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ABSTRACT
Statistical dependencymeasures such as Kendall’s Tauor Spearman’s
Rho are frequently used to analyse the coherence between time
series in environmental data analyses. Autocorrelation of the data
can, however, result in spurious cross correlations if not accounted
for. Here, we present the asymptotic distribution of the estimators
of Spearman’s Rho and Kendall’s Tau, which can be used for sta-
tistical hypothesis testing of cross-correlations between autocorre-
lated observations. The results are derived using U-statistics under
the assumption of absolutely regular (or β-mixing) processes. These
comprise many short-range dependent processes, such as ARMA-,
GARCH- and some copula-based models relevant in the environ-
mental sciences. We show that while the assumption of absolute
regularity is required, the specific type of model does not have to
be specified for the hypothesis test. Simulations show the improved
performance of the modified hypothesis test for some common
stochastic models and small to moderate sample sizes under auto-
correlation. The methodology is applied to observed climatological
time series of flood discharges and temperatures in Europe. While
the standard test results in spurious correlations between floods and
temperatures, this is not the case for theproposed test, which ismore
consistent with the literature on flood regime changes in Europe.
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1. Introduction

Nonparametric measures of association between random variables such as Kendall’s Tau τ

and Spearman’s Rho ρS are frequently used to investigate dependencies in environmen-
tal data analyses [45,21,25,46,37]. They have convenient properties: They are invariant
under monotone transformations, depending only on the joint behaviour of the random
variables as captured by their copula [47]. What is often desired in statistical analyses of
environmental data are statistical significance tests to assess if an estimated statistical rela-
tionship between observations is due to random chance. The distribution of Kendall’s Tau
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and Spearman’s Rho for testing the significance of cross-correlations is well understood for
independent and identically distributed (iid) random variables [22].

However, the assumption of independent observations is often unrealistic for environ-
mental data. Autocorrelation in observations results in higher sampling uncertainty for
the statistical estimation of parameters [13,30,32,51]. To assess the statistical dependence
between autocorrelated observations via a hypothesis test, the corresponding test statistic
needs to be adjusted, i.e. a different limiting distribution is required in the testing proce-
dure. It is understood that for positive autocorrelations the variance of the test statistics
is inflated [24,16]. That is because autocorrelation in stochastic processes tends to result
in realizations with patterns not occurring at all, or very rarely, for processes that are
only comprised of independent noise [31,13]. The peculiarities of the patterns depend on
the type of stochastic process and its dependence structure. Realizations of bivariate ran-
dom variables that are pairwise statistically independent but individually autocorrelated,
sometimes result in patterns, which can be mistakenly interpreted as dependence. This is
illustrated in Figure 1.

In panel (a) of Figure 1 a realization of a bivariate Vector Autoregressive Process of order
1 (VAR(1)) withGaussian noise and standard-normalmarginals is depicted. Themarginals
are statistically independent from each other, but are individually autocorrelated. The real-
ization conveys a pattern that could suggest dependence between the components as their
trajectories seem to align. The corresponding estimate of Spearman’s Rho for the bivari-
ate sample is roughly 0.46. Figure 1(b) depicts the asymptotic sampling distribution of the
estimator for Spearman’s Rho for iid observations, where the areas shaded in red depict
the critical region of the corresponding hypothesis test. For the sample in panel (a) the
test would result in a rejection of the Null Hypothesis. Panel (c) depicts the asymptotic
sampling distribution of the estimator accounting for autocorrelation in the components
proposed in this paper (see Corollary 2.1), resulting in a larger variance of the distribu-
tion and no rejection of the Null Hypothesis for the sample in panel (a), as the estimate
of Spearman’s Rho is outside the critical region. Repeating this simulation exercise 10,000
times for a sample size of 50, with parameters as stated above, results in approximately
31% rejections of the Null Hypothesis of pairwise independence at a significance level of
α = 0.05, when autocorrelation is not accounted for, corresponding to an inflation of the
type-1 error rate of the test. Using a distribution accounting for the presence of autocorre-
lation in the components for the hypothesis test maintains the prescribed nominal rate of
type 1 errors.

In this paper we present the asymptotic distribution of the estimators of Spearman’s Rho
and Kendall’s Tau for bivariate random variables, that are pairwise independent, but indi-
vidually autocorrelated. The result can be used to account for autocorrelation in hypothesis
tests of cross-correlations. The asymptotic distribution is derived under the assumption of
a strictly stationary, absolutely regular (or β-mixing) discrete-time stochastic process. We
also show the consistency of an estimator for the long-run variance of the test statistics
and the consistency of the test itself. Section 2 presents the main results as well as common
stochastic models in the environmental sciences to which they apply. Proofs can be found
in the supplementary material. Section 3 is split into two parts and contains simulation
studies investigating the size and power of the suggested hypothesis test for small to mod-
erate sample sizes. In the second part, the modified test is applied to smoothed time series
of annual flood peaks and temperatures from the European data set of [4]. The procedure
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Figure 1. (a) Realization of a bivariate VAR(1)-process Xt with Gaussian noise, normal marginal distri-
butions, individual AR(1)-parameters of 0.8, but no dependence between the components. Estimate of
Spearman’s Rho for the sample at the top left of the panel. (b) Asymptotic distribution of the estimator of
Spearman’s Rho ρS underH0 (no pairwise dependence) for independent observations. (c) Asymptotic
distributionof the estimator of Spearman’s RhounderH0 for dependent observations (seeCorollary 2.1).
In panels (b) and (c) the critical region for the corresponding significance test atα = 0.05 arehighlighted,
and the sample-estimate of Spearman’s Rho for the trajectory in panel (a) is depicted as a circle.

accounting for autocorrelation yields results that are consistent with the literature on flood
regime changes on the European scale.

2. Methodology

2.1. Main results

For a bivariate random variable Spearman’s Rho ρS and Kendall’s Tau τ are measures of
dependence that quantify the strength of monotonic relationships. They only depend on
the corresponding copula of the joint distribution and are independent from the marginal
distributions of the components of the bivariate random variable [47]. For a given random
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sample (Xi,Yi)1≤i≤n, they can be estimated using the ranks Ri (Ri is the rank of the i-th
observation, with rank 1 corresponding to the smallest observation). Their most widely-
used estimators are given by equations (1.1) and (1.2).

ρ̂S =
∑n

j=1(R
X
j − R̄X)(RYj − R̄Y)√∑n

j=1 (RXj − R̄X)
2 ∑n

j=1 (RYj − R̄Y)
2

(1.1)

τ̂ =
2
∑

1≤i<j≤n sgn(R
X
j − RXi )sgn(RYj − RYi )

n(n − 1)
(1.2)

Here, sgn refers to the sign-function. These rank correlation measures are often preferred
over the classical Pearson correlation in environmental data analyses, due to their robust-
ness, their suitability for heavy-tailed distributions and their ability to capture monotonic
dependencies in addition to linear dependencies, which are important properties for the
investigation of time series in environmental data analyses [26,45,25]. In addition to cross-
correlations, Spearman’s Rho and Kendall’s Tau are also used for detecting autocorrelation
in time series [19].

Our results concern strictly stationary, absolutely regular stochastic processes, which
comprise a wide variety of stochastic processes used in the environmental sciences.

Definition 2.1: Let (�,F ,P) be a probability space and A and B be two σ -fields. The
absolute regularity (or β-mixing) coefficient is defined as

β(A,B) = sup
1
2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj) − P(Ai)P(Bj)| (2.1)

where the supremum is taken over all pairs of finite partitions {A1, . . . ,AI} and {B1, . . . ,BJ}
of � with Ai ∈ A for i = 1, . . . , I and Bj ∈ B for j = 1, . . . , J. Let (Z)i∈Z be a p-variate
strictly stationary stochastic process on (�,A,P). For a ≤ b let Fb

a = σ(Za, . . . ,Zb) be
the σ -field generated by {Za, . . . ,Zb}. The process (Z)i∈Z is called absolutely regular (or
β-mixing), if

βk = β(F0
−∞,F∞

k ) (2.2)

converges to 0 as k → ∞.

The β-mixing coefficient is a measure of dependence between σ -fields and lies between
0 and 1, where 0 corresponds to independence. β-mixing of stochastic processes refers
to the σ -fields generated by components of the process. β-mixing is a stronger mixing
condition than strong (or α-)mixing. Suchmixing conditions are often referred to as short-
range dependence (SRD) due to the fast decay of the autocorrelation. For a more detailed
description of absolute regularity and other mixing conditions see e.g. [6,7].
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Corollary 2.1: Let (Xi,Yi)i∈Z be a bivariate, strictly stationary, absolutely regular process
with absolutely continuous marginal distributions and β-mixing coefficients βk satisfying

∞∑
k=1

k · β
δ/(2+δ)

k < ∞ (3.A)

for some δ > 0. Under the assumption of independence between (Xi)i∈Z and (Yi)i∈Z, the
limiting distributions of the estimators of Spearman’s Rho ρ̂S and Kendall’s Tau τ̂ between
(Xi)i∈Z and (Yi)i∈Z are given by

√
nρ̂S

D→N

⎛
⎝0, 1 + 2

∑
j>0

ρX
S (j)ρY

S (j)

⎞
⎠ (3.1)

√
nτ̂

D→N

⎛
⎝0,

4
9

⎛
⎝1 + 2

∑
j>0

ρX
S (j)ρY

S (j)

⎞
⎠

⎞
⎠ (3.2)

where ρX
S (j) refers to the Spearman-correlation between Xt and Xt−j, and the analogue

applies to ρY
S (j).

Corollary 2.1 also holds for lagged cross-correlations. The asymptotic variances of the
estimators are very similar, with the variance for the estimator of Kendall’s Tau being
smaller than that for Spearman’s Rho. The asymptotic distribution of ρ̂S mirrors that
of Pearson’s correlation coefficient for pairwise independent, but autocorrelated obser-
vations, see e.g. equation 11.3.5 in [15] or Theorem 11.2.2. in [8]. The variance of the
estimators is inflated when both time series are autocorrelated, but not affected when
at most one component is autocorrelated, in which case it simplifies to the expression
for iid observations (see e.g. Sections 11.2. and 11.3. in [22]). The degree of inflation
depends on the magnitude and speed of decay of the autocorrelations of the components,
as captured by the sum of their cross-product. If negative autocorrelations are present, the
asymptotic variance can be smaller than in the case of independent observations. For a sta-
tistical hypothesis test, a consistent estimator of the long-run variance is required, which
is provided by Corollary 2.2.

Corollary 2.2: Let (Xi,Yi)i∈Z be a bivariate, strictly stationary, absolutely regular process
with absolutely continuous marginal distributions and β-mixing coefficients βk satisfying
equation (3.A). Let κ be a kernel function satisfying Assumption 1 in [29] (see supplementary
material) and bn be a non-decreasing sequence with bn → ∞ and bn = o(n1/2). Let κ and
bn also satisfy

n∑
j=1

√
j · κ

(
j
bn

)
= o(n1/2) (4.A)

Then

σ̂ 2 = 1 + 2
n−2∑
h=1

κ

(
h
bn

)
ρ̂X
S (h)ρ̂Y

S (h) P→ 1 + 2
∑
h>0

ρX
S (h)ρY

S (h) = σ 2 (4.1)
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ρ̂X
S (h) =

∑n−h
i=1 (RXi − R̄X)(RXi+h − R̄X)√∑n

i=1 (RXi − R̄X)
2 ∑n

i=1 (RXi − R̄X)
2

(4.2)

