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Figure 1: Illustration of our AI-Enhanced Tutor Builder System: Educators provide input requirements (A) which inform
the automated generation of a draft tutor interface (B), followed by the educator’s hands-on refinement through component
generation and direct manipulation (C), visualizing the integration of generative design and educator-driven customization.

ABSTRACT
Intelligent Tutoring Systems (ITSs) have shown great potential
in delivering personalized and adaptive education, but their wide-
spread adoption has been hindered by the need for specialized
programming and design skills. Existing approaches overcome the
programming limitations with no-code authoring through drag and
drop, however they assume that educators possess the necessary
skills to design effective and engaging tutor interfaces. To address
this assumption we introduce generative AI capabilities to assist
educators in creating tutor interfaces that meet their needs while
adhering to design principles. Our approach leverages Large Lan-
guage Models (LLMs) and prompt engineering to generate tutor
layout and contents based on high-level requirements provided by
educators as inputs. However, to allow them to actively participate
in the design process, rather than relying entirely on AI-generated
solutions, we allow generation both at the entire interface level and
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at the individual component level. The former provides educators
with a complete interface that can be refined using direct manipu-
lation, while the latter offers the ability to create specific elements
to be added to the tutor interface. A small-scale comparison shows
the potential of our approach to enhance the efficiency of tutor
interface design. Moving forward, we raise critical questions for
assisting educators with generative AI capabilities to create person-
alized, effective, and engaging tutors, ultimately enhancing their
adoption.

CCS CONCEPTS
• Human-centered computing → User interface program-
ming; • Applied computing→ E-learning; Interactive learn-
ing environments.
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1 INTRODUCTION
The rapid advancements in artificial intelligence is revolutionizing
various sectors, and education is no exception. It is transforming the
way we teach and learn, enabling personalized learning experiences
that adapts to the unique needs and abilities of each student. Among
the most promising applications of AI in education are Intelligent
Tutoring Systems (ITSs), which have garnered significant attention
from researchers and educators alike.

Intelligent Tutoring Systems (ITSs) provide personalized and
adaptive education to students by supplying practice problems and
sequences tailored to their expertise as well as support and feedback
during problem solving. Research shows that ITSs are effective in
raising learning outcomes [7]. By tracking each learner’s knowl-
edge and skills, ITSs can customize problem sequences to improve
learning efficiency, allowing tutors to scale to serve many students
simultaneously and address needs around providing supplemental
instruction large classes [18].

However, several limitations prohibit the widespread use and
applicability of ITSs. One significant limitation is that tutor devel-
opment often requires specialized programming and tutor design
knowledge [13]. This prohibits non-technical educators from build-
ing their own customized tutors [5], restricting creation to experts
like scholars and software developers.

The recently introduced Apprentice Tutor Builder (ATB) [16]
enables educators to construct their own intelligent tutors. It pro-
poses a drag-and-drop interface for assembling tutor layouts row
and column formats, allowing them to interactively develop the
underlying tutoring model with demonstrations through validating
responses and supplying labels. While ATB mitigates the the chal-
lenges of tutor model authoring, it implicitly assumes educators can
also effectively design interfaces without specific training or support.
In contrast, research shows that interface and instructional design
requires specialized skills [14]. An obvious question is therefore
how can we help educators in the UI design process to help
them produce better tutors?.

To address this, we propose to enhance the Apprentice Tutor
Builder with the capabilities of Generative AI [1]. We create a
prompt engineered to generate layouts and content directly from
the requirements provided by the educators. This prompt incorpo-
rates design constraints to allow training of tutor, design principles,
and examples to ensure the generated interfaces are effective and
visually appealing. However, in order to avoid taking control away
from educators in interface design, we enable generation of either
the whole interface or just of specific components. The former
serves as a starting point for the interface, and it can be further
modified to meet educators’ needs. The latter facilitates the cre-
ation of specific and reusable components and ensures educators
for educators to place them within the final interface. With this
dual approach, illustrated in Figure 1, we aim to balance the high au-
tomation provided by generative AI with high control for targeted
customization. To our knowledge, this method represents a novel
application in the field of tutor authoring; indeed, While AI has
been leveraged to automate the creation of the underlying models
in intelligent tutoring systems [9], its potential to assist end-users,
particularly educators, in designing the user interfaces of these sys-
tems has remained unexplored. Through a preliminary comparison,

we show the potential of our method to accelerate the process of
designing tutor interfaces, reducing the time and effort required
to create both simple and complex interfaces. However, further
research is needed to assess the quality and completeness of the AI-
generated interfaces and their impact on the overall effectiveness
of the tutoring system. We also raise questions about the optimal
integration of generative interface tools into educators’ workflows,
ensuring the system meets real-world tutoring requirements. These
questions will be addressed in a future user study, where we will
further develop our approach. We aim to collect detailed feedback
from educators on the usability and impact of the Generative AI
assistance on their final design process and the resulting interfaces.
The final goal is to empower educators to create personalized and
effective tutor interfaces by making the tutor design process more
efficient and engaging with the assistance of generative AI. The
resulting improvements in the usability of intelligent tutor inter-
faces could ultimately lead to wider adoption of adaptive education
among students.

1.1 Related Work
The field of intelligent tutoring systems (ITSs) has witnessed signifi-
cant advancements in recent years, with researchers and developers
striving to create adaptive learning environments that cater to the
unique needs of each student [7]. Despite the proven effectiveness
of ITSs in enhancing learning outcomes, their widespread adoption
has been hindered by the complexity involved in their develop-
ment, which often requires specialized programming and design
skills [13]. In an effort to democratize the creation of ITSs and
empower educators to take an active role in their development,
various authoring tools and platforms have emerged.

One prominent example is the Cognitive Tutor Authoring Tools
(CTAT) [5], which provide a suite of tools for designing and de-
ploying cognitive tutors. CTAT allows educators to create tutors by
demonstrating problem-solving steps and specifying pedagogical
rules. Similarly, the Authoring Software Platform for Intelligent
Resources in Education (ASPIRE) [12] enables domain experts to
create constraint-based tutors by defining the domain model and
problem-solving strategies. Another notable system is SimStudent
[10, 11] and the related Apprentice Learner System [8], which em-
ploy machine learning techniques to model student learning and
support tutor authoring.

These tools primarily focus on the authoring of the domainmodel
and pedagogical strategies, assuming that educators possess the
necessary skills to design effective user interfaces. Our approach, in
contrast, specifically addresses the challenges of assisting educators
in creating tutor’s user interfaces.

Generative user interfaces for end-user design have garnered
significant attention in recent years, with various approaches being
explored to automate or assist in the design process [15]. One of
the main line of research focuses on the unsupervised generation of
user interfaces, where the system automatically creates interfaces
based on a set of predefined rules or learned patterns. For example,
Neural Design Network [6] uses deep learning to generate user
interface layouts from a given set of UI components. Closer to our
work, Huang. et al. [3] introduced a method to generate layouts
from textual descriptions using transformers models.



Towards Educator-Driven Tutor Authoring: Generative AI Approaches for Creating Intelligent Tutor Interfaces L@S ’24, July 18–20, 2024, Atlanta, GA, USA

Interