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Assembly complexity and physiological response in human-robot 
collaboration: Insights from a preliminary experimental analysis 
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A B S T R A C T   

Industry 5.0 paradigm has renewed interest in the human sphere, emphasizing the importance of workers’ well- 
being in manufacturing activities. In such context, collaborative robotics originated as a technology to support 
humans in tiring and repetitive tasks. This study investigates the effects of assembly complexity in Human-Robot 
collaboration using physiological indicators of cognitive effort. In a series of experiments, participants performed 
assembly processes of different products with varying complexity, in two modalities: manually and with cobot 
assistance. Physiological measures, including skin conductance, heart rate variability and eye-tracking metrics 
were collected. The analysis of physiological signals showed trends suggesting the impact of assembly complexity 
and cobot support. One key finding of the study is that a single physiological signal usually may not provide a 
complete understanding of cognitive load. Therefore, a holistic approach should be followed. This approach 
highlighted the importance of considering multiple measures simultaneously to accurately assess workers’ well- 
being in industrial environments.   

1. Introduction 

The advent of Industry 5.0 defined a new era of manufacturing, 
characterized by a seamless integration of advanced technologies, such 
as robotics, artificial intelligence, and the Internet of Things (IoT), into 
traditional manufacturing environments [1]. Among these, 
human-robot collaboration (HRC) has emerged as a paradigm-shifting 
approach in which humans and robots work together to combine each 
other’s capabilities: the precision and repeatability of the robot with the 
dexterity and flexibility of humans [2–4]. Although the benefits of HRC 
in terms of increased productivity and efficiency are well documented, 
understanding the impact of such collaboration on human well-being is 
critical for effective implementation and acceptance [5]. Recent studies 
began to explore the physiological responses of humans engaged in 
collaborative activities with robots, using parameters such as electro-
dermal activity, heart rate variability, and eye-tracking data to measure 
cognitive effort, and overall user experience [6–9]. These physiological 
measurements provide real-time information on the mental and 
emotional states of workers, providing a deep understanding of human 
factors in manufacturing and, more specifically, in human-robot 
collaboration processes. However, there is a gap in the literature 
regarding the influence of assembly complexity on these physiological 

responses. Assembly complexity, characterized by factors such as 
product variety, task organization, and variety of assembly sequences, 
has been widely studied in the scientific literature and is considered to 
be related to the effort required by humans to perform an assembly 
process [10,11]. Therefore, it can also potentially influence the cogni-
tive load experienced by workers. Understanding this relationship is 
critical to optimize HRC environments and ensure not only productivity 
but also the well-being of workers. This paper aims to fill this gap by 
proposing an experimental campaign in which participants were asked 
to assemble different products of varying complexity in two modalities: 
manual and collaborative, that is, with the support of a cobot. Physio-
logical signals such as electrodermal activity, heart rate variability and 
eye-tracking metrics were analysed in the experiment. Assembly 
complexity may increase cognitive load, with potential adverse effects 
on worker health and also on the quality of outputs. In addition, it is 
important to investigate how robots may actually support when as-
sembly complexity changes. This knowledge could guide the develop-
ment of more effective human-robot collaboration strategies aimed at 
improving workers’ well-being and productivity. The paper is organised 
as follows: Section 2 provides a literature review on human factors in 
human-robot collaboration and on assembly complexity. Section 3 de-
scribes the material and methods of the experimental campaign. Section 
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4 shows the main results of the study. Finally, section 5 and section 6 
discuss respectively the main findings of the research and the key results 
obtained. 

2. Literature review 

In the last years, human well-being in manufacturing contexts has 
become a topic of primary concern [12,13]. Many studies underlined the 
importance of human factors to enhance companies’ performances. 
Neumann and Dul [14] analysed 45 empirical studies that underlined 
the strong relationship between human effects (i.e., employee health, 
attitudes, physical workload a working life quality) and operation sys-
tems performance. Khamaisi et al. [15] developed a framework to assess 
user experience in industrial environments, using questionnaires and 
non-intrusive sensors to monitor stress-inducing activities that could 
affect worker performance. The analysis of human factors is even more 
crucial in human-robot collaboration processes [5]. Human-robot 
collaboration has been introduced as a novel manufacturing paradigm 
in which humans and robots cooperate sharing work-spaces and goals 
[16]. In such collaborative processes, humans and robots join their own 
capabilities, precision and repeatability for robots and flexibility and 
dexterity for humans. Khalid et al. [17] investigated the safety impli-
cations of using heavy robots in HRC, considering the physical and 
mental challenges of joint tasks. Kühnlenz et al. [7] studied the impact of 
different robot motion patterns on human workers by measuring heart 
rate variability and skin conductance. Galin and Meshcheryakov [3] 
analysed human-robot factors that affect the efficiency of HRC, high-
lighting the importance of emotional and cognitive elements. From 
another point of view, Colim et al. [18] formulated guidelines for the 
design of safe and ergonomic HRC workstations. Shirakura et al. [19] 
presented a human-robot collaboration system that optimise produc-
tivity by taking human workload into account. Lu et al. [20] investigated 
the mental stress caused by handover activities of a collaborative robot 
using both galvanic skin response and subjective ratings. The results 
suggested that handover activities can affect humans’ mental stress 
levels. Moreover, Gervasi et al. [8] conducted a structured comparison 
between manual assembly and HRC, focusing on human-centred per-
formance in repetitive assembly processes. They found that HRC can 
lead to improved performance and reduced cognitive load. Subse-
quently, they also analysed the evolution of psychophysical signals over 
time, showing how cobots can be a useful support in the human oper-
ators’ learning process [9]. Finally, Barravecchia et al. [21] developed a 
novel approach to manage human-robot symbiosis in collaborative as-
sembly tasks. 

Given the critical role of human factors in HRC, it is crucial to 
consider potential causes that may influence them in manufacturing 
processes. An important aspect that impacts on the effort required to 
complete an assembly process may be its “complexity” [10]. The 
assessment of assembly complexity is a widely addressed topic in 
manufacturing. Hinckley [22] led the way by proposing a complexity 
factor based on assembly time, emphasising the need to minimise 
complexity to improve cost-effectiveness and quality. Shibata [23] and 
Su et al. [24] explored this further by linking assembly complexity to 
design and process-based factors, using time as an indirect measure of 
complexity. Afterwards, Genta et al. [25] proved the existence of a 
relationship between product complexity and product defects. Alkan 
[26], inspired by Sinha’s generalised product complexity model [27], 
introduced a method using standard assembly times and DFA theory. 
This model was later adapted by Verna et al. [28] to predict product 
defects. Another diffused approach applies the principles of information 
theory to the assessment of assembly complexity. These methods assume 
that complexity arises from uncertainty in the assembly process. 
ElMaraghy and Urbanic [29,30] introduced the Manufacturing 
Complexity Assessment Tool (MCAT) model, which relates 
manufacturing complexity to the handling of information. Later, this 
concept has been extended by Zhu et al. [31] to deal with complexity 

arising from product variety. Ameri et al. [32] integrated information 
theory and graph theory to assess the complexity of product design. 
Samy and El-Maraghy [33] further refined MCAT model to assess 
product assembly complexity [33,34]. Wang and Hu [35] introduced a 
complexity measure that accounts for operator selection and fatigue, 
which was subsequently used to optimise mixed-model assembly sys-
tems. Zeltzer et al. [36] and Sun and Fan [37] introduced entropy-based 
measures that account for task duration variability. More recently, Liu 
et al. [38] developed an informational entropy measure to optimise the 
balance of assembly lines in conditions of demand uncertainty. In 
literature, there is a bunch of methods that provide a subjective 
assessment of complexity, the so-called “perceived complexity”. Spe-
cifically, Mattsson et al. [39,40] identified 5 main causes of perceived 
complexity in assembly processes, i.e., product variants, layout, job 
content, tools and information). Similarly Falck et al. [41] proposed 16 
basic complexity criteria for assembly tasks. 

As these studies showed, the complexity of assembly tasks can vary 
widely, from simple, repetitive actions to complex procedures that 
require high levels of cognitive engagement and precision. This vari-
ability in task complexity can have a primary effect on physiological 
measures of cognitive effort in workers collaborating with robots. In a 
pioneering work, Verna et al. [42] explored the effects of perceived 
complexity on human performances within a collaborative assembly 
processes. In this work, Verna et al. [42] showed the existence of a 
relationship between assembly complexity and performance measures, 
such as product defects and completion times, in collaborative assembly. 
Specifically they found out that worse performances occurred in more 
complex products. Similarly, other studies showed the presence of a 
correlation between perceived assembly complexity and the subjective 
workload experienced by operators. [43]. Pollak et al. [44] analysed the 
differences in human stress between manual and autonomous assembly. 
Similarly, Fournier et al. [45] analysed the relationship between 
cognitive load and human-robot collaboration. Finally, Zakeri et al. [46] 
investigated the effects of task complexity and speed on human stress. 
Unlike previous studies, the novelty of this work lies in the compre-
hensive assessment of human cognitive load induced by assembly 
complexity, using several objective physiological metrics. This fills a gap 
in the existing manufacturing-related literature, providing a quantifi-
able understanding of the effect of assembly complexity from a physi-
ological point of view. 

3. Overview of the experimental approach 

This study is designed to investigate the impact on humans’ cognitive 
effort of both product assembly complexity and human-robot collabo-
ration by physiological measurement (see Fig. 1). To this aim, an 
experimental approach was adopted. Participants were involved in 
performing a series of product assembly of different complexity, both 
manually (i.e., “manual modality) and with the support of cobot (i.e., 
“collaborative modality”). The focus was on measuring and analysing 
key physiological indicators such as skin conductance, heart rate vari-
ability and eye-tracking metrics to assess cognitive load. To clarify the 
differences between cognitive load and stress, it is important to under-
stand both concepts in relation to human performance and well-being. 
Cognitive load refers to the amount of mental effort expended in 
working memory, while stress, on the other hand, can be described as 
the body’s response to any demand or threat. [47–49]. Specifically:  

• Cognitive load is more specifically concerned with the mental effort 
required to process information and perform tasks. High cognitive 
load can lead to difficulties in processing information, but, at the 
same time, appropriately managed cognitive load can enhance 
learning and performance through the efficient use of available 
cognitive resources [47].  

• Stress is a broad concept that encompasses emotional, physical and 
psychological responses to perceived threats or challenges. It may be 
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caused by excessive mental arousal and activates the body’s stress 
response systems, leading to various physiological and psychological 
changes aimed at coping with the stressor [49]. 

The relationship between cognitive load and stress is complex. 
Increased cognitive load can lead to heightened arousal and potentially 
stress if it exceeds an individual’s ability to cope effectively. However, 
not all increases in cognitive load lead to stress. The outcome depends on 
factors such as the individual’s perception of the task, their coping 
strategies and their ability to manage the cognitive demand, etc. 
[47–49]. In this experiment, given that assembly complexity is associ-
ated with the cognitive effort required in performing an assembly pro-
cess [10], the relationship between physiological metrics associated to 
cognitive load and assembly complexity were tested. The relationship 
with stress cannot be a-priori identified because an increase in cognitive 
load may increase stress, but not necessarily [50]. For the sake of clarity, 
the terms ’cognitive load’ or ’cognitive effort’ will be used in discussing 
the results of this experiment. These terms more accurately describe the 
effort associated with increasing task complexity as opposed to stress 
which is a broader concept [10]. Details on the experimental settings 
and procedure follow in the next subsections. This approach aims to 
bridge the gap in current research by providing insights on how as-
sembly complexity and cobot assistance influence human physiological 
responses of cognitive effort in a manufacturing context. 

The hypotheses that will be tested through the experimental 
campaign are:  

• Hypothesis 1: Increasing assembly complexity leads to higher 
cognitive load. Products composed of several parts, of different types 
and with many different alternatives of assembly sequences may 
require more cognitive effort for the operator.  

• Hypothesis 2: The support of cobots relieves human cognitive load. 
Ideally, the presence of a cobot should support the human operator 
resulting in lower human effort. The cobot’s support can be (i) both 
mental, for example, when giving the operator the parts in the exact 
assembly order, it punctuates the assembly sequence; (ii) and phys-
ical, since it performs the tasks that would be repetitive and stren-
uous for humans. 

In this study, while recognising the multiple influences on operator 
cognitive load, we focused on assembly complexity and collaboration 

modality as the primary factors. 

3.1. Assembly processes 

In this experiment, participants were asked to assemble the three 
different products shown in Fig. 2. (i.e., a mechanical equipment, a tile 
cutter and a diaphragm water pump). Details of components and 
elementary task necessary to assemble these three products are respec-
tively provided in appendix A. 

With the same product, the assembly process was performed in two 
different modalities: manual and collaborative. In total each participant 
performed 6 different configurations of assembly process, named 
respectively 1HRC, 1M, 2HRC, 2M, 3HRC, 3M (see Table 1). 

In manual modality participants performed all the tasks of the as-
sembly process, while in collaborative modality some tasks were allo-
cated to the cobot and others to human, according to Appendix A. Fig. 3 
shows the assembly work-area at the Mind4Lab laboratory of Politecnico 
di Torino, where the experiment took place. The work-area was equip-
ped with two collaborative robots UR3. For this experiment only the 
robot on the right hand-side was used. The work-area consisted of:  

• a table on which both humans and cobots can operate 
simultaneously.  

• physical supports to facilitate assembly operations of the tile cutter.  
• a component feeding tray where all the parts were arranged. Both 

cobot and humans can pick parts from the component feeding tray. 

3.2. Assessment of product assembly complexity 

The three products considered are made of different quantity and 
type of parts leading to different “complexities”. Greater assembly 
complexity should lead to greater effort required on behalf of the 
operator [10]. To assess product complexity, the Samy and ElMaraghy’s 
method [33] was implemented. In detail, this method considers the di-
versity and amount of its components and connectors, as well as their 
geometric characteristics. They introduced a product assembly 
complexity index, denoted as Cproduct , which is calculated using the 
formula: 

Cproduct =

[
np

Np
+CIproduct

][

log2
(
Np +1

)
]+

[
ns

Ns

][

log2(Ns +1) (1) 

Fig. 1. A conceptual map of the experiment where “assembly complexity” and “modality” are the two variable factors that impact on human cognitive load assessed 
via electrodermal activity, heart rate variability and eye-tracking metrics. 
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Where:  

• np is the number of unique parts while Np is the related total  
• ns is the number of unique fasteners while Ns is the related total  

• CIproduct ranging from 0 to 1, is a complexity index that considers the 
geometric and dimensional characteristics of the parts. This index 
can be determined using the difficulty factors of manual handling 
and joining from Design for Assembly, as outlined in Samy and 
ElMaraghy’s [33]. 

The implementation of this method to the three products considered 
in this study leads to the results reported in Table 2. According to the 
adopted complexity model, the least complex product is the mechanical 
equipment, while the most complex one is the diaphragm water pump. 

The Samy and ElMaraghy’s method provides a numerical scale for 
assessing product assembly complexity. However, it does not distinguish 
between manual and collaborative assembly processes for the same 
product. In a collaborative process, humans and robots interact using 
different technologies, means of communication, and supports which 
can also affect the effort required of the human operator to complete the 
process. However, traditional assembly complexity methods do not take 
into account the complexity of this interaction. 

3.3. Experimental procedure 

The experiment involved 18 participants. Participants (aged between 
20 and 25 years old) were students of management and production 
engineering and claimed to have no prior experience with cobots. This 
choice was deliberately made to avoid bias derived from prior experi-
ence in assembly tasks. This approach ensures that the observed effects 
on physiological responses are primarily due to the experimental con-
ditions rather than individual expertise or familiarity with the tasks. In 
this experiment two factors were considered: assembly complexity and 
modality. Modality has two levels: manual or collaborative. Assembly 
complexity has three levels: mechanical equipment, tile cutter and 
diaphragm water pump which can be ordered according to Samy and 
ElMaraghy’s method [33] from the least to the most complex. For each 
product and modality, 6 repetitions (including two initial trials) were 
planned. Fig. 4 shows a flowchart of the experimental procedure for a 
single participant. 

After a brief introduction, participants were shown the randomly 

Fig. 2. The three reference products considered in the study.  

Table 1 
Configuration IDs and their respective descriptions.  

Configuration ID Description 

1HRC Collaborative assembly of the mechanical equipment 
1M Manual assembly of the mechanical equipment 
2HRC Collaborative assembly of the tile cutter 
2M Manual assembly of the tile cutter 
3HRC Collaborative assembly of the diaphragm water pump 
3M Manual assembly of the diaphragm water pump  

Fig. 3. The collaborative assembly work-area (Mind4Lab laboratory, Poli-
tecnico di Torino). 

Table 2 
Complexity values of the three reference products computed using Samy and 
ElMaraghy’s method.   

Samy and ElMaraghy H. 

Configuration Np np Ns ns CIproduct Complexity value 
(Cproduct) 

Mechanical 
equipment 

4 3 6 2 0.668 4.22 

Tile cutter 10 8 5 3 0.682 6.67 
Diaphragm water 

pump 
13 12 13 4 0.693 7.33  
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selected configuration to be performed. After two training trials, par-
ticipants performed 4 repetitions of the same assembly process. During 
the experiment, participants were equipped with two non-invasive 
biosensors to collect psychophysiological parameters, i.e., Empatica E4 
wristband and Tobii Pro Glasses 3 (see Fig. 5). After performing each 
single configurations, unstructured qualitative feedback on the experi-
ment were collected. According to Charness et al. [51] this experiment 
involving each participant performing all six configurations can be 
defined as a "within-subject design" according to which all participants 
are subjected to all experimental conditions. 

3.4. Data collected 

During the experiments, several physiological signals were collected 
to obtain a global understanding of participants’ cognitive load. Each 
signal provides unique insights, and their collective analysis provides a 
more accurate and deep understanding of physiological responses to 
different stimuli. The main variables collected were:  

• Electro-Dermal Activity and Heart Rate Variability using the non 
invasive biosensor Empatica E4. The device acquires two types of 
physiological data: electrodermal activity (EDA) at a frequency of 4 
Hz and heart rate data by photoplethysmography (PPG) at 64 Hz. 
"Ledalab," a MATLAB-based tool, was also used to process the EDA 
data.  

• Eye-tracking data using Tobii Pro Glasses 3 with a 100 Hz sampling 
rate. The data were processed using Tobii Pro Lab software. For each 
participant and configuration, time ranges of interest (i.e., the trials 
of the assembly process) were identified manually by inserting a 
timestamp indicating the start of the trial and the respective end. 
Thus, for each eye-tracking metric, the Tobii Pro Lab software 
computes an overall value for the time of interest considered. 

The following subparagraphs provide a short explanation of the data 
collected. 

3.4.1. Electro-dermal activity (EDA) 
EDA measures the electrical conductance of the skin, which refers to 

the activity of the skin sweat glands. This moisture level is controlled by 
the sympathetic nervous system and is directly related to emotional 
arousal, regardless of whether the emotion is positive or negative. 
Increased EDA is typically associated with increased emotional arousal, 
stress, or cognitive load [52]. Using continuous decomposition analysis 
(CDA), the EDA signal was separated into phasic and tonic activities. 
Tonic activity is best identified by observing changes in skin conduc-
tance level (SCL), which represent sustained fluctuations in EDA not 
directly related to external stimuli. Phasic activity, on the other hand, 
refers to short-lived alterations in EDA that occur in response to an 
identifiable, externally applied stimulus. These changes are known as 
skin conductance responses (SCRs), which are essentially shifts in 
amplitude from the baseline SCL to the highest point of the response, 
and are discernible through examination of the phasic activity compo-
nent. [53]. In this work two metrics for EDA were analysed: Average SCL 
computed as the average value of the SCL signal within a single trial and 
the average SCR calculated as the average value of SCR for each trial. 

3.4.2. Heart rate variability (HRV) 
Heart rate variability (HRV) is another critical measure, offering 

insight into the analysis of cognitive effort. HRV refers to the variation in 
time intervals between consecutive heartbeats and is an indicator of the 
body’s adaptability to cognitive effort required that may lead to 
increased stress. Higher variability indicates healthy balance and good 
adaptive capacity of the autonomic nervous system, while lower vari-
ability suggests fatigue or overexertion. By analyzing HRV, we can assess 
how individuals respond physiologically to stress and how they recover 
from it. Recent studies also showed that the effects of mental workload 
can also be described by non-linear metrics related to cardiac activity 
[54,55]. However, in this work two common HRV metrics will be ana-
lysed: RMSSD and SDNN. RMSSD (i.e., Root Mean Square of Successive 
Differences) is defined as: 

RMSSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N− 1

i=1
(NNi+1 − NNi)

2

√
√
√
√ (2)  

Where N is the number of systolic peaks in the considered time window 
and NNi indicates the time interval between the systolic peak i and i+1. 

Another common measure for heart rate variability is the so-called 
“SDNN” (i.e., “Standard Deviation of NN intervals”). The SDNN index 
reflects all cyclic components responsible for variability over the 
recording period, so it represents total variability. A higher SDNN value 
indicates greater heart rate variability, which is often interpreted as a 
sign of a healthy heart that can respond adaptively to changing envi-
ronmental and physiological conditions. In contrast, a lower SDNN 
value suggests less variability and may indicate greater effort and 

Fig. 4. Flowchart of the experimental procedure per single participant.  

Fig. 5. The setting of a collaborative assembly process for the tile cutter with 
the operator wearing the Empatica E4 and the Tobii Pro Glasses 3. 
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fatigue [56,57]. 

3.4.3. Eye-tracking measurements 
In the last years, many studies proved the efficacy of using eye- 

tracking data to describe cognitive load [58]. In this experiment, the 
metrics collected were:  

• Fixation number: This metric counts the number of fixations, usually 
within a specific area of interest (AOI). Fixations can be defined as 
the periods of time during which the eyes are relatively still, and the 
central foveal gaze is maintained, allowing the eye-tracking device to 
collect information about what is being looked at. In Tobii Pro Lab, a 
fixation is a sequence of raw gaze points where the estimated velocity 
is below the velocity threshold set in the I-VT gaze filter (e.g., 30◦/s) 
[59]. The amount of fixations is considered indicative of the allo-
cation of visual attention, where a greater number of fixations might 
suggest less efficient search or greater visual effort, and thus a higher 
mental workload [58].  

• Fixation duration [ms]: This refers to the time spent focusing on a 
single position. It is computed as the time interval between the first 
gaze point and the last gaze point belonging to a fixation. A longer 
duration could indicate more cognitive effort in extracting infor-
mation from specific point or greater attractiveness of the target 
[58]. However, in the literature there’s still debate to understand 
how fixation duration and number of fixation can be correlated with 
cognitive effort [58,60].  

• Saccade number: This is the number of saccades within a given area 
of interest. Saccades are the type of eye movement used to move the 
fovea rapidly from one point to another. In other words, a saccade 
event is an involuntary movement of both eyes at the same time that 
shift the fixation point. In Tobii Pro Lab, a saccade is a sequence of 
raw gaze points where the associated velocity is above the afore-
mentioned velocity threshold. A higher number of saccades is often 
related to greater visual effort and thus greater mental workload [58, 
59].  

• Saccade duration [ms]: Measures the time from the beginning to the 
end of a saccade event, indicating the transition from one fixation to 
another. A longer duration suggests less processing and more visual 
search activity [58,59,61]. 

• Saccade amplitude [◦]: Quantifies the degrees of visual arc move-
ment from one fixation centroid to the next. As mental workload 
increases, saccade amplitude generally decreases [58,59,61].  

• Saccade peak velocity [◦/s]: This is the speed of the saccade, usually 
measured by its highest velocity, i.e., the peak velocity. The average 
peak saccade velocity decreases as mental workload increases [58, 
59,61].  

• Pupil size [mm]: Measures the diameter or area of the pupil. A larger 
pupil size is often associated with greater mental demand [58]. 

3.4.4. Final unstructured feedback from participants 
At the end of the experiment, each participant underwent an un-

structured interview. The question asked were the followings:  

• General impressions and feedback  
• What was in your opinion the least and the most complex product to 

assemble?  
• How did your experience of assembling the products change when 

working with the cobot compared to working without it?  
• Did the presence of the cobot change your stress level or your 

approach to the assembly tasks?  
• For each of the three products, how did the cobot supported you?  
• Did the usefulness of the cobot change with the complexity of the 

product? 

4. Experimental results 

A detailed investigation of various physiological parameters 
described in Section 3.4. was conducted, emphasizing the importance of 
a holistic approach to obtain reliable results. The experimental database 
consisted of 648 observations: 18 participants performed 6 trials for 
each of the 6 configurations (36 trials overall). For each metric, the 
individual values were standardised to account for personal differences 
by calculating z-scores using the formula: 

zij =
xij − xj

sj
(3)  

where zij is the z-score i for participant j, xij the observation i for 
participant j, xj the sample mean for participant j, and sj the sample 
standard deviation for participant j, with i = 1,…,6 and j = 1, …, 18. 
This standardization process is crucial to mitigate individual variability, 
ensuring that data from different subjects can be directly compared. This 
process adjusts for personal baseline levels and individual response 
magnitudes and allows to discern patterns and changes attributed to 
experimental conditions rather than inherent physiological differences. 
As an example, Table 3 shows the calculation of the average SCR values 
scaled on the participant. The mean xj and the standard deviation sj are 
unique for each participant, i.e., calculated on the observations of the 
entire 6 trials. 

Furthermore, to account for potential variability introduced by task 
duration, physiological metrics averages were calculated for each trial to 
ensure comparability across different assembly complexities and mo-
dalities. For the same reason, the number of fixations was divided by the 
duration of the trial. The statistical analysis was performed using R and 
involved the followings step:  

• Testing the distribution of each physiological metrics using the 
Shapiro Wilk-test [62];  

• Comparing differences between the six configurations using a paired 
t-test if the normality distribution cannot be rejected, or the Wil-
coxon signed-rank test [63] if the normality hypothesis is rejected. 
For each physiological signal, the normality assumption was always 
rejected at least in one of the six configurations to compare. Hence, 
only Wilcoxon signed-rank tests were performed. Furthermore, this 
non parametric-test is less influenced by the presence of outliers, 
since it is based on the comparison of median values. 

The two initial training trials were neglected in the following ana-
lyses. It was also decided to keep all the outlier observations that were 
not due to measurement or signal acquisition errors. During the four- 
hour duration of the experiment, a remarkable range of extreme phys-
iological responses were observed. These can be primarily attributed to 
the dynamic and prolonged nature of the experimental environment, in 
which the participant may be exposed to several instantaneous stimuli. 
Factors such as individual perception of assembly process difficulty, the 
onset of fatigue over time, or environmental influences may contribute 
to these pronounced responses. Although standardisation techniques 
and baseline adjustments were used to reduce inter-individual vari-
ability, the outliers predominantly reflect the influence of unavoidable 
contextual factors inherent in long-term experiments. Therefore, these 
observations were included as integral part of the dataset to ensure that 
the results were representative of real biological responses in different 
scenarios. 

4.1. Electro-dermal activity 

The analysed metrics related to EDA were: Average SCL and Average 
SCR. Higher levels of Average SCL and Average SCR are often indicative 
of increased effort as they reflect increased arousal of the sympathetic 
nervous system in response to stressors [53,64,65]. Therefore, with 
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reference to the hypothesis reported in section 3, it should occur that:  

• Hypothesis 1: as product complexity increases, Average SCL and 
Average SCR should increase.  

• Hypothesis 2: in collaborative modalities, Average SCL and Average 
SCR should be lower than in manual counterparts. 

4.1.1. Average SCR 
The boxplot presented in Fig. 6 shows the z-scores of the average skin 

conductance response (SCR) for the six different configurations of as-
sembly processes considered. 

From the boxplot, it can be seen that, at the same product, average 
SCR values for manual configurations generally show a higher median z- 
score than their human-robot collaboration counterparts. This suggests a 
trend whereby manual tasks might be associated with higher effort. The 
boxplot also reveals a slight upward trend in average SCR as product 
complexity increases from the mechanical equipment to the diaphragm 
water pump, accordingly to the complexity ranking provided with the 
Samy and ElMaraghy’s method. To test statistical differences between 
the six configuration the paired Wilcoxon signed rank test was imple-
mented. The results are shown in Table 4. These results provide initial 
evidence that the complexity of products may influence psycho- 
physiological responses, as measure by SCR. However, for the same 
product the support of cobot is not particularly evident. 

4.1.2. Average SCL 
The boxplot in Fig. 7 represents the z-scores of mean skin conduc-

tance level (SCL). It shows a general trend of increasing median SCL 
values from simpler to more complex products in manual (M) 

configurations. This trend is consistent with the hypothesis that greater 
assembly complexity is associated with increased effort levels. For the 
same product, there is a visible increase in median z scores. It is worth 
noting that when the product is more complex, the support of the cobot 
is evident, as suggested by the lower median values of HRC modality for 
both the tile cutter and the diaphragm water pump with respect to their 
manual modality configuration. The p-value table (see Table 5) provides 

Table 3 
Example of a z-score standardisation for the average SCR [microSiemens μS] values of a participant of the experiment.  

Participant Configuration Trial Average SCR 
(
xij
)
[μS] xj [μS] sj[μS] Average SCR Scaled 

(
zij
)

1 1HRC 1 0.1897 0.1948 0.1555 -0.0323 
1 1HRC 2 0.1690 0.1948 0.1555 -0.1659 
1 1HRC 3 0.0888 0.1948 0.1555 -0.6813 
1 1HRC 4 0.0800 0.1948 0.1555 -0.7379 
1 1HRC 5 0.0558 0.1948 0.1555 -0.8933 
1 1HRC 6 0.0477 0.1948 0.1555 -0.9457  

Fig. 6. Boxplot of Average SCR z-scores across the six different configurations 
considered in the experiment. 

Table 4 
Results of the pairwise Wilcoxon signed rank test for the z-score median of the 
average SCR (results in bold are statistically significant, i.e., p-value < 5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 1.0 -     
2HRC 1.0 1.0 -    
2M 0.3265 0.1829 0.8264 -   
3HRC 0.1574 0.0577 0.4182 1 -  
3M 0.0076 0.0041 0.0237 0.3030 1.0 -  

Fig. 7. Boxplot of Average SCL across the six different analysed configurations.  

Table 5 
Results of the pairwise Wilcoxon signed rank test for the z-score median of 
Average SCL (results in bold are statistically significant, i.e., p-value < 5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 1.0 -     
2HRC 1.0 1.0 -    
2M 0.316 0.019 0.005 -   
3HRC 1 1 1 1 -  
3M 0.160 0.030 0.018 1 0.27 -  
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statistical support for some of the observed differences in the boxplot. In 
particular, there are significant differences between the 2HRC and 2M 
configurations, as well as between 2M and 1M, supporting the idea that 
both assembly complexity and the presence of the cobot may affect 
cognitive effort. 

4.2. Heart Rate variability 

Regarding heart rate variability, RMSSD and SDNN were analysed. 
Under condition of increased effort, both RMSSD and SDNN typically 
decrease, indicating a dominance of sympathetic nervous system activ-
ity over parasympathetic activity [57]. With regard to the central hy-
potheses of this study, it should be proved that:  

• Hypothesis 1: as product complexity increases, RMSSD and SDNN 
should decrease.  

• Hypothesis 2: in collaborative modality, RMSSD and SDNN should be 
higher. 

4.2.1. RMSSD metric 
The boxplot representing RMSSD z-scores across the six configura-

tions (see Fig. 8) suggests a weak relationship between assembly 
complexity, modality, and psychophysiological response. Therefore, the 
median RMSSD z-scores remains broadly consistent across 
configurations. 

The distributions of RMSSD z-scores in the manual and human-robot 
collaboration (HRC) modality for the three levels of assembly 
complexity show some overlap with no clear trends. Hence, the RMSSD 
metric provided no significant evidence to support the hypothesis of this 
work, suggesting that this particular measure of heart rate variability 
may not be sensitive to the specific types of cognitive load induced by 
the assembly complexity and cobot interaction in this study settings. 
Furthermore, also the results of the Wilcoxon signed-rank test did not 
show any statistical difference. 

4.2.2. SDNN metric 
The results of SDNN for the six configurations are shown in Fig. 9 and 

Table 6. It can be seen that moving from less complex tasks (1HRC, 1M) to more complex tasks (3HRC, 3M), there is no consistent increase or 
decrease in median z-scores. However, it can be seen that for the me-
chanical component and the tile cutter, the median values of the 
collaborative modality are higher than their manual counterparts, thus 
indicating a lower cognitive load experienced by the operator and 
confirming the supporting role of the cobot. However, the lack of a 
uniform trend across all configurations implies that the relationship 
between the studied variables and the SDNN is unclear and may be 
influenced by a number of factors. This variability in the data reinforces 
the importance of a comprehensive approach when using physiological 
measures such as the SDNN to assess cognitive load. 

4.3. Eye-tracking metrics 

The eye-tracking metrics considered were the ratio between number 
of fixations and trial duration; the average duration of fixations; the 
average pupil diameter; the average peak velocity of saccades; and the 
average amplitude of saccades. In eye-tracking analysis, as cognitive 
effort increase, the first three metrics should increase while the average 
amplitude of saccades and the average peak velocity of saccades are 
expected to show an inverse trend [58]. Hence, the hypotheses that will 
be tested in this work are:  

• Hypothesis 1: as product complexity increases, the ratio between 
number of fixations and trial duration, the average duration of fix-
ations and the average pupil diameter should increase. On the 

Fig. 8. Boxplot of RMSSD across the six different configurations.  

Fig. 9. Boxplot of SDNN across the six different configurations.  

Table 6 
Results of the pairwise Wilcoxon signed rank test for z-score median of SDNN 
(results in bold are statistically significant, i.e., p-value < 5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 0.685 -     
2HRC 1.0 0.073 -    
2M 1.0 0.281 0.647 -   
3HRC 1.0 0.196 1.0 0.166 -  
3M 1.0 0.029 1.0000 0.018 1.0000 -  
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contrary, the average amplitude of saccades and the average peak 
velocity should decrease.  

• Hypothesis 2: in collaborative modalities the ratio between number 
of fixations and trial duration, the average duration of fixations and 
the average pupil diameter should be lower than in manual ones 
(vice versa for the average amplitude of saccades and the average 
peak velocity). 

4.3.1. Number of fixations/trial duration 
A greater number of fixations can be related to a greater workload 

perceived. Obviously, not all the trials had the same duration: assem-
bling a mechanical equipment took less than assembling the diaphragm 
water pump. To take this into account the number of fixations was 
divided by the duration of the trial. The boxplot for the ratio number of 
fixations – duration is shown in Fig. 10. 

The boxplot represents the standardized number of fixations per unit 
time among six task configurations. Although the median z-scores of 
fixation frequency per unit time do not show a clear increase consistent 
with greater product complexity, or a decrease for HRC modalities 
compared to manual tasks. It is plausible that standardization by trial 
duration may have normalized the data, smoothing out the expected 
differences. Furthermore, the variability within each configuration, re-
flected by the range of interquartile distances, suggests that there is a 
diversity of individual experiences and responses to assembly 
complexity and modality. The Wilcoxon signed-rank test only showed 
two statistically significant results: 1M-1HRC (p-value=0.021) and 3M- 
3HRC (p-value=0.044) (Table 7). 

4.3.2. Average duration of fixations 
The average duration of fixation is related to the workload experi-

enced by the participants. Specifically, it increases when the workload 
increases. The results of this experiment are shown in Fig. 11 and 
Table 8. Moving from tasks involving the least complex product (1HRC, 
1M) to the most complex (3HRC, 3M), there is a gradual increase in 
median z scores for both manual and human-robot collaboration (HRC) 

modalities. Although not all pairwise comparisons between configura-
tions show statistical significance, the overall trend within each mo-
dality supports the idea that product complexity positively correlates 
with cognitive load. This trend is consistent with the hypothesis that 
more complex tasks require more cognitive effort, which is reflected in 
longer fixation duration. Complex products, indeed, often involve longer 
and more joining processes with tight tolerances and smaller compo-
nents involved. In these situations, the need for meticulous attention to 
specific points results in longer fixations. However, also a different 
interpretation to these results can be proposed, using the flow theory. 
Flow is a subjective state that results from deep engagement in an ac-
tivity. In this case, longer duration of fixations may reflect intense 
concentration which does not necessarily leads to stress conditions [66, 
67]. Again, the existence of different interpretations for the same 
eye-tracking metrics highlights the importance of analysing multiple 
physiological signals in human factors studies. 

4.3.3. Average amplitude of saccades 
The average amplitude of saccades represents an indicator of 

cognitive load. Specifically, lower values of the amplitude of saccades 
indicate higher effort. The results for this case study are shown in Fig. 12 
and Table 9. 

From the boxplot, we can observe that for each level of product 
complexity, human-robot collaboration (HRC) configurations tend to 

Fig. 10. Boxplot of the ration between number of fixations and trial duration across the six different configurations.  

Table 7 
Results of the pairwise Wilcoxon signed rank test for z-score median number of 
fixations/duration (results in bold are statistically significant, i.e., p-value < 5 
%).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 0.021 -     
2HRC 1.0 1.0 -    
2M 1.0 1.0 1.0 -   
3HRC 1.0 0.09 1.0 1.0 -  
3M 0.34 1.0 0.100 1.0 0.044 -  
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have higher median z-saccade amplitude scores than manual configu-
rations. A slight decreasing trend can also be seen while moving from the 
mechanical equipment to the diaphragm water pump. This trend sug-
gests that participants experienced lower levels of cognitive effort when 
working with cobots. The results of Wilcoxon signed rank test show 
some statistical significances, confirming the fact that both assembly 
complexity and the presence of cobot may affect human workload. 
Generally, a slight trend can be seen between the mechanical equipment 
and the diaphragm water pump, indicating the presence of a relation-
ship between the average amplitude of saccades and the assembly 
complexity. In conclusion, the data from this boxplot support our hy-
pothesis by showing that the average amplitude of saccades is greater in 
HRC tasks than in manual tasks, indicating a reduction in cognitive load 
levels when cobots are involved in the assembly process. This result is 
significant because it highlights the potential benefits of integrating 
cobots into industrial workflows, not only to maintain efficiency but also 
to improve the psycho-physiological working conditions of human 
operators. 

4.3.4. Average peak velocity of saccades 
The boxplot of z-scores for average peak velocity of saccades (see 

Fig. 13 and Table 10) do not show a significant or consistent trend across 
task configurations. The absence of a clear pattern in the data may 

suggest that the average peak saccade velocity does not vary systemat-
ically with assembly complexity or with the introduction of cobot 
assistance. The lack of significant differences between most configura-
tions, particularly between different complexities within the same mo-
dality or between manual and cobot-assisted tasks, indicates that the 
relationship with assembly complexity is not straightforward. However, 
for the same product the average peak velocity is always higher in 
collaborative modality than in manual one. This suggests a reduced 
cognitive load required when participants worked with cobots. This 
result highlights the critical need for a comprehensive approach in the 
study of physiological signals as indicators of cognitive workload. 

4.3.5. Average pupil diameter 
The average pupil diameter can be interpreted as an indicator of 

cognitive load, where larger diameters suggest greater workload. From 
the results provided in Fig. 14 and Table 11, it can be observed a slight 
trend among configurations. In the first four configurations (1HRC, 1M, 
2HRC, 2M), there seems to be a gradual increase in median z scores. This 
trend could be indicative of a relationship between assembly complexity 
and cognitive load, as configurations associated with a higher level of 
complexity (2M and 2HRC) show an increase in pupil diameter 
compared to those with lower complexity (1HRC, 1M). Furthermore, 
when comparing collaborative tasks with their manual counterparts 
(1HRC vs. 1M and 2HRC vs. 2M), the median z-scores for collaborative 
tasks are actually lower. This observation is in line with the hypothesis 
that cobot assistance can lighten the cognitive load of human workers. 
However, it can be seen an inversion of trend for the last two configu-
rations (i.e., 3HRC and 3M). The reversal trend for the last two boxplot 
configurations could also reflect subjective perception of complexity. 
From the unstructured feedback collected during the experiment, a 
subset of participants (5 out of 18) found the diaphragm water pump 
assembly process easier and less mentally demanding than the tile cutter 
assembly. With regard to flow theory, Lu et al. [66] showed pupil 
diameter is higher in those task where people reported more flow. In this 
case, the overall pupil diameter seems higher in tasks “2HRC” and “2M” 

Fig. 11. Boxplot of average duration of fixations across the six different configurations.  

Table 8 
Results of the pairwise Wilcoxon signed rank test for z-score median of the 
average duration of fixations (results in bold are statistically significant, i.e., p- 
value < 5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 1.0 -     
2HRC < 0.001 0.00101 -    
2M 1.0 1.0 0.36040 -   
3HRC < 0.001 0.00427 0.92561 0.00210 -  
3M 0.00412 0.00195 1.0000 0.01094 1.0000 -  
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that some participants definitely found more engaging. These subjective 
experiences further underscore the importance of adopting a holistic 
approach when dealing with physiological signals. 

4.4. Unstructured feedback results 

During the experiment, unstructured feedback was collected from 
participants to complement quantitative findings. Initially, all partici-
pants viewed the cobot as non-supportive, slowing down processes for 
mechanical equipment. However, its value was recognised as the 
complexity of the assembly increased, highlighting its usefulness in 
complex scenarios. Specifically, 12 out of 18 participants highlighted 
the cobot’s usefulness in assembling the tile cutter’s cutting mechanism 
and maintaining the pump’s engine block, where it held parts in place to 
facilitate manual screwing processes. Furthermore, in terms of product 
complexity, 13 participants agreed with the complexity order obtained 
by Samy and ElMaraghy’s method and claimed to feel more stressed and 
scared of making errors when assembling the diaphragm water pump. A 
notable learning effect was reported by four participants, who noted that 
the tasks became significantly easier after the fifth trial, suggesting rapid 
adaptation to the cobot’s functionality and the assembly process over 
time. Finally, no participant claimed to feel uncomfortable of working 
closely with a robot. Overall, this feedback highlights the potentiality of 
collaborative environments particularly in complex assembly tasks. 

5. Discussion 

In this experiment, the study of physiological signals has consistently 
highlighted the difficulties of analysing and interpreting human re-
sponses in industrial settings. As shown in Table 12, physiological 
metrics provide evidence of the multiple nature of human cognitive load 
under different conditions. Although cobots were introduced with the 
goal of reducing workers’ cognitive load, the data suggest that their 

Fig. 12. Boxplot of the ration between average amplitude of saccades across the six different configurations.  

Table 9 
Results of the pairwise Wilcoxon signed rank test for z-score median of the 
average amplitude of saccades (results in bold are statistically significant, i.e., p- 
value < 5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 1.0 -     
2HRC 1.0 1.0 -    
2M < 0.001 0.03470 0.00163 -   
3HRC 0.08743 1.0 1.0 0.00250 -  
3M < 0.001 0.43 0.0025 1.0 0.05405 -  

Fig. 13. Boxplot of average peak velocity of saccades across the six different 
configurations. 
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influence is not homogeneous across all physiological measures. At the 
same time, an increase in assembly complexity appears to correspond to 
an increase in human cognitive load, as evidenced by several key 
physiological indicators. Furthermore, the differences in the analysis of 
individual metrics highlight the potential for external factors such as the 
work environment, individual differences between workers and the 
specific nature of the cobot-task interaction to influence physiological 
responses. It is evident that no single metric can capture the breadth of 
human responses. In light of these findings, a holistic approach, capable 
of capturing a wide variety of responses, is essential to provide an ac-
curate picture of worker’s well-being. Such an approach would not only 
help to optimise human-cobot interaction, but also as a guiding principle 
to design a work environment that prioritises human well-being 

alongside operational efficiency. 
Fig. 15 shows a correlation analysis between the physiological sig-

nals collected. The correlation values were computed using the Pearson 
correlation method. These values range between -1 and 1, where 0 rep-
resents no correlation, +1 the positive correlation and -1 the negative 
correlation [68]. The presence of stars in Fig. 15 indicates the statistical 
significance of these correlations. 

From the analysis performed it is worth noting:  

• Average SCR vs Average SCL (0.74): The robust positive correlation 
between these measures suggests that they may indeed capture a 
similar aspect of the human response. The high degree of correlation 
indicates that both measures may be reliable indicators of cognitive 
load, providing comparable information on sympathetic activity.  

• Average SCL vs Average amplitude of saccades (-0.21): Although the 
negative correlation between these variables is statistically signifi-
cant, the correlation value is low. This observation is in line with 
theoretical models according to which SCL is positively associated 
with cognitive effort, whereas average amplitude of saccades tends 
to decrease.  

• SDNN vs RMSSD (0.77): The strong positive correlation between 
these heart rate variability metrics suggest that they are likely to 
reflect a similar physiological response to cognitive load, due to 
changes in product complexity and modality. Given their high cor-
relation, both measures can be used to monitor cardiac activity.  

• Number of fixations/ trial duration vs average duration of fixations 
(-0.32): Despite the theoretical expectation that these metrics would 
be both positively correlated with cognitive effort, the observed 

Table 10 
Results of the pairwise Wilcoxon signed rank test for z-score median of the 
average peak velocity of saccades (results in bold are statistically significant, i.e., 
p-value < 5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 0.6766 -     
2HRC 1.0 1.0 -    
2M 0.0224 1.0 0.0466 -   
3HRC 0.3853 1.0 1.0 0.0373 -  
3M < 0.001 0.43 0.0026 1.0 0.0025 -  

Fig. 14. Boxplot of average pupil diameter across the six different 
configurations. 

Table 11 
Results of the pairwise Wilcoxon signed rank test for the z-score median of the 
average pupil diameter (results in bold are statistically significant, i.e., p-value <
5 %).  

p.adjust 1HRC 1M 2HRC 2M 3HRC 3M 

1HRC -      
1M 0.456 -     
2HRC < 0.001 0.002 -    
2M < 0.001 < 0.001 < 0.001 -   
3HRC 0.224 1.0 < 0.001 < 0.001 -  
3M 0.042 0.456 < 0.001 < 0.001 1.000 -  

Table 12 
Summary of the main results obtained through the analysis of physiological 
signals.  

Physiological 
metric 

Relationship 
with cognitive 
load 

Relationship with 
cobot support 

Relationship 
with product 
complexity 

Average SCR Positive 
correlation 

Generally lower 
median z-scores in 
collaborative modality 
with respect to manual 
counterparts 

General upward 
trend 

Average SCL Positive 
correlation 

Generally low median 
z-scores in 
collaborative modality 
with respect to manual 
counterparts 

Upward trend 

RMSSD Negative 
correlation 

Not clear trend Not clear trend 

SDNN Negative 
correlation 

Not clear trend. Higher 
median z-scores for 
1HRC and 2HRC with 
respect to manual 
counterparts 

Not clear trend 

Number of 
fixations/ trial 
duration 

Positive 
correlation 

Not clear trend. High 
variability of data 

Not clear trend. 
High variability 
of data 

Average 
duration of 
fixations 

Positive 
correlation 

Generally lower 
median z-scores in 
collaborative modality 
with respect to manual 
counterparts 

Upward trend 

Average 
amplitude of 
saccades 

Negative 
correlation 

Generally higher 
median z-scores in 
collaborative modality 
with respect to manual 
counterparts 

Downward trend 

Average peak 
velocity of 
saccades 

Negative 
correlation 

Not clear trend Not clear trend 

Average pupil 
diameter 

Positive 
correlation 

Generally lower 
median z-scores in 
collaborative modality 

Not clear trend.  
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negative correlation, and its statistical significance, suggests an in-
verse relationship in the context of this study. This is due to the high 
variability of the data collected and it may reflect a complex inter-
play of cognitive processes during task performance that deserves 
further investigation.  

• Average duration of fixations vs Average peak velocity of saccades 
(0.24): Again, the positive correlation between these metrics do not 
supports the theory that as cognitive load increases the duration of 
fixations and the average peak velocity show opposite behaviours.  

• Average amplitude of saccades vs Average peak velocity of saccades 
(0.81): These two metrics are positively correlated. As one would 
theoretically expect, they show similar trend as the cognitive load 
varies. It should also be noted that, as expected, average amplitude of 
saccades negatively correlates with EDA metrics (average amplitude 
of saccades vs Average SCR: -0.16; average amplitude of saccades vs 
Average SCL:-0.21). 

Therefore, the metrics that yielded the most valuable results, espe-
cially in terms of alignment with theoretical expectations, were those 
derived from electrodermal activity (EDA) and saccades. The patterns 
observed through these metrics provide evidence of the interaction be-
tween cognitive load and assembly complexity. These results are in line 
with those obtained by Zakeri et al. [46] who highlighted the significant 
effects of task complexity and cobot speed on mental load, com-
plementing the hypothesis that increasing assembly complexity corre-
lates with increased cognitive load. Similarly, also Verna et al. [42] 
showed that increasing product complexity leads to greater values of 
Skin Conductance Response, thus leading to higher stress level. 
Although not as significant as Pollak et al. [44], who showed how the 
presence of cobots affects human stress, this study also showed a slight 
reduction in cognitive load in the collaborative modality for some 
metrics. Differently, Fournier et al. [45] showed that working with 
cobots do not affect perceived cognitive load, which aligns with part of 
the findings of this work, since cobot support was not uniformly bene-
ficial across all physiological metrics and it varies both with task 

complexity and with the specific metric considered, indicating a more 
complex interplay. All of this underlines once again the importance of 
taking a holistic approach to the analysis of physiological signals. 