ρ̂Y
S (h) =

∑n−h
i=1 (RYi − R̄Y)(RYi+h − R̄Y)√∑n

i=1 (RYi − R̄Y)
2 ∑n

i=1 (RYi − R̄Y)
2

(4.3)

With the estimator from equation (4.1), a hypothesis test for testing the significance of
rank cross-correlations between time series can be applied, without explicitly specifying
the dependence structure of the data-generating process. The estimator of the long-run
variance uses a kernel function κ(.) that maps its inputs to the interval [−1, 1]. Its pur-
pose is to put more weight on autocorrelations for small lags, as these autocorrelations can
be estimated with higher accuracy than autocorrelations for large lags. Together with the
bandwidth, which is a function of the sample size, the kernel function has to fulfil some
regularity conditions, which can be found in [29] and equation 4.A, in order to achieve
consistency of the long-run variance estimator. The matrices of estimated autocorrela-
tions generated by the estimators from equations 4.2 and 4.3 are positive semidefinite [40].
Finally, the consistency of the hypothesis test is guaranteed by Corollary 2.3.

Corollary 2.3: Let (Xi,Yi)i∈Z be a bivariate, strictly stationary, absolutely regular process
with absolutely continuous marginal distributions and β-mixing coefficients βk satisfying
equation (3.A). Let κ be a kernel function satisfying Assumption 1 in [29] and bn be a non-
decreasing sequence with bn → ∞ and bn = o(n1/2). Let κ and bn also satisfy equation
(4.A). Under the assumption of pairwise dependence between (Xi)i∈Z and (Yi)i∈Z with
ρs, τ �= 0, the test based on the test statistics

Tρs =
√
nρ̂S
σ̂ 2 (5.1)

Tτ =
√
nτ̂

4
9 σ̂

2
(5.2)

with σ̂ 2 from equation (4.1) is consistent.

Proofs for all Corollaries in this section are provided in the supplementary material.

2.2. Examples of β-mixing time seriesmodels in environmental applications

There is a wide class of time series models in environmental applications that fulfil the
conditions of Corollary 2.1. ARMA-models are among themost popular stochastic models
for time series analysis in the environmental sciences [50,33,34,45,37]. Weakly stationary
ARMA processes are β-mixing if the innovations are absolutely continuous random vari-
ables [44]. In this case, theβ-mixing coefficients decay geometrically:βk = O(ρk) for some
0 < ρ < 1. This also guarantees that the summability condition in equation (3.A) holds.
[9] give necessary and sufficient conditions for the strict stationarity of ARMA processes.
Other modelling approaches in environmental data analyses include GARCH processes
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(e.g. [49,43]). GARCH processes are also absolutely regular under certain conditions (see
[10], especially table 1 and Proposition 12). [10] also give sufficient conditions for the strict
stationarity of various GARCH processes. Again, under these conditions the decay of the
β-mixing coefficients is exponential and equation (3.A) holds.

Other common modelling approaches include Gaussian processes with parametrized
autocorrelation functions [48]. Often realizations of these processes are transformed for
modelling purposes, for example via quantile-to-quantile transformations, to obtain a
desired marginal distribution. Assuming β-mixing of the parent Gaussian process, mix-
ing conditions for these transformations are preserved, as measurable functions (in this
case cumulative distribution functions and their inverses) of mixing processes result in
mixing processes [5]. The mixing coefficients of the transformed process are smaller or
equal to the mixing coefficients of the parent Gaussian process [5]. Sufficient conditions
for β-mixing of a discrete-time Gaussian process can be found in [28] (see Theorem 8 and
Lemma 6 in Chapter 4.4). These conditions are related to the spectral density of the process
and can be verified for a given autocorrelation structure. The asymptotic mixing rate, the
speed of decay of βk, can be obtained from Theorem 4.2 in [53]. For instance: For a sta-
tionary, discrete-time Gaussian process Cov(X0,Xk) = O(ρk) for some 0 < ρ < 1 yields
βk = O(ρk). Cov(X0,Xh) = O(k−γ ) with γ > 2 yields βk = O(k2−γ ).

M-dependent processes, such as finite-order Moving Average processes, are also com-
mon stochastic models in environmental applications. M-dependent processes are β-
mixing and equation (3.A) always holds. However, β-mixing processes do not include
long-range dependent processes such as Fractional Gaussian noise [38], which is also used
for modelling environmental data [31,32].

The assumptions on the kernel function in Corollary 2.2 and 2.3 are satisfied by a large
number of kernels, such as the Bartlett-kernel κ(t) = (1 − |t|)I[−1,1](t) and the quartic
kernel κ(t) = (1 − t2)2I[−1,1](t). The bandwidth bn needs to be chosen so that equation
(4.A) is satisfied.

3. Application

In this section we assess the performance of the testing procedures for rank cross-
correlations based on the results from Section 2.1 for small to moderate sample sizes and
compare it with the conventional testing procedure that does not account for autocorrela-
tions for two widely used stochastic models: A VAR(1)-model and finite Moving Averages
of independent innovations, corresponding to smoothed time series. Subsequently we
apply the testing procedures to smoothed time series of temperatures and discharges and
interpret the results.

3.1. Simulation studies

We compare the procedure based on the results from Section 2.1, which we refer to as the
‘modified test’, and the procedure assuming the bivariate stochastic process (Xi,Yi)i∈Z is
iid, which we refer to as the ‘classical test’. We only present results for Spearman Rho, as
the results for Kendall’s Tau are fairly similar. We use the test statistic

Tρs =
√
nρ̂S
σ̂ 2 (6.1)
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where σ̂ 2 is estimated via equation (4.1) for the modified test and set to
√
n/(n − 1) for

the classical test. In both cases, the significance is evaluated by using a normal distribution.
We use the quartic kernel

κ(t) = (1 − t2)2I[−1,1](t) (6.2)

and choose the bandwidth as bn = 3n1/4. There are procedures for adaptively choosing a
bandwidth based on data which may improve the performance of the testing procedure,
but they are not discussed in the present article.

We consider two different stochastic processes in our simulation study. For bothmodels,
an iid process can arise as a special case.

Model 1 :
(

Xi
Yi

)
=

(
ϕX 0
0 ϕY

) (
Xi−1
Yi−1

)
+

(
εi
δi

)
, i ∈ Z (7.1)

(
εi
δi

)
∼ N (0,),  = VAR

(
εi
δi

)
=

(
1 ρ

ρ 1

)
(7.2)

Model 2 :
(

Xi
Yi

)
= 1

2q + 1

q∑
j=−q

(
1 0
0 1

)(
εi+j
δi+j

)
, i ∈ Z, q ∈ N (7.3)

(
εi
δi

)
∼ tv(0,),  =

(
1 ρ

ρ 1

)
, ν > 0 (7.4)

Model 1 is aVAR(1)-model where the error term follows a bivariate normal distribution.
The parameters ϕX and ϕY determine the autocorrelation of the components of the pro-
cess. Model 1 becomes an iid process for ϕX = ϕY = 0. The Spearman cross-correlation
between the components of the process is ρs = 6

π
asin

(
ρ
2
)
(see e.g. [41]), where the model

parameter ρ also equals the Pearson cross-correlation between the components. Model 2
is a Vector Moving Average Process with independent innovations that follow a bivari-
ate t-distribution. The coefficients are chosen so that they sum up to 1 and are equal, and
depend on the order of the model. For q = 0, we obtain an iid process. The marginal dis-
tributions of Model 2 are heavy-tailed. For ν ≤ 2, the Pearson cross-correlation between
themarginals is undefined, whereas the Spearman and Kendall cross-correlations are well-
defined and finite for all ν > 0.Model 2 is a suitablemodel for smoothed time series, which
are frequently encountered in environmental data analyses if the long-term behaviour is
of interest. For both models, the marginal distributions of the components can be trans-
formed to any other distribution with absolutely continuous distribution function (via
quantile-to-quantile transformations) without affecting the mixing properties of the pro-
cess, the Spearman correlation between the components and the performance of the testing
procedure.

