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A B S T R A C T

Deep Reinforcement Learning (DRL) has emerged as a promising approach to address the trade-off between
energy efficiency and indoor comfort in buildings, potentially outperforming conventional Rule-Based Con-
trollers (RBC). This paper explores the real-world application of a Soft-Actor Critic (SAC) DRL controller in
a building’s Thermally Activated Building System (TABS), focusing on optimising energy consumption and
maintaining comfortable indoor temperatures. Our approach involves pre-training the DRL agent using a
simplified Resistance-Capacitance (RC) model calibrated with real building data. The study first benchmarks the
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Temperature control DRL controller against three RBCs, two Proportional-Integral (PI) controllers and a Model Predictive Controller
(MPC) in a simulated environment. In the simulation study, DRL reduces energy consumption by 15% to
50% and decreases temperature violations by 25% compared to RBCs, reducing also energy consumption
and temperature violations compared to PI controllers by respectively 23% and 5%. Moreover, DRL achieves
comparable performance in terms of temperature control but consuming 29% more energy than an ideal MPC.
When implemented in a real building during a two-month cooling season, the DRL controller performances
were compared with those of the best-performing RBC, enhancing indoor temperature control by 68% without
increasing energy consumption. This research demonstrates an effective strategy for training and deploying DRL
controllers in real building energy systems, highlighting the potential of DRL in practical energy management
applications.
1. Introduction

In recent years, the interest in the possible improvement of energy
efficiency in buildings has increased worldwide, as buildings constitute
one of the major contributors to both global energy consumption
(i.e., 40%) and emissions of greenhouse gas (i.e., 30%) [1]. In this
context, energy management emerges as a viable solution to enhance
energy systems operation [2] by reducing energy costs and improving
indoor comfort conditions for the occupants [3]. Notably, Heating, Ven-
tilation and Air Conditioning (HVAC) systems account for the highest
energy consumption in buildings. Substantial enhancements have been
introduced to improve their energy efficiency by implementing more
effective system solutions coupled with advanced energy management
strategies [4].

Thermally Activated Building System (TABS) has emerged as a
promising solution in minimising energy consumption and improving
thermal comfort in office buildings. Utilising the thermal inertia of
the building structure, TABS stores and releases heat, actively shaping
the indoor temperature conditions. Nevertheless, ensuring the efficient
management and control of TABS and other HVAC systems is crucial for
maximising energy efficiency while preserving optimal thermal comfort
conditions.

Currently, HVAC systems are predominantly controlled using ON-
FF Rule-Based Controller (RBC) [5]. These methods rely on ex-
ert knowledge and predetermined schedules outlined in the ASHRAE
uidelines 36 [6]. Although developed by building control experts,

hese controllers may behave suboptimally since they are not able to
ptimise multi-objective control problems, being reactive controllers
7]. Specifically, they cannot dynamically adapt their control policies
ased on predictions of external factors, such as weather conditions,
hat impact energy consumption and comfort conditions in build-
ngs [8]. Furthermore, RBC strategies lack optimisation capabilities and
re not able to handle multiple and contrasting objective functions [9].

In this context, the increased availability of historical building data,
acilitated by the widespread use of Internet of Things (IoT) devices
nd Information and Communication Technologies (ICT) [10], becomes
articularly valuable. This data enables the development of advanced
ontrol strategies that estimate and predict current and future build-
ng states and energy system dynamics, addressing the limitations of
urrent HVAC control methods [11].

To address the challenges related to the implementation of RBC
or HVAC systems, the adoption of advanced control strategies em-
loying predictive and adaptive methods has emerged as a viable
olution. These advanced control approaches for HVAC systems pri-
arily fall into two categories: model-based and model-free methods.

n model-based methods, the key elements of control systems are a
odel representing the controlled environment and an optimiser, while
odel-free methods do not require any model of the environment to be

ontrolled since they learn a near-optimal control policy employing a
rial-and-error process with the system to be controlled.

Among model-based control methods, MPC addresses the primary
hallenges of HVAC system control, including nonlinear and time-
arying dynamics and disturbances, by conducting optimisation over
2

receding control time horizon. MPC utilises a mathematical model of
the controlled system and employs an online numerical optimisation to
compute optimal control signals over a given time horizon [12,13] also
taking into account the possible evolution of system dynamics [14].
MPC has gained attention in building control field for its optimal
predictive capabilities [15], showing effectiveness in optimising HVAC
system operation [16,17]. Nevertheless, the practical implementation
of MPC is limited by its reliance on a model-based approach, requiring a
sufficiently detailed characterisation of the specific building and energy
system in which the MPC is implemented [18]. This is particularly
relevant for HVAC systems, where each building presents a unique
entity, making control-oriented modelling of their envelope and energy
systems challenging. On top of that, each building is different and
subject to various internal and external conditions (i.e., occupancy
patterns, outdoor weather), geometries and thermophysical properties.
Consequently, despite its robustness and advantages, MPC adoption
remains limited in the building industry [19].

As an alternative solution, Reinforcement Learning (RL) emerges
among model-free control approaches for its great potential in op-
timising building energy system control strategies to reduce energy
costs related to building operation while enhancing indoor temperature
control and comfort conditions for the occupants. RL controllers learn
a near-optimal control policy through direct environment interaction,
employing a trial and error approach [20]. Due to the complexity
and non-linearity of building control problems, Deep Neural Network
(DNN) are commonly used in RL algorithms, leading to a DRL approach.

The following subsection provides an overview of the existing liter-
ature on the applications of DRL to optimise the operation of HVAC
systems in buildings. A more general background on RL theoretical
foundations and algorithms is given in Appendix.

1.1. Related works on reinforcement learning applications

DRL has gained significant traction in recent years due to its capabil-
ity to address the primary challenges of HVAC system control, including
nonlinear and time-varying dynamics and disturbances and to handle
complex and high-dimensional control problems with conflicting ob-
jectives (e.g., the trade-off between energy consumption and occupant
comfort), which makes it particularly suitable for managing building
HVAC systems, characterised by non-linearity and uncertainty [21–23].

For example, recent studies have exploited DRL in simulation to
control the supply water temperature [24,25], the mass flow rate in
thermal systems [26,27], the indoor temperature setpoint [28], the
operation mode of generation systems [29,30], and both thermal [31]
and electrical storage systems [32]. Table 1 reports related works
on DRL application developed in simulative way, providing details
about objectives, implemented control strategies, energy system and
key outcomes.

Despite its potential, there are limited results on the real-world
implementation of DRL in HVAC systems [33], particularly in the con-
text of TABS. To address this gap, [34] implemented a DRL algorithm
for a radiant heating system in a real office building. The authors
employed EnergyPlus to create a physics-based model, calibrated it
with measured building data, utilised the model for DRL agent training
using the Asynchronous Advantage Actor Critic (A3C) policy gradient

method, and deployed the trained agent in the heating system. This
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Nomenclature

𝛼 Boltzmann temperature coefficient
𝑄̇sol Solar radiation [W∕m2]
𝑄̇tabs Cooling power delivered by TABS [W]
𝜂𝑑 Performance normalisation factor for out-

door temperature and solar radiation
𝛾 Discount factor
𝜆 Energy term weight of reward function
E Expected value
 Shannon entropy term
𝜇 Learning rate
𝑄̇tabs,norm,𝑑 Normalised daily mean cooling power [W]
𝑇i Upper limit of temperature comfort range

[°C]
𝜋 Control policy
𝜋∗ Optimal control policy
𝜏 DRL controller soft-update coefficient
𝜃 Reward scaling factor
𝑇i Lower limit of temperature comfort range

[°C]
𝑎 Control action at control time step t
𝑏occ Occupancy boolean variable
𝐸tabs Energy consumption associated with the

TABS operation [kWh]
𝑄𝜋 (𝑠, 𝑎) Action-value function
𝑅(𝑠, 𝑎) Reward function
𝑟𝐸 Energy term of reward function
𝑟𝑇 Temperature term of reward function
𝑠 Environment state at control time step t
𝑠′ Environment state at control time step t+1
𝑡end Occupancy end time
𝑡start Occupancy start time
𝑇i Indoor air temperature [°C]
𝑇o Outdoor air temperature [°C]
𝑇viol,norm,𝑑 Normalised daily cumulative temperature

violations [°C]
𝑇viol Temperature violation [°C]
𝑢𝑡 Percentage opening of the valve
𝑉 𝜋 (𝑠) State-value function

Acronyms

A3C Asynchronous Advantage Actor Critic
DDPG Deep Deterministic Policy Gradient
DNN Deep Neural Network
DQN Deep Q-Network
DRL Deep Reinforcement Learning
HVAC Heating, Ventilation and Air Conditioning
HVRF Hybrid Variable Refrigerant Flow
ICT Information and Communication Technolo-

gies
IoT Internet of Things
MDP Markov Decision Process
MSE Mean Squared Error
ODBC Open DataBase Connectivity
ODE Ordinary Differential Equation
PI Proportional-Integral
PLC Programmable Logic Controller
3

PPO Proximal Policy Optimisation
RBC Rule-Based Controller
RC Resistance-Capacitance
RL Reinforcement Learning
RMSE Root Mean Squared Error
SAC Soft Actor-Critic
TABS Thermally Activated Building System
RES Renewable Energy Sources
TL Transfer Learning
TPE Tree-structured Parzen Estimator

approach, integrating an occupant feedback system via a smartphone
app, led to an approximately 18% reduction in heating demand com-
pared to the old rule-based controller over a three-month deployment
period. However, several challenges were identified, including low user
engagement in the feedback system, inefficiencies in DRL training and
difficulties in data handling.

