leveraging a dedicated mission
planner and constellation simulator which can reproduce the
geometry of GNSS constellations and the observables retrieved
throughout MTOs, Monte Carlo (MC) analyses are first con-
ducted to exhaustively investigate both TA-EKF variants and
highlight their equivalent accuracy performance for the OD
task. In particular, a standalone EKF-based solution is consid-
ered as benchmark to show the limited navigation performance
achievable with a standalone kinematic approach. Then, cor-
rupted aiding observations mismatched with the traveled orbit
profile are introduced in order to asses the navigation accuracy
loss incurred by the TA-EKF models.

The subsequent sections of this paper are organized as fol-
lows. Section II provides a technical background on statistical
state estimation within the framework of the EKF. Section
III introduces the proposed TA-EKF estimation filters, and
Section IV delineates the simulation framework employed to
replicate the navigation conditions for a target mission-case
scenario of GNSS-based PNT in MTO. Then, a thorough
analysis of filter performances is presented in Section V.
Finally, Section VI encapsulates the drawn conclusions.

II. BACKGROUND

In the framework of filtering-based statistical estimation,
the process to be estimated and the associated dependency of
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measurements may be written in the form [29]:
xr = fre1(Tr—1,Ca k1) + Wp_1 9]
zp = hy (1) + vy, 2

where:

e I is the true, unknown process state at time tx;

e 2z is the measurement vector at time %g;

o wp_ 1 ~ N(0,Qr_1) and vy ~ N (0, Ry) are the
normally distributed process and measurement noises,
respectively; they are assumed with zero-mean, known
variance-covariance statistics and mutually independent.

e fr—1 and hj are known, non-linear state-transition and
observation functions, respectively.

e ¢4 -1 are deterministic forcing inputs (e.g., thrust accel-
eration) affecting the process state.

Given that the current study assumes the GNSS receiver
not to have access to external controls from onboard GNC
subsystems, these terms are assumed equal to zero in the
following.

The combination of (1) and (2) leads to a state-space for-
mulation following a Hidden Markov Model (HMM) [30].
Identifying with «} the estimated process state at time t,—
which includes, among the other quantities, the spacecraft
trajectory—the following relation holds:

T =, + Axy 3)

which introduces Az, as the residual of the estimate. Choos-
ing «}, = fr—1(x}_,), the linear(-ized) process dynamics and
measurement models can be obtained in terms of residuals
[29]:

Az =Py - Axpy + Wiy 4)
Zkfhk(.’BZ):Hk~A.’Bk —+ Vg 5

where ®;,_; and Hj are the linear(-ized) state-transition
matrix and measurement matrix, respectively. Based on
model (4), the predicted residual takes the form:

Az, = Pp_1 - AZp (6)

being A&_; the residual on the last process estimate at ¢j,_;.
Summing x; on both sides of (6), the linear(-ized) process
prediction model in terms of total states reads as [29]:

IL’Z + A:f_’:]; =y -
————

- — Br—1
&, k

Ti_ |+ ARy (7
—_———

with the associated predicted process covariance:
P =& 1P @, + Qe ®)

Accordingly, leveraging on model (5), the corrected residual
estimate at time t; follows as:

Ady = Ady + Ky, |z — (hk(:c;) + HkAa&,:) )

2k

where K;, = P, HI' (H, P, H + R;)~! is the Kalman
gain. The predicted measurements 2, are highlighted.
Eventually, the linear(-ized) process update equation in terms
of total states is obtained from (9) by resuming x; [29]:

—
Zr
The associated process covariance update is:
P, =(I - KH,)P; (I - K;.H,)" + Ky Ry K}' . (11)

A. Transitional model for process dynamics

Although a plethora of possibilities exist [31], a simple
constant velocity model is selected to characterize the discrete-
time evolution of the process state. Then, the state vector at
time ¢, is defined as:

. ;1T
@ = [ry P by by (12)

and it involves the following quantities:
o Ty = [xf Yk 2i] the spacecraft antenna absolute position
vector in (m);
o 1) = [&f Yk 2x] the spacecraft antenna absolute velocity
vector in (m/s);
« by the range equivalent of the GNSS receiver clock offset
in (m);
o by the range-rate equivalent of the GNSS receiver clock
drift in (m/s);
Based on (12), the state-transition matrix corresponds to [32]:

I3.3 I3x3At O3x1 Osx:
_|03x3  Isxz  O3x1 Oszx1

Pro1 = O1x3  Oixs 1 At (13
O1x3  O1xs 0 1

where At is the process state propagation interval, I,,x,, is
the n x n identity matrix and 0,,«,, is the n X n null-matrix.
Eventually, the process noise variance-covariance matrix can
be compactly written as [32]:

_ | Qp  O6x
Qu1 = {02:6 CG?:}

where @, is the covariance component for the positioning
states resolved about the Earth-Centred Earth-Fixed (ECEF)-
frame axes; it reads as:

(14)

e o
Qp = AStQ 2 ® diag(sa,xa Sa,ya Sa,z) (15)
2t At —_————
2 Sa

being S, the acceleration Power Spectral Density (PSD) and
® the Kronecker product. Similarly, @, is the covariance
component for the timing states and equals:

At At?
chﬁAt + Scfit Scfit

Q: = A2 S 2 (16)
SCfT ScfAt

being Sy and S,y the PSDs of the GNSS receiver clock phase-
drift and frequency-drift, respectively'.

"For Qx—1, Sep = 2.5-1072 (m/s)?/Hz, S.p = 1.5 - 10~% (m/s?)?/Hz,
Sa,z = Sa,y = Sa,» = 2(m/s2)?/Hz were set as in [33].
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Fig. 1: Processing stages of the developed TA-EKF model for both state-
domain (orange) and observation-domain (green) architectures. Aiding obser-
vations are highlighted with gray-colored background.

III. TRAJECTORY-AWARE EKF

In the proposed TA-EKF architecture, the aiding informa-
tion integrated in the GNSS-based navigation filter is con-
veyed as observations having a functional relationship with
the spacecraft kinematic state; the latter is usually meant in
terms of instantaneous position and velocity of the orbiting
probe. In the context of this application, these aiding obser-
vations are available to the filtering-based estimator from a
pre-mission designed spacecraft orbit. This trajectory, which
includes the spacecraft kinematic state for the entire mission
span, can be obtained via a high-precision, physics-based orbit
propagator embedding models of gravitational effects from
celestial bodies, atmospheric drag, solar radiation pressure and
possibly models of thrusting maneuvers [34]. Nevertheless,
ground-dependent subsystems (e.g., ground-based networks
for radiometric measurements) must also be regarded among
the means aiding observations are most commonly retrieved
from.

Aiding observations can be profitably fused in the GNSS-
based filter as soon as a new set of locally estimated satellite
measurements is available. Specifically, two alternative con-
figurations for aiding data integration are proposed in Fig. 1,
and their discussion is the content that follows.

A. Observation-domain aiding integration

By interpreting the aiding observations as a measurement
vector Z;, with a known functional dependence on the state,
they can augment the observables set and fit into the measure-
ment model (2) according to the following relation:

Zr = hi(zr) + G

hi, being the known (and possibly non-linear) measurement

A7)

function for the aiding observations and { ~ N (O,ﬁk)

being the corresponding normally-distributed nuisance term.
Assuming hy linear(-izable), (17) can be written as:

2, = Hyxy, + G (18)

and the linear(-ized) measurement model (5) can therefore be
augmented to embed the aiding observations as follows:

oh] - ] ane 2]

As mentioned earlier, in this research the aiding observations
are available in terms of a planned orbit through pre-mission
design; hence, they do not bring any information about the
GNSS receiver clock offset and drift states. It follows that the
aiding observations at time ¢; can be defined as follows:

19)

2, = [T Uk 2 Tr Uk 2] " (20)
——

where 7, and 7, are, respectively, the position and velocity
aiding states (i.e., spacecraft instantaneous kinematic states).
Hence, they admit a simple, linear relationship with the state
L.

~ 7 T . 1T

[T'k ?‘k} = [re k] + Gk 21
which brings to the following definition of the aiding obser-
vation function in state-space form:

hi(zx) = [Loxs Oox2] zr = Hyay, - (22)

Noticeably, in this case ﬁk is a linear function. Hence, the
observation matrix Hj, is derived without approximations and
can readily fit into model (19).

