
26 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

MeMPA: A Memory Mapped M-SIMD Co-Processor to Cope with the Memory Wall Issue / Guastamacchia, Angela;
Coluccio, Andrea; Riente, Fabrizio; Turvani, Giovanna; Graziano, Mariagrazia; Zamboni, Maurizio; Vacca, Marco. - In:
ELECTRONICS. - ISSN 2079-9292. - 13:5(2024), pp. 1-16. [10.3390/electronics13050854]

Original

MeMPA: A Memory Mapped M-SIMD Co-Processor to Cope with the Memory Wall Issue

Publisher:

Published
DOI:10.3390/electronics13050854

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988842 since: 2024-05-18T09:23:39Z

MDPI

Citation: Guastamacchia, A.;

Coluccio, A.; Riente, F.; Turvani, G.;

Graziano, M.; Zamboni, M.; Vacca, M.

MeMPA: A Memory Mapped

M-SIMD Co-Processor to Cope with

the Memory Wall Issue. Electronics

2024, 13, 854. https://doi.org/

10.3390/electronics13050854

Academic Editors: Pierre Canet, Jorge

Daniel Aguirre-Morales, Philippe

Chiquet, Balakumar Muniandi and

Alok Ranjan

Received: 25 January 2024

Revised: 19 February 2024

Accepted: 20 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MeMPA: A Memory Mapped M-SIMD Co-Processor to Cope
with the Memory Wall Issue
Angela Guastamacchia 1 , Andrea Coluccio 2 , Fabrizio Riente 2 , Giovanna Turvani 2 , Mariagrazia Graziano 2 ,
Maurizio Zamboni 2 and Marco Vacca 2,*

1 Department of Energy, Polytechnic of Turin, 10129 Turin, Italy; angela.guastamacchia@polito.it
2 Department of Electronics and Telecommunications, Polytechnic of Turin, 10129 Turin, Italy;

andrea.coluccio@polito.it (A.C.); fabrizio.riente@polito.it (F.R.); giovanna.turvani@polito.it (G.T.);
mariagrazia.graziano@polito.it (M.G.); maurizio.zamboni@polito.it (M.Z.)

* Correspondence: marco.vacca@polito.it

Abstract: The amazing development of transistor technology has been the main driving force behind
modern electronics. Over time, this process has slowed down introducing performance bottlenecks
in data-intensive applications. A main cause is the classical von Neumann architecture, which entails
constant data exchanges between processing units and data memory, wasting time and power. As
a possible alternative, the Beyond von Neumann approach is now rapidly spreading. Although
architectures following this paradigm vary a lot in layout and functioning, they all share the same
principle: bringing computing elements as near as possible to memory while inserting customized
processing elements, able to elaborate more data. Thus, power and time are saved through parallel
execution and usage of processing components with local memory elements, optimized for running
data-intensive algorithms. Here, a new memory-mapped co-processor (MeMPA) is presented to boost
systems performance. MeMPA relies on a programmable matrix of fully interconnected processing
blocks, each provided with memory elements, following the Multiple-Single Instruction Multiple
Data model. Specifically, MeMPA can perform up to three different instructions, each on different
data blocks, concurrently. Hence, MeMPA efficiently processes data-crunching algorithms, achieving
energy and time savings up to 81.2% and 68.9%, respectively, compared with a RISC-V-based system

Keywords: Logic-In-Memory; co-processor; SIMD

1. Introduction

Electronic systems need more and more computational power to fulfill the increasing
complexity of modern applications. Such applications, like Neural Networks, for example,
require the execution of a vast number of instructions in parallel, implying stringent
constraints on the design of application-specific accelerators or CPU-centric architectures.
Nowadays, the von Neumann paradigm is the most diffused computing approach: it
consists of a Central Processing Unit (CPU) and memory devices separated from each
other, constantly exchanging information and data. The computational part is located
in the CPU, which executes calculations by extracting data from memory and saving
the results back into the memory itself. This organization achieves a high degree of
flexibility and supports a wide variety of algorithms that can be easily written and compiled
for such architectures. However, von Neumann’s architectures are affected by a huge
bottleneck: the Memory Wall. CPUs are becoming more efficient and faster, but the
memories cannot follow the same trend, implying a performance reduction [1]. Several
approaches are proposed in the literature to solve this problem and belong to the Beyond
von Neumann Computing (BvNC) category [2–15]. They consist of a completely new way
of designing processing systems architectures that reduces the communication time and
power overheads by either bringing memory and processing units as close as possible
(Near-Memory computing) or implementing part of the computations directly inside the

Electronics 2024, 13, 854. https://doi.org/10.3390/electronics13050854 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13050854
https://doi.org/10.3390/electronics13050854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2788-6692
https://orcid.org/0000-0001-6588-858X
https://orcid.org/0000-0003-4147-1098
https://orcid.org/0000-0002-8520-906X
https://orcid.org/0000-0002-8721-9990
https://orcid.org/0000-0001-8179-5973
https://orcid.org/0000-0003-2920-3357
https://doi.org/10.3390/electronics13050854
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13050854?type=check_update&version=1

Electronics 2024, 13, 854 2 of 16

memory (In-Memory Computing). Usually, these solutions belonging to BvNC process
data in parallel, concurrently to the CPU execution.

A brief but precise overview of the In-Memory paradigm, based on different technolo-
gies and structures, is presented in [16]. In some SRAM [3,4] and DRAM [5,6] solutions,
by enabling multiple wordlines (WLs) at the same time, simple calculations are performed
along the same bitline (BL). The resulting voltage potentials or currents on the BLs, propor-
tional to the content of the cells, are sensed by the sense amplifiers designed to perform
simple logical or multiply-and-accumulate (MAC) [7] calculations. In some works, few
modifications of the original memory structure are made. In [17], the classical structure of
the SRAM cell is modified by inserting a differential XNOR gate and an accumulation part.
Other solutions are based on emerging resistive technologies that are gaining increasing
importance in the In-Memory Computing paradigm. Belonging to this category is Resistive
RAM (RRAM) [8,9], Magnetic Tunnel Junctions (MTJs) [10,11] and Phase-Change Memories
(PCMs) [12,13]. These devices have different resistance states that can be programmed
according to the applied voltage or current and associated with logic-0 and logic-1. They
are organized in a crossbar structure in which the basic cells are composed of one-transistor-
one-resistance (1T1R) devices. These cells are piloted by a WL and connected to a BL,
in which the current is proportional to the resistance on the path, resulting in being very
efficient for MAC-based applications.

Regarding the Near-Memory computing paradigm, some DRAM-based computing
architectures focus on instantiating the computational elements very close to the memory,
maintaining the memory array structure unaltered. In 3D Stacked RAMs [14] and Hybrid
Memory Cubes [15], multiple layers of DRAM arrays are vertically stacked and connected
to a computational layer employing Through Silicon Vias (TSVs). Another Near-Memory
approach is exploited in GP-SIMD [18]. GP-SIMD consists of a regular CPU and a Single
Instruction Multiple Data (SIMD) co-processor communicating with the same shared
memory. With a collection of bit-serial processing units (PUs), each associated with a
separate memory row, the SIMD co-processor physically lies near the memory array, thus
forming a huge memory integrating computing capabilities. The PUs structure comprises
one Full Adder, one logic block, and four registers. This structure recalls the one of the Field
Programmable Gate Arrays (FPGAs) [19] and Coarse-Grained Reconfigurable Architectures
(CGRAs) [20], known for their reconfigurability properties that allow for a high degree
of programming flexibility. FPGA’s basic elements are the Configurable Logic Blocks
(CLBs) that implement simple single-bit logic functions. CLBs are composed of Look-
Up Tables (LUTs), sequential components, and small configuration memories. In order to
obtain more complex functions, CLBs are connected together through complex configurable
interconnection structures, degrading the performance. On the other hand, CGRAs rely
on multiple-bit Reconfigurable Cells (RCs), organized in an interconnected mesh, that
can perform more complex operations. RCs are generally composed of an Arithmetic
Logic Unit (ALU), configuration registers, SRAMs, and multiplexers [20] supporting a
higher level of granularity compared with FPGAs. A higher granularity lightens the impact
of interconnections on the overall complexity and empowers programming flexibility,
fitting a wider range of applications. In this work, we focus on the BvNC and CGRA
concepts, presenting the Memory-Mapped Programmable Architecture (MeMPA) that is
mainly intended as an architectural solution to cope with the Memory Wall issue, so it
must be inserted in standard systems alongside the memory and the CPU. In particular,
the contributions of this paper can be summarized as follows:

• MeMPA design resumes from a previous work named Hybrid-SIMD [2]. The Hybrid-
SIMD is a SIMD vectorial co-processor that combines memory and computational
capabilities to reduce the Memory Wall overhead for highly parallel data-intensive
applications. Yet, Hybrid-SIMD supports a small amount and very specific operations,
essentially limited by the increasing complexity and performance degradation. Hence,
the MeMPA co-processor was designed to improve the computing and programming

Electronics 2024, 13, 854 3 of 16

capabilities by organizing the processing elements (PEs) in a matrix fashion instead of
a vectorial one and accurately devising the PE’s internal structures.

• The PE structure was derived by statistical analysis on different benchmarks consisting
of profiling the algorithms and estimating the most recurrent instructions that were
later integrated inside MeMPA.

• The MeMPA concept stresses programming generality even more. Since the Hybrid-
SIMD could not efficiently execute sequential portions of the algorithms because of its
intrinsic structural limitations, the MeMPA PEs matrix was enriched with different
programmable interconnections, drastically dropping the algorithm execution time
and leading to significant energy savings.

• To push even more toward a maximized parallel execution, the computing paradigm
of the MeMPA co-processor was designed to refer to the Multiple-SIMD (M-SIMD)
approach to enable the execution of different instructions on different datasets at the
same time.

• MeMPA was compared with Hybrid-SIMD in terms of execution time and energy for
the same set of benchmarks used in [2] to demonstrate the improvements achieved by
the MeMPA structure.

• Finally, MeMPA was inserted inside a CPU-Memory context. Two systems were
evaluated: CPU-Mem, based on a classical structure with a RISC-V core, and CPU-
Mem-MeMPA, which considers the MeMPA insertion. In this work, other BvNC
solutions presented in the literature are not considered as criteria for comparison
because the attention is focused on the evaluation of the improvements of MeMPA
with respect to Hybrid-SIMD and the MeMPA impact in a classical von Neumann
CPU-Memory system.

The rest of the paper is organized as follows. Section 2 introduces the algorithm
profiling procedure to design the PEs. Section 3 outlines the MeMPA structure. Section 4
reports the synthesis and Place&Route results. Section 5 explains the benchmarks mapping
on MeMPA. Section 6 compares the accomplished performance with both the achievements
of the Hybrid-SIMD and a standard CPU-Memory architecture, and finally Section 7
concludes the paper.

2. Algorithm Profiling

The starting point of the MeMPA architecture was the analysis of different algorithms
to understand which type of basic operations are most common. SPLASH-2 benchmark
suite [21] was considered, containing a set of complex and parallel algorithms typically used
to evaluate the performance of CPU-centric architectures. In this analysis, each algorithm
was profiled, estimating the type of instructions required and their occurrences so that
then the instructions to be included in the MeMPA could be derived from the profiling
outcomes. The goal was the creation of an architecture made of elements with both logic
and memory capabilities so that the most used operations could be executed and the results
written directly inside the PEs, reducing the number of accesses to the memory and thus
increasing the efficiency of the algorithm execution. The following steps were followed to
profile each algorithm:

1. Choose the reference Instruction Set Architecture (ISA). This paper used a RISC-V-based
system, requiring cross-compiling the benchmarks for a RISC-V ISA. The RISC-V
GNU Toolchain from [22] was configured with base integer, multiplication/division,
and atomic extensions but not with the floating-point one since MeMPA architecture
does not support floating-point calculations. The built toolchain was used to compile
the benchmarks and generate the executable files.

2. Run the benchmarks and trace the algorithm execution. For these purposes, the Gem5
Simulator [23] was used in system-call emulation mode. Gem5 executes SPLASH-2
benchmarks with the instructions trace feature enabled. In this way, for each algorithm,
the simulator prints a disassembled version, reporting the actual instructions executed
by the core. These data are saved into a file named program.out.

Electronics 2024, 13, 854 4 of 16

3. Estimate the instructions occurrences. The program.out file was parsed by a Python
script that counts the number of instructions for each algorithm. A final plot is shown
in Figure 1, which considers all the instruction counts contributions of each benchmark
in percentage. For example, considering the addi instruction, its value was obtained
as the sum of the number of addi instructions for each benchmark (or test) divided
by the total number of instructions of each benchmark (which is ∼64 M), following
Equatiion (1).

Instruction occurrenceaddi =
∑# tests

i (# addii)

instructions
× 100% (1)

By analyzing the results in Figure 1, the most frequently used instructions are arith-
metical (addi, add, mul, subw, and sub, etc.) and logical (srli, slli, andi, or, etc.). From these
data, a possible subset of hardware blocks to be inserted in MeMPA was defined. In this
way, a significant part of the CPU computations can be moved directly inside the MeMPA
co-processor, enabling the BvNC paradigm. Moreover, Figure 1 also shows a significant
contribution of the memory operations (sd, ld), confirming once again the strong impact of
the von Neumann Bottleneck on standard systems.

su
b bl
t

sr
l

su
bw ja

lr
m

ul bg
e

ad
d

bn
e

an
d ja
l or ld be
q sd

an
di sl
li

sr
li

ad
di

0

5

10

15

20

Instructions

In
st

ru
ct

io
ns

oc
cu

rr
en

ce
s

(%
) Instructions occurrences in percentage

Figure 1. Number of occurrences of each instruction for SPLASH-2 benchmarks. Algorithms tested
are barnes, fmm, ocean_contiguous_partitions, ocean_non_contiguous_partitions, radiosity, water-nsquared
and water-spatial.

3. Architecture
3.1. System Overview

In Figure 2a, the system environment hosting the MeMPA is shown.
Since MeMPA acts as a memory-mapped co-processor, the CPU needs at its interface

two sets of signals to correctly interact with MeMPA: one for exchanging data and another
for starting MeMPA to run the data-intensive portions of the code loaded inside the MeMPA
Instruction Memory. In particular, the former set leverages the standard double port data
memory protocol (one asynchronous reading port and one synchronous writing port),
including the signals: Wr_En, which enables to store the data passed through the Wr_Data
signal inside the MeMPA PE addressed by the Wr_Addr signal, and Rd_Addr, which contains
the address of the PE from which the CPU must read the data, then forwarded by the
Read_Address signal. Instead, the latter set includes three signals, which are: the MeMPA_En
signal, sent by the CPU to enable MeMPA running the algorithm stored in the MeMPA
Instruction Memory starting from the address specified by the MeMPA_Addr signal, and the
MeMPA_END signal that is asserted by MeMPA when it terminates the algorithm execution
and the results are ready and available inside the PEs matrix. To properly handle all these
signals, especially for the second set, the ISA of the CPU must be customized by inserting
a few specific instructions. Furthermore, MeMPA needs at its interface two more signals
to asynchronously fetch from the MeMPA Instruction Memory the operations it has to

Electronics 2024, 13, 854 5 of 16

perform, i.e., the PC signal, which is used to forward the address of the next instruction to be
executed, and the Instruction signal, which holds the content of the instruction pointed.

(a)

(b)

(c) (d)

Figure 2. MeMPA system. (a) MeMPA top-level view. (b) Processing Matrix structure, with Standard
Blocks (only memory) and Smart Blocks (memory and computation), and M-SIMD implementation.
(c) Smart Block architecture. (d) Structure of the arithmetic cell composing the Block Word.

Concerning the internal structure of MeMPA, it is composed of three macro sections:
the control section, the datapath, given by the matrix of fully interconnected PEs (i.e.,

Electronics 2024, 13, 854 6 of 16

the Processing Matrix) that is where the data elaboration inside MeMPA occurs, and the
section to handle the data exchange with the CPU. This last section connects the first
set of CPU external pins with the Processing Matrix through an address decoder and a
multiplexer used to select the PE where the data must be written or read, respectively.

The control part is composed of two control units connected in sequence: the micro
Control Unit (uCU), which is a micro-programmed machine [2] that regulates the instruction
flow inside MeMPA, and the nano Control Unit (nCU), which works like a standard
instruction decoder. The nCU translates the instruction withdrawn by the uCU from
the MeMPA Instruction Memory into configuration signal values that control the data
elaboration performed across the datapath. The uCU, nCU, and datapath are interleaved
with pipeline registers, so splitting the MeMPA elaboration process into four stages: fetch,
decode, execute, and write back. While the last two phases are performed inside the
datapath, the first and second ones are associated with the uCU and the nCU, respectively.

The datapath is represented by the Processing Matrix, which is the entity of MeMPA
that handles the data storage and elaboration. The Processing Matrix is made up of 256 PEs
with memory capabilities, called Smart Blocks, organized in an array of 16 columns and
16 rows. In addition, below this block, a set of 80 Standard Blocks, which are standard
registers that provide MeMPA with further storage space, is placed as shown in Figure 2b.
During the algorithm execution, all the 256 Smart Blocks process in parallel 32-bit data
and are driven by the Control Unit so as to implement the MeMPA processing according
to the M-SIMD computing paradigm. Due to the nCU structure, which is composed of
three instruction decoders, the Processing Matrix is enabled to run up to three different
instructions, each on a different set of data, simultaneously. In particular, each instruction
decoder (ID) takes as input a different sub-portion of the MeMPA instruction and translates
it into control signals driving a specific set of Smart Block rows. This means that Smart
Blocks connected to the same ID execute the same instruction at the same time. Figure 2b
illustrates the association between IDs and Smart Block sets.

Furthermore, it is also possible to partially specify which are the Smart Blocks that
need to be active for the execution of the currently demanded operations. In order to
make a trade-off between the instruction length and the programming flexibility, given
by reserving 256 bits of the instruction for the enabling signals (1 for each Smart Block),
the mesh-like arrangement of the Processing Matrix is exploited to implement a battleship
game-like enabling mechanism. In the instruction, 32 bits are dedicated for the enabling
signals, of which 16 are for the activation of the Smart Block columns and 16 for the Smart
Block rows (one enable signal drives all Smart Blocks on the same column or row), as shown
in Figure 2b. It follows that each Smart Block is connected to two enable signals; thus, if one
of them is not active, that Smart Block is disabled.

3.2. Datapath: The Processing Matrix

The Processing Matrix is the core of the MeMPA paradigm, characterized by the
extensive interaction between the Smart Blocks and a complex network of interconnections
that routes the Processing Matrix itself, enabling an efficient and programmable data
exchange across the whole array.

3.2.1. Routing Network

The routing network comprises two different kinds of interconnections: the Memory
Interconnections and the Reduction Tree Interconnections. Looking at Figure 3, the orange
and green arrows identify the Row and Column Interconnections, respectively, that belong
to the second type, while the blue box refers to the Memory Interconnections. All of
them are implemented through a proper organization of several multiplexers. On the one
hand, each Row Interconnection enables the data transfer among the Smart Blocks on the
same row, while each Column Interconnection, stretching over the Standard Blocks too,
allows the Smart Blocks to take data from any of the blocks placed along the same column.
On the other hand, the Memory Interconnections extend all over the Processing Matrix

Electronics 2024, 13, 854 7 of 16

so that each Smart Block can retrieve the data from any block. However, the two types of
interconnections do not stand out for the set of blocks they link but rather differ in how they
distribute the data among the different blocks. Each Row or Column Interconnection allows
all the attached Smart Blocks to take simultaneously one different data, even if the same
instruction drives them, while the Memory Interconnections are used when Smart Blocks
controlled by the same instruction all need to pick the same data coming from an arbitrary
block of the Processing Matrix. Particularly, the Reduction Tree Interconnections are one of
the key points of MeMPA since they are used to perform iterative operations on N data,
such as maximum search, summations, etc., following a reduction tree mechanism that
allows to reduce the number of the single operations encoding the iterative computation
from N − 1 to log2N operations. Let us suppose to execute a summation on the values
stored in the Smart Blocks of a generic row, connected through a Row Interconnection.
By specifying the address ‘1’, the Row Interconnection provides as input to each Smart
Block the content of the Smart Block on the right, while specifying the address ‘2’, the data
forwarded to each block corresponds to the one held by the block two positions away on
the right and so on for all the column composing one row. In this way, the summation
on eight values: ∑8

i=1 xi can be implemented in three steps. In the first step, s1 = x1 + x2,
s2 = x3 + x4, s3 = x5 + x6, and s4 = x7 + x8 are computed in parallel, while the second
step performs s5 = s1 + s2 and s6 = s3 + s4, and the third step terminates the processing
evaluating s5 + s6. Similarly to the Row Interconnections, the Column Interconnections
allow the implementation of the same data exchange, i.e., if the address ‘1’ is specified, all
the Smart Blocks on the same columns take the data coming from the block below them.

Figure 3. Interconnections overview of MeMPA.

3.2.2. Smart Block

Diving deeper into the MeMPA Processing Matrix, the Smart Blocks assume a central
role in the calculations. Each Smart Block (see Figure 2c) contains all the storage elements
and computational blocks needed to implement the most common operations identified by
the Algorithm Profiling procedure explained in Section 2. Inside a Smart Block, there is a
Right Shifter (RShifter) to perform division-by-two, an ALU to implement most common
arithmetic-logic operations, a multiplier, a Register File to hold temporary values, a Bypass
Storage to provide the input data for the Reduction Tree Interconnections (through the
Twd_Int signal), some multiplexers to select the data, a programmable Look-Up Table (LUT)
with 16 4-bit entries, configured due to a Daisy Chain connection mechanism, to implement
configurable customized functions, and a Block Word macro component. The Block Word
is made of 32 1-bit arithmetic cells, shown in Figure 2d, which are the finer-grained entities
of the MeMPA Processing Matrix, provided with both memory and processing capabilities.
The arithmetic cells cope with ALU, Multiplier, and LUT to deliver the correct operand
or to perform some preliminary logic operations (i.e., bitwise operations). In particular,

Electronics 2024, 13, 854 8 of 16

through the cascade connection between Block Word and ALU, the following operations
are implemented: not, and, nand, or, nor, xor, xnor, abs, +, −, >, <, =, !=.

Moreover, the Block Word output is directly connected to the Memory Interconnections
input through the DATAout signal. The Block Word is the only storage element the CPU
can interact with, performing data writing or reading operations (through Wr_Data and
DATAout signals) solely before the algorithm execution starts or after its termination.

For a generic operation, the Smart Block can work on data held by the Smart Block
itself, inside the Block Word or the Register File, or coming from a block on the same row
(Row_Int), a block on the same column (Col_Int), and an arbitrary block inside the Process-
ing Matrix (Mem_Int). To enable MeMPA to execute a finite set of divisions by powers of 2,
the RShifter has a separated input (ShR_in) in order to allow the cascade connections of all
the RShifters belonging to the Smart Blocks on the same row (ShR_out signal coming out
from the RShifter of the row first Smart Block connected to the ShR_in of the row second
Smart Block, and so on). In this way, the Processing Matrix can perform up to 16 divisions
in parallel on data coming from either Memory or Reduction Tree Interconnections.

3.3. Instructions Organization

The MeMPA instruction is subdivided into two macro fields called uInstruction
and VLIW_Instruction, which are elaborated by the uCU and the nCU, respectively.
The uInstruction comprises 5 + n bits (with n equal to the size of the address signal
of the MeMPA Instruction Memory) encoding the information on the instruction flow to be
followed, while the VLIW_Instruction (125 bits) provides all the details on which opera-
tions MeMPA has to execute on which data. Then, the first 16 bits of the VLIW_Instruction
are reserved to the enable signals of the Processing Matrix columns, while the remaining
bits are divided into other three macro-fields of 36, 36, and 37 bits that feed the first, second
and third IDs, respectively, encoding all the different operations that MeMPA can simulta-
neously execute through the Smart Blocks. In turn, each of these macro-fields is split into
the following eight fields:

• EN_ROW: contains the enabling signals (En_Row) of the Processing Matrix rows as shown
in Figure 2b;

• OPCODE: tells whether the operation to be performed is a load or an arithmetical one
and, in this last case, specifies by which of the arithmetic-logic blocks, among RShifter,
ALU, Multiplier, and LUT, that operation has to be carried out;

• SOURCE_OP: selects which is the operand or couple of operands and their order
for the required operation processing, choosing among data coming from Column
Interconnections, Row Interconnections, Memory Interconnections, Register File,
or Block Word;

• DEST_OP: indicates where the operation result should be stored in the Smart Block
among Block Word, Bypass Storage, and Register File;

• ADDR_S1: specifies the address of the data to be elaborated when one of the operands
selected through the SOURCE_OP field comes from the Column Interconnections, or the
first output port of the Register File (RFA);

• ADDR_S2: specifies the address of the data to be elaborated when one of the operands
selected through the SOURCE_OP field comes from the Row Interconnections, the Mem-
ory Interconnection, or the second output port of the Register File (RFB);

• ADDR_D: complements the DEST_OP field in case the Register File is selected as destina-
tion storage, holding the specific address of the register involved;

• FUNC: is used to further detail which among the operations implemented by the
arithmetic-logic block selected through the OPCODE field has to be performed.

4. Performance

MeMPA was synthesized with the CMOS 45 nm NanGate OpenCell Library using the
Synopsys Design Compiler. The clock gating technique was inferred during the process to
reduce the dynamic power consumption. After synthesis, the design was placed and routed

Electronics 2024, 13, 854 9 of 16

using Cadence Innovus following a congestion-driven approach. Place&Route allows for
estimating more reliable performance values since the results take into account more
accurate models of the interconnections and parasitic elements inside the design. Due to
the circuit complexity, the design was not flattened, meaning that the hierarchy of the blocks
was maintained in the processes. The performance achieved after the Place&Route are:

• Area occupation: 1.55 mm2.
• Maximum clock frequency (fclk): 257.77 MHz.
• Worst-case power: 670.48 mW @fclk = 250 MHz.

These results were obtained with the fixed dimensions of 16 × 16 Smart Blocks and
5 × 16 Standard Blocks with an M-SIMD degree of 3, defined by the number of IDs.
However, the performance is strictly related to MeMPA scalability, meaning that, on the one
hand, increasing the total number of Smart Blocks, Standard Blocks, their parallelism, or the
degree of M-SIMD empowers the computing capability. On the other hand, exceeding
the MeMPA sizing worsens key figures of merits like area, power, timing, and energy.
Although it would have been interesting to evaluate the scaling trend thoroughly, due
to the MeMPA complexity and the computing effort this analysis would have required,
the scaling study was not performed, as it was beyond the scope of this article.

5. Benchmarks Mapping

To have straightforward esteem of the performance goodness achieved by MeMPA,
we decided to map on the architecture the same benchmarks used for the Hybrid-SIMD
evaluation [2], i.e., K-Nearest Neighbor (K-NN), K-means, Matrix-Vector Multiplication
(MVM), Mean and Variance (µ&σ2), and Discrete Fourier Transform (DFT). Moreover,
because of the lack of a real compiler for MeMPA, we excluded implementing the same
SPLASH-2 algorithms used for the profiling procedure in Section 2, for which a manual
mapping would have been extremely hard. Table 1 sums up the algorithms mapping
in terms of number of processed data, number of clock cycles needed for the algorithm
execution, and related power consumption.

Table 1. Data initialization cycles, parameters, execution cycles and post-Place&Route back-annotated
power of each algorithm.

Benchmark
Data Algorithm

Parameter
Power

Initialization Execution [mW]
Clock Cycles # Clock Cycles @4ns

K-NN Di = |xs − xi|+ |ys − yi|, ∀(xi, yi) of N
samples 2 × N + 2 7 N = 160 72.95

K-means

∀(xci, yci) of K centroids, ∀(xi, yi) of N
samples: 2 × N +

15 × K − 11
N = 160

74.48Dij = |xcj − xi|+ |ycj − yi|, assign each
(xi, yi) to the nearest centroid 3 × K + 2 K = 3

MVM Z = X × Y, X ∈ Ru×v, Y ∈ Rv×1,
Z ∈ Ru×1 v × (u + 1) ⌈u/3⌉+ log2v + 1 u = v = 16 62.64

µ&σ2
µ = ∑N−1

i=0
xi
N , σ2 = 1

N ×[
∑N−1

i=0 (xi − µ)2 − 1
N ×

[
∑N−1

i=0 (xi − µ)
]2
] N 3 × log2N + 13 N = 256 65.77

DFT
Xk =

∑N−1
i=0 xi ×

[
cos

(
2πik

N

)
− j sin

(
2πik

N

)] 2 × N + 1 log2N + 39 N = 128 94.44

For the sake of brevity, in the following, only the mapping of one among the im-
plemented algorithms is detailed. In particular, the MVM mapping is provided for a
two-fold reason. On the one hand, the MVM allows us to easily point out how the MeMPA
highlights, as reduction tree mechanism, M-SIMD computing paradigm, and battleship

Electronics 2024, 13, 854 10 of 16

game-like enabling mechanism, can be exploited to efficiently execute an application. On
the other hand, it represents the operation at the base of convolutional neural networks that
belong to the set of data-intensive applications that would heavily benefit from MeMPA
usage in terms of time and energy consumption. However, the implementation of all other
algorithms can be derived following along the same line as the implementation described
for the MVM.

MVM

The mapping of any algorithm on MeMPA is given by two macro phases: the Pro-
cessing Matrix initialization phase, where the CPU loads inside the Processing Matrix all
data to be elaborated, and the algorithm execution phase, where the algorithm execution
actually takes place.

Concerning the MVM described in Table 1, the implemented multiplication was
performed between a 16 × 16 matrix and a 16 × 1 vector. Thus, during the Processing
Matrix initialization phase, each of the matrix elements was stored inside a different Block
Word of the Smart Blocks, while all the vector items were loaded inside the first row of
Standard Blocks. The whole Processing Matrix initialization phase took 272 clock cycles,
namely, one clock cycle for each data writing.

Then, one instruction was instantiated (one clock cycle) to perform the backup of the
Block Words data into the first location of the Register Files, a step that is always needed
for any algorithm in order to avoid losing the initial data when, at the end of the algorithm,
the MeMPA saves the results into the Block Words to make them visible to the CPU.

Afterward, the real algorithm execution phase began by carrying out the 256 products
between each matrix element (xi,j) and the right vector item (yj) needed for the computation
of the final vector elements zi = ∑15

j=0 xi,jyj. In total, 5 + 1 instructions (six clock cycles)
were used to fulfill these multiplications. In particular, for the first five instructions, all
IDs were active, each driving only one Smart Blocks row at a time. A scheme of the first
VLIW_Instruction is reported Figure 4.

Through this instruction, 1st, 6th, and 11th Smart Block rows were driven to compute
all the xi,j · yj (with i = 0, 5, 10 and j = 0, ..., 15) terms in parallel and save the outcome in the
associated Bypass Storages. In more detail, looking at the structure of the first instruction in
Figure 4, it can be seen that for ID1 (i.e., the first group of five Smart Block rows starting from
the top in the diagram in Figure 2b), the activation pattern sees only the first row of Smart
Blocks enabled, while the others are not (EN ROW = "10000"). The operation performed is a
multiplication (OPCODE = Multiplier), having the data from the Column Interconnection
and the Block Word as source operators (SOURCE OP = Col_Int_Block_Word). The data
from the Column Interconnection are specified in the ADDRESS S1 field, which represents
the address offset value from the first Smart Block belonging to the group. In this case,
being the first group of Smart Blocks, the offset will be equal to 16, which is the sixteenth
row of the Processing Matrix (corresponding to the first row of Standard Blocks). Finally,
the destination is simply specified in the DEST OP field as Bypass, wanting to save the
data in Bypass Storages. The same reasoning can be applied to ID2, which identifies the
second group of Smart Blocks, also arranged in five rows. Again, the EN ROW is equal to
"10000" identifying only the first row of the subgroup; the operation is always the multi-
plication (OPCODE = Multiplier); the source operands always coming from the Column
Interconnections and the Block Words (SOURCE OP = Col_Int_Block_Word); the destina-
tion always Bypass Storages (DEST OP = Bypass), while the offset this time is equal to 11,
always pointing to the first row of Standard Blocks.

Exploiting the same rationale, second, third, fourth, and fifth instructions computed
the xi,j · yj terms for i equal to (1,6,11), (2,7,12), (3,8,13), and (4,9,14), respectively. Lastly,
the sixth instruction performed the x15,jyj products by enabling only the last Smart Blocks
row through the third instruction decoder.

Electronics 2024, 13, 854 11 of 16

EN
ROW

OPCODE SOURCE
OP

DEST
OP

ADDR
S1

ADDR
S2

ADDR
D

FUNC

10000 Multiplier Col_Int
Block_Word

ID1 Bypass 16 - - -

10000 MultiplierID2 Col_Int
Block_Word

Bypass 11 - - -

100000 MultiplierID3 Col_Int
Block_Word

Bypass 6 - - -

In
st

ru
ct

io
n

1
11111 ALU Col_Int

Row_Int
ID1 Bypass 0 1 - Sum

11111 ALUID2 Col_Int
Row_Int

Bypass 0 1 - Sum

111111 ALUID3 Col_Int
Row_Int

Bypass 0 1 - SumIn
st

ru
ct

io
n

8

Figure 4. Examples of 1st and 8th VLIW_Instruction of the MVM algorithm.

Once all the products were ready inside the Bypass Storages of the Processing Matrix,
all the sums generating the zi values were carried out in four instructions (four clock
cycles). In order to carry this out, the reduction tree mechanism implemented due to the
Row Interconnections was thoroughly exploited, allowing the reduction in the number of
instructions needed for computing the 16 parallel summations from 15 to 4 instructions.
The scheme of the first of these four instructions is shown in Figure 4 (Instruction 8).
Differently from the previous set of instructions, where all the enable signals for the Smart
Block columns were always active, each of these four instructions activated a different set
of Smart Block columns, while all the IDs drove all the Smart Block rows with the same
operation for the current clock cycle. For the first instruction, all the odd Smart Block
columns were enabled so that all the following sums were computed and saved in the
Bypass Storages: xi,0y0 + xi,1y1, xi,2y2 + xi,3y3, xi,4y4 + xi,5y5,xi,6y6 + xi,7y7, xi,8y8 + xi,9y9,
xi,10y10 + xi,11y11, xi,12y12 + xi,13y3, xi,14y14 + xi,15y15, for i = 0, ..., 15. Then, for the second
instruction only columns 1, 5, 9, and 13 were enabled to compute the xi,0y0 + xi,1y1 +
xi,2y2 + xi,3y3, xi,4y4 + xi,5y5 + xi,6y6 + xi,7y7, xi,8y8 + xi,9y9 + xi,10y10 + xi,11y11, xi,12y12 +
xi,13y3 + xi,14y14 + xi,15y15 terms, respectively. Similarly, the third and fourth instructions
implemented the remaining sums so that, after the end of the last instruction, all the final zi
values were available in the Block Words of the first Smart Blocks column.

6. Performance Comparisons on Benchmarks

In this section, the impact of the benchmarks in Table 1 is evaluated on MeMPA.
Firstly, a comparison of energy and execution time between MeMPA and Hybrid-SIMD is
presented. Both solutions consider two figures of merit: total execution time and energy
(obtained as Power × Total Execution Time). Since the Hybrid-SIMD has size and memory
space that change according to the implemented algorithm, the energy and execution time
used to compare the MeMPA performances with the Hybrid-SIMD ones are normalized by
the number of samples considered for each algorithm (# Samples) for a fairer comparison.
Secondly, and most importantly, MeMPA is inserted in classical CPU-Memory architecture,
and the performance of the algorithms is evaluated in two distinct cases. In the first one,
named CPU-Mem, the structure of the von Neumann architecture is kept unaltered, so
the algorithms are entirely executed by the CPU and evaluated considering a classical
context. The second one, CPU-Mem-MeMPA, considers the insertion of MeMPA inside the
von Neumann architecture. In this case, the CPU, instead of running the entire algorithms,
simply conveys data from memories into MeMPA, which is in charge of executing all the
computations. By delegating the calculations to MeMPA, execution time and energy are
reduced because of the parallelization of the algorithms performed by MeMPA, but also
because of an overwhelming reduction in the memory accesses that waste a considerable
amount of energy.

6.1. MeMPA vs. Hybrid-SIMD

The execution time and energy comparisons between MeMPA and Hybrid-SIMD
are presented in Figure 5. Results are obtained after post-Place&Route simulation and

Electronics 2024, 13, 854 12 of 16

back-annotation processes for both architectures. In particular, the values for Hybrid-SIMD
and MeMPA are obtained with a clock period of 12ns and 4ns, respectively. The number of
samples normalizes these evaluations to consider the complexity gap between the two solu-
tions. Considering, for instance, the K-NN benchmark, Hybrid-SIMD processes 256 couples
of coordinates (xi,yi) while MeMPA only 160. MeMPA has a smaller addressable space,
meaning that a smaller number of data can be processed compared with Hybrid-SIMD.
The smaller memory size of MeMPA is compensated by its high degree of programmability
and capability to execute different complex operations concurrently. The architectural
model of Hybrid-SIMD can implement a smaller set of algorithms with limited flexibility,
which is especially exacerbated in sequential algorithms. As confirmed in Figure 5, MeMPA
outperforms Hybrid-SIMD for all the proposed benchmarks in terms of execution time and
energy. Moreover, MeMPA has both lower critical path (3.88 ns vs. 6.79 ns) and power
(worst case: 102.18 mW, reference Table 1 vs. 212.90 mW for DFT algorithm) than the
Hybrid-SIMD.

0
10
20
30
40
50
60
70
80
90

100

K-NN
K-M

eans
MVM

µ&σ
2

DFT

8.23

24.47

9.13

25.97

4.14

24.09

4.58

84.33

9.47

96.84 (a)

Ex
ec

ut
io

n
ti

m
e

#
Sa

m
pl

es
(n

s)

Algorithm

Hybrid-SIMD
MeMPA

0
2.25
4.5
6.75
9
11.25
13.5
15.75
18
20.25
22.5

K-NN
K-M

eans
MVM

µ&σ
2

DFT

0.6
2.08

0.68
2.44

0.26

2.75

0.30

15.3

0.93

20.62 (b)

En
er

gy
#

Sa
m

pl
es

(n
J)

Algorithm

Figure 5. MeMPA vs. Hybrid-SIMD: (a) reports the Execution time/# Samples, while (b) evaluates
the Energy/# Samples for both structures.

6.2. RISC-V with Normal Memory

This part presents a comparison in terms of energy and execution time between CPU-
Mem and CPU-Mem-MeMPA frameworks. The CPU-Mem system is made of a RISC-V
core with two levels of caches. Level 1 (L1) is divided into instruction and data caches
having a size of 64 kB each, while Level 2 (L2) is a shared cache of 256 kB. The following
steps were followed to estimate the consumption of the memories:

1. Implementation of the algorithms in C. CPU-Mem solution implements the whole algo-
rithm in the core, while CPU-Mem-MeMPA simply conveys data from caches inside
MeMPA sequentially.

2. Compilation of the benchmarks with RISC-V GNU Toolchain and simulation with Gem5. The
CPU is an In-Order model (TimingSimpleCPU) that runs in the system call-emulation
mode.

3. Analysis of stats.txt output file. At the end of the Gem5 simulation, an output file is
generated containing statistics like the number of memory accesses for each cache,
the total number of executed instructions, etc.

4. Memory consumption estimation with Cacti by HP [24]. Cacti is a tool able to model
caches very precisely. It outputs parameters like the energy/access, starting from
some essential memory characteristics (e.g., the size, the memory type, the associa-
tivity, the technology node, etc.). The memory consumption is simply obtained by
multiplying the energy/access for each memory by the total accesses to that memory.
This last information is stored inside stats.txt.

Moreover, an RTL model from the literature, i.e., the Pulpino In-Order single-core
4-stage pipeline RISC-V [25], was used to precisely estimate the RISC-V core performance.

Electronics 2024, 13, 854 13 of 16

The core was synthesized and Place&Routed following the same methodology described
for MeMPA. At the end of the Place&Route phase, the algorithms were simulated, and the
core signals were back-annotated for power estimation with Cadence Innovus. The re-
sults are reported in Figures 6 and 7, obtained with a clock period fixed to the worst
critical path value between MeMPA and the RISC-V core, which is 6ns. In all benchmarks,
the CPU-Mem-MeMPA framework outperforms the standard CPU-Mem in execution time
and energy. Thanks to the M-SIMD computing mode of MeMPA and the dense intercon-
nections network, the algorithms can be easily accelerated, reaching better performance,
especially in parallel algorithms like K-Means or in algorithms allowing to heavily exploit
the Reduction Tree computing mechanism like µ&σ2. It is essential to underline that the
insertion of MeMPA also reduces the memory accesses and their energy because once data
are loaded inside MeMPA, the computation is performed directly inside the Processing
Matrix, as confirmed in Table 2 and Figure 6.

20

21

22

23

24

25

26

27

28

29

210

211

212

213

214

KNN

K-Means

MVM

µ&σ2

DFT

Caches: CPU-Mem
Core: CPU-Mem
Caches: CPU-Mem-MeMPA
Core: CPU-Mem-MeMPA
MeMPA:CPU-Mem-MeMPA

Energy consumption comparison (nJ)
CPU-Mem vs CPU-Mem-MeMPA

Figure 6. Caches, core, and MeMPA energy contributions for CPU-Mem and CPU-Mem-MeMPA
frameworks. Axes are in log2 scale.

Table 2. Comparison of the number of L1 and L2 cache memory accesses for CPU-Mem and CPU-
Mem-MeMPA.

Algorithm
Memory Accesses (L1&L2)

Reduction (%)
CPU-Mem CPU-Mem-MeMPA

KNN 19,799 16,702 15.6

K-Means 103,362 16,946 83.6

MVM 24,153 15,479 35.9

µ&σ2 36,606 15,090 58.8

DFT 26,599 15,133 43.1

Data can be read from MeMPA once the algorithm is completed, reducing energy,
execution time, and memory accesses up to ∼81.2%, 68.9% and 83.6%, respectively, for the
K-Means algorithm.

Electronics 2024, 13, 854 14 of 16

0 20 40 60 80 100 120 140 160 180

KNN
K-Means

MVM
µ&σ2
DFT

(a)44.64
45.28

42.02
41.25
41.36

46.9
145.41

50.41
78.04

61.21

Execution time (µs)

Algorithm

CPU-Mem vs. CPU-Mem-MeMPA: comparison

-4.8%
-68.9%

-16.6%
-47.2%

-32.4%

0 2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4 20.7

KNN
K-Means

MVM
µ&σ2
DFT

(b)1.95
1.99

1.82
1.78
1.8

2.23
16.65

2.66
3.99

2.95

Energy (µJ)

CPU-Mem-MeMPA
CPU-Mem

-12.4%
-81.2%

-31.6%
-55.4%

-39.1%

Figure 7. Comparison of execution time (a) and energy (b) between CPU-Mem and CPU-Mem-
MeMPA solutions.

7. Conclusions

In this paper, we proposed MeMPA, an M-SIMD co-processor designed to address the
Memory Wall Issue. The MeMPA paradigm belongs to the BvNC category and focuses on
a heavy parallelization, on different levels, of the algorithm execution to drastically cut off
time and energy consumption. Moreover, the core part of MeMPA processing was designed
to provide as much programming generality as possible by considering a wide range of
algorithms from the SPLASH-2 benchmark suite and profiling the most used instructions.
Due to its fully interconnected structure of processing elements integrating computing and
storage capabilities, the insertion of MeMPA inside a classical CPU-Memory context was
confirmed to successfully bring overwhelming reductions in energy and execution time up
to 81.2% and 68.9% for the proposed benchmarks compared with the classical von Neumann
solution. The concept of MeMPA is that of an architectural design that sees the merging
of memory with computational elements, thus aiming to break down the von Neumann
bottleneck. Data-intensive communications between processor and memory, in fact, have
an extremely negative impact on performance, increasing execution time and consequently
energy. In fact, memories, being slower than processors, introduce an overhead on access
times, in fact most of the time the processor is waiting for data from the memory itself.
With MeMPA as a coprocessor, being a mixed computation framework, the idea is to locate
the computation units in memory, thus relaxing the classical von Neumann system and
moving some of the computation within the MeMPA framework. As a future work, we aim
to develop a complete toolchain made of a compiler that, starting from a generic code, can
automatically map the algorithm on MeMPA to fully take advantage of the CPU-MeMPA
interaction to perform more complex applications.

Author Contributions: Conceptualization, A.G.; methodology, A.G., A.C. and M.V.; validation,
A.G. and A.C.; formal analysis, A.C.; investigation, A.G.; data curation, F.R.; writing—original draft
preparation, A.C. and A.G.; writing—review and editing, M.V. and G.T.; visualization, F.R. and M.G.;
supervision, M.V.; project administration, M.Z. All authors have read and agreed to the published
version of the manuscript.

Electronics 2024, 13, 854 15 of 16

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Elsevier: Amsterdam, The Netherlands, 2017.
2. Coluccio, A.; Casale, U.; Guastamacchia, A.; Turvani, G.; Vacca, M.; Roch, M.R.; Zamboni, M.; Graziano, M. Hybrid-SIMD: A

Modular and Reconfigurable approach to Beyond von Neumann Computing. IEEE Trans. Comput. 2021, 71, 2287–2299. [CrossRef]
3. Akyel, K.C.; Charles, H.P.; Mottin, J.; Giraud, B.; Suraci, G.; Thuries, S.; Noel, J.P. DRC 2: Dynamically Reconfigurable Computing

Circuit based on memory architecture. In Proceedings of the 2016 IEEE International Conference on Rebooting Computing
(ICRC), San Diego, CA, USA, 17–19 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–8. [CrossRef]

4. Lin, Z.; Zhan, H.; Li, X.; Peng, C.; Lu, W.; Wu, X.; Chen, J. In-Memory Computing with Double Word Lines and Three Read Ports
for Four Operands. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 1316–1320. [CrossRef]

5. Ali, M.F.; Jaiswal, A.; Roy, K. In-Memory Low-Cost Bit-Serial Addition Using Commodity DRAM Technology. IEEE Trans.
Circuits Syst. I Regul. Pap. 2019, 67, 155–165. [CrossRef]

6. Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons, P.B.; Mowry, T.C.
Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology. In Proceedings of the 2017 50th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Cambridge, MA, USA, 14–18 October 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 273–287. [CrossRef]

7. Jaiswal, A.; Chakraborty, I.; Agrawal, A.; Roy, K. 8T SRAM cell as a multibit dot-product engine for beyond von Neumann
computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 2556–2567. [CrossRef]

8. Wang, H.; Yan, X. Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance
optimization, and prospects. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2019, 13, 1900073. [CrossRef]

9. Kvatinsky, S.; Belousov, D.; Liman, S.; Satat, G.; Wald, N.; Friedman, E.G.; Kolodny, A.; Weiser, U.C. MAGIC—Memristor-aided
logic. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 895–899. [CrossRef]

10. Durlam, M.; Naji, P.; DeHerrera, M.; Tehrani, S.; Kerszykowski, G.; Kyler, K. Nonvolatile RAM based on magnetic tunnel
junction elements. In Proceedings of the 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers
(Cat. No. 00CH37056), San Francisco, CA, USA, 9 February 2000; IEEE: Piscataway, NJ, USA, 2000; pp. 130–131. [CrossRef]

11. Rakin, A.S.; Angizi, S.; He, Z.; Fan, D. Pim-tgan: A processing-in-memory accelerator for ternary generative adversarial networks.
In Proceedings of the 2018 IEEE 36th International Conference on Computer Design (ICCD), Orlando, FL, USA, 7–10 October
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 266–273. [CrossRef]

12. Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing.
Nat. Nanotechnol. 2020, 15, 529–544. [CrossRef] [PubMed]

13. Giannopoulos, I.; Sebastian, A.; Le Gallo, M.; Jonnalagadda, V.; Sousa, M.; Boon, M.; Eleftheriou, E. 8-bit precision in-memory
multiplication with projected phase-change memory. In Proceedings of the 2018 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 1–5 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 27.7.1–27.7.4. [CrossRef]

14. Akin, B.; Franchetti, F.; Hoe, J.C. Data reorganization in memory using 3D-stacked DRAM. ACM SIGARCH Comput. Archit. News
2015, 43, 131–143. [CrossRef]

15. Jeddeloh, J.; Keeth, B. Hybrid memory cube new DRAM architecture increases density and performance. In Proceedings of the
2012 symposium on VLSI technology (VLSIT), Honolulu, HI, USA, 12–14 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 87–88.
[CrossRef]

16. Pan, B.; Wang, G.; Zhang, H.; Kang, W.; Zhao, W. A Mini Tutorial of Processing in Memory: From Principles, Devices to
Prototypes. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3044–3050. [CrossRef]

17. Mu, J.; Kim, H.; Kim, B. SRAM-Based In-Memory Computing Macro Featuring Voltage-Mode Accumulator and Row-by-Row
ADC for Processing Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2022, 69, 2412–2422. [CrossRef]

18. Morad, A.; Yavits, L.; Ginosar, R. GP-SIMD processing-in-memory. ACM Trans. Archit. Code Optim. 2015, 11, 1–26. [CrossRef]
19. Kuon, I.; Tessier, R.; Rose, J. FPGA Architecture: Survey and Challenges; Now Publishers Inc.: Delft, The Netherlands, 2008.

[CrossRef]
20. Vassiliadis, S.; Soudris, D. Fine-and Coarse-Grain Reconfigurable Computing; Springer: Dordrecht, The Netherlands, 2007; Volume 16.
21. Woo, S.C.; Ohara, M.; Torrie, E.; Singh, J.P.; Gupta, A. The SPLASH-2 programs: Characterization and methodological

considerations. ACM SIGARCH Comput. Archit. News 1995, 23, 24–36. [CrossRef]
22. Riscv-Collab. RISCV-Collab/RISCV-GNU-Toolchain: GNU Toolchain for RISC-V, Including GCC. Available online: https:

//github.com/riscv-collab/riscv-gnu-toolchain (accessed on 19 February 2024).
23. Binkert, N.; Beckmann, B.; Black, G.; Reinhardt, S.K.; Saidi, A.; Basu, A.; Hestness, J.; Hower, D.R.; Krishna, T.; Sardashti, S.; et al.

The gem5 simulator. ACM SIGARCH Comput. Archit. News 2011, 39, 1–7. [CrossRef]

http://dx.doi.org/10.1109/TC.2021.3127354
http://dx.doi.org/10.1109/ICRC.2016.7738698
http://dx.doi.org/10.1109/TVLSI.2020.2976099
http://dx.doi.org/10.1109/TCSI.2019.2945617
http://dx.doi.org/10.1145/3123939.3124544
http://dx.doi.org/10.1109/TVLSI.2019.2929245
http://dx.doi.org/10.1002/pssr.201900073
http://dx.doi.org/10.1109/TCSII.2014.2357292
http://dx.doi.org/10.1109/ISSCC.2000.839718
http://dx.doi.org/10.1109/ICCD.2018.00048
http://dx.doi.org/10.1038/s41565-020-0655-z
http://www.ncbi.nlm.nih.gov/pubmed/32231270
http://dx.doi.org/10.1109/IEDM.2018.8614558
http://dx.doi.org/10.1145/2872887.2750397
http://dx.doi.org/10.1109/VLSIT.2012.6242474
http://dx.doi.org/10.1109/TCSII.2022.3172494
http://dx.doi.org/10.1109/TCSI.2022.3152653
http://dx.doi.org/10.1145/2686875
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1145/225830.223990
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain
http://dx.doi.org/10.1145/2024716.2024718

Electronics 2024, 13, 854 16 of 16

24. Muralimanohar, N.; Balasubramonian, R.; Jouppi, N.P. CACTI 6.0: A tool to model large caches. HP Lab. 2009, 27, 28.
25. Gautschi, M.; Schiavone, P.D.; Traber, A.; Loi, I.; Pullini, A.; Rossi, D.; Flamand, E.; Gürkaynak, F.K.; Benini, L. Near-Threshold

RISC-V Core With DSP Extensions for Scalable IoT Endpoint Devices. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017,
25, 2700–2713. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TVLSI.2017.2654506

	Introduction
	Algorithm Profiling
	Architecture
	System Overview
	Datapath: The Processing Matrix
	Routing Network
	Smart Block

	Instructions Organization

	Performance
	Benchmarks Mapping
	Performance Comparisons on Benchmarks
	MeMPA vs. Hybrid-SIMD
	RISC-V with Normal Memory

	Conclusions
	References