Another study by [35] investigated an offline multi-agent DRL
algorithm for a radiant floor heating system. The research involved two
tests: a comparative test with a traditional rule-based controller and
another with the DRL controller. The benchmarking data were used in
the DRL algorithm to train and then deploy it, revealing that the DRL
controller demonstrated robustness, performed predictive control-like
actions, reduced temperature oscillation by 43%–63%, and decreased
overall costs by 14% to 16%.

A study by [38] introduced a control framework, named Deep-
Valve, based on the Double Deep Q-learning algorithm. The authors
trained the DRL controller in a simulated environment, utilising a
surrogate model of a simplified building and considered training data
from twenty different buildings. The controller was then tested on
three additional buildings, whose dynamics were also represented by
a simplified model. Finally, the controller’s performance was tested in
a real testbed at EPFL, Switzerland, featuring two occupants and a floor
and ceiling heating system. The study found a 44% reduction in energy
consumption and improved internal comfort compared to the RBC
baseline, demonstrating its adaptability to different real-building con-
ditions. However, this work did not provide a benchmark for evaluating
DRL performance against the baseline in real-world tests and designed
the DRL as high-level controllers without direct interaction with the
energy system, relying instead on enabling or disabling the low-level
RBC managing the indoor temperature setpoint of the experimental
building.

These studies highlight the potential of DRL in enhancing energy
efficiency within TABS control systems. However, real-world imple-
mentations still face challenges that should be addressed in future
research to harness DRL’s potential in real-world buildings [33].

1.2. Research gaps, novelty and contributions

From the literature analysis, it emerges that DRL can be an effective
strategy to optimise the operation of energy systems in buildings while
ensuring comfortable conditions for occupants. However, to the best
of our knowledge, the performance of DRL has been mostly tested
by researchers in a simulated environment and only in a few studies
in a real experimental testbed. A common approach widely explored
in DRL literature evaluated the controller performance using detailed
engineering building models such as those created in EnergyPlus [39].
However, this is a time-consuming task that requires both domain
expertise and information about the thermal properties of the building,
which may not always be readily available [40]. A potential solution to
this problem could be the development of a simplified RC model that
is used both during the training and testing phases of the controller.
Although it retains physical knowledge of the system, it is subject to
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Table 1
Summary of simulated DRL applications in building system management.

Ref Objectives Control strategies Energy system Key outcomes

Zhang et al. [25] Reduce energy consumption,
enhance indoor comfort

A3C TABS 17% reduction in energy savings,
slight increase in PPD

Schreiber et al. [26] Reduce energy cost,
temperature regulation

DQN, DDPG Chiller 14% reduction in weekly electrical
cost

Brandi et al. [30] Minimise electricity cost in
charging/discharging

SAC, MPC Chiller and TES Comparable performance with MPC

Wang et al. [31] Operation management for
cost reduction

Deep Q-network Chiller and TES 8% cost reduction compared to
fixed-schedule control

Lei et al. [36] Reduce cooling energy
consumption, improve thermal
comfort

Dueling DQN Hybrid cooling system 14% less cooling energy, 11%
improvement in thermal acceptability

Silvestri et al. [37] Reduce energy costs, decrease
temperature violations

PPO, SAC TABS PPO: 18% cost reduction, 33% fewer
temperature violations; SAC: 14%
cost reduction, 64% fewer
temperature violations
o
i

unavoidable model inaccuracies. Therefore, training a DRL controller
with a grey-box model as a proxy for the real building dynamics poses
the risk that the control policy may not perform as effectively in real-
world scenarios. Furthermore, DRL controllers are commonly employed
to function as high-level controllers, as they do not directly interact
with the energy system. For instance, as in [38] the DRL was operated
to decide whether to enable or disable the low-level RBC managing the
indoor temperature setpoint of the experimental building.

Finally, another critical aspect rising from the literature review, is
the lack of a benchmark methodology to evaluate the DRL performance
against the implemented baseline in the experimental setting.

Thus, the present paper demonstrates the feasibility and effective-
ness of DRL in real-world settings, bridging the gap between theoretical
research and practical application, discussing the real implementation
challenges.

In detail, a DRL controller is pre-trained in a simulation environ-
ment employing a RC model as the thermal building surrogate model.
During the simulative phase, the performance of the DRL controller was
compared with that of an MPC-based controller, two PI controllers and
three RBCs.

Afterwards, the DRL controller is deployed in the real testbed to
validate its performance on the real building from which the data were
extracted for RC model development. A benchmarking procedure is
introduced to compare the DRL performance during its real deployment
with that of the RBC implemented as benchmark controller. Establish-
ing a performance benchmark for DRL during its real implementation
is one of the primary contributions of our research and it is crucial
for a comprehensive and meaningful assessment of DRL efficacy in
real-world applications.

The DRL controller operates similarly to a thermostatic controller
since it is developed to directly manage the optimal percentage opening
of the installed in the supply circuit connected to the TABS during a
cooling season lasting 2 months (July and August 2023). The objective
of DRL agent is to minimise energy consumption while maintaining the
indoor temperature between [22, 24] °C.

An overview of the main contributions of this paper is provided as
follows:

• A methodological approach for training a Soft Actor-Critic (SAC)
controller within a Python-developed simulated environment,
utilising a RC model to represent building dynamics has been
introduced in this paper. The SAC control agent operates as
a low-level controller since it directly manages the percentage
opening for the valve installed in the TABS system. Following
its training phase, the SAC controller is implemented in a real-
world testbed to validate its performance, marking a significant
step towards bridging the gap between simulation-based training
4

and real-world application. a
• A methodology that exhibits a high degree of interoperability
with monitoring and actuation systems has been developed, as
it did not require the installation of additional components for
effective functionality. Furthermore, it required only a minimal
number of sensors to measure indoor and outdoor temperatures,
solar radiation and occupant presence.

• A framework for benchmarking the performance of the DRL con-
troller against the RBC in a real-world testbed, has been intro-
duced. This methodological contribution provides a structured
approach to evaluate and compare the efficacy of DRL and RBC
strategies, offering valuable insights into the practical advantages,
challenges and drawbacks of implementing a DRL control systems
in real building environments.

• Valuable insights into the practical advantages, challenges and
drawbacks of implementing a DRL controllers in real building en-
vironments have been extensively discussed to provide guidelines
for future implementations in real-world.

The paper is structured as follows: Section 2 provides information
regarding the case study and the formulation of the optimal control
problem. Section 3 introduces the methodological framework utilised
for both training and deploying the DRL controller. Implementation
specifics concerning the simulation and deployment phases are outlined
in Section 4. Section 5 describes the results, while Sections 6 and 7
discuss the outcomes of this research and provide future directions.

2. Case study and control problem formulation

The NEST building, part of the Swiss Federal Laboratories for Ma-
terials Science and Technology (EMPA), is a modular research and
innovation facility located in Dübendorf, Switzerland [41]. Opened
in 2016, NEST serves as a living lab where partners from academia,
industry, and the public sector collaborate. The building features a
central backbone and three open platforms, accommodating various
research and innovation modules.

Our study focuses on the HiLo (High Performance – Low Emissions)
unit, one of the most recent modules within the NEST building [42],
shown in Fig. 1. This innovative research environment, designed for
testing and developing sustainable building technologies, presents an
ideal case study for our controller being a living lab with a large
availability of sensors and data.

The HiLo unit encompasses two floors. The lower level houses two
office spaces, while the upper floor is allocated for an open-plan area. In
our study, the office represented in Fig. 2 and located on the southwest
side, covering an area of 22.94 m2 was employed as case study. This
ffice is equipped with three distinct HVAC systems: a ceiling-mounted
ntegrated TABS, a Hybrid Variable Refrigerant Flow (HVRF) system,

nd a mechanical ventilation with heat recovery. Due to limitations
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Fig. 1. The HiLo unit at EMPA NEST.
in accessing low-level controls, our study focused exclusively on the
TABS system. An integrated sensor network monitors relevant physical
variables. The data is systematically archived in a dedicated MS-SQL
database. For the purpose of this work, only a small portion of the avail-
able data points are used, reflecting the data availability limitations
encountered in common buildings. Specifically, only the data from the
indoor and outdoor temperature sensors, the solar radiation sensor, and
the occupancy detector are employed. The office is usually occupied
from Monday to Saturday from 7:00 to 21:00 by one or two occupants.

This study focuses on the management of the office’s thermal en-
vironment via the TABS to reduce the energy consumption associated
with its operation while ensuring that, during working hours, the
indoor temperature remains within an acceptable range, defined as
between 22 and 24 °C. The core aspect involves regulating every 5 min
(i.e., corresponding to the control time step value) the opening of the
valve that governs the TABS water flow rate and, consequently, the
thermal power output. In particular, the valve is of changeover type,
and the inlet temperature is fixed at a constant value and cooled down
by the chilled water provided by the backbone.

3. Methodology

This section provides details about the methodological framework
adopted in this paper, represented in Fig. 3. The framework comprises
three key steps: (i) the formulation and fitting of the simplified RC
model, (ii) the design and training of the DRL control agent in sim-
ulation, and (iii) the description of the real deployment phase for both
RBC and DRL controllers.

3.1. RC model fitting

In the field of building physics, modelling is essential for simulating
thermal behaviour, which is crucial in the design, sizing, and opera-
tional optimisation of buildings [43]. Building thermal models can be
categorised into three primary approaches: white-box, black-box, and
5

grey-box [43]. White-box models are founded on physical laws with pa-
rameters derived from material properties, providing detailed insights
into building dynamics. Conversely, black-box models, detached from
physical laws, use data-driven approaches to approximate the effects
of inputs on outputs. Grey-box models, a hybrid of these approaches,
simplify white-box models by estimating parameters from empirical
data.

This study employed a grey-box modelling approach, specifically
utilising a RC model to capture the thermal dynamics of the office
environment, similarly to [43]. The decision to employ a RC model
was driven by the need for a simulation tool that balances speed and
transparency. Unlike purely black-box models that offer quick results
but lack interpretability, the RC model provides a more comprehensible
framework while still ensuring efficient simulation. This allows for
a faster modelling process without completely sacrificing the insight
into the physical phenomena governing building thermal dynamics. In
this approach, the thermal properties of a building are depicted as a
network of resistors and capacitors. The resistors represent the thermal
resistance of building materials such as walls, windows, and roofs,
indicating their capacity to contrast heat flow. Capacitors, in contrast,
model the building’s thermal mass, reflecting its ability to store and
release heat, thus capturing the dynamics of heat transfer and storage
within the building.

The design of this model aimed to achieve a balance between
simplicity and the complexity required to accurately represent essential
thermal characteristics, including heat transfer through the building
envelope and the thermal inertia of the TABS. First, various RC net-
work structures are defined, followed by parameter estimation using
historical data from the HiLo office.

3.2. Simulation study

The second methodological step considers the design and training
of the DRL controller in a simulated environment, being a crucial step
before the implementation of the controller in the real testbed. In
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Fig. 2. HiLo office zone employed as test facility.
Fig. 3. Methodological framework developed in this work.
this study, the latest version of the SAC algorithm within the Stable-
Baselines library [44] is employed. SAC is chosen as DRL algorithm
since it is more sample efficient considering that it utilises a replay
buffer to store its experiences, enabling it to learn from the same sam-
ples multiple times throughout the training process [45]. This aspect
is more important in real-world applications where collecting data or
6

samples can be expensive or impractical. By maximising the utilisation
of each sample through the replay buffer mechanism, SAC helps in
reducing the overall data collection cost, making it more feasible for
real-world implementations. Moreover, learning from limited data is
a common challenge in real-world scenarios, where access to large
datasets may be restricted. SAC’s sample efficiency ensures robust
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learning even with limited data, which is crucial for applications where
gathering extensive training data is impractical or expensive Moreover,
SAC provides better performance than other DRL methods in case of
large state spaces, as it occurs in real-world control problems [46].
Three rule-based controllers (i.e., 𝑅𝐵𝐶1, 𝑅𝐵𝐶2 and 𝑅𝐵𝐶3), two PI
controllers and an MPC are developed to provide a benchmark with the
DRL performances. The comparison with RBCs is carried out since they
respectively represent the same strategy implemented previously in the
building (𝑅𝐵𝐶1) and its two improved versions. On the other hand, the
comparison with PI is carried out to provide a benchmark with a typical
continuous controller. Finally, a comparison with an idealised MPC
aims to demonstrate that the DRL controller in simulation is capable
of achieving performance comparable to a theoretical near-optimal
solution.

Following the formulation of the DRL controller, its training oc-
curred offline in a simulation environment developed in Python by
employing the RC model to emulate the building dynamics. Throughout
the DRL agent training phase, an automated procedure is executed
using Optuna [47] to determine the optimal configuration of hyperpa-
rameters for the control algorithm. Given that the performance of DRL
controllers is significantly affected by the selection of these variables,
this automated process aims to identify the best control agent among
the investigated controllers [48]. Specifics of this training approach are
described in detail in Section 4.6.

3.3. Real-world deployment

The deployment of the controllers within the office building in-
cluded on-site implementation and testing, performance benchmarking
and incorporating a fail-safe mechanism.

This integration was carried out in line with the infrastructure
provided by NEST, ensuring effective communication and control over
the building’s HVAC systems. As detailed in Section 4.7, software adap-
tations were critical to harmonise the controllers with the building’s
existing technological framework.

Benchmarking the performance of the DRL controller was a key step
in evaluating its efficacy. This process involved a comparative analysis
against the 𝑅𝐵𝐶3. The benchmarking focused on assessing energy
efficiency and indoor temperature regulation under varying operational
conditions.

A critical aspect of the deployment was the implementation of a
fail-safe mechanism. In the eventuality that the DRL controller mal-
functioned or lost connection with the system, the control logic was
automatically reverted to the default control mode developed by the
system integrators in NEST. This fail-safe protocol ensured the con-
tinuous and stable operation of the building’s climate control systems,
mitigating potential disruptions from DRL system failures.

4. Implementation

This section provides details about the development of the RC simu-
lation model, RBCs, PI controllers, DRL and MPC strategies. Moreover,
it includes information about the training of the DRL control agent and
its subsequent real-world deployment.

4.1. Simulation model

Four different RC networks were defined in this work. The first
model is a first-order model 𝑚1 described by the following Ordinary
Differential Equation (ODE):

𝑚1 ∶ 𝐶i𝑇̇i =
1
𝑅w

(𝑇o − 𝑇i) +
1
𝑅n

(𝑇n − 𝑇i) − 𝑄̇tabs + 𝜙i𝑄̇sol (1)

where 𝑇i, 𝑇o, 𝑇n are the zone temperature, the outdoor ambient temper-
ature and the neighbour room temperature, respectively. 𝐶i represents
7

the zone thermal capacitance. 𝑅w and 𝑅n are the thermal resistances
of the building envelope and of the inner wall. The cooling power
delivered by the TABS is represented by 𝑄̇tabs. The solar radiation 𝑄̇sol
is multiplied by a scaling factor 𝜙i ∈ [0, 1].

Two second-order models are formulated as follows:

𝑚2 ∶

⎧

⎪

⎨

⎪

⎩

𝐶i𝑇̇i =
1
𝑅w

(𝑇w − 𝑇i) +
1
𝑅n

(𝑇n − 𝑇i) − 𝑄̇tabs + 𝜙i𝑄̇sol

𝐶w𝑇̇w = 1
𝑅w

(𝑇i − 𝑇w) +
1
𝑅w

(𝑇o − 𝑇w) + 𝜙w𝑄̇sol

(2)

and

𝑚2𝑠 ∶

⎧

⎪

⎨

⎪

⎩

𝐶i𝑇̇i =
1
𝑅w

(𝑇o − 𝑇i) +
1
𝑅n

(𝑇n − 𝑇i) +
1
𝑅s

(𝑇s − 𝑇i) + 𝜙i𝑄̇sol

𝐶s𝑇̇s =
1
𝑅s

(𝑇i − 𝑇s) − 𝑄̇tabs + 𝜙s𝑄̇sol

(3)

The state 𝑇w in Eq. (2) represents the external wall temperature, and
𝐶w is its thermal capacitance. Eq. (3) describes the model 𝑚2𝑠 where
the temperature and the thermal mass of the TABS are modelled as 𝑇s
and 𝐶s, respectively. 𝑅s accounts for the thermal resistance between
the TABS and the zone. In both models, the solar radiation 𝑄̇sol is
considered as an additional disturbance acting on both states and it is
scaled by the factors 𝜙i, 𝜙w and 𝜙s ∈ [0, 1]. A graphical representation
combining the model 𝑚2𝑠 and the office zone employed as the case
study is provided in Fig. 4.

Combining these two models results in the following third-order
model, modelling the thermal dynamics of the zone, envelope and
TABS:

𝑚3 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶i𝑇̇i =
1
𝑅w

(𝑇w − 𝑇i) +
1
𝑅n

(𝑇n − 𝑇i) +
1
𝑅s

(𝑇s − 𝑇i) + 𝜙i𝑄̇sol

𝐶w𝑇̇w = 1
𝑅w

(𝑇i − 𝑇w) +
1
𝑅w

(𝑇o − 𝑇w) + 𝜙w𝑄̇sol

𝐶s𝑇̇s =
1
𝑅s

(𝑇i − 𝑇s) − 𝑄̇tabs + 𝜙s𝑄̇sol

(4)

The data employed for the RC model parameter estimation process
have been collected under the baseline control policy, implemented
before the experiments conducted in this paper. Empirical data was
separated into two distinct periods. The data spanning from July 28,
2022, to August 11, 2022, was used for parameter estimation, while
the data from August 19, 2022 to August 26, 2022, served for model
validation and testing. MATLAB functions idgrey and greyest, alongside
the optimisation function fmincon, were used in this process. The idgrey
unction facilitated the definition of grey-box models in state-space
orm, while greyest with the fmincon function was utilised to estimate
odel parameters by fitting these grey-box models to the training
ataset, effectively minimising the Mean Squared Error (MSE) cost
unction. The MSE measures the average squared difference between
ctual and predicted values of the indoor temperature 𝑇i.