6. Conclusions 

The empirical investigation outlined in this study provides a pre-
liminary insight into the intricate relationship between assembly 
complexity, cobot support, and human physiological responses. Despite 
the heterogeneity of the data, some trends were identified:  

• Both Electrodermal Activity metrics (i.e., Average SCR and Average 
SCL) show a general upward trend as assembly complexity increases 
and a less effort in collaborative modality than in manual one.  

• Heart variability data (i.e., RMSSD and SDNN) did not show any 
particular trend.  

• In terms of eye-tracking metrics, the most significant were: average 
duration of fixation and average amplitude of saccades, which 
showed a relationship with assembly complexity and modality. Also, 
average pupil diameter showed a strong relationship with assembly 
complexity although only for the tile cutter and the mechanical 
equipment. Finally, the average peak velocity of saccades slightly 
underlined the supportive role of cobots in assembly processes. 

Another key result of the experiment underscored the potential of 
using physiological responses as indicators of cognitive load in industrial 
scenarios. It is also evident, though, that no single physiological metric 
can individually describe cognitive workload and therefore a compre-
hensive approach remains essential. In light of the findings of this study, 
one main potential practical implications emerge for improving human 
well-being in Industry 5.0 environments. In this context, cobots can be 
programmed to adapt their behaviour based on real-time physiological 
data, thereby tailoring their operations to the individual stress profiles 
and cognitive loads of human workers. This adaptive approach could 
include adjustments to the cobot’s behaviour based on metrics such as 

Fig. 15. Correlation analysis results between physiological signals where: (***) means that p-value < 0.001; (**) p-value <0.01 and (*) p-value<0.05.  
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heart rate variability, skin conductance, and eye-tracking data. For 
example, if increased cognitive load is detected by a pre-defined dash-
board of physiological metrics, the cobot could reduce its work speed to 
reduce the worker’s cognitive load. This approach is in line with the 
principles of Industry 5.0, which emphasises personalised, human- 
centred manufacturing environments. It is also worth underlining that 
individual differences were noted in physiological metrics. Individual 
differences in physiological responses, such as heart rate variability, 
electrodermal and eye activity, suggest that workers respond uniquely to 
similar stressors and cognitive demands. This variability highlights the 
limitations of generic models in accurately predicting human responses 
and suggests the need for more personalised models. To account for 
these individual differences, machine learning algorithms able to learn 
from a variety of physiological data collected over time from individual 
workers should be implemented. By integrating these personalised 
models into the cobot’s operating system, cobots could adapt their 
behaviour in real time to the worker’s current state. 

Nonetheless, limitations of the study must be acknowledged to 
contextualize the results. The variability of physiological responses 
across the six different configurations highlights the impossibility to 
capture human’s physiological state using a single metric. While some 
trends suggest an increase in cognitive load with assembly complexity, 
the lack of a consistent pattern across all measures indicates that other 
unconsidered variables may influence these physiological signals. 
Another limitation of the current research is the sample size, which, 
while adequate for initial exploration, may not fully represent a larger 
population. A larger sample size could provide more robustness to these 
results. Furthermore, the potential influence of individual differences, 
such as personal stress tolerance, were not controlled for in this study. 

Future research should expand the analysis of this study, using larger 
datasets and different production environments to validate and gener-
alize the results. In this context, experienced workers may be included in 
order to analyse how prior expertise affect cognitive effort levels when 
assembly complexity and modality vary. Furthermore, in the light of the 
introduction of new supporting technologies, such as cobots, in assem-
bly processes, it is necessary to extend the concept of product complexity 
to new paradigm of the complexity of collaborative assemblies, where 

the complexity of human-robot interaction becomes another crucial 
aspect. 
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the PRIN 2022 program (D.D.104 - 02/02/2022). This manuscript re-
flects only the authors’ views and opinions, and the Ministry cannot be 
considered responsible for them.  

Appendix A. Product characteristics, assembly process and HRC task allocation of the (a) mechanical equipment, (b) the tile cutter and 
(c) the diaphragm water pump (adapted from [43]) 

(a)  

Product Product characteristics Assembly process HRC Task allocation 

Parts and fasteners Code Quantities Elementary task (same in manual and HRC) Human Cobot 

Mechanical equipment Base Base 1 Pick and place BASE  X 
Elliptical flange EF1/EF2 2 Pick and place EF1  X 
Square flange SF 1 Screwing EF1 with Base X  
Bolt type 1 B1 4 Pick and place SF  X 
Bolt type 2 B2 2 Screwing SF with Base X  
Nuts type 1 N1 6 Pick and place EF2  X    

Screwing EF2 with Base X     
Pick the final product and place out of the assembly area  X  

(b) 
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Product Product characteristics Assembly process HRC Task allocation 

Parts and fasteners Code Quantities Elementary task (same in manual and HRC) Human Cobot 

Tile cutter Base Base 1 Pick and place Base  X 
Lateral support C1a/C1b 2 Pick and place C1a and C1b on Base X  
Joint component C2 1 Preliminary screwing C1a and C1b on Base X  
Cutting component C3 1 Placing the subassembly (Base+C1a+C1b) out of the assembly area  X 
Blade L1 1 Pick and place C2  X 
Tile blocker C4 1 Pick and place C3 in C2 X  
Rail rod P1a/P1b 2 Screwing C3 and C2 X  
Handle P2 1 Pick and place L1 X  
Bolt type 1 B1 2 Screwing L1 and C3 X  
Bolt type 2 B2 1 Pick and place C4 in C3 X  
Bolt type 3 B3 2 Screwing C4 and C3 X  
Nuts type 1 N1 2 Placing the subassembly (C2+C3+C4+L1) out of the assembly area  X 
Nuts type 2 N2 1 Pick and place subassembly (Base+C1a+C1b) back in the assembly area  X 
Nuts type 3 N3 2 Insert sub-assembly (C2+C3+C4+L1) in both P1a/P1b X     

Insert P1a/P1b in C1a/C1b X     
Final screwing C1a/C1b on Base X     
Pick and place P2 X     
Screwing P2 X     
Pick the final product and place out of the assembly area  X  

(c)  

Product Product characteristics Assembly process HRC Task 
allocation 

Parts and fasteners Code Quantities Elementary task (same in manual and HRC) Human Cobot 

Diaphragm water pump Engine block EB 1 Pick and place RF X  
Rubber feet RF 1 Pick and place EB  X 
Ring R 1 Screwing EB with RF X  
Flange 1 F1 1 Pick and place F1  X 
Flange 2 F2 1 Pick and place F2  X 
Diaphragm D1 1 Insert F1 in F2 X  
Cover with valves CV 1 Pick and place D1 on sub-assembly F1+F2 X  
Cover C 1 Screwing D1, F1 and insert CV on D1 X  
Pressure switch PS 1 Pick and place C  X 
Pressure switch 
diaphragm 

D2 1 Screwing C and F2 X  

Filter FIL 1 Insert R on EB X  
Flow adapter AF1/ 

AF2 
2 Insert and screwing sub-assembly pump head on EB (joining F1- 

EB) 
X  

Screws type 1 V1 2 Pick and place D2 and PS on C X  
Screws type 2 V2 6 Screwing PS and C X  
Screws type 3 V3 3 Pick and place FIL X  
Screws type 4 V4 2 Screwing FIL X      

Pick and place AF1 and AF2 X      
Screwing AF1 and AF2 X      
Pick the final product and place out of the assembly area  X  
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