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Abstract: This paper presents an in-depth analysis of an excitable membrane of a biological system 18 

by proposing a novel approach that the cells of excitable membrane can be modeled as the networks 19 

of memristors. We provide compelling evidence from the Chay neuron model that the state-inde- 20 

pendent mixed ion-channel behaves as a nonlinear resistor, while the state-dependent voltage-sensitive 21 

potassium ion-channel and calcium-sensitive potassium ion-channel function as generic memristors from 22 

the perspective of electrical circuit theory. The mechanism to give the rise to the periodic oscillation, 23 

aperiodic (chaotic) oscillation, spikes and bursting in an excitable cell are also analyzed via small- 24 

signal model, pole-zero diagram of admittance functions, local activity, edge of chaos and Hopf 25 

bifurcation theorem. It is also proved that the zeros of the admittance functions are equivalent to 26 

the eigen values of the Jacobian matrix and the presence of the positive real parts of the eigen values 27 

between the two bifurcations points lead to the generation of complicated electrical signals in an 28 

excitable membrane. The innovative concepts outlined in this paper pave the way for a deeper un- 29 

derstanding of the dynamic behavior of excitable cells, offering potent tools for simulating and ex- 30 

ploring the fundamental characteristics of biological neurons. 31 

Keywords: Memristor; excitable cell; oscillation; chaos; spikes; bursting; Chay model; small-signal 32 

model; pole-zero diagram; local activity; edge of chaos; Hopf bifurcation 33 

1. Introduction 34 

The electrical activities of neurons are characterized by a diverse array of dynamic 35 

phenomena, such as action potential, oscillation, spike, chaos and bursting. Understand- 36 

ing these qualitative features are essential for unraveling the principles underlying neu- 37 

ronal excitability. The popular Hodgkin-Huxley (HH) model developed in 1952 consists 38 

of membrane voltage, potassium conductance, sodium conductance and leakage conduct- 39 

ance, provide a framework for understanding the propagation of action potential based 40 

on the squid giant axon experiments [1]. Recent analysis revealed that the potassium ion- 41 

channel and sodium ion-channel in the HH model, initially interpreted as time-varying 42 

conductances are in fact generic memristors from the perspective of electrical circuit the- 43 

ory [2-5]. The HH model has spurred significant interests to design electrical circuit mod- 44 

els and observe the experimental results in the wide varieties of complex system of the 45 

membrane potential, nervous system, barnacle giant muscle fiber, Purkinje fibers, solitary 46 

hair cells, auditory periphery, mini review of neuromorphic architectures and implemen- 47 

tation, organic synapses for neuromorphic electronics, and photochromic compounds [6- 48 
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16]. Similarly, extensive researches have been conducted to observe the varieties of oscil- 49 

lations in pancreatic β-cells inspired by the HH model [17-26]. The mathematical model 50 

of an excitable membrane in pancreatic β–cells consist of voltage-sensitive channels that 51 

allow the Na+ and Ca2+ to enter the cell and, voltage-sensitive K+ channels and voltage- 52 

insensitive K+ channel which allow to leave K+ ion and activate intracellular calcium ion 53 

respectively [27-29]. Therefore, the outward current carried by K+ ions pass through the 54 

voltage and calcium-sensitive channels, and inward current carried by Na+ and Ca2+ ions 55 

pass through the voltage-sensitive Na+ and Ca2+ channels. However, the above models 56 

consist of complicated nonlinear differential equations associated with membrane volt- 57 

age. Later a modified model was presented by Chay [30], assuming the β-cells of the volt- 58 

age-sensitive Na+ conductance is almost inactive, and the inward current is almost exclu- 59 

sively carried by Ca2+ ions through the voltage-sensitive Ca2+ channel. Therefore, the as- 60 

sumption of a mixed effective conductance was formulated without affecting the results 61 

by expressing the total inward current in terms of a single mixed conductance gI, and re- 62 

versal potential EI of the two functionally independent Na+ and Ca2+ channels. The model 63 

consists of three nonlinear differential equations in contrast to the other complicated mod- 64 

els of an excitable membrane of pancreatic β-cell. Our studies in this paper typically focus 65 

on the simplified Chay neuron model of an excitable cell [30].  66 

The scientific novelty of this study is to model the excitable cells using memristive 67 

theory. By characterizing the state-independent voltage-sensitive mixed ion channel gI as 68 

a nonlinear resistor, and the state-dependent voltage-sensitive potassium ion-channel gK,V 69 

and calcium-sensitive potassium ion-channel gK,Ca as time-invariant memristors in the 70 

Chay neuron model, this research introduces a novel approach to study the behavior of 71 

ion channels in excitable cells. This unique modeling framework extends memristive the- 72 

ory to the realm of neuroscience, opening up new avenues for investigating the complex 73 

dynamics of excitable cells and their role in neural information processing. Moreover, the 74 

study employs comprehensive analytical tools such as small signal equivalent circuit 75 

model, pole-zero diagrams, the local activity principle, edge of chaos theory, and Hopf 76 

bifurcation theorem with the goal of gaining deeper insights in to the dynamic behavior 77 

the excitable cells. By integrating these analytical tools, the study provides a comprehen- 78 

sive perspective on the dynamic behavior of excitable cells in the framework of memris- 79 

tive theory, potentially uncovering new insights and relationships that were previously 80 

unexplored. The contributions of the study have the potential to advance our understand- 81 

ing of excitable cell dynamics and their implications for neural function. 82 

The paper is organized as follows. We introduce the Chay neuron model and its com- 83 

parison analyses with HH, FitzHugh-Nagumo and Morris-Lecar(ML) models in section 84 

2. Section 3 describes the pinched hysteresis fingerprints of ion-channel memristors. Sec- 85 

tion 4 presents Direct Current (DC) analysis of Memristive Chay neuron model. Section 5 86 

provides the small-signal analysis. Section 6 explores the application of the local activity 87 

principle, edge of chaos theorem, and Hopf bifurcations in memristive Chay neuron. Fi- 88 

nally, section 7 concludes the paper. 89 

2. Chay Neuron Model of an Excitable Cell 90 

Excitable cells are specialized cells in the body and neurons that are capable of 91 

generating electrical signals in response to certain stimuli. These cells are crucial for the 92 

functioning of various physiological processes, including nerve signaling, muscle 93 

contraction, and hormone release. Excitability in these cells is primarily due to the 94 

presence of specialized proteins called ion-channels in their cell membranes. These ion 95 
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channels control the movement of ions such as sodium (Na+), potassium (K+), calcium 96 

(Ca2+), and chloride (Cl-) across the membrane, leading to changes in the cell’s membrane 97 

potential and the generation of electrical signals. The study of excitable cells encompasses 98 

a wide array of topics, and our primary aim is to present a unified model for both neuronal 99 

and secretory excitable membranes based on the Chay neuron model. The Chay neuron 100 

model, which focuses on a simplified representation of neuronal and secretory excitable 101 

membranes, aims to provide a unified framework for understanding the complex 102 

electrical activity observed in excitable cells. This model typically involves just three 103 

ordinary differential equations(ODEs) to capture the essential features of an excitable cell 104 

membrane. The model consists of (a) mixed ion-channel gI (b) the state-dependent voltage- 105 

sensitive potassium ion-channel gK,V (c) calcium-sensitive potassium ion-channel gK,Ca  106 

and (d) leakage channel are described by the following differential equation: 107 

( ) ( ) ( ) ( )3 4

, ,Ca L
1

I I K V K K K L

m

Ca
I g m h V E g n V E g V E g V E

dV Ca

dt C

 − − − − − − − −
+=        (1a) 108 

 

n

dn n n

dt 
 −=                                                               (1b) 109 

( )3

Ca Ca

dCa
m h V E k Ca

dt
  
 = − − + 

                                         (1c) 110 
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              (1f) 114 

Fig. 1(a) shows the typical circuit of Chay model with external current stimulus, 115 

denoted as I1. It consists of membrane potential V of capacitance Cm,  potentials EI , EK and 116 

EL for mixed Na+-Ca2+ ions, K+  and leakage ions respectively. The conductances gI, gK,V, 117 

gK,Ca, and gL, represent the  voltage-sensitive mixed ion-channel, voltage-sensitive potassium 118 

ion-channel, calcium-sensitive potassium ion-channel and leakage channel respectively. In the 119 

 
1Electrical model is not given in the Chay paper [30]. We have designed a typical electrical circuit 

model following the differential equation of the membrane potential. The symbolic representation 

of the conductances and potentials are assumed in different notations compared to the original 

representation. Fig. 1(a) shows an electrical circuit model following the conventional assumption of 