Finally, the RC model with the lowest Root Mean Squared Error
RMSE) has been integrated into openAI Gym [49], a Python toolkit
eveloped to standardise the interface of the environment used to train
RL algorithms.

.2. Rule-based controllers

During the simulation phase, three different RBCs were considered
or benchmarking the performance of the DRL controller. Then, the
ule-based strategy that ensured the best performance was employed
s the benchmark during the implementation phase in the real testbed.
he three RBCs are based on the bang–bang control logic, switching
etween fully closing (i.e., 0%) or fully opening (i.e., 100%) the valve.

The first rule-based control strategy, 𝑅𝐵𝐶1, operates throughout
he day, and it fully opens the valve when the indoor temperature
i exceeds the upper limit of the acceptable temperature range 𝑇i

(i.e., 24 °C) and closes the valve when the temperature is lower than
the lower temperature limit 𝑇i of 22 °C. 𝑅𝐵𝐶1 mimics the same control
logic of the baseline controller previously implemented in the real
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Fig. 4. Graphical representation of 𝑚2𝑠 RC model considered in this study.
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uilding. This controller has been modified to enhance its performance
y considering first the occupant schedule (𝑅𝐵𝐶2) and then also the
re-cooling (𝑅𝐵𝐶3) to improve indoor temperature conditions. There-
ore, the second rule-based controller 𝑅𝐵𝐶2 is similar to 𝑅𝐵𝐶1 but only
perates during the occupied hours, i.e. Monday-Saturday from 𝑡start =
:00 to 𝑡end = 21:00.

Fig. 5 shows the last rule-based control strategy, named 𝑅𝐵𝐶3,
hich consists of two pre-cooling phases Pre-Cooling 1 and Pre-Cooling
, and a normal Cooling phase. The rules reported for the pre-cooling
hases in Fig. 5 resulted from a sensitivity analysis where different
ombinations of start time and indoor temperature thresholds were
ested to minimise temperature violations at the start of the occupancy
eriod. The Pre-Cooling 1 phase lasts from 𝑡start−4ℎ = 3:00 to 𝑡start−3ℎ =
:00 and activate the TABS when 𝑇i ≥ 𝑇i + 1 ◦C. Next, the Pre-Cooling
mode is activated until 𝑡start − 2ℎ = 5:00, when 𝑇i ≥ 𝑇i + 0.5 ◦C.

In both cases, the valve is closed if the indoor temperature is lower
than the lower limit 𝑇i. During the pre-cooling phases, no temperature
iolations are taken into account since no occupant is present, as
efined in Eq. (12). Following the two pre-cooling phases at 𝑡start =
:00, 𝑅𝐵𝐶3 manages the system as per 𝑅𝐵𝐶1. This RBC strategy
emains active until occupants leave the building at 𝑡end = 21:00 and
nsures that the valve is fully closed on Sundays to save energy since
he office zone is not occupied.

.3. PI controllers design

In a continuous-time PI controller, the control output 𝑢(𝑡), is deter-
ined as:

(𝑡) = 𝐾𝑝𝑒(𝑡) +𝐾𝑖

𝑡
𝑒(𝜏) 𝑑𝜏 (5)
8

∫0 i
here, 𝑒(𝑡) is the error signal, defined as the difference between the
etpoint and the measured indoor temperature 𝑇i. The proportional
ain 𝐾𝑝 scales the error directly, allowing the controller to respond
roportionally to the magnitude of the error. The integral gain 𝐾𝑖 scales
he integral of the error over time, addressing any accumulated error
hat persists over time.

In this study, the controller’s gains 𝐾𝑝 and 𝐾𝑖 have been tuned
sing MATLAB’s PID Tuner set on balanced performance. Moreover,
he control action 𝑢 is saturated in the range [0,1], as for the other
ontrollers. To avoid integral windup, an anti-windup scheme has been
ncluded in the controller [50].

This study includes two PI controllers: 𝑃𝐼23 and 𝑃𝐼24. 𝑃𝐼23 is
onfigured to follow an indoor temperature setpoint of 23 °C, which
alls in the centre of the temperature range [22,24] °C. 𝑃𝐼24 is set to
aintain the indoor temperature at the upper limit of 24 °C. Finally,

oth controllers only operate from Monday to Saturday from 3:00 to
1:00, similarly to the RBC described in Section 4.2.

.4. MPC strategy design

The MPC approach involves predicting the future states of a con-
rolled system over a finite time horizon using a dynamic model 𝑓 of
he process. The optimisation problem consists of computing, at each
ime-step 𝑡, the control sequence 𝑢𝑡, 𝑢𝑡+1,… , 𝑢𝑡+𝑁−1, that minimise the
umulative cost over 𝑁 stages, where 𝑁 ∈ N0 is the optimisation
orizon. Once the optimal input trajectory has been computed, only
he first control input is applied to the system until the next time step,
hen the horizon is shifted, and the optimisation process is repeated
n a receding horizon fashion [15]. Thus, in our formulation, the



Applied Energy 368 (2024) 123447A. Silvestri et al.

c

𝑢

a
c
t
i
c
n
d

Fig. 5. 𝑅𝐵𝐶3 control logic represented as a finite state machine.

onstrained optimal problem can be written as follows:

min
𝑡 ,…,𝑢𝑡+𝑁−1

−
𝑁−1
∑

𝑡=0
𝑟(𝑠𝑡, 𝑢𝑡) (6)

s.t. 𝑠𝑡+1 = 𝑓 (𝑠𝑡, 𝑢𝑡, 𝑑𝑡) (7)

𝑢𝑡 ∈ [0, 1] (8)

where 𝑟 is the reward formulated in Eq. (10), and 𝑑𝑡 is the vector of
measurable disturbances (e.g., outdoor temperature 𝑇o). In this paper,
the MPC assumes full knowledge of the future disturbances 𝑑𝑡, with

prediction horizon of 24 h. The controller was provided with the
urrent measurements and the predictions of the input variables of
he RC model 𝑚2𝑠 defined in Eq. (3). Therefore, it is not a realistic
mplementation, but an approximation for the optimal controller that
ould be achieved considering no modelling error and no additional
oise. This ideal MPC has access to perfect knowledge of the system
9

ynamics.
4.5. DRL controller design

This section discusses the design of the DRL controller, defining its
main components: action-space, state-space, and reward function.

The action-space 𝐴 consists of all possible actions that can be
performed by the agent. In this paper, the action space 𝐴 is continuous
as required by SAC algorithm, and defined as:

𝐴 ∶ 𝑢𝑡 ∈ [0, 1] (9)

At each control time step 𝑡 (i.e., every 5 min), the agent selects
the percentage of valve opening 𝑢𝑡, which is directly proportional to
the fraction of the nominal cooling power 𝑄̇tabs supplied by the TABS.
The control actions 𝑢𝑡 chosen by the DRL are set to 0 if their value
is less than 0.1. This threshold value was determined according to the
operational characteristics of the TABS.

The state-space includes a set of observations presented as input to
the agent, which are described in Table 2, along with the reference
control time step and their respective lower and upper boundaries.
These boundaries are employed for re-scaling the state space via min–
max normalisation before providing the variables as input to the DRL
controller.

Outdoor air temperature 𝑇o and Solar Radiation 𝑄̇sol are included in
the state-space since they are the main exogenous drivers that impact
building cooling energy consumption and indoor temperature. The
observations of outdoor temperature include both historical measure-
ments and predictions. The agent is provided with two-hourly lagged
values and the hourly predictions for the following six hours. Informa-
tion regarding Indoor temperature has been assessed not by considering
its value itself but by defining the temperature difference relative to
the two temperature limits specified by the acceptable temperature
range, thereby ensuring an adaptive definition as further defined in the
temperature-related term of reward function in Eq. (11). By combining
these two variables, the DRL agent knows the indoor temperature status
with respect to the temperature acceptability range. The information
related to the indoor air temperature is integrated into the state-space
at the current control time step t and for 2 lagged values (15-min
and 30-min before) to assess the temperature progression in the build-
ing over time and accounting for the influence of building thermal
dynamics [51]. Furthermore, to assess the influence of neighbouring
spaces on the analysed thermal zone, the temperature of the adjacent
room 𝑇n has been included as one of the states. To conclude, Time
to occupancy start and Time to occupancy end are the two state-space
variables combining in one metric the information related to the time of
the day and occupancy status of the thermal zone [52]. When the build-
ing is unoccupied, time to occupancy start represents the number of
control timesteps remaining before occupants’ scheduled arrival time,
while during the occupied period time to occupancy end represents the
number of timesteps until occupants’ departure time. These variables
are set to zero, respectively during occupied and non-occupied periods.

The reward function provided to the agent after the action se-
lection must be defined according to the control objectives, finding
a trade-off between the opposing terms, i.e., the energy-related and
temperature-related terms, weighted by employing the reward factor
𝜆 > 0.

The reward formulation 𝑟 is as follows:

𝑟 = −𝜃(𝜆 ⋅ 𝑟E + 𝑟T) (10)

where 𝜃 is a reward scaling factor. Employing a scaling factor in the
reward function serves as an effective strategy to maintain training sta-
bility, particularly in cases where rewards exhibit high variance [45].
The value of 𝜆 = 2.1 has been designed so that the agent receives
the same penalty for using 0.48 kWh and for being 1 °C outside of the
comfort bounds, similarly to [37,53].