Figure 2 shows the observed frequency of type-1 errors for testing the significance of
Spearman cross-correlation between X and Y , as a function of different degrees of auto-
correlation, which is determined by the parameters ofModel 1 andModel 2 (also indicated
by colour), employing a two-sided test at a significance level of α = 0.05. The results are
based on 10,000 simulations for each parameter configuration shown in the figure. For
Model 2, two univariate independent t-distributions were used for the error term instead
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of a bivariate t-distribution with ρ = 0. We show results for two different sample sizes (40
and 200) indicated by open and full symbols. The type 1 error rate of a statistical test usu-
ally isn’t overly sensitive to the number of observations, as we control for sample size in
the test statistic. However, the adequacy of the asymptotic result (Corollary 2.1), as well as
the accuracy of the long-run variance estimate (Corollary 2.2) does depend on the sample
size. Sample sizes as small as 40 for individual time series are frequently encountered in
the environmental sciences, especially when annual values or extremes are of interest (see
e.g. [12,35,23]).

Figure 2 shows that the observed number of rejections under the Null Hypothesis is
strongly affected by the presence of autocorrelations. For small sample sizes (n = 40), the
modified test gives a slightly larger type 1 error rate than the selected significance level. This
is especially noticeable in the presence of strong autocorrelations. However, this effect van-
ishes with increasing sample size. On the other hand, not accounting for autocorrelations
in the components substantially affects the observed type 1 error rate, starting at moder-
ate levels of autocorrelation (e.g. ϕX = ϕY = 0.4, q = 1, orange shapes in Figure 2). In the
case of weakly autocorrelated component processes, the resulting type 1 error rate is only
slightly elevated, but the modified test is also able to maintain the type 1 error rate in this
case (blue shapes in Figure 1).

Figures 3 and 4 show the power of the testing procedures as a function of sample size
for different degrees of dependence between the components of the processes of Model 1
and 2, which is parameterized by ρ (see equations 7.1–7.4). Both figures have four panels,
corresponding to different degrees of rank cross-correlations between the components, and
depict the observed rejection frequencies for different scenarios of autocorrelation of the
component processes (indicated by colour) at a significance level of α = 0.05. The results
are based on 10,000 simulations for each parameter configuration shown in the figures.

Figure 2. Observed type1error rate for two-sided significance test of Spearman’s Rho forModel 1 (panel
a) and Model 2 (panel b) at α = 0.05 based on simulations (10,000 runs). Horizontal axes represent the
parameters of the models governing the autocorrelations of the components (ϕX = ϕY and ν = 4 for
all results shown here), shapes indicate which asymptotic distribution was used for the significance test,
i.e. Squares: classical test; Circles: modified test. Open symbols: n = 40, Full symbols: n = 200.
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Figure 3. Observedpower for two-sided significance tests of Spearman’s Rho forModel 1 (equations 7.1
& 7.2) and different sample sizes at α = 0.05 based on simulations (10,000 runs). Panels refer to results
for different values of the parameter ρ of Model 1. Horizontal axes represent sample size. ϕX = ϕY for all
results shown here. Shapes indicate which asymptotic distribution was used for the significance test, i.e.
(Open squares) classical test, (Full circles) modified test.