It is worth stressing that appropriate modeling of the aiding
variance-covariance statistics through Ry, is mandatory to
adopt this strategy in a Kalman estimator. In principle, these
variances should be finely tuned according to the thoroughness
of the source delivering aiding observations (e.g., how so-
phisticated the physics-based propagator in the software suite
for orbit design and maneuver planning is [34]). However,
absence of this information can be assumed. If so, Rk is
meant to model the degree of trust the estimator puts on the
source aiding observations are retrieved from. Alternatively,
it might be designed based on a set of pre-mission require-
ments allocated to the external aiding source. Furthermore,
independence between GNSS observables (e.g. pseudoranges,
pseudorange rate measurements) and aiding observations can
be safely assumed when the latter result from a pre-mission
orbital planning. Similarly, when aiding information is ob-
tained through ground-based assets, the complex processing
performed at the ground segment inherently decorrelates such
observations from GNSS measurements estimated on-board.

B. State-domain aiding integration

As an alternative approach to the integration of aiding data
in the observation model, the information carried by the aiding
observations can be fused into the dynamical model prior
to the integration of GNSS measurements. The aim of this
design choice is to profitably leverage aiding information to
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empower a transitional model based on simplistic constant-
velocity assumptions. In such sense, two estimates of the
unknown state have to be optimally combined at time ¢j:

o a time-propagated estimate &, = ®;_12,_1 yielded by

the transitional model;

e an aiding state Ty, yielded by the aiding observations Zj.
From (18), the Weighted Least-Squares (WLS) estimate of the
aiding state can be obtained as:

-1
By = (ﬁ,jR,;lﬂk) H Rz, . (23)
The essence of state-domain integration lies in recognizing
the assumption that both estimates come as realizations of
normally distributed multivariate random variables with a com-
mon mean—the true, unknown process state x;—and different
variance-covariance matrices. For the time-propagated state,
the variance-covariance P, is given in (8). For the aiding
state, instead, it can be computed as the variance-covariance

of the WLS estimate:

-1
P, — (ISIJ R;lﬁk) (24)
which propagates the aiding observations covariance Ry, in
the aiding state (the reader is invited to refer to (43) in the
Appendix). In light of the above and adopting a Generalized
Least-Squares (GLS) approach, the following loss function can
be defined:

L(wk,est;mkuplzapk) =

(Trest — @) (Py) 7+ Py ) (@pest — )
(25)

where xj, o is the estimate of xj, considered to evaluate the
loss. As a matter of fact, (25) corresponds to the square of
their Mahalanobis distance. Then, the Best Linear Unbiased
estimator (BLUE) of the common mean [35]-[37] which
minimizes (25) can be obtained as:
PP = (PO) BT (PY) T @i+ Py @]
(26)
To compute the covariance of #PLUF it is convenient to
resort to the uncertainty propagation principles for linear
combinations. Assuming independence among the random
vectors ®,_12x;_1 and Iy, it can be shown that

PR = {(PO) T+ BT @7

The interested reader can refer to the Appendix section for a
full derivation of (27).

Taking the common-mean estimate & as the optimal
combination between the time-propagated estimate and the
aiding state, it can then be used to enhance the EKF prediction
step by setting &, = #BLUE and P = PBLUE,

~BLUE
Ly

1) The case of diagonal covariance matrices: When both
the aiding states and the time-propagated state have i.i.d. com-
ponents (i.e., the multivariate normal distribution is equivalent
to the product of the univariates for each state dimension),
the variance-covariance matrices P, and P} are diagonal. In
such a case, the state-domain formulation for aiding integration
can be simplified to yield a more compact representation. In

fact, provided that both P, and P, have non-zero diagonal
elements, the inverse matrices are given by replacing each
main diagonal elements by its reciprocal. By relying on this
property, it is easy to verify that (26) can be simplified to

BV = Vi 1@y + Wiy, (28)
where
g1 0o --- 0
0 apa -~ 0
Vi=1 . . ; (29
0 0 Q.8
Beai O - 0
0 fBra -~ 0
Wip=1| . . ; (30)
0 0 Br,8
P!
Qg = —— (_1’“ Jii_ —, 31)
(P )i + (P
and (~ ) .
P i
Bri = : (32)

(Pk_)i_,il + (Pk)i_,il
Equation (28) is a weighted arithmetic mean of the time-
propagated state and the aiding state with variance-defined
weights. This weighted mean is the maximum likelihood
estimator of the mean of the probability distributions of the
two vectors under the assumption that they are mutually
independent and normally distributed with the same mean and
that each state variable is uncorrelated from the others [38].

From (27) it is also straightforward to derive a model for
the covariance matrix of (28), which results in

Y 0 ... 0
0 Yra - 0
pPRUE — | . (33)
0 0 Vk,8
where 1
Vi, = (34)

(P)it + (P

As a further cross-validation step, the diagonal elements
in (33) can be equivalently derived from the uncertainty
computation in [38].

IV. SIMULATION FRAMEWORK

By taking the LuGRE mission-case scenario as reference for
GNSS-based PNT along MTOs, a custom Matlab ®-based mis-
sion planner and constellation simulator has been developed
which duly models the GNSS signal environment experienced
by an orbiting probe throughout the Earth-Moon transfer up
to Moon altitude. Fig. 2 shows a snapshot of the considered
mission scenario as faithfully reproduced in the dedicated soft-
ware simulator. Two GNSS constellations are modeled: GPS
and Galileo. As regards the former, the 3D transmit-antenna
patterns for Block IIR and IIR-M satellites have been designed
following the technical documentation released by the U.S.
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Earth GNSS
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Mission
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Fig. 2: Snapshot of the mission-case scenario as reproduced by the custom Matlab ®-based mission planner and GNSS constellation simulator. Transmit-antenna
radiation patterns are shown for satellites in radiometric visibility from the spacecraft. Vectors pointing towards the spacecraft are shown as well.

Coast Guard Navigation Center (NAVCEN) [39]. Moreover,
details about the panel pattern specification for Block IIF
over L1-band were retrieved based on the published scientific
products from NASA’s GPS Antenna Characterization Exper-
iment (GPS ACE) [40]. Concerning Galileo satellites’ antenna
radiation patterns, the details of which are kept confidential,
unofficial Effective Isotropic Radiated Power (EIRP) values
have been assumed for main and side lobes as derived by
the European Space Operations Centre (ESOC) to enable
preliminary scientific investigations in support of the PROBA-
3 mission [41]. A 90° off-boresight angle mask is adopted for
the radiation patterns of both GNSS constellations.

A. Modeling and simulation of GNSS observables

In the developed constellation simulator, the synthetic gen-
eration of GNSS observables for each of the modeled GPS and
Galileo satellites is bound to both geometric and radiometric
visibility constraints. In particular, geometric visibility takes
into account the instantaneous availability of a Line-of-Sight
(LOS) link between the orbiting probe and each satellite
vehicle; this LOS is obstructed either in case the satellite-
spacecraft baseline is more than 90° off-boresight the nadir
pointing direction, or as a result of occultation effects induced
by the modeled Earth and Moon bodies. Radiometric visibility,
which strictly depends on the alignment between the antenna
radiation patterns of the receiver and the GNSS satellites, is
assessed upon the estimation of the received Carrier-to-Noise-
density ratio (C'/Ny) from each satellite. This estimation
is based on a link-budget model obtained through a high-
accuracy fit of the expected C/N, levels for the LuGRE
receiver throughout the mission [22]. It should be noted that
the aforementioned criteria for the synthetic generation of
GNSS observables overlook any peculiar conditions for which
atmospheric propagation bending may induce radiometric vis-

ibility for satellites that are not visible geometrically due to
Earth occlusion.

Pseudorange measurements carry satellites-to-spacecraft
range information corrupted by satellite clock errors, propaga-
tion delays induced by the atmosphere, and other unmodelled
effects usually lumped into a residual error term [42]. Only
code-based ranging is considered for simulation purposes, and
compensation of the modeled bias contributions is assumed.
Therefore, the corrected pseudorange measurement to a visible
satellite s at time instant ¢; is simulated according to:

Pl =p

r

) 4 bty +e) (35)
——
b
where:
. pgéll is the spacecraft-to-satellite geometric range in (m);
e Ot, ) is the spacecraft GNSS receiver clock offset in (s);
. eg ~N (0, aéf?k) is the normally distributed pseudor-
ange residual in (m).
For 6t 1, the apex (s) is omitted in (35) under the hypothesis
that satellite measurements are predicted forward to a time of
arrival common to all active receiver tracking channels (i.e.,
t1); it follows that the receiver clock bias evenly affects all the
available observables. Accounting for the phase noise on the
clock offset and the random walk of the receiver clock drift
over At, dt,, is simulated according to:
Seco ScfAt
At + 3 +N(0,ScfAt)

j<i>,7‘7ns

Oty = (36)

where Z4 s is the average Root-Mean-Square (RMS) value

for the clock offset phase noise. As concerns eff,i, the value

of aéf?k is computed as a function of the estimated C/Nj

following the model reported in [23].
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The corrected Doppler-shift measurement, transformed into
the equivalent pseudorange-rate, to a visible satellite s at time
instant ¢ is constructed based on the radial component of the
satellite-spacecraft relative velocity vector:

. T .
P = ult) 70 = ] 4+ b+ € 37)

where:

. 7'“,(;) is the velocity vector of visible satellite (s) at the

measured transmission time (w.r.t. tx) in (m/s);

. ugslz is the spacecraft-to-satellite unit LOS vector;

552 is the normally distributed pseudorange-rate residual

(e &%)~ N (0, agj?k)) in (m/s).

Similarly to eg, the value of aéf)k is retrieved as a function

of the estimated C/Ny following the corresponding model
in [23].

o €

B. Reference trajectory and aiding model

Concerning the reference trajectory employed in the an-
alyzed mission scenario, the custom constellation simulator
leverages a pre-launch OD design of the LuGRE payload
available as a byproduct of ongoing research activities. Al-
though the specific details of the orbit ephemeris are kept
confidential, this design fits specific requirements regarding
tracking schedules, maneuver-recovery schedules, and space-
craft ground-tracking considerations. About motion dynamics,
physics-based perturbation techniques are leveraged to numer-
ically integrate non-linear differential equations of spacecraft
motion starting from an initial estimate of the kinematic state.
In particular, the OD design accounts for gravitational effects
from Earth, Sun, and Moon, third-body perturbation effects,
atmospheric drag, solar radiation pressure, and additional
higher-order effects.

Starting from this reference orbit, aiding observations in
terms of discrete-time spacecraft kinematics are constructed
by accounting for a time-variant bias component and noise.
Introducing a bias component in the model for simulated
aiding observations is meant to capture discrepancies between
the GNSS observations and the integrated aiding observations.
Usually, a mismatch raises as a temporal offset due to asyn-
chronous aiding data integration in the filter. Suppose the

*GPS
25 -+Galileo
-Total

No. RF-visible SVs

Distance (RE)

(a)

aiding observations are given as a discrete-time sequence of
kinematic states. At time instant ¢; and in the absence of any
additional timing information, there is no apparent rationale
to drive the selection of the aiding observation sample from
the discrete sequence. In this regard, there is no guarantee that
sample identification based on aligning the discrete timestamps
brings to optimal aiding integration [43].

Specifically, the aiding observation model employed in the
custom simulator can be formulated at ¢; as:

Zi = [re )" +by (38)
——

Tk
where @; embeds the instantaneous kinematic state (i.c.,
position and velocity) of the spacecraft according to the pre-
launch orbit design and by is the introduced bias factor. For

the latter quantity, a time-series is simulated as first-order
autoregressive AR(1) process [44]:

by = —Apby_1 + M (39

where Ay is the diagonal matrix of process coefficients; it is
defined as:

(40)

Ap=(-1)- [ Tk 03“]

O3x3 Tk

7, and 7 being the instantaneous spacecraft velocity and
acceleration states, respectively. Moreover, 7, is the normally
distributed driving noise term with steady-state variance-
covariance 3. Expanding upon the asynchronous mismatch-
ing behavior captured by the AR(1) process, this driving noise
term allows to account for unpredictable effects such as abrupt
thrusting maneuvers or temporary disturbances from other
celestial bodies (e.g., space-weather phenomena) that are likely
to take place during the mission.