The energy-related term 𝑟E is equal to 𝐸tabs [kWh], the energy

consumption associated with the TABS operation and proportional to
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Table 2
Variables included in the state-space.

Variable Min value Max value Unit Timestep

𝑇o 12 38 °C t − 2 h, t − 1 h, t, t + 1 h, . . . , t + 6 h
𝑄̇sol 0 1300 W/m2 t
𝑇i − 𝑇i −10 10 °C t, t − 15 min, t − 30 min
𝑇i − 𝑇i −10 10 °C t, t − 15 min, t − 30 min
𝑇n 15 30 °C t
Time to occupancy start 0 407 – t
Time to occupancy end 0 169 – t
the control action 𝑢𝑡. The temperature-related term 𝑟T has two different
formulations according to the presence of occupants:

𝑟T =

{

0 if 𝑏occ = 0
max(0, 𝑇i − 𝑇i)2 + max(0, 𝑇i − 𝑇i)2 if 𝑏occ = 1

(11)

where 𝑏occ is a Boolean variable being 1 during working hours and 0
otherwise.

4.6. Training of DRL controller

This section discusses the training phase of DRL controller carried
ut by employing the RC model to simulate the building dynamics.
he simulation environment, the RC model and the DRL controller are
ll designed and implemented in Python. During the training phase,
he open-source Python library Optuna [47] was used to automatically
etermine the optimal configuration of hyperparameters, which signif-
cantly influence the effectiveness of DRL control agents. Specifically,
he Tree-structured Parzen Estimator (TPE) algorithm [54] was selected
s the sampling method within Optuna for this optimisation process. In
his study, the optimisation of hyperparameters is executed to identify
he optimal configuration that provides the most favourable balance be-
ween reducing energy consumption and enhancing indoor temperature
ontrol for the DRL agent, benchmarking the achieved performance
gainst that of RBC. The hyperparameters subject to optimisation are
he learning rate 𝜇, the reward scaling factor 𝜃, the number of hidden
ayers and the number of neurons per layer. The hyperparameters
ptimisation is carried out by evaluating the minimisation of energy
onsumption 𝐸tabs and cumulative sum of temperature violations 𝑇viol
btained during the testing period 𝑡 ∈ [0, 𝑡𝑁 ] in simulation at the end
f the DRL training per each set of hyperparameters. 𝑇viol is measured
n °C and defined as follows:

viol =
𝑡𝑁
∑

𝑡=0
𝑏occ,𝑡 ⋅ 𝑇viol,𝑡 (12)

Given the multi-objective nature of hyperparameter optimisation,
t results in multiple Pareto-optimal solutions [55], then a criterion
or selecting the best solution among these optimal choices should be
stablished. The criterion adopted in this work refers to the minimum
istance from the ideal point [56], which represents the point with
oordinates corresponding to the minimum values of both objective
unction terms. In this context, the distance is computed between the
oints representing solutions on the Pareto front and the ideal point
ithin a plane defined by coordinates [𝐸tabs, 𝑇viol].

A temperature violation 𝑇viol,𝑡 is computed as the absolute tempera-
ure difference between the indoor temperature 𝑇i and the upper 𝑇i or
ower 𝑇i bounds of the temperature acceptability range of [22, 24] °C.

This calculation occurs when the indoor temperature falls outside this
range during occupancy, represented by 𝑏occ,𝑡, a Boolean variable equal
to 1 when the thermal zone is occupied. 𝑇viol,𝑡 is computed as defined
in the following equation:

𝑇viol,𝑡 =

⎧

⎪

⎨

⎪

𝑇i − 𝑇i if 𝑇i < 𝑇i
0 if 𝑇i ≤ 𝑇i ≤ 𝑇i (13)
10

⎩
𝑇i − 𝑇i if 𝑇i > 𝑇i
Table 3
Values and range of DRL controller hyperparameters.

Hyperparameters Value Step

Learning rate 𝜇 [3 ⋅ 10−4 , 1 ⋅ 10−3] 1 ⋅ 10−4

Reward scaling factor 𝜃 [3, 15] 2
# Hidden layers [2, 4] 2
# Neurons per hidden layer [64, 128] 64

Discount factor 𝛾 0.99 –
Soft-update coefficient 𝜏 5 ⋅ 10−3 –
Batch size 128 –
Training episodes 30 –

Thirty agents are trained for 30 episodes during the hyperparam-
eters optimisation procedure. Each training episode corresponds to
a cooling season and consists of 91 days, from June 1 to August
30, 2022. The Euclidean distance between the DRL performance of
each trial at the end of the training phase and the ideal point was
computed. Thus, the solution with the minimum distance and the best
performance compared to the three developed RBCs in terms of total
energy consumption and cumulative sum of temperature violations was
selected as the optimal one. Table 3 includes in the first five rows the
optimised hyperparameters (i.e., 𝜇, 𝜃, Number of hidden layers, Number
of neurons per hidden layer) with the corresponding range and step
value, while the other rows of Table 3 indicates the values of hyper-
parameters that remain fixed for computational constraints: Discount
factor 𝛾, Soft-update coefficient 𝜏, Batch size and Training episodes.

4.7. Real-world deployment

This section describes the practical deployment of the control sys-
tems in a real-world setting, following the methodology described in
Section 3.3.

The controllers considered in this work were implemented in a
remote desktop PC specifically configured for this purpose. The desktop
PC has a 4-core CPU running at 3.40 GHz and 16 GB of RAM, serving as
the control logic’s central hub. The controllers operated within a Python
virtual environment.

The communication infrastructure between the remote PC and the
NEST HiLo unit is depicted in Fig. 6. On the lower level of the in-
frastructure, the Programmable Logic Controller (PLC) located in HiLo
takes care of collecting data from the sensors and sending control
signals to the actuators using several protocols, such as Modbus RTU
RS485 and standard analog/digital signals (0–10 V, 4–20 mA, PT1000,
DI/DO). The PLC communicates via the multiplatform, open-source
OPC-UA protocol with a gateway located on a virtual machine. The
gateway sends the data collected from the lower level to a MS-SQL
historical database using the Open DataBase Connectivity (ODBC). The
database is located in the NEST cloud on a virtual machine that can
be accessed remotely by a REST API integrated into Python. Real-time
data and control signals are exchanged by the remote client to the
gateway server using the OPC-UA protocol. Due to the specific control
architecture of the NEST units, the control signal needs to be sent with
an overhead, including a signal requesting the remote controllability of
the system and a square wave watchdog signal that needs to alternate
between a true and false state every thirty seconds to maintain the
remote control of the system.
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Fig. 6. Physical layout of the control system. The dotted lines represent the control signals, while the solid lines represent the data. The blue colour shows the communication
with the OPCUA protocol, and the green depicts the REST API communication.
During the deployment, the RBC ran from June 24, 2023 to June 29,
2023 with the standard operations ventilation control. Next, different
RL controllers were deployed, each time after being pre-trained. From
July 1, 2023 to July 19, 2023 a DRL controller with the action space
and observation space described in Section 3.2 was deployed. After
these periods, the supply water temperature of the TABS system has
been lowered from 19 °C to 18 °C due to operational adjustments in the
system. The decrease in the supply water temperature resulted in an
increased cooling power from around 600W to 750W. After this change,
from July 23, 2023 a newly trained RL controller was implemented
in HiLo until the end of the experiments on August 21, 2023. During
this phase, the RL controller for TABS had identical specifications to
the previous iterations, except the neighbouring room temperature was
omitted from the observation space.

The performance of the controllers has been compared by looking
at two metrics: the normalised daily cumulative temperature violations
𝑇viol,norm,𝑑 and the normalised daily mean cooling power 𝑄̇tabs,norm,𝑑 ,
computed as follows:

𝑇viol,norm,𝑑 = 𝜂𝑑𝑇viol,𝑑 (14)

𝑄̇tabs,norm,𝑑 = 𝜂𝑑𝑄̇tabs,𝑑 (15)

where, 𝑇viol,𝑑 is the daily cumulative sum of temperature violations
and 𝑇viol,𝑑 is daily mean cooling power. Both metrics include a nor-
malisation factor 𝜂 > 0 to consider the influence of the boundary
11

𝑑

conditions [57], such as the different outdoor temperatures and solar
levels of radiation occurring each day:

𝜂𝑑 =
𝑇o,𝑑
𝑇o,𝑑

⋅
𝑄̇sol,𝑑

𝑄̇sol,𝑑
(16)

where, 𝑇o,𝑑 and 𝑄̇sol,𝑑 are the average values of the daily outdoor
temperatures 𝑇o,𝑑 and daily solar radiation 𝑄̇sol,𝑑 , during the considered
periods. This is important because these external factors can signif-
icantly influence the performance metrics, and not normalising the
data might lead to misleading conclusions about the controllers’ effec-
tiveness. For example, during a warm summer day 𝑑 with high solar
radiation, the normalisation factor 𝜂𝑑 will be smaller than one, so the
resulting normalised daily cumulative temperature violations 𝑇viol,norm,𝑑

and normalised daily mean cooling power 𝑄̇tabs,norm,𝑑 are reduced. This
reduction reflects the fact that the higher outdoor temperature and
solar radiation would naturally lead to increased cooling requirements
and possibly greater temperature violations, which might not be a
direct result of controller performance.