HH model.  
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upcoming session, we will provide a rigorous proof that the state independent mixed ion- 120 

channel functions as a nonlinear resistor. However, the commonly held belief regarding 121 

state-dependent ion-channels exhibiting time-varying conductances is found to be 122 

conceptually incorrect from the perspective of electrical circuit theory. Contrary to this 123 

conventional assumption, these ion-channels do not adhere to time-varying conductance 124 

principles. Instead, they align more accurately with the characteristics of time-invariant 125 

generic memristors from a circuit theoretic standpoint. A rigorous proof will be 126 

demonstrated in the subsequent section. The parameters for this model are summarized 127 

in Table 12 and list of abbreviations of the model parameters are illustrated in Appendix.  128 

The comparison analyses of the HH model[1], FitzHugh-Nagumo model[31], ML 129 

model[8], and the Chay model[30] are sumarized in Table 2 along with their respective 130 

strengths and limitations. It is notable that each model possesses distinct advantages and 131 

drawbacks making them suitable for different research contexts and questions. The choice 132 

of model depends on the level of detail required, computational resources available, and 133 

specific phenomena under investigation. This study predominantly centers on the Chay 134 

neuron model of excitable cells. 135 

 136 

Figure 1. Typical Chay neuron model of an excitable cell [30]. (a) Electrical circuit model, following 137 

conventional assumption as time varying conductances [1]. (b) Equivalent memristive Chay model 138 

based on Chua’s memristive theory [2-4]. The potential ECa for Ca2+ ion given in the rate of the 139 

calcium concentration in (1c) is not an external battery source and not shown in external Fig. 1(a) 140 

and Fig. 1(b), respectively. 141 

 
2 The unit of conductances of mixed ion-channel, voltage sensitive potassium ion-channel, calcium 

sensitive potassium ion-channel and leakage ion-channel in Chay model [30] are assumed as  

1*
2

2

conductance mS / cm 1
g s

membrane capacitance mF / cm second(s)

−= = = =
 . As, we are assuming the value of membrane 

capacitance (Cm)=1mF/cm2, we use the unit of all the conductances of the ion-channels g=mS/cm2 

throughout this study, which is also the equivalent unit g* of original Chay model. Due to the 

periodic and dynamic nature of the conductance g∗(g), it can also be considered as the “conductance 

periodic factor”. 
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Table 1. Parameters of the Chay neuron model of an exctiable cell 142 

             143 

Table 2. Comparision analyses of HH, FitzHugh-Nagumo, ML and Chay models 144 

Models Memristive Models Strengths Limitations 

HH  [1] Potassium ion-channel and sodium ion-

channel in the HH model are represented with 

generic memristors [3] 

It is a framework to understand the emergence 

of action potential propagation in neuron based 

on the experimental data of squid giant axon. 

Difficult to generalize to all 

neurons. Incapable of producing 

bursting 

FitzHugh-

Nagumo 

[31] 

It doesn’t follow the state dependent Ohm’s 

law and can not model with memristors. 

Simplified model of neuronal excitation. Not accurately represent all 

neuronal behaviors. Incapable of 

producing bursting 

ML [8] Modeled that the state independent 

(dependent) calcium ion channel act as  a 

nonlinear resistor(generic memristor) and 

state dependent potassium ion channels acts as 

a generic memristor [9-10]. 

Initially presented a model for the barnacle 

muscle fiber and later it is considered as a 

popular and simplified representation of the 

neuron model. 

Limited in capturing certain 

neuronal dynamics. Can’t 

produce bursting patterns. 

Chay[30] We are proposing a framework that the cells of 

excitable membranes can be modeled as the 

networks of memristors.  

Novel model of excitable cells to  capture 

multiple neuronal states, such as action 

potentials, periodic oscillations, aperiodic 

oscillations, spikes and bursting patterns. 

Limited validation in 

experimental contexts and lack 

details for some applications. 

 145 

3. Pinched Hysteresis Fingerprints of the Ion-Channel Memristor   146 

A generic memristor driven by a current source or voltage source is a two-terminal 147 

electrical circuit element whose instantaneous current or voltage obeys a state-dependent 148 

Ohm’s law. A generic memristor driven by a current source can be expressed as follows 149 

in terms of state nx : 150 

( )1 2, ,..., nv R x x x i=                                                   (2a) 151 

Cm              1mF/cm2

EK             -75 mV 

EI 100 mV

EL -40 mV

ECa 100mV

λn 230

gK,V 1700 mS/cm2 

gI 1800 mS/cm2 

gL 7 mS/cm2 

gK,Ca 10 mS/cm2 

kCa 3.3/18 mV

ρ 0.27  
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1 1 2( , ,..., ; )n nx f x x x i=                                            (2b) 152 

where R(x) is the memristance of the memristor and depends on “n” (n≥1 ) states variables,.                                                                                 153 

Similarly, a voltage-controlled memristor is defined in terms of the memductance G(x) 154 

and the state variables 
1 2, ..., nx x x , as follows: 155 

( )1 2, ,..., ni G x x x v=                                                      (3a) 156 

1 1 2( , ,..., ; )n nx f x x x v=                                                (3b)              157 

Eqs. (2) and (3) play significant importances to distinguish the memristive and non- 158 

memristive system [32-33]. They provide evidence that the state independent voltage- 159 

sensitive mixed ion-channel functions as a nonlinear resistor and, state dependent voltage- 160 

sensitive potassium ion-channel and calcium-sensitive potassium ion-channel behaves as time- 161 

invariant generic memristors. 162 

 163 

3.1. Voltage-sensitive mixed ion-channel nonlinear resistor 164 

The time varying voltage sensitive mixed ion-channel with input voltage vI and current iI 165 

in the second element (from left) in Fig. 1(a) is given by, 166 

IIV E v− =                                                                  (4a) 167 

and 168 

( , )I I Ii G m h v =                                                           (4b) 169 

and the conductance of the voltage sensitive mixed ion channel is given by 170 

3( , )I IG m h g m h   =                                                          (4c)                                                          171 

where 𝑚∞ 𝑎𝑛𝑑 ℎ∞ are computed using (1e) and (1f) 172 

 

( )

( ) ( )( )
( )50

180.1 25

0.1 25

0.1 25 4 1

I I

I I

I I

v E

v E

I I

v E
m

v E e e

 − + + 
  − + +  

+ +
=

+ + + −
                                  (4d) 173 

( )( )
( )

( )( )
( )

50

200.1 20

50

200.1 20

0.07 1

0.07 1 1

I I

I I

I I

I I

v E

v E

v E

v E

e e
h

e e

− + + 
  − + +  

 − + + 
  − + +  

+
=

+ +
                                        (4e) 174 

Observe (4b)–(4e) are not identical to (2a)-2(b) or (3a)–(3b) in terms of state dependent 175 

Ohm’s law. Consequently, the time-varying voltage-sensitive mixed ion-channel can be 176 

substituted by a nonlinear resistor3 as depicted in the second element (from the left) in 177 

Fig. 1(b). To verify the voltage-sensitive mixed ion-channel is a nonlinear resistor, an 178 

extensive numerical simulation for a sinusoidal input voltage source vI = 100sin(2πft) mV 179 

 
3 Mixed ion-channel is a nonlinear voltage controlled resistor with conductance GI(m∞, h∞) where 

m∞, and h∞ are functions of the voltage vI across the two-terminal element. 
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is performed for the three different frequencies namely, f=100 Hz, 200 Hz, and 1 KHz, 180 

respectively. Fig. 2 shows the corresponding output nonlinear waveform on currente iI vs. 181 

voltage vI plane for these frequencies, confirming that the mixed ion-channel exhibits the 182 

properties of a nonlinear resistor only.  183 

 184 

Figure 2. Output waveform plotted on iI vs. vI plane when the input voltage vI = 100sin(2πft) mV is applied 185 

with three different frequencies, namely f = 100 Hz, 200 Hz, 1 KHz to the voltage-sensitive mixed ion- 186 

channel. The output nonlinear waveform observed in Fig. 2 for different frequencies confirm the 187 

mixed ion channel is a nonlinear resistor.  188 

 189 

3.2. Voltage-sensitive potassium ion-channel memristor 190 

Let us define the voltage across the voltage-sensitive potassium ion-channel shown in 191 

third (from left) element in Fig. 1(a) is vK,V and current is iK,V , then  192 

,K K VV E v− =                                                               (5a) 193 

and current entering to the channel is  194 

 , , ,( )K V K v K Vi G n v=                                                          (5b) 195 

where the memductance is given by 196 

 
4

, ,( )K V K VG n g n=                                                            (5c) 197 

and the state equation describing the channel in terms of n can be simplified from 1(b) as, 198 

( )
( )

( )

( ),

,

30

80,

, 0.1 20

0.01 20
( ; ) 1 0.125

1

K V K

K V K

v E

K V K

K V n v E

v Edn
f n v n e n

dt e


 − + +
 
 
 

− + +

 
+ + = = − −

 
−  

          (5d)                                                                                                                199 

Note that (5b)-(5d) are identical to the voltage controlled generic memristor defined 200 

in (3a)-(3b) with first order differential equation. Hence, the time-varying conductance 201 

shown in Fig. 1(a) of voltage-sensitive potassium ion-channel is replaced with voltage- 202 

sensitive potassium ion-channel memristor as shown in the third element (from left) in Fig. 203 

1(b).  204 

We observed the memristive fingerprint of the voltage-sensitive potassium ion-channel 205 

memristor by applying sinusoidal bipolar signal under different frequencies. This 206 

100− 50− 0 50 100

1000−

700−

400−

100−

200

iI(μA)

vI(mV)
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property asserts that beyond some frequency f*, the pinched hysteresis loops 207 

characterized by a memristor shrinks to a single-valued function through the origin as 208 

frequency f > f* tends to infinity. To verify this property, a sinusoidal voltage source 209 

vK,V(t)=100sin(2πft)mV is applied to the voltage-sensitive potassium ion-channel with 210 

frequencies f=100 KHz, 500 KHz, and 4 MHz respectively. As shown in Fig. 3, the zero 211 

crossing pinched hysteresis loops shrink as the frequencies increase and tend to a straight 212 

line at 4 MHz which confirms that the voltage-sensitive potassium ion-channel is a generic 213 

memristor. All of these pinched hysteresis loops exhibit the fingerprints of a memristor 214 

[33]. 215 

                             216 

Figure 3. Pinched hysteresis loops of voltage-sensitive potassium ion-channel memristor at frequencies 217 

f=100 KHz, 500 KHz, and 4 MHz for the input signal vK,V(t) = 100sin(2πft) mV.  218 

 219 

3.3.  Calcium-sensitive potassium ion-channel memristor 220 

Let us consider the input voltage of the calcium-sensitive potassium ion-channel, the 221 

fourth element (from left) in Fig. 1(a) is  vK,Ca 4  and  current is iK,Ca then the current 222 

entering to the channel is given by 223 

,Ca ,Ca ,Ca(Ca)K K Ki G v=                                                        (6a) 224 

where 225 

,CaK KV E v− =                                                                (6b) 226 

and the memductance of the calcium-sensitive potassium channel is given by 227 

,Ca ,Ca(Ca)
1

K K

Ca
G g

Ca
=

+
                                                         (6c) 228 

 
4 Since the same potential EK is shared by the voltage-sensitive potassium ion-channel memristor and 

calcium- sensitive potassium ion-channel memristor, the voltage assumed V-EK = vK,V  in (5a) and  V-

EK = vK,Ca  in (6b) are identical. The voltages vK,V and vK,Ca are assumed to distinguish the input 

voltage applied to voltage-sensitive potassium ion-channel memristor and calcium- sensitive potassium 

ion-channel memristor, respectively. 
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The state equation in terms of calcium concentration from 6(b) and (1c) is given by, 229 

( ) ( )3

,Ca ,; K K Ca K Ca Ca

dCa
f Ca V m h v E E k Ca

dt
  
 = = − + − + 

                        (6d) 230 

Observe that (6b)–(6d) are examples of a voltage-controlled memristor defined in 231 

(3a)–(3b) in terms of the calcium concentration channel Ca. Since only one state equation 232 

is defined in terms of Ca, we call this memristor as a first order calcium-sensitive potassium 233 

ion-channel generic memristor. Therefore, the time varying calcium-sensitive potassium ion- 234 

channel is replaced with calcium-sensitive potassium ion-channel memristor as shown in the 235 

fourth element (from left) in Fig. 1(b). 236 

Let us verify the fingerprint of the frequency-dependent pinched hysteresis loops of 237 

the calcium-sensitive potassium ion-channel by applying sinusoidal voltage source vKCa(t) = 238 

100sin(2πft) mV with frequencies f=10 Hz, 30 Hz and 200 Hz respectively. Observe from 239 

Fig. 4 that, all the zero crossing pinched hysteresis loops shrink as the frequencies of the 240 

input signal increase and tend to a straight line for the frequency f=200 Hz. All of the 241 

pinched hysteresis fingerprint confirm that the calcium-sensitive potassium ion-channel is a 242 

generic memristor. 243 

                           244 

Figure 4. Pinched hysteresis loops of calcium-sensitive potassium ion-channel memristor at frequencies 245 

f = 10Hz, 30Hz and 200Hz for the input signal vK,Ca(t) = 100sin(2πft) mV. 246 

 247 

4. DC analysis of Memristive Chay Model of an Excitable Cell 248 

The primary objectives to analyze the DC behavior of the memristive Chay model is 249 

to identify its equilibrium points of the nonlinear equations. These equilibrium points rep- 250 

resent the steady-state solutions obtained by equating the rate of change of equilibrium 251 

voltage Vm, gate activation n of the voltage-sensitive potassium ion-channel memristor and 252 

concentration of calcium-sensitive Ca of the calcium sensitive potassium ion-channel memris- 253 

tor to zero from (1a), (1b) and (1c) respectively. By determining these equilibrium points, 254 

100− 50− 0 50 100
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300−
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600 f=10 Hz
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f=30 Hz

iK,Ca(μA)
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insights can be gained into the behavior of the excitable cell under different conditions, 255 

such as varying input stimuli or parameter values, and can be expressed as a function of 256 

current I as: 257 
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                                                                   261 

Figure 5. (a) Memristive DC Chay model at equilibrium voltage Vm. (b) DC V-I  curve of mixed ion- 262 

channel nonlinear resistor at equilibrium voltage VI=Vm-EI. (c) DC V-I curve of voltage sensitive 263 

potassium ion-channel memristor at equilibrium voltage VK,V=Vm-EK. (d) DC V-I curve of calcium 264 

sensitive potassium ion-channel memristor at equilibrium voltage VK,Ca=Vm-EK. (e) DC V-I curve of 265 

leakage channel at equilibrium voltage VL=Vm-EL.(f) Plot of DC V-I curve of memristive Chay model 266 

at membrane voltage Vm. 267 
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the individual DC V-I curve of voltage sensitive mixed ion channel non-linear resistor, 271 

voltage sensitive potassium ion-channel memristor, calcium sensitive potassium ion- 272 

channel memristor and leakage channel at equilibrium voltage VI, VK,V, VK,Ca  and VL as 273 

shown in the Fig. 5(b), Fig. 5(c), Fig. 5(d) and Fig. 5(e) respectively. Fig. 5(f) shows DC V-I 274 

curve of Fig. 5(a) over the range of DC voltage -50 mV <Vm <-24 mV. For any DC value of 275 

Vm, we calculated the corresponding value of I as the vertical axis. Our extensive calcula- 276 

tions show that, the two Hopf bifurcation points occur at Vm=-48.763 mV (resp., I=-66.671 277 

µA) and Vm=-27.984 mV (resp., I=433.594 µA) respectively. Details of these two bifurcation 278 

points will be discussed in upcoming section 279 

5. Small-Signal Circuit Model 280 

The small-signal equivalent circuit is the linearized method to predict the response of 281 

electronic circuits when a small input signal is applied to an equilibrium point Q. The 282 

objective of this section is to analyze the small-signal response of voltage-sensitive mixed 283 

ion-channel nonlinear resistor, voltage-sensitive potassium ion-channel memristor and cal- 284 

cium-sensitive potassium ion-channel memristor using Taylor series expansion and Laplace 285 

transformation. 286 

 287 

5.1. Small-signal circuit model of the mixed ion-channel nonlinear resistor 288 

The small signal equivalent circuit of the mixed ion-channel nonlinear resistor at an 289 

equilibrium point QI 5 on the DC VI-II curve is derived as follows 290 

( )I I I Iv V Q v= + 
                                            (8a)  291 

( )I I I Ii I Q i= + 
                                                          (8b) 292 

Applying Taylor series expansion to the voltage-sensitive mixed ion-channel nonlinear 293 

resistor defined in (8a)-(8b) at the DC operating point QI, we get  294 

00 12( ) ( ) ( ) . . .

  ( )

I I I I I I

I I I

i f V v a Q a Q v h o t

I Q i

 



= + = + +

= +

                                 (8c) 295 

Where h.o.t denotes higher order terms and coefficeints can be computed as,   296 

 ( )00 ( ) ( ) ( )I I I I I I Ia Q G Q V Q I Q= =                                           (8d)  297 

12

( )
( ) I

I

I

f v
a Q

v


=

                                                             (8e) 298 

Linearize (8c) by neglecting the h.o.t. then, 299 

12 ( )I I Ii a Q v =                                                         (8f) 300 

Taking the Laplace transform of (8f), we obtain  301 

 
5 The equilibrium point QI  at vi=VI is obtained by solving 4(b). 
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II Ii s a Q v s=                                                      (8g) 302 

The admittance YI(s; QI) of the small-signal equivalent circuit of the voltage sensitive 303 

mixed ion-channel nonlinear resistor at the DC operating point QI is given by, 304 
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                                308 

 309 

Figure 6. (a) Small-signal circuit model of the voltage-sensitive mixed ion-channel nonlinear resistor 310 

about the DC equilibrium point QI (VI, II). (b) Plot of the coefficient a12 and resistance R1,I  as a 311 

function of the DC equilibrium voltage VI=Vm-EI  where EI=100 mV. R1,I<0 over the range of local 312 

activity, edge of chaos 1 and edge of chaos 2 of the mixed ion channel nonlinear resistor is identified 313 

with respect to VI of the entire Chay circuit in Fig. 1(b) and Fig. 13 . 314 
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Table 3. Explicit formulas for computing the coefficients a12(QI) of the voltage-sensitive mixed ion 317 

channel nonlinear resistor 318 

                             319 

 320 

From (8h), it is followed that the small-signal admittance function of the mixed ion- 321 

channel nonlinear resistor is equivalent to a linear resistor. The corresponding small-signal 322 

equivalent circuit and a plot of the coefficient a12(QI) and resistance R1,I as a function of the 323 

DC equilibrium voltage VI =Vm-EI where EI=100 mV are shown in Fig. 6(a) and Fig. 6(b), 324 

respectively. The explicit formulas for computing coefficient a12(QI) are given in Table 3 325 

for readers’ convenience. 326 

 327 

5.2. Small-signal circuit model of the voltage-sensitive potassium ion-channel memristor 328 

The small-signal circuit model of the voltage sensitive potassium ion-channel memristor 329 

at an equilibrium point QK,V6 on the DC VK,V-IK,V curve is derived by defining 330 
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6 The equilibrium point QK,V at vK,V = VK,V is obtained from (5d) by solving f(n;VK,V) = 0 for n = nK,V. 

The explicit formula for n(VK,V) is given in Table 4. 
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Expanding 
, , ,( )K V K V K Vi G n v= from (5b) in a Taylor series about the equilibrium 334 

point (N(QK,V), VK,V(QK,V)), we obtain, 335 

 
, 00 , 11 , 12 , ,

, , ,

( ) ( ) ( ) . . .

    ( )

K V K V K V K V K V

K V K V K V

i a Q a Q n a Q v h o t
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                         (9d)                                                                                                                                                         336 

where 337 

, , , , ,,      ( )
K VQ K V K V K V K Vn n n v v V Q = − = −  338 

, , , ,( )K V K V K V K Vi i I Q = −                                             (9e)                                                   339 

and 340 

( )00 , , , , , , ,( ) ( ) ( )K V K V K V K V K V K V K Va Q G Q V Q I Q= =                      (9f) 341 

( )
,11 , , , ,( ) ( )

K VK V K V K V K V Qa Q V Q G n=                                             (9g)                                                            342 

 ( )
,12 , ,( )

K VK V K V Qa Q G n=                                                 (9h)                                                                       343 

and h.o.t denotes the higher-order terms. Let us linearize the nonlinear equation by 344 

neglecting the h.o.t. in (9d), then: 345 

  11 , 12 , ,( ) ( )K K V K V K Vi a Q n a Q v  = +                                      (9i) 346 

Similarly, expanding the state equation ( )K ,V K ,Vf n , V in (5d) using a Taylor series 347 

about the equilibrium point (n(QK,V),VK,V(QK,V)), we obtain 348 
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Linearizing the nonlinear state equation (9j) by neglecting the h.o.t., we get 353 

 
( )

11 , 12 , ,( ) ( )K V K V K V

d n
b Q n b Q v

dt
 


= +                                     (9m) 354 

Taking Laplace transform of (9i) and (9m), we obtain 355 
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Solving (9o) for ˆ( )n s and substituting the result into (9n), we obtain the following 358 

admittance YK,V(s; QK,V) for the small-signal equivalent circuit of the voltage sensitive 359 

potassium ion-channel memristor at equilibrium point QK,V: 360 
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Figure 7. Small-signal equivalent circuit model of the voltage-sensitive potassium ion-channel 368 

memristor about the DC equilibrium point QK,V (VK,V, IK,V). 369 
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Figure 8. Plot of coefficients (a) a11 (b) a12 (c) b11 and (d) b12 of the voltage-sensitive potassium ion- 371 

channel memristor as a function of the DC equilibrium voltage VK,V. 372 
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It follows from (9r)-(9t) that the small-signal admittance function of the first-order 374 

voltage sensitive potassium ion-channel memristor is equivalent to the series connection of 375 

an inductor and a resistor in parallel with another resistor as shown in Fig. 7. The 376 

corresponding coefficients a11, a12, b11, b12 and inductance LK,V, resistance R1K,V and resistance 377 

R2K,V as a function of the DC equilibrium voltage VK,V =Vm-EK where EK=-75mV are shown in 378 

Figs. 8 and Figs. 9, respectively. Please note that the local activity, edge of chaos 1 and 379 

edge of chaos 2 shown in Figs. 9 are not the local activity and edge of chaos domains of 380 

the separate two terminal of the voltage sensitive potassium ion-channel memristor. The 381 

small signal positive inductance and resistances (i.e. LK,,V>0, R1K,V>0 and, R2K,V>0) of the 382 

potassium ion-channel memristor observed over the local activity, edge of chaos 1 and 383 

edge of chaos 2 regime are just corresponding range of the voltage with respect to VK,V of 384 

the entire connected Chay small-signal equivalent circuit of Fig. 1(b) and Fig. 13. For the 385 

readers’ convenience, the explicit formulas for computing the coefficients a11(QK,V), 386 

a12(QK,V), b11(QK,V), b12(QK,V) and LK,V, R1K,V, R2K,V are summarized in Table 4. 387 
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Figure 9. (a) Inductance LK,V (b) resistance R1K,V and (c) resistance R2K,V of the voltage-sensitive 391 

potassium ion-channel memristor as a function of DC equilibrium voltage VK,V =Vm-EK where EK=-75mV. 392 

LK,V>0, R1KV>0 and R2KV>0 shown in figures over the local activity, edge of chaos 1 and edge of chaos 393 

2 are just corresponding range of the voltage with respect to VK,V of the entire connected Chay small 394 

signal equivalent circuit of Fig. 1(b) and Fig. 13. 395 
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Table 4: Explicit formulas for computing the coefficients a11(QK,V), a12(QK,V), b11(QK,V), b12(QK,V) and 403 

LK,V, R1K,V, R2K,V of the voltage sensitive potassium ion-channel memristor. 404 
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5.3. Small-signal circuit model of the calcium-sensitive potassium ion-channel memristor                                407 

The small-signal circuit model of the calcium-sensitive potassium-channel memristor at 408 

an equilibrium point QK,Ca7 in the DC VK,Ca-IK,Ca curve is derived by defining 409 
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7 The equilibrium point QK,Ca at vK,Ca = VK,Ca is obtained from (6d) by solving f(Ca;VK,Ca) = 0 for Ca = 

CaK,Ca. The explicit formula for Ca(VK,Ca) is given in Table 5. 
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CaK Ca K Ca Qa Q G Ca=                                               (10h) 422 

and h.o.t denotes the higher-order terms. Let us linearize the nonlinear equation by 423 

neglecting the h.o.t. in (10d) then: 424 

K,C 11 , 12 , ,( ) ( )a K Ca K Ca K Cai a Q Ca a Q v  = +                                (10i) 425 

Similarly, expanding the state equation ( )K ,Ca K ,Caf Ca , V of (6d) in a Taylor series 426 

about the equilibrium point (Ca(Q,K,Ca),VCa(Q,K,ca)), we obtain 427 
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Linearizing the nonlinear state equation (10j) by neglecting the h.o.t., we get 432 
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Taking Laplace transform of (10i) and (10m), we obtain 434 
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Solving (10o) for ˆ( )Ca s and substituting the result into (10n), we obtain the following 437 

admittance YK,Ca(s; QK,Ca) of the small-signal equivalent circuit of the  calcium sensitive 438 

potassium ion-channel memristor at equilibrium point QK,Ca: 439 
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It follows from (10r)-(10t) that the small-signal admittance function of the first-order 446 

calcium-sensitive potassium ion-channel memristor is equivalent to the series connection of an 447 

inductor and a resistor in parallel with another resistor as shown in Fig. 10. The 448 

corresponding coefficients a11, a12, b11, b12 and inductance LK,Ca, resistance R1K,Ca, and resistance 449 

R2K,Ca as a function of the DC equilibrium voltage VK,Ca are shown in Figs. 11 and Figs. 12, 450 

respectively. The  small-signal inductance and resistances( i.e. LK,Ca>0, R1K,Ca>0 and R2KCa>0)  451 

over the edge of chaos 1 and edge of chaos 2 with respect to the VK,Ca  are shown in Fig. 452 

12(a), Fig. 12(b) and Fig. 12(c) respectively. Please note that the local activity, edge of chaos 453 

1 and edge of chaos 2 shown in Fig. 12(a), Fig. 12(b) and Fig. 12(c) are not the local activity, 454 

edge of chaos 1 and edge of chaos 2 of the individual calcium sensitive potassium ion 455 

channel memristor. The local activity, edge of chaos domains are just an information 456 

showing the corresponding range of voltage with respect to VK,Ca when measured across 457 

the individual calcium sensitive potassium ion channel memristor of the entire connected 458 

Chay small-signal equivalent circuit of Fig. 1(b) and Fig. 13. For the readers’ convenience, 459 

the explicit formulas for computing the coefficients a11(Q,K,Ca), a12(QK,Ca), b11(Q,K,Ca), b12(Q,K,Ca) 460 

and LK,Ca, R1K,Ca, R2K,Ca are summarized in Table 5. 461 

 462 

                                     463 

Figure 10. Small-signal equivalent circuit model of the calcium-sensitive potassium ion-channel 464 

memristor about the DC equilibrium point QK,Ca (VK,Ca, IK,Ca). 465 

_
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                                466 

Figure 11. Plot of coefficients (a) a11 (b) a12 (c) b11 and (d) b12 of the calcium-sensitive potassium ion- 467 

channel memristor as a function of the DC equilibrium voltage VK,Ca. 468 

                         469 

Figure 12. (a) Inductance LK,Ca (b) resistance R1K,Ca and (c) resistance R2K,Ca of the calcium-sensitive 470 

potassium ion-channel memristor as a function of DC equilibrium voltage VK,Ca. LK,Ca>0, R1K,Ca>0 and 471 

R2KCa>0 over the edge of chaos 1 and edge of chaos 2 with respect to VK,Ca of the entire connected 472 

Chay small-signal equivalent circuit of Fig.1(b) and Fig. 13.  473 
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Table 5: Explicit formulas for computing the coefficients a11(QK,Ca), a12(QK,Ca), b11(QK,Ca), b12(QK,Ca) and 474 

LK,Ca, R1K,Ca, R2K,Ca of the calcium-sensitive potassium ion-channel memristor. 475 

                            476 

 477 

5.4. Small-signal circuit model of the memristive Chay model 478 

Let us replace the voltage-sensitive mixed ion-channel nonlinear resistor, the voltage- 479 

sensitive potassium ion-channel memristor, and the calcium-sensitive potassium ion- 480 

channel memristor in the memristive Chay neuron circuit of Fig. 1(b) with their small- 481 

signal models about DC operating voltages VI=Vm-EI, VK,V=Vm-EK, and VK,Ca=Vm-EK, 482 

respectively. Short-circuiting all the batteries, the equivalent small-signal circuit model of 483 

the third-order neuron circuit from Fig. 1(b) about the operating point Vm(Q is found to be 484 

composed of one capacitor, two inductors, and six resistors as shown in Fig. 13. The local 485 

admittance Y(s;Vm(Q)) of this linear circuit seen from the port and formed by the capacitor 486 

terminals about Q is given by 487 
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The corresponding range of local activity, edge of chaos 1 and edge of chaos 2 at 489 

equilibrium voltage Vm(Q) (resp. I) are also given in Fig. 13 for readers’ convenience. We 490 

will cover the details of these regimes in the section on locally activity and edge of chaos. 491 

The circuit element R1,I is obtained by calculating the small signal model of the voltage- 492 

sensitive mixed ion-channel nonlinear resistor from Table 3 at equilibrium voltage 493 
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Vm(Q)=VI+EI. Similarly, LK,V, R1K,V , and R2K,V  are  calculated from the small-signal 494 

equivalent circuit of the voltage sensitive potassium ion-channel memristor from Table 4 and 495 

LK,Ca, R1K,Ca , and R2K,Ca  are  calculated  from the small signal equivalent circuit  of the 496 

calcium-sensitive potassium ion channel memristor from Table 5 at equilibrium voltage Vm(Q) 497 

respectively. Note that VK,V+EK and VK,Ca+EK must be replaced by Vm(Q) in Table 4 and Table 498 

5 by the small signal model of the voltage-sensitive potassium ion-channel memristor and 499 

calcium-sensitive potassium ion-channel memristor, respectively. 500 

                                501 

 502 

Figure 13. Small-signal equivalent circuit model of the memristive Chay model. The DC equilibrium 503 

voltage Vm is computed at Vm=VI+EI for mixed ion channel non-linear resistor, Vm=VK,V+EK for voltage 504 

sensitive potassium ion-channel memristor and Vm=VK,Ca+EK for calcium sensitive potassium ion- 505 

channel memristor, respectively. 506 
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Table 6: Explicit formulas for computing the coefficients of Y(s;Vm(Q)). 509 

                          510 

5.4.1. Frequency Response 511 

A convenient way to find the total admittance Y(s; Vm(Q)) by recasting (11) into a 512 

rational function of the complex frequency variable s, is as follows:  513 
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where the explicit formulas for computing the coefficients b3, b2, b1, b0, a2, a1, and a0 are 515 

summarized in Table 6. 516 
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The corresponding real part Re Y (iω; Vm(Q)) and imaginary part Im Y (iω; Vm(Q)) from 520 
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Fig. 14(a) and Fig. 14(b) show ReY(iω; Vm(Q)) vs. ω, Im Y(iω; Vm(Q)) vs. ω, and the 523 

Nyquist plot Im Y(iω; Vm(Q)) vs. Re Y(iω; Vm(Q)) at the DC equilibrium voltage Vm= -48.763 524 

mV(resp., I=-66.671 μA), and Vm=-27.984 mV(resp., I=433.594 μA), respectively. Observe 525 

from Fig. 14(a) and Fig. 14(b) that ReY(iω; Vm(Q))<0, thereby confirming the memristive 526 

Chay model is a locally active at each of the two operating points. Our extensive numerical 527 

computations show the two DC equilibria coincide with two-Hopf bifurcation points are 528 

the origin of generating the oscillation, spikes, chaos and bursting in excitable cells. We 529 

will discuss about these two bifurcation points in next section with pole-zeros and eigen 530 

values diagram. 531 

                                   532 

 533 

Figure 14. Small-signal admittance frequency response and Nyquist plot of the memristive Chay  534 

neuron model at (a) Vm= -48.763 mV(resp., I= -66.671 μA) and (b) Vm=-27.984 mV(resp., I=433.594 μA). 535 

Observe that ReY(iω;Vm(Q))<0 at the two Hopf-bifurcation points. 536 
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5.4.2. Pole-zero diagram of the small-signal admittance function Y(s; Vm(Q)) and eigen values of 538 

the jacobian matrix 539 

The location of the poles and zeros of the small signal admittance function Y(s; Vm(Q)) 540 

of (12a) is computed by factorizing it’s denominator and numerators as 541 

1 2 3

1 2

( )( )( )
( ; ( ))

( )( )
m

k s z s z s z
Y s V Q

s p s p

− − −
=

− −

                                      (13)    542 

The poles of the small-signal admittance function Y(s; Vm(Q)) as a function of the 543 

voltage Vm over  -200 mV<Vm<200 mV is shown in Fig. 15. Observe from Fig. 15(a) and 544 

Fig. 15(b) that the two poles Re(p1), Re(p2) are negative while Im(p1), Im(p2) remain 545 

consistently zero for the specified DC input Vm. This observation confirms that the two 546 

poles of the admittance function possess no complex frequencies. 547 

Fig. 16(a) shows the Nyquist plot, i.e. loci of the imaginary part Im(zi) versus the real 548 

part Re(zi) of the zeros as a function of the input voltage Vm over the interval −55 mV ≤ Vm 549 

≤ 25mV. Observe that the real part of the two zeros z2 and z3 are zero at Vm= -48.763 mV(resp., 550 

I= -66.671 μA) and Vm=-27.984 mV(resp., I=433.594 μA), respectively. The corresponding 551 

points when Re(zi)=0 are known as Hopf bifurcation points in bifurcation theory. Fig. 16(b) 552 

and Fig. 16(c) show the zoomed version of Fig. 16(a) near to the two bifurcation points 553 

respectively. It is also observed that the Re(z2) and Re(z3) lie in open right half plane(RHP) 554 

between the bifurcation points -48.763 mV <Vm<-27.984 mV(resp. -66.671 μA <I < 433.594 555 

μA). Observe from Fig. 17 that the eigenvalues, computed from the Jacobian matrix, 556 

associated to the ODE (1a)-(1c) are identical to the zeros of the neuron local admittance 557 

Y(s; Vm(Q)), as inferable from Fig. 16, and expected from the Chua theory [3]-[4].  558 

                                   559 

Figure 15. Poles diagram of the small-signal admittance function Y(s; Vm(Q)) as a function of Vm over 560 

-200 mV<Vm<200 mV (a) Top and bottom figures are the plot of the real part of the pole 1 Re(p1) and 561 

Imaginary part of pole 1 Im(p1) respectively. (b) Top and bottom figures are the plot of the real part 562 

of the pole 2 Re(p2) and Imaginary part of pole 2 Im(p2) respectively. 563 
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 565 

Figure 16. Zeros diagram of the small-signal admittance function Y(s; Vm(Q)) (a) Nyquist plot of the 566 

zeros z1, z2, z3 in Im(zi) vs. Re(zi) plane (b) Nyquist plot near the Hopf-bifurcation point 1, Vm=-48.763 567 

mV(resp., I= -66.671μA). (c) Nyquist plot near the Hopf-bifurcation point 2, Vm=-27.984 mV(resp., 568 

I=433.594 μA).  569 

 570 

                              571 

Figure 17. Plot of the loci of the eigen values of the Jacobian Matrix (a) Nyquist plot of the eigen 572 

values λ1, λ2, λ3 in Im(λi) vs. Re(λi) plane Nyquist plot near the Hopf-bifurcation point 1, Vm=-48.763 573 

mV(resp., I= -66.671 μA). (c) Nyquist plot near the Hopf-bifurcation point 2,   Vm=-27.984 mV(resp., 574 

I=433.594 μA). Our numerical computations confirm the zeros of the admittance functions Y(s; Vm(Q)) 575 

obtained in Fig. 16 are identical to the eigen values of the Jacobian matrix 576 
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6. Local Activity, Edge of Chaos and Hopf-Bifurcation in Memristive Chay Model 577 

Local Activity and edge of chaos are the powerful mathematical quantitative theories 578 

to predict whether the nonlinear system exhibits complexity or not. Local activity refers 579 

to a characteristic of nonlinear systems wherein infinitesimal fluctuations in energy are 580 

amplified, leading to the emergence of complex dynamical behavior in the system [34-39]. 581 

This section presents an extensive analysis of the memristive Chay model using the prin- 582 

ciple of local activity, edge of chaos and Hopf-bifurcation theorem to predict the mecha- 583 

nism of generating the complicated electrical signals in an excitable cell. 584 

 585 

6.1. Locally active regime 586 

The local activity theorem developed by Chua reveals that a nonlinear system must 587 

satisfy at least one of the following conditions, concerning its local transfer function about 588 

a given operating point in order to support the emergence of complexity[36].  589 

(i) The zero of the admittance function Y(s; Vm(Q)) lie in open-right plane where Re(sz)>0 590 

(ii) Y(s; Vm(Q)) has multiple zero on the imaginary axis 591 

(iii) Y(s; Vm(Q)) has simple zero on the imaginary axis s = iωz on the imaginary axis and 592 

( )( )( ) lim ( ) ;  
zQ s mz i zK i s i Y s V Q → = − is either a negative real number, or a complex 593 

number. 594 

(iv) ReY(iω;Vm(Q))<0 for some ωϵ[-∞, +∞] 595 

In another words, the emergence of action potentials, oscillations, chaos, burstings or 596 

spikes in neurons are impossible unless the cells are locally active. Therefore, restricting 597 

the behavior of a nonlinear system to its local activity operating regime reduces the 598 

considerable time necessary to identify the complex phenomena, which may emerge 599 

across its physical medium as compared to a standard trial-and-error numerical 600 

investigation. In order to restrict the above dynamical behavior in memristive Chay model 601 

of an excitable cell in local activity regime, we performed comprehensive numerical 602 

analyses within the range of the DC equilibrium voltage Vm= -50 mV (resp. I= -74.316 μA) 603 

to Vm=-23.5 mV (resp. I= 1.76×103 μA). Observe from Fig. 18(a), the real part of the 604 

admittance of the frequency response ReY(iω; Vm(Q))>0 at Vm= -50 mV (resp. I= -74.316 μA), 605 

thereby confirming locally passive at this equilibrium point. However, when Vm>-50mV, 606 

our in depth simulation in Fig. 18(b) shows that ReY(iω;Vm(Q))=0 at Vm= - 49.455 mV (resp. 607 

I= -70.919 μA) and Fig. 18(c) and Fig. 18(d) show that ReY(iω; Vm(Q))< 0  at Vm= -48.1 608 

mV(resp. I= -62.681 μA) and Vm= -26.5 mV (resp. I=746.457 μA) respectively for some 609 

frequency ω, confirming an excitable cell is locally active at these equilibria. Our 610 

simulations in Fig. 18(e) shows, a further increase in the DC equilibrium voltage at Vm= - 611 

24.685 mV ( resp. I=1.291×103 μA), the loci is tangential to the ω axis i.e. Re Y (iω; Vm(Q))=0. 612 

However, when Vm>-24.685 mV, say Vm=-23.5 mV(resp. I=  1.76×103 μA), it is observed from 613 

Fig. 18(f) that Re Y (iω; Vm(Q))>0, and the memrisitve Chay model is no more locally active 614 

confirming the cell is locally passive at this equilibrium. Therefore, the local activity 615 
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regime which started above Vm=- 49.455 mV (resp. I= -70.919 μA) exists over the following 616 

regime 617 
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 621 

Figure 18. Plot of Re(iω; Vm(Q)) to illustrate the local activity principle at (a) Vm= -50 mV (resp. I= - 622 

74.316 μA) (b) Vm= - 49.455 mV (resp. I= -70.919 μA), (c) Vm= -48.1 mV(resp. I= -62.681 μA), (d) Vm= -26.5 623 

mV (resp. I=746.457 μA), (e) Vm= -24.685 mV (resp. I=1.291×103 μA), (f) Vm=-23.5mV(resp. I=  1.76×103 624 

μA), respectively.   625 

      626 

6.2. Edge of chaos regime 627 

Edge of chaos is a tiny subset of the locally-active domain where the zeros of the  628 

admittance function Y(s; Vm(Q))(equivalent to the eigen values of Jacobian matrix) lie in 629 

the open left-half plane, i.e. Re(zp)<0( eigen values λi<0) as well as ReY(iω; Vm(Q))<0. Fig. 630 

17(a) and Fig. 17(b) show the real part of the eigen values vanish at Vm=-48.7631 mV (resp. 631 

I=-66.671 μA) with pair of complex eigen values λ2,3= ± 0.557i. It follows from the edge of 632 

chaos theorem that the corresponding equilibrium point is no longer asymptotically stable, 633 

and becomes unstable thereafter confirming the 1st edge of chaos regime over the following 634 

small interval: 635 
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Observe from Fig. 17(c) that the real part of the eigen values vanish at λ2,3= ± 85.606i at 637 

DC equilibrium voltage Vm=-27.984 mV(resp. I= 433.594 μA). It follows that the 638 

corresponding equilibrium point Vm(Q) is no longer asymptotically stable below this 639 

equilibrium point, therefore confirming the existence of a 2nd edge of chaos regime over the 640 

following interval: 641 
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 642 