As expected, the power is larger for the classical test. In the presence of autocorrelations,
more volatility is expected in statistical estimation procedures. When they are accounted
for in statistical hypothesis tests, as in the modified test, the power is affected. In the case of
the smallest positive autocorrelations considered here, the loss in power for the modified
test is rather small (light blue dots in Figures 3 and 4) and for iid observations the difference
in power is close to zero (dark blue dots in Figures 3 and 4). For larger autocorrelations, the
loss in power is noticeable, especially for small to moderate cross-correlations (orange and
red shapes in panels (a) and (b) in Figures 3 and 4): the vertical distance between the open
and full red symbols in the top panels of Figures 3 and 4 is comparatively high and also
persists for sample sizes up to 500. However, for strong cross-correlations (e.g. ρ ≥ 0.7),
the loss in power goes to zero rather quickly with increasing sample size, as the power
rapidly tends towards 1 for both procedures.
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Figure 4. Observedpower for two-sided significance tests of Spearman’s Rho forModel 2 (equations 7.3
& 7.4) and different sample sizes at α = 0.05 based on simulations (10,000 runs). Panels refer to results
for different values of the parameterρ ofModel 2 (ν = 4). Horizontal axes represent sample size. Shapes
indicate which asymptotic distribution was used for the significance test, i.e. (Open squares) classical
test, (Full circles) modified test.

As shown in the simulation results in Figures 2–4, the modified test gives correct infer-
enceswhile controlling the rate of type 1 errors to a satisfactory level, evenwhen an estimate
of the long-run variance is used that does not assume any specific structure on the underly-
ing statistical model, besides the necessary assumptions on the data-generating process for
the results in Corollary 2.1 to hold. The higher power of the classical test comes at the price
of an elevated rate of type 1 errors, which can be substantial when strong autocorrelations
are present in both component processes (Figure 2). In the case of weak autocorrelations in
the components, the modified test gives a negligible loss in power when compared to the
classical test (Figures 3 and 4). For iid observations, the loss in power is practically zero. A
more conservative testing procedure with a lower rate of type 1 errors (see Figure 2) can
be achieved by increasing the bandwidth bn, which, however, also reduces the power (not
shown).
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3.2. Application to hydrological data

Spurious dependencies due to autocorrelated observations are relevant in quantitative
analyses of environmental data. Sometimes correlations between smoothed time series
are investigated in analyses of climatological data [54,17,39,42,27,20]. In the case of yearly
observations, the rationale of using smoothed time series is the interest in the joint long-
term behaviour of the series rather than their year-to-year variability [54,42]. However,
even if the individual observations are independent, the smoothed time series will be auto-
correlated, which in turn can lead to spurious cross-correlations. This can be counteracted
by using the modified test suggested in this paper.

We present an example from hydrology on the European scale. [4] analyse over 2000
series of annual maximum peak discharges from 33 countries with observations from 1960
to 2010. Annual maximum peak discharges are an indicator of the flood regime at a river
cross-section and used for the estimation of design floods in flood risk management and
in the evaluation of the impact of climate change on the water cycle (see e.g. [2,52,18]). A
trend analysis shows distinct patterns of flood regime changes on the European scale and
hydrological drivers of these changes are discussed in [4]. One of the main patterns is a
downward trend of flood peaks in Eastern Europe. The authors argue that temperatures
have increased all over Europe, but the effects of this increase on flood peaks are especially
drastic and relevant in Eastern Europe, where floods are mainly generated by snowmelt
(see their Extended Data Figure 6). Rising temperatures have led to less snow cover and,
therefore, smaller flood peaks occurring earlier in the year than some decades ago [3]. The
decrease in flood peaks and the increase in temperature in Eastern Europe occurs simulta-
neously on a decadal scale. In order to investigate this relationshipmore closely, we examine
Spearman correlations between series of flood peaks and average annual temperatures for
the catchments in the data set of [4]. The flood data can be downloaded from their sup-
plementary materials. Temperature data are annual averages of daily catchment averages
of gridded E-OBS data, see [14].