V. RESULTS

In this section, the simulation framework in Section IV is
exploited for a twofold purpose. On the one hand, it is used
to carry out analysis tasks regarding the availability of GNSS
observations and satellite distribution relative to the entire
span of the planned probe orbit for the LuGRE payload. On
the other hand, a thorough analysis of the filtered solutions
from either TA-EKF variants is meant to assess the achievable

108,

Il
10 20 30 40 50 60
Distance (RE)

(b)

Fig. 3: Expected radiometric visibility pattern for both GPS and Galileo constellations (a) and GDOP profile (b) along the MTO up to low-lunar orbit.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in IEEE Journal of Radio Frequency Identification. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JRFID.2024.3403914

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

W T T ___L--- I o= === ===F === ————
0.8+ et ]
L,
.
p
0.6 e ]
L ’
o ’
o ’
0.4+ i ]
’
7
02r - EKF standalone
—TA-EKF (observation-domain),
0 I I | | | [=TA-EKF (state-domain)

|
20 40 60 80 100 120 140 160 180 200
Position error [m]

Fig. 4: Position error statistics in terms of empirical cumulative density func-
tion for both observation-domain and state-domain TA-EKF architectures. The
EKF-based filtered navigation solution is taken as benchmark for performance
evaluation.

accuracy performance when GNSS-based OD is performed
according to a kinematic approach.

A. Predicted visibility and dilution of precision

Taking a reference C/Ny threshold of 23 dBHz, Fig. 3a
reports the predicted signal availability relative to modeled
GPS and Galileo satellites as a function of the distance
from the Earth (in RE). In particular, composite and disjoint
trends are shown for the involved GNSS constellations. GNSS
observables are available if both geometric and radiomet-
ric visibility are experienced at the receiver location. Line
markers represent the average number of GNSS satellites
under radiometric visibility measured over 15-minutes long
time windows during the simulated mission transit phase.
Moreover, background markers highlight that instantaneous
satellite visibility might fluctuate besides the mean expected
radiometric visibility. On average, the Galileo constellation
shows a much earlier radiometric visibility drop-off at about
30 RE compared to the GPS constellation. This phenomenon
is likely induced by an overly pessimistic assumption for the
EIRP values of both main and side lobes in Galileo transmit-
antenna patterns.

The estimated GDOP profile along the MTO is represented
in Fig. 3b. Unsurprisingly, the more the spacecraft gets away
from the Earth’s surface, the more the GDOP deteriorates.
Close to the Earth, radiometric-visible satellites fall under
a broader angle of view, which generally guarantees a low
linear dependency among the spacecraft-to-satellite unit LOS
pointing vectors; on the contrary, getting away from the Earth’s
surface, the angle of view increasingly narrows whichever the
satellite distribution is, and the geometrical arrangement of
ranging sources deteriorates. This phenomenon is summarized
by the resulting GDOP profile, which acts as a compact, al-
though non-exhaustive, scalar indicator of the satellites’ spatial
distribution effect on the covariance statistics characterizing
the navigation solution.

B. EKF-based kinematic POD with aiding integration

To assess the proposed TA-EKF architectures, a 15-minutes
long orbital section is selected in a neighborhood of a point

8
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Fig. 5: Statistical characterization of the OD solution for both observation-
domain and state-domain TA-EKF architectures and for a standalone EKF
model. UTC timestamps are referred to a simulated orbit reflecting the
analyzed mission scenario.

TABLE I: Cumulative position error statistics (¢CDF percentile) for either
TA-EKF architectures and the standalone EKF measured over the analyzed
15-minutes long MTO segment.

CDF (percentile)

Navigation Filter

25 50 75 95
EKF standalone 12.583 24928  43.073 86.199
TA-EKF (observation-domain) 11.455 15734 20.445  29.053
TA-EKF (state-domain) 11.457 15.731 20.448  29.056

belonging to the planned LuGRE trajectory at a distance
of 25.05 RE (i.e., 159768.9 km); the selected distance is
relevant to the mission scientific objectives [24]. In order
to gather significant accuracy statistics to characterize the
filtered navigation solution, a sample of 10* MC realizations is
collected of the aforementioned orbital segment. For each MC
trial, the initial value for the AR(1) bias process is determined

as a probabilistic outcome:
03x3
0I5y

~ 2 b
by ~ N <06><17 [UPIB’XS
I Moreover, a GNSS-

03x3
where 0, = 10 m and o, = 1072 o
based kinematic OD solution via standalone EKF architecture
is taken as a benchmark to measure the achievable accuracy
gain via the integration of aiding observations.