The nonlinear dynamical behavior of the memristive Chay model in this paper is 643 

controlled as the function the input stimulus I. The local activity, edge of chaos 1 and edge 644 

of chaos 2 regime computed in this paper under the assumption of departing the input 645 

parameter I from lower stimulus to higher stimulus (resp. low DC equilibrium voltage 646 

Vm(Q) to high equilibrium voltage Vm(Q)). 647 

 648 

6.3. Hopf-bifurcation 649 

Hopf-bifurcation namely, super-critical and sub-critical bifurcations are local 650 

bifurcation phenomenon in which an equilibrium point changes its stability as the 651 

parameter of the nonlinear system changes under certain conditions. When an unstable 652 

equilibrium point surrounded by a stable limit cycle results to a super-critical Hopf 653 

bifurcation whereas a subcritical Hopf bifurcation refers to a qualitative change in the 654 

behavior of a system where a stable equilibrium point transitions to instability, giving rise 655 

to sustained oscillations or limit cycles as a parameter is varied. Our careful simulation at 656 

Hopf-bifurcation point 1 at Vm= =-48.763 mV(resp. I=-66.671 μA)8 shows that stimulus 657 

current I should be chosen within very small edge of chaos domain 1, where the real part 658 

of the eigen values are negative, the result converges to DC equilibrium for any initial 659 

conditions. Likewise, I is selected within the bifurcation point 1, where the real part of 660 

eigen values are positive, the result converges to a stable limit cycle. Therefore, it follows 661 

from the bifurcation theory that bifurcation point 1 is a super-critical Hopf bifurcation. 662 

Fig. 19(a) and Fig. 19(b) show the numerical simulations at I= -68.118 μA and I= -65.077 μA 663 

respectively. Observe, from Fig. 19(a) and Fig. 19(b) that I= -68.118 μA lying within the 664 

tiny subset of edge of chaos domain 1 converges to DC equilibrium and I= -65.077 μA lying 665 

in open right half-plane(RHP) converges to a spikes, respectively, confirming the 666 

bifurcation point 1 is a super-critical Hopf bifurcation. 667 

 
8  The super critical Hopf bifurcation point 1 and point 2 observed in this paper are just for the 

parameters listed in Table 2. The bifurcations phenomenon may vary for different parameters. 
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                    668 

Figure 19. Numerical simulations to confirm the super-critical Hopf bifurcation at bifurcation point 669 

1. Plot of membrane potential Vm at (a) I= -68.118 μA which lies inside the tiny subset of edge of 670 

chaos domain 1 and beyond bifurcation point 1 converges to the DC equilibrium, (b) and  I= -65.077 671 

μA, chosen just to the right of bifurcation point 1, where the real parts of two zeros of the neuron 672 

local admittance lie on the open right half plane (RHP) converges to the spikes 673 

 674 

Similarly, our careful examination predicts a stable DC equilibrium point when 675 

current I is chosen within a very small edge of chaos 2, confirming supercritical Hopf 676 

bifurcation at bifurcation point Vm= -27.984 mV (resp. I= 433.594 μA). The possibility of 677 

above scenario is illustrated in Figs. 20. Fig. 20(a) shows the membrane potential Vm 678 

converges to stable DC equilibrium point when I=440 μA chosen within the edge of chaos 679 

domain 2. Fig. 20(b) shows when I=430.884 μA chosen very close and inside the bifurcation 680 

point 2, where the real part of the eigen value is positive and lie in open right half 681 

plane(RHP), the transient waveform converges to stable limit cycle as predicted by Hopf 682 

supercritical bifurcation theorem. 683 
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Figure 20. Numerical simulations to confirm the super-critical Hopf bifurcation at bifurcation point 686 

2. (a) Plot of membrane potential Vm which converges to stable DC equilibrium when I=440 µA 687 

chosen inside the tiny subset of edge of chaos domain 2 and, near and beyond the bifurcation point 688 

2. (b) Membrane potential converging to oscillation as predicted by Hopf bifurcation theorem when 689 

I=430.884µA is chosen inside the bifurcation point (open right-half pane). 690 

 691 

Table 7 illustrates the computation of the potassium ion-channel activation n, calcium 692 

concentration Ca and eigen values (λ1, λ2 and λ3) as a function of the DC stimulus current 693 

I (resp. membrane potential Vm) at the DC equilibrium point Q. It is observed from Table 694 

7 and Fig. 17(a) to Fig. 17(c) that the two Hopf bifurcations points 1 and 2 occur at Vm= =- 695 

48.763 mV(resp. I=-66.671 μA) and Vm= -27.984 mV (resp. I= 433.594 μA) respectively, where 696 

the eigen values are purely imaginary at these two equilibria. As I decreases (resp. Vm 697 

decreases) from the Hopf bifurcation point 1, the eigen values migrated to the left-hand 698 

side confirming the real parts of the eigen values are no longer positive and thereby 699 

confirming the first negative real eigen values regime exists over the following interval. 700 
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Similarly, as I increases(resp. Vm increases)  from the second bifurcation points, the 702 

positive real part of the eigen values migrated from open right half to the open left half, 703 

there by confirming the second negative real eigen values regime over the following 704 
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Table 7. Computation of the potassium ion-channel activation n, calcium concentration Ca and eigen 707 

values (λ1, λ2 and λ3) as a function of the stimulus current I (resp. membrane potential Vm). Rows 5 708 

to 7 pertain to the edge of chaos 1, rows 8 to 16 pertain to the unstable local activity domain and 709 

rows 17 to 20 pertain to the edge of chaos 2.  Rows 7 and 17 pertain to Hopf bifurcation point 1 and 710 

Hopf bifurcations points 2, respectively for the memristive Chay neuron model. 711 

             712 

 713 

Observe from Table 7 and Fig. 17(a)-Fig. 17(c) that two eigenvalues of the Jacobian 714 

matrix associated to the ODE set (1a)-(1c) lie on the open RHP for each operating point Q 715 

corresponding to a DC current I value between Hopf bifurcation point 1 and Hopf bifur- 716 

cation point 2. Therefore, the generation of periodic, bursting, spikes and chaos signals 717 

S.

N

Vm(Vm) I(µA) n Ca λ1 λ2 λ3

1. -52.00 -87.02 0.08 0.04 -40.515 -3.842 -0.084

2. -51.00 -80.63 0.08 0.05 -40.107 -2.871 -0.111

3. -50.50 -77.46 0.09 0.06 -39.891 -2.289 -0.139

4. -50.00 -74.32 0.09 0.07 39.666 -1.617 -0.196

5. -49.455 -70.919 0.94 0.08 -39.408 -0.533-0.174i -0.533+0.174i

6. -49.00 -68.12 0.1 0.1 -39.181 -0.19-0.525i -0.19+0.525i

7. -48.763 -66.671 0.1 0.1 -39.058 0-0.557i 0+0.557i

8. -48.50 -65.08 0.1 0.11 -38.917 0.222-0.51i 0.2215+0.5097i

9. -46.00 -51.02 0.12 0.21 -37.32 0.046 5.736

10. -45.00 -46.37 0.13 0.27 -36.512 0.027 8.498

11. -42.00 -39.37 0.16 0.53 -33.218 0.0001 18.604

12. -40.00 -42.78 0.18 0.79 -29.899 -0.0084 25.99

13. -38.00 -51.26 0.21 1.13 -24.898 -0.0112 31.992

14. -32.00 17.59 0.29 2.57 -0.061 11.669-38.01i 11.669+38.01i

15 -30.00 160.68 0.32 3.12 -0.053 8.049-61.778i 8.049+61.778i

16. -28.00 430.84 0.35 3.65 -0.051 0.08-85.421i 0.08+85.421i

17. -27.984 433.594 0.35 3.65 -0.051 0-85.606i 0+85.606i

18. -27.00 628.91 0.36 3.89 -5.556-97.197i -5.556+97.197i -0.051

19. -25.50 1.02 103 0.39 4.22 -15.942-114.607i -15.942+114.607i -0.0501

20. -24.685 1.291 103 0.40 4.37 -22.466-123.858i -22.466+123.858i -0.0499

21 -23.00 1.99 103 0.43 4.64 -37.643-142.384i -37.643+142.384i -0.0497

22 -22.00 2.5 103 0.44 4.75 -47.529-152.923i -47.529+152.923i -0.0496
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The convergence of the membrane potential to a stable and unstable DC equilibrium 721 

points are verified by numerical simulations at different values of I and are illustrated in 722 