We analyse smoothed series of flood peaks and temperatures, as we are interested
in their long-term coevolution and whether they are dependent at a multi-annual scale
rather than for individual years. We apply a simple two-sided moving average filter of
five years with equal weights to the data, centred around the observations. This is simi-
lar to Model 2 from section 3.1 with q = 2. Annual maxima of flood peaks are modelled
with iid random variables in classical flood frequency analysis (see e.g. Chapters 17&18
in [36]). When applying a significance test for cross-correlation, one would expect a sig-
nificant relationship between flood peaks and temperatures in Eastern Europe, but not so
in other regions of Europe, where snow processes (and thus temperature) are much less
relevant for flood generation and hence flood changes [4]. Figure 5 shows the estimated
Spearman cross-correlation between smoothed series of flood peaks and average annual
temperatures.

Figure 5(a,b) show the estimated Spearman correlation between smoothed series of
annual flood peaks and annual average temperatures for the classical and the modified
significance test, respectively, at a significance level of α = 0.05. In panel (a) the tests sug-
gest a statistically significant relationship at roughly half of all locations (1126 out of 2360
stations). When we account for autocorrelation in the individual time series, this number
drops drastically, as can be seen in panel (b) (353 out of 2360 stations). Importantly, in the
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Figure 5. Estimated Spearman-correlations between annual series of flood peak discharges and aver-
age annual catchment temperatures. All series are smoothed via a two-sided moving average filter of
length 5 with equal weights, centred at the observations (similar to Model 2 with q = 2). The circles,
representing catchments, indicate the magnitude of the estimated Spearman correlations. The size and
the transparency of the circles indicate statistical significance at α = 0.05. Panel (a) depicts results of
the classical test, panel (b) those of themodified test. Flood data from [4], temperature data from E-OBS,
see [14].

latter case the statistically significant relationships are found almost exclusively for catch-
ments in Eastern and Northern Europe, where snow-processes govern flood behaviour
and thus temperature-driven changes are physically very plausible [4]. In the Alps and
to a smaller extent in the Ore Mountains some significant positive correlations remain
which are also very plausible. Increasing temperature has led to decreasing snowfall limits
in these mountainous regions, resulting in more liquid precipitation and increasing flood
peaks [1,11]. Overall, when accounting for autocorrelation in significance testing between
smoothed series of flood peaks and temperatures, those regions remain significant for
which very good physical reasons of such a relationship exist.

4. Conclusion

The statisticalmodelling of autocorrelated observations is associatedwith increased uncer-
tainty of statistical estimation procedures for parameters compared to the modelling of
iid observations and can result in spurious cross-correlations. The use of the asymptotic
distributions of estimators of cross-correlations, which account for autocorrelation in the
components, can improve the accuracy of statistical inference when dealing with obser-
vations with persistence. We presented the asymptotic distribution of the estimators of
Spearman’s Rho and Kendall’s Tau under the hypothesis of pairwise independence of
the components and β-mixing of the stochastic process, which can be used for statisti-
cal hypothesis testing. The modified testing procedure is consistent and simulations show
that the procedure also produces satisfactory results for small to moderate sample sizes.
Accounting for autocorrelation results in lower statistical power, which is expected. How-
ever, the loss in power is negligible when only weak autocorrelations are present in the
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components and essentially zero for iid observations (Figures 3 and 4). On the other hand,
not accounting for autocorrelation in the components does result in elevated rates of type
1 errors, which can be substantial (Figure 2). The suggested testing procedure was applied
to 2360 European series of annual maximum flood peak discharges and catchment average
annual temperatures. We used smoothed versions of the series, which introduces autocor-
relation to the observations, resulting in many spurious correlations between flood peaks
and temperature with the standard test. In contrast, with the test proposed here, the plau-
sible locations remain, which are consistent with the literature on flood changes on the
European scale. The proposed procedure can be used for analysing any pairs of time series
with short-range dependence in the environmental sciences. Possible extensions of the
results presented here include confidence intervals for the estimators of Spearman’s Rho
and Kendall’s Tau for a β-mixing process, which would require a consistent estimator for
the long-run variance under pairwise dependence of the components of the process, or the
asymptotic distribution of the estimators for long-range dependent processes.
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