Additionally, the deployment included a live visualisation feature
using Grafana. This tool provided real-time monitoring of the system’s
performance, offering insights into metrics such as temperature trends
and energy consumption. The implementation of such real-time data vi-
sualisation was crucial for ongoing system evaluation and management,
enabling prompt identification and addressing of system irregularities.
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Table 4
RC models RMSE in the training and testing datasets.

Model RMSE train [°C] RMSE test [°C]

𝑚1 0.42 0.72
𝑚2 0.35 0.66
𝑚2𝑠 0.33 0.59
𝑚3 0.30 0.62

5. Results

This section describes the results following the step indicated in the
methodological framework as described in Section 3. The first subsec-
tion introduces the results retrieved during the simulation phase for the
RC model of the building and the DRL controller. Then, the second sub-
section includes the outcomings from the real-world implementation of
the DRL agent.

5.1. Simulation

Fig. 7 shows the results of the models in a period of the test dataset
and the corresponding model inputs as those indicated in Eq. (3).
All the models are able to catch the essential dynamics of the office
room. Despite the models matching the low-frequency components
of the dynamics, they are not able to correctly describe the high-
frequency variations of the indoor temperature. In detail, the indoor
temperature shows considerable peaks during late afternoons, that are
hardly explained by the input data, and they are likely caused by
unmeasured disturbances, such as internal heat gains (e.g., appliances
and lights).

Table 4 shows the model RMSE during the training and validation
period. The 𝑚2𝑠 model resulted in the lowest RMSE in the testing
ataset and, therefore, it was used in the remaining of our study to
rain the DRL controller and to perform the simulation to compare the
erformance of different controllers.

As described in Section 4, during the training phase of the DRL
ontroller, an automated optimisation approach was performed us-
12

ng Optuna [47], employing the criteria of minimum distance from a
Table 5
Optimal values of the hyperparameters subject to optimisation for the DRL controller.

Hyperparameter Value

Learning rate 𝜇 0.0009
Reward scaling factor 𝜃 15
# Hidden layers 4
# Neurons per hidden layer 64

the ideal point. The optimal hyperparameter configuration, identified
through this procedure and detailed in Table 5, ensures the best per-
formance in terms of energy consumption and cumulative sum of
temperature violations.

Then, the performances of the DRL agent with optimised hyper-
parameters were compared with those of MPC and of the two PI
controllers (i.e., 𝑃𝐼23, 𝑃𝐼24) and the three RBCs (i.e., 𝑅𝐵𝐶1, 𝑅𝐵𝐶2,
𝑅𝐵𝐶3). As shown in Fig. 8, the DRL controller outperforms all three
RBCs by minimising energy consumption and temperature violations
throughout the entire cooling season. Specifically, DRL reduces en-
ergy consumption by 51%, 12%, and 15% when compared to the
three rule-based controllers (from 𝑅𝐵𝐶1 to 𝑅𝐵𝐶3), also decreasing
he cumulative sum of temperature violations by 20% to 26%. More-
ver, DRL consumes 68% more energy than 𝑃𝐼24, which however still

turns out to be the benchmark controller with the highest amount
of temperature violations compared to others (i.e., +67% compared
to DRL). On the other hand, the DRL controller manages to improve
performance overall by 23% in terms of 𝐸tabs and 5% in terms of 𝑇viol
ompared to 𝑃𝐼23. However, MPC ensures the best performance as it
aves approximately 29% of energy compared to the DRL controller
hile ensuring comparable indoor temperature control performance

i.e., 𝑇viol is just 5% less than DRL).
Furthermore, from the analysis of the results for the three RBCs,

t emerges that 𝑅𝐵𝐶3 ensures the best trade-off between energy con-
umption and comfortable indoor temperature conditions. Therefore, it
as selected as the benchmark for the real implementation phase of

he DRL controller. Specifically, 𝑅𝐵𝐶1 provides superior indoor tem-
erature control compared to the other RBCs but consumes the highest

mount of energy, as it can be activated on any day of the week and
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Fig. 8. Comparison of overall performances achieved by the three RBCs, two PI, MPC
and DRL controllers during simulation.

at any time. On the other hand, 𝑅𝐵𝐶2 consumes the least amount of
energy but records the highest cumulative sum of temperature violation
value since its activation period is limited to occupancy hours (i.e., from
7:00 to 21:00).

Fig. 9 presents a comparative analysis of indoor temperature profiles
and energy consumption of 𝑅𝐵𝐶3, 𝑃𝐼23, MPC and DRL controllers.
The DRL controller exhibited superior performance in terms of indoor
temperature management and reduction of energy consumption by
implementing a more balanced energy system management strategy
compared to 𝑅𝐵𝐶3 and 𝑃𝐼23. Moreover, although the ideal MPC en-
sured the best performance, the DRL controller can effectively track
the indoor temperature trend obtained by employing the near-optimal
policy from the MPC. In detail, the DRL agent controls the valve open-
ing that regulates the flow of thermal fluid to the TABS. This process
serves two main purposes, following a similar control policy as MPC:
pre-cooling the environment during nighttime and providing cooling
energy when needed, especially when occupants are present. The agent
responds to increases in indoor temperature, which various external
factors like the presence of occupants, high external temperatures, or
intense solar radiation can trigger. It ensures efficient cooling even
when the indoor temperature is within the acceptable range. In this
way, the DRL controller can proactively prevent, or in the most ad-
verse scenario, delay and reduce the peak value of indoor temperature
compared to that achieved by the 𝑅𝐵𝐶3 and 𝑃𝐼23. Moreover, the

RL exploits the office thermal inertia through pre-cooling to avoid
emperature peaks that especially occur in the late afternoon, while
inimising energy consumption, resulting in a more refined control
olicy than the RBC and 𝑃𝐼23. Although on certain days the indoor
emperature exceeds the upper-temperature limit 𝑇i, the DRL effectively

minimises the cumulative sum of temperature violations compared to
the 𝑅𝐵𝐶3. To conclude, from the third sub-plot in Fig. 9 emerges
the advantage of MPC in terms of energy consumption. In detail,
the MPC minimises energy consumption in the pre-cooling phases,
only opening the valve when needed during occupancy periods. This
different behaviour in the control policy from DRL may be related to
the MPC having perfect knowledge of the building’s dynamics since the
controller model is equivalent to that of emulating the dynamics of the
controlled building.

5.2. Deployment

Fig. 10 depicts the connection loss in hours across the experimental
13

period, from June 24, 2023, to August 21, 2023. The data illustrate the o
temporal distribution and extent of connectivity interruptions encoun-
tered by the building management system while implementing various
control strategies. The connection losses are due to external factors
and are not related to the deployment of the controllers. During the
initial deployment phase, labelled 𝑅𝐵𝐶𝑣, representing the RBC variant,
minor connection losses were observed, with only a few instances
surpassing the 2.5-hour/day threshold denoted by the dashed line. This
threshold represents a significant level of connection loss that may
impact the system’s operational reliability. The 2.5 h threshold has been
chosen after careful consideration of the trade-off between the quality
and quantity of the experimental results. Having a bigger threshold
increased the number of considered days but lowered the quality of the
results (since the control policy reverted to the default RBC for longer
times) while lowering the threshold too much limited the considered
days. The value of 2.5 h, (i.e. ∼10% of 24 h) resulted in the best
trade-off.

The 𝑅𝐿600𝑊 𝑛𝑣 controller shows a similar connectivity pattern,
with infrequent connection losses that rarely exceed the 2.5-h thresh-
old. Notably, the 𝑅𝐿750𝑊 𝑛 controller is marked but was excluded from
he analysis. The reason for this is that there was an issue occurred in
he ventilation system, which prevented it from working normally. As
etailed in Section 4.7, this period encountered an issue with the venti-
ation system being switched off, making the collected data during this
hase non-representative of standard operating conditions. The final
eriod, with the 𝑅𝐿750𝑊 𝑣 controller, showed a pronounced increase
n connection losses, with several instances significantly exceeding the
hreshold.

Fig. 11 illustrates the normalised daily indoor temperature viola-
ions on the x-axis against the normalised daily TABS cooling rate on
he y-axis, where the days with too many connection losses (≥2.5 h
hreshold) have been excluded.