Figs. 21. Fig. 21(a) shows the transient waveform of membrane potential Vm converging to 723 

a stable DC equilibrium at I= -90 µA, confirming the Hopf bifurcation theorem no longer 724 

holds at this equilibrium. Similarly, when DC simulus currents I= -50 µA and -10µA are 725 

chosen inside the two bifurcation points I=-66.671 μA and I= 433.594 µA, we observed 726 

different patterns of oscillations as shown in Fig. 21(b) and Fig. 21(c), confirming the 727 

bifurcation theorem holds in this regime. Likewise, when DC stimulus currents I=10 μA 728 

and I=2000μA are applied within the bifurcation points I=−66.671 μA and I=433.594 , 729 

respectively, oscillation patterns emerge as depicted in Fig. 22(a) and Fig. 22(b). Similarly, 730 

Fig. 22(c) illustrates the transient waveform of the membrane potential Vm, indicating its 731 

convergence to a stable DC equilibrium at I=500 μA. This observation suggests that the 732 

Hopf bifurcation theorem no longer holds at this equilibrium point. 733 

 734 

Figs. 23 and Figs. 24 show the different patterns of oscillations when the conductance 735 

gKCa of calcium sensitive potassium ion channel memristor is varied from 10 mS/cm2 to 11.5 736 

mS/cm2 at stimulus current I=0. Fig. 23(a) shows the excitable membrane cell has a stable 737 

limit cycle with period one at gK,Ca=10 mS/cm2. As the parameter gK,Ca increases to 10.7 738 

mS/cm2, 10.75 mS/cm2and 10.77 mS/cm2 the cell fires period two, four and eight as shown 739 

in Fig. 23(b), Fig. 23(c) and Fig. 24(a) respectively. The change in the period doubling is 740 

more apparent in calcium concentration (Ca) vs. time and, Vm vs. Ca as shown in the bottom 741 

of Fig. 23(b), Fig. 23(c) and Fig. 24(a) respectively. Fig. 24(b) shows the waveform of the 742 

memrisive Chay model confirming the existence of aperiodic oscillation (chaos) at gK,Ca=11 743 

mS/cm2. The firing of aperiodic oscillations from cell can be clearly seen from the plot of 744 

the Ca vs. time and Vm vs. Ca in Fig. 24 (b). A further increase in gK,Ca to 11.5 mS/cm2 gives 745 

rise to the firing of the cell from aperiodic to rhythmic bursting as shown in Fig. 24(c).   746 
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                747 

Figure 21. Patterns of oscillations when stimulus current I is chosen beyond and inside the 748 

bifurcations points. (a) DC pattern observed when I= -90 µA chosen beyond bifurcation point 1(I=- 749 

66.671 μA). Different patterns of oscillatiions when I is chosen between the two bifurcation points 750 

I=-66.671 μA and I= 433.594 μA, at (b ) I= -50 μA, (c) I= -10 μA. 751 
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            754 

Figure 22. Patterns of oscillations when stimulus current I is chosen inside and  beyond the 755 

bifurcations points. Oscillatiions patterns when I is chosen between the two bifurcation points I=- 756 

66.671 μA and I= 433.594 μA, at (a) I=10 μA, and (b) I=200 μA. (c) DC pattern when I=500 μA is chosen 757 

beyond the bifurcation point 2(I = 433.594 μA). 758 
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              760 

Figure 23. Different patterns of oscillations when gKCa varied from 10 mS/cm2 to 10.75 mS/cm2 at DC 761 

situmulus current I=0. (a) Period-1 oscillation at gK,Ca=10 mS/cm2 (b) Period-2 oscillation at gK,Ca=10.7 762 

mS/cm2 (c) Period-4 oscillation at gK,Ca=10.75 mS/cm2. The simulations were performed at the initial 763 

conditions Vm(0)=-50mV, n(0)=0.1 and Ca(0)=0.48. 764 
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              766 

Figure 24. Different patterns of oscillations when gKCa varied from 10.77 mS/cm2 to 11.5 mS/cm2 at 767 

DC stimulus current I=0.  (a) Period-8 oscillation at gK,Ca=10.77 mS/cm2 (b) Aperiodic (chaotic) 768 

oscillation at gK,Ca=11 mS/cm2 (c) Bursting at  gK,Ca=11.5 mS/cm2. The simulations were performed at 769 

the initial conditions Vm(0)=-50mV, n(0)=0.1 and Ca(0)=0.48. 770 
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7. Concluding Remarks 772 

This paper has provided a comprehensive and quantitative analysis of a biological 773 

excitable cell using the Chay neuron model. Through memristive theory, we have 774 

demonstrated that the voltage-sensitive mixed ion-channel functions as a nonlinear resistor, 775 

while the voltage-sensitive potassium ion-channel and calcium-sensitive potassium ion-channel 776 

in an excitable cell are indeed time-invariant first-order generic memristors. 777 

Furthermore, we have conducted in-depth analyses to derive the small signal model, 778 

admittance function, pole-zero diagram, frequency response of admittance functions, and 779 

Nyquist plot at the DC equilibrium point Q. Our investigations revealed the existence of 780 

the local activity regime in the memristive Chay model within the voltage range of       781 

-49.455 mV to -24.685 mV, and identified edge of chaos regime domains 1 and 2 within the 782 

voltage ranges of -49.455 mV to -48.763 mV, and -27.984 mV to -24.685 mV, respectively. 783 
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Moreover, consistent with the predictions of the Hopf bifurcation theorem, we observed 784 

the presence of an oscillating regime between two bifurcation points within the voltage 785 

range of -48.763 mV to -27.984 mV. Our numerical simulations confirmed the super-critical 786 

Hopf bifurcation with complex conjugates of eigenvalues coincide on the purely 787 

imaginary axis at ±0.557i and ±85.606i respectively. It was also observed that a tiny change 788 

in external stimulus current I in excitable cells, far from the bifurcation points no longer 789 

holds the Hopf bifurcation theorem as it crosses the imaginary axis from right to left 790 

confirming that the real part of the eigenvalues becomes negative and converges to a DC 791 

equilibrium point. 792 

Our comprehensive comparison of the HH, FitzHugh-Nagumo, ML, and the Chay 793 

models presented in Table 2 along with their individual strengths and limitations reveals 794 

distinct advantages and drawbacks making them suitable for different research contexts 795 

and questions. The selection of the particular model depends on the specific objectives. 796 

We primarily focused to advance the understanding of excitable cells by modeling with 797 

the networks of memristors and predicting their responses with the concept of  798 

memristor theory, DC steady state analyses, small signal equivalent circuit, local activity 799 

principle, edge of chaos theorem and hopf bifurcations. In Conclusion, the theoretical 800 

framework outlined in this paper confirms the significance of memristors in simulating 801 

action potentials in excitable cells and also establishes a foundation for their application 802 

in neuron modeling, artificial intelligence, and brain-like machine interfaces. Our 803 

proposed model offers potential for enhancing adaptive neural networks, 804 

neuroprosthetics, neuromorphic computing architectures, and the broader scope of 805 

artificial intelligence, thereby aiding in the development of brain-like information 806 

processing systems. 807 

 808 

                       Appendix: Abbreviations of the Model Parameters 809 

                                       810 

Cm=Membrane Capacitance

EK =Potential across K+ ion channel memristor

EI =Potential across mixed ion channel memristor

EL =Potential across leakage channel

ECa =Potential across Ca+2 ion channel memristor

gK,V =Voltage-sensitive K+ ion-channel conductance

gI =Voltage-sensitive mixed ion channel conductance

gL =Leakage channel conductance

gKCa =Calcium activated potassium conductance

kCa =Rate constant for the efflux of the intracellular Ca+2 ions

ρ =Proportionality constant

λn =Rate constant for k+ ion-channel opening

m∞= Probability of activation of the mixed ion channel in steady state

αm= The rate at which the activation of  the mixed ion channel closed gates transition to an open state(s-1)

βm= The rate at which the activation of the mixed ion channel open gates transition to the close state(s-1)

h∞= Probability of inactivation of the mixed ion channel in steady state

αh=The rate at which the inactivation of the mixed ion channel closed gates transition to an open state(s-1)

βh=The rate at which the inactivation of the mixed ion channel open gates transition to the close state(s-1)

n=Probability of n opening of the K+ ion channel memristor

n∞ =Steady state value of n

αn=The rate at which K+ ion channel closed gates transition to an open state(s-1)

βn=The rate at which K+ ion channel opened gates transition to an close state(s-1)
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