Fig. 4 illustrates the empirical Cumulative Density Function
(eCDF) lines relative to the positioning error; in addition,
summary cumulative error statistics at relevant percentiles are
listed in Table I. Yet, positioning accuracy and precision analy-
sis for the considered filtering-based algorithms are reported as

(41)
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Fig. 6: RMS state covariance statistics (1o) relative to the position, velocity,
clock-bias and clock-drift states. Comparison between the proposed TA-
EKF models. The standalone EKF is taken as benchmark for performance
evaluation.

box plots in Fig. 5. Each subplot of Fig. 5 shows a time series
of box plots for each of the investigated filtering algorithms
observed every 17 s over the whole orbital segment. In
particular, each box represents the summary positioning error
statics as the instantaneous output of the collected MC sample
from 103 runs. The top and bottom edges of the box (i.e., the
interquartile range) indicate the 75-th and 25-th percentiles,
respectively, and the black mark with a square shape inside
the interquartile range identifies the mean of the MC sample.
The lines extending above and below each box are referred to
as whiskers. The latter goes from the end of the interquartile
range to the furthest MC realization within the whisker length.
Observations beyond the whisker length are marked as out-
liers and relevant to characterizing the instantaneous position
estimation uncertainty. The proposed TA-EKF designs for
aiding integration pursue nearly equivalent OD performance,
being the corresponding eCDF lines overlapped. A further
manipulation of the filtering equations using the information

TA-EKF (observation-domain)

25 50 75 95
CDF (percentile)

TA-EKF (state-domain)
6

39.58
32. g 40.76

& 44.36
37.5 44.65
48.06
25 50 75 95
CDF (percentile)

Fig. 7: Heatmap chart of position error statistics (percentiles) for different
variances of the multivariate normal distribution used to probabilistically draw
the AR(1) bias process initial value. Map cells are measured positioning errors
for both observation-domain (top chart) and state-domain (bottom chart) TA-
EKF architectures.

form [45] can effectively highlight the duality between the
two architectures. However, implementation discrepancies are
currently under investigation and will be addressed in future
work.

For the standalone EKF, the vulnerability of a kinematic
approach to OD is rather obvious. This filtering architecture
interpolates between successive position-fixing epochs through
a simplistic dynamical model and heavily relies on GNSS
observations to estimate the spacecraft orbit. However, the
adverse space environment limits the accuracy of satellite-
based ranging measurements. Moreover, the geometrical ar-
rangement of satellite-based ranging sources exacerbates the
propagation of measurement errors over the computed orbit
position (the reader can refer to Fig. 3b to visualize the
detrimental GDOP conditions predicted for the LuGRE Earth-
Moon transfer). These effects are successfully mitigated via
the integration of aiding observations, which allow the flaws
of the kinematic approach to be overcome to a large extent.
As a matter of fact, the developed TA-EKF models pursue
remarkable accuracy compared to the standalone algorithm.
According to Table I, the position accuracy improvement
measured at the 50-th percentile amounts to 36.88%, while
at the 95-th percentile it increases to 66.29%. Moreover, by
looking at Fig. 4, the maximum positioning error measured
for the aided architectures is bound to 43.48 m as opposed
to the much higher error of 1272.57 m measured for the
standalone solution. Correspondingly, it is clear from Fig. 5
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that the position estimation uncertainty is consistently reduced
via the proposed TA-EKF variants with error outliers limited
to about 40 m.

Fig. 6 highlights the convergence pattern (lo-uncertainty)
of the navigation filter estimates for the process states modeled
in (12). Owing to spacecraft dynamics, the process state esti-
mate suffers the adoption of a constant velocity approximation
(i.e., high acceleration noise) for the unaided EKF. Therefore,
upon a coarser linearization of the state-transition model w.r.t.
the one attainable with the true (but unknown) state, the
gradient of f;_;1 over the uncertainty bounds of the state-
estimate is likely to be significant; this condition, in turns,
negatively impacts on the process state estimate. Moreover,
such a phenomenon reflects on the process covariance esti-
mate, which depends upon the state estimate as a consequence
of linearization. Upon integration of aiding observations, the
TA-EKF state-estimate benefits from a finer state-space model
linearization. As a result, the estimator trusts the navigation
solution more, and this is visible from the overlapping RMS
curves of both TA-EKF models.

Eventually, the heatmap charts in Fig. 7 illustrate rele-
vant percentiles of cumulative error statistics against different
values of the second-order central moment for the multi-
variate Gaussian distribution used to draw MC samples of
AR(1) bias initial values. Each cell in the map represents
the 3D position error for both observation-domain (top chart)
and state-domain (bottom chart) TA-EKF implementations.
These results confirm again the similarity between the two
implementations. Starting from a set of mission requirements
in terms of accuracy for the OD task agreed upon pre-launch
mission phase, the scope of the proposed analysis is to provide
valuable guidelines in support of the prospective design of a
TA-EKF-based navigation unit implementing kinematic OD.
This heatmap allows the translation of OD requirements into
precision and accuracy criteria to be satisfied upon the design
of a pre-launch orbital model aiding observation can be
retrieved from.

VI. CONCLUSION

As interest and investment are steadily growing in space
exploration missions, GNSS is an attractive technology for
OD, allowing increased autonomy and reducing the burden
of ground-based tracking operations. In the framework of
the upcoming LuGRE demonstration mission for GNSS-based
PNT in cis-lunar space and at moon altitudes, aided EKF-
based solutions for kinematic OD have been investigated [46],
[47]. Under the operational assumption that the receiver does
not interface with the spacecraft GNC subsystem, this paper
has proposed two alternative yet equivalent designs of a TA-
EKF model; these architectures integrate aiding information in
the form of kinematic observations of the planned spacecraft
trajectory retrieved from a pre-launch orbit design. By lever-
aging MC analyses to draw significant statistics, the present
study has demonstrated that either TA-EKF architectures can
pursue remarkable accuracy in the OD task with promising
robustness to detrimental GDOP fluctuations and satellite
signal depletion. Compared to a standalone EKF architecture,
the accuracy of the filtered positioning solution can be en-

hanced up to 66.29% at the 95-th percentile. Moreover, filter
convergence is improved against the standalone counterpart in
both position and velocity states. Recognizing the challenges
of asynchronous aiding data integration and the pitfalls of
misspecified statistics for aiding observations, the upcoming
research will devote effort to developing techniques that can
enhance the reliability and robustness of the filtered navigation
solution.
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APPENDIX

Hereinafter it is considered the computation of the covari-
ance of a common mean estimator of two multivariate normal
distributions with the same mean and different variance-
covariance matrices. The BLUE of such common mean is
defined as [48]:

2 UE = (P) BT (P) T Radk B @]

(42)
To compute its covariance, it is worth resorting to the uncer-
tainty propagation principle for linear combinations. Specifi-
cally, if 3, and X, are, respectively, the covariance matrices
of two random vectors x and y, and they are related by
y = Ax, the identity

», =A%, A" (43)

holds [49]. Moreover, if  and y are independent, the covari-
ance of their weighted sum z = Ax + By is

Y., =Xaz+XBy - (44)

Using (43) and (44), and therefore assuming independence

among the random vectors ®;_1&;_1 and &, we can prop-

agate their respective covariances within (26). The resulting

covariance of the common mean estimator ﬁ:,’fLUE is

PPIUE — ((P)! +pkfl}_l{(P];)—lpk*[(Pk*)—l]T

(45)
+ P PP T HI(P) T+ BT d6)
={(P)) '+ P P (47)
+(PO)THIP) T + BT 48)
={@P) '+ B P (49)
+ (PO THIP) T + (P! (50)
:{<Pk7)_1+13k71}_1 (51)

where we used (AT = (AT)"!, A~'A = I, and
(A+ B)T = (AT + B7), being A and B square, invertible
matrices.
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