The dashed lines represent the mean values for each variable,
ffectively dividing the plot into four quadrants, with the intersection
epresenting the mean performance. The quadrant in the bottom left
orner is where both temperature violations and TABS heat rate are
elow average, indicating high performance in temperature control
ith lower energy consumption. The quadrant in the top right corner

s the region where both temperature violations and TABS heat rate
re above their respective averages. This indicates a less desirable
erformance where the temperature is not maintained effectively and
ore energy is consumed. Controllers in the top left quadrant are

haracterised by lower-than-average temperature violations but higher-
han-average TABS heat rates, suggesting that while they maintain
omfortable indoor temperature conditions more effectively, they do
o at the cost of higher energy use. The quadrant in the bottom
ight represents conditions where the temperature violations are above
verage, but the TABS heat rate is below average. Controllers in this
uadrant are less effective in maintaining temperature but do so with
ess energy usage. The DRL controllers have several points in the bot-
om left quadrant, which is indicative of a balance between maintaining
ndoor temperature control and energy efficiency. They achieve better
erformance with fewer temperature violations and lower TABS heat
ates. On the other hand, the RBC controller shows a spread across
he quadrants on the right-hand side, indicating less consistency with a
ore pronounced tendency towards temperature violations, while the

nergy consumption remains comparable. Specifically, the 𝑅𝐿600𝑊
controller showed a 69% reduction in daily temperature violations
and 9% reduction in the daily TABS heat rate compared to the RBC.
The 𝑅𝐿750𝑊 controller reduced the daily temperature violations by
8% but increased the average daily TABS heat rate. This outcome
s likely a consequence of the RL750W controller leveraging the ca-
acity to use a more powerful 750 W system, which would naturally
onsume more power. Still, the increased energy usage was offset
y the controller’s ability to maintain temperature conditions more
ffectively. Both RL controllers significantly enhanced the maintenance

f the indoor temperature within the desired temperature bounds, and
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Fig. 10. Connection issues occurred during the deployment period of 𝑅𝐵𝐶𝑣,
𝐿600𝑊 𝑛𝑣, 𝑅𝐿750𝑊 𝑛 and 𝑅𝐿750𝑊 𝑣 controllers. 𝑣 represents that the ventilation

system is running and 𝑛 indicates that 𝑇n is included in the agent observation space.

hey present a trade-off when it comes to energy consumption. The
𝐿750𝑊 controller, using a more powerful system, was less energy
fficient, increasing the average heat rate due to its higher capacity. In
ontrast, the 𝑅𝐿600𝑊 controller managed to reduce both temperature

violations and energy use, pointing to an overall better balance between
maintaining comfortable indoor temperature conditions and energy
efficiency.

To conclude, Fig. 12 shows the profiles of indoor and outdoor
temperatures, real measured cooling power provided by TABS, the cor-
responding action 𝑢𝑡 taken by the agent, and solar radiation measured
over three days during the real deployment period of the DRL (from
August 15, 2023 to August 17, 2023) where the connection losses were
much lower than the threshold (i.e. <1 h/day). Additionally, the upper
ubplot provides details of the occupied periods (7:00–21:00) and the
14

cceptable temperature range ([22,24] °C). The indoor temperature A
Fig. 11. Performance benchmarking of RBC3 and DRL controllers during the deploy-
ment phase. Each point denotes the normalised daily indoor temperature violations
against the normalised daily mean cooling rate.

profile over the analysed days remains around 24 °C (i.e., the upper
ound temperature of the acceptability range), aiming to minimise
oth TABS energy consumption and temperature violations. Towards
he end of the occupancy period, the indoor temperature rises by
pproximately 0.5 °C above the acceptability range. The coexistence of
xtreme outdoor conditions measured throughout the day (high values
or outdoor temperature and solar radiation) and the limited cooling
apacity of TABS still led to a slight increase in indoor temperature.

Nevertheless, the DRL effectively controlled the TABS to manage
ndoor temperatures. It achieved this by keeping the valve almost fully
pen to ensure the required power to bring the indoor temperature back
ithin the acceptable range. This control behaviour is depicted in the
iddle subplot, where the green dashed line represents 𝑢𝑡. According

o this result, Fig. 12 reveals that in the second half of the day on
ugust 17, when solar radiation and outdoor temperature decrease,
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Fig. 12. Indoor and outdoor temperatures, TABS cooling power and solar radiation measured during three summer days (from August 15 to August 17, 2023) of the DRL real-world
eployment.
he DRL closes the valve to avoid the cooling energy supply to the
ffice employing TABS. In conclusion, around the middle of the occu-
ancy period on August 16, the indoor temperature dropped sharply
s the occupants opened the door to the neighbouring room where
he measured temperature was approximately 22 °C. In this case, the

DRL was able to adapt to the change in indoor temperature conditions
by closing the valve and not supplying unnecessary cooling energy to
the office. Therefore, despite the limitations associated with the sizing
of TABS and its proper functioning under cooling conditions, the DRL
demonstrated excellent capability in optimising the operation of the
energy system under these constraints.

6. Discussion

This study explores the real-world deployment of a DRL controller to
minimise energy consumption and enhance indoor temperature control
by optimising the operation of a TABS in an existing office building.

A novelty of the proposed approach lies in the practical imple-
mentation of a DRL-based control agent in an office used as a living
lab. The occupants’ active interaction with the environment, such as
opening doors/windows, introduces real-world variability in indoor
temperature conditions.

The DRL controller is easily implementable in the real building,
leveraging a minimum number of the existing sensors in the HiLo
facility’s monitoring infrastructure. Indoor temperature sensors monitor
the analysed office zone and adjacent areas, and the outdoor sensor
tracks the external conditions, including external temperature and solar
radiation. The use of a simplified observation space for the DRL control
agent ensures experiment replicability, as the selected variables align
with common building monitoring measurements. The DRL agent’s
control action, implemented on the TABS supply valve through an
existing actuator, further enhances interoperability without the need
for additional invasive measures.

Although the monitoring infrastructure includes sensors for detect-
ing the presence of occupants, the office is used by different people
with different habits, so to ensure the indoor temperature is within
the boundaries, only the information on the working hours is used.
15
Therefore, based on historical occupancy data collected, it emerges
that the building is occupied predominantly from Monday to Satur-
day, 8:30–21:00, although in some cases, occupants may arrive early
(i.e., 7:00). In this study, the TABS is integrated within an extremely
lightweight concrete structure, a novel approach that improves its
thermal response compared to traditional TABS [58]. This integration
results in faster temperature adjustments than typical TABS due to the
reduced thermal mass. However, it is important to note that, while
enhanced, this system’s responsiveness remains slower compared to
more immediate systems like air terminal units (e.g., fan coils). In this
context, a conservative approach is employed since the office is consid-
ered occupied from Monday to Saturday 7:00–21:00. Furthermore, the
formulation of the reward function plays a crucial role in the operation
of the DRL agent. Given that our case study refers to an office building,
it is chosen not to prioritise the occupants’ comfort requirements as
more stringent as could be required in other buildings (e.g., hospitals).
In future applications, greater importance could be assigned to the
temperature term in evaluating how the DRL-based controller adapts
its policy to simultaneously minimise energy consumption.

Possible equipment damage or extreme indoor environment con-
ditions limit the widespread DRL controller implementation in real
buildings [33]. A fallback safety system is introduced in HiLo to ensure
continuous energy system operation, preventing abrupt interruptions
in HVAC functionality due to DRL controller failures associated with
connection issues. This system is designed to reintroduce the default
controller implemented in HiLo, providing a safety barrier for system
operation.

Moreover, potential initial instability of the DRL control policy may
lead to unacceptable initial performance [33]. Therefore, the direct
implementation of the DRL controller in real buildings is avoided. The
approach explored in this work involved the use of a simplified RC
model during the pre-training phase of the DRL controller. The RC
model’s simple design facilitated efficient computation, maintaining
the accuracy necessary for realistic simulations and enabling rapid and
effective training of DRL agents. The parameters of the RC model were
derived from real data monitored in the thermal zone used as a case
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study. However, the quality and quantity of data influence the physical
response of the RC model used as a surrogate model of the building.

The potential use of the RC model as a building simulator for com-
paring the performance achieved in the building between RBC and DRL
controllers could emerge as a limitation to be addressed. This simplified
model may not guarantee a physically similar response compared to
what would be obtained if the same controller were implemented in
reality. Nevertheless, the DRL controller demonstrated robustness to
boundary conditions encountered during the real-world deployment
phase, ensuring good performance compared to RBC, despite being
trained on a simplified model. However, the development of a more
accurate building model could be considered in the future to achieve a
more straightforward performance benchmark.

Another limitation is associated with the controllers evaluated as
a benchmark during the real-world implementation of DRL. Contrary
to the simulation study, the performance comparison between the DRL
controller, PI controllers and MPC is not carried out due to the limited
duration of the real-world investigation, during which some connec-
tion issues further reduced the time window for DRL implementation.
Additionally, the proposed version of MPC would not have performed
as well as in simulation due to unavoidable modelling errors and
not perfect predictions. Nevertheless, the objective of this work is to
provide insights about the applicability and reliability of DRL in real-
world scenarios, despite the performance comparison carried out in
the simulation study indicating that DRL controller achieves similar
performance as MPC.

In conclusion, the obtained results mirror the potential demon-
strated by DRL controllers in simulated building applications, extending
their applicability to real-world implementations. While safety adjust-
ments are essential, the developed approach demonstrates the seamless
integration of DRL controllers with existing energy and monitoring
systems, minimising the need for invasive technical operations. This
study contributes valuable insights into the practical implementation
of DRL controllers in building environments, bridging the gap between
simulation and reality.

7. Conclusion

This paper has presented a comprehensive study of the application
of DRL for controlling the thermal dynamics of an office building used
as a living lab equipped with TABS. First, a simulation model based
on the RC network structure has been formulated and identified on
real data collected on a real office building located in Switzerland.
The simulation model has been used as the training environment for
the SAC controller and to benchmark its performance against different
variations of RBC strategies. The simulation study showed that the DRL
controller achieved a reduction in energy consumption between 15%
and 50% with a 25% decrease in temperature violation compared to
RBCs, while ensuring a reduction in energy consumption from TABS
of 23% and in temperature violation of 5% compared to a PI controller
considering 23 °C as temperature setpoint (i.e., the average value of the
22, 24] °C acceptability range).

Moreover, DRL reach the same performance level in terms of indoor
emperature control as an ideal MPC but consuming 29% more energy.
ased on these metrics, the best RBC and SAC controller has been

mplemented in the real office building throughout the cooling season
asting two months. The real-world deployment results revealed that
he DRL controller decreased the temperature violation by 68% while,
n average, maintaining the same energy consumption as the RBC.

Future work will focus on:

• The development of a more detailed building surrogate model
that better emulates the real dynamics of the building compared
to the RC model. In this context, a surrogate model developed
using Energyplus or Modelica could be employed both to pre-train
the DRL controller and used as a high-fidelity environment during
the performance benchmarking phase [52].
16
• An extension of the real-world comparison of the DRL agent
performance beyond just RBC. A PI controller and an MPC can be
used to evaluate the DRL agent performance in the real testbed.

• The comparison of SAC controller performances with other state-
of-the-art DRL algorithms, as Proximal Policy Optimisation (PPO)
and Deep Deterministic Policy Gradient (DDPG).

• The evaluation of the proposed methodology for controlling both
the TABS and the other systems installed in the office, develop-
ing a multi-action DRL controller. This would allow overcoming
limitations associated with the use of TABS during the cooling
season and ensure faster response to maintain appropriate indoor
building temperature conditions.

• The implementation of Transfer Learning (TL) to adapt the DRL
controller implemented in the analysed office zone to the other
thermal zones included in the whole real building.
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Appendix. Background on reinforcement learning

In the field of RL, the framework of Markov Decision Process
(MDP) provides a fundamental and mathematically rigorous approach
for modelling decision-making problems under uncertainty. An MDP is
defined by the tuple (𝑆,𝐴, 𝑃 ,𝑅, 𝛾) [20]:

1. States (𝑆): A finite set of states, denoting all possible situations
or configurations in which the system might find itself.

2. Actions (𝐴): A finite set of actions available to the decision-
maker or agent, determining the possible moves or decisions that
can be made in each state.

3. Transition Probabilities (𝑃 ): The state transition probability
matrix, where 𝑃 (𝑠′|𝑠, 𝑎) represents the probability of moving
from state 𝑠 after taking action 𝑎.

4. Rewards (𝑅): The reward function, 𝑅(𝑠, 𝑎), specifies the imme-
diate reward received after transitioning from state 𝑠 to state
𝑠′ due to action 𝑎. This function quantifies the benefit (or cost)
associated with each action in each state.

5. Discount Factor (𝛾): A discount factor 𝛾 ∈ [0, 1], used to
balance the importance of immediate versus future rewards.
It determines the present value of future rewards, with lower
values placing more emphasis on immediate rewards.

The goal within an MDP framework is to identify a policy 𝜋 ∶𝑆 →
𝐴 that maximises the expected cumulative reward over time. This
entails computing the expected sum of discounted rewards, expressed
as E

[
∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡, 𝑎𝑡)

]

.
In the context of RL, two fundamental concepts are the state value

function and the action value function. The state value function, de-
noted as 𝑉 𝜋 (𝑠), represents the expected cumulative reward for being in
a state 𝑠 and following a particular policy 𝜋 [20]. It is mathematically
expressed as:

𝑉 𝜋 (𝑠) =
∑

𝑎∈𝐴
𝜋(𝑎|𝑠)

∑

𝑠′∈𝑆
𝑃 (𝑠′|𝑠, 𝑎)

[

𝑅(𝑠, 𝑎) + 𝛾𝑉 𝜋 (𝑠′)
]

(A.1)

On the other hand, the action value function, denoted as 𝑄𝜋 (𝑠, 𝑎),
estimates the expected cumulative reward of taking an action 𝑎 in state
𝑠 and then following the policy 𝜋 [20]. This is given by:

𝑄𝜋 (𝑠, 𝑎) =
∑

𝑠′∈𝑆
𝑃 (𝑠′|𝑠, 𝑎)

[

𝑅(𝑠, 𝑎) + 𝛾
∑

𝑎′∈𝐴
𝜋(𝑎′|𝑠′)𝑄𝜋 (𝑠′, 𝑎′)

]

(A.2)

In the domain of RL, Q-learning emerges as an algorithm for solving
MDPs without requiring a model of the environment. Central to Q-
learning is the approximation of the optimal Q-function, 𝑄∗(𝑠, 𝑎), which
represents the expected cumulative reward starting from state 𝑠, taking
action 𝑠, and thereafter following the optimal policy 𝜋∗. The Q-function
in Q-learning is iteratively updated using a sample-based approach
rather than a predefined policy 𝜋. The update rule, is given by [59]:

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝜇
[

𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′) −𝑄(𝑠, 𝑎)
]

(A.3)

where the term max𝑎′ 𝑄(𝑠′, 𝑎′) represents the maximum expected future
reward obtainable from the next state 𝑠′.

In this equation, 𝜇 ∈ [0, 1] is the learning rate, a factor determining
the extent to which new information overrides old information. An
RL agent implementing a learning rate 𝜇 equal to 0 does not learn
anything and does not use new knowledge to update the control policy.
Conversely, setting the learning rate 𝜇 to 1 in a Q-learning algorithm
significantly alters how new information is incorporated. This means
that the algorithm puts full weight on the most recent information, up-
dating the Q-value based solely on the latest reward and the estimated
maximum future Q-value. This approach can be effective in certain
scenarios, particularly where adapting quickly to new information is
crucial. However, it may also lead to instability or failure to converge
17

if the environment is noisy or the latest information is not always
reliable. Typically, a balance is sought where the learning rate is set
to a value that allows the algorithm to learn from new information
while retaining some of the previous knowledge. This process of itera-
tively updating the Q-values based on the Bellman equation refines the
strategy towards the optimal policy.

However, a significant limitation arises in Q-learning when dealing
with environments with large state or action spaces. In such scenarios,
the tabular representation of the Q-function becomes impractical due
to the exponential growth in the number of state–action pairs, leading
to issues of scalability and memory requirements [60]. This challenge
is particularly pronounced in real-world problems, where states can
be continuous or high-dimensional. To address this, the concept of
function approximation is introduced, where a parameterised function,
often a neural network, is used to estimate the Q-values. The integration
of neural networks in Q-learning culminates in the development of
Deep Q-Network (DQN) [20]. DQN leverages deep learning to approx-
imate the Q-function, enabling the handling of high-dimensional state
spaces that are infeasible for tabular methods. This is expressed as:

𝑄(𝑠, 𝑎; 𝜃) ≈ 𝑄∗(𝑠, 𝑎) (A.4)

In this work, it was implemented the SAC, an advanced DRL algo-
rithm. SAC [61] is an off-policy actor-critic algorithm that optimises
a stochastic policy in an entropy-regularised reinforcement learning
framework. The key feature of SAC is its objective to maximise both the
expected return and the entropy, which is a measure of randomness in
the policy [62]. This dual objective is formulated as:

𝐽 (𝜋) = E

[ ∞
∑

𝑡=0
𝛾 𝑡
(

𝑅(𝑠𝑡, 𝑎𝑡) + 𝛼(𝜋(⋅|𝑠𝑡))
)

]

(A.5)

where (𝜋(⋅|𝑠)) denotes the entropy of the policy 𝜋 at state 𝑠, and 𝛼
is a temperature parameter that determines the relative importance of
the entropy term against the reward. In conventional reinforcement
learning algorithms, 𝛼 is set equal to 0. The Shannon entropy term
 quantifies the degree of uncertainty or randomness in the agent’s
action selection process. It reflects how much the agent explores dif-
ferent actions in a given state, with higher values of  indicating a
greater propensity for exploration through random action choices. Es-
sentially, Shannon entropy serves as a measure of the unpredictability
or variability in the agent’s behaviour, promoting exploration in the
learning process. This definition of the target function guarantees the
appropriate trade-off between exploitation and exploration: it avoids
the agent returning sub-optimal control policies and it ensures that the
agent is explicitly pushed towards the exploration of new policies.

SAC demonstrates several advantages over DQN, particularly in
handling continuous action spaces and in its sample efficiency. While
DQN is well-suited for discrete action spaces, SAC’s ability to operate
in continuous domains makes it a more versatile choice for a broader
range of applications.

The architecture of SAC is characterised by its actor-critic approach.
It maintains two separate networks:

• The Actor Network, which proposes a policy, represented as
𝜋(𝑎|𝑠; 𝜉), mapping states to actions. Here, 𝜉 are the parameters
of the actor network.

• The Critic Network, which evaluates the proposed actions by
estimating the action-value function 𝑄(𝑠, 𝑎; 𝜃), with 𝜃 being the
critic network parameters.

The critic network is trained to minimise the Bellman error [59],
and the actor network is updated to maximise the expected return
plus entropy, ensuring a balance between exploration and exploitation.
This actor-critic framework enables SAC to learn effectively in com-
plex environments, making it a robust choice for tasks that require
decision-making under uncertainty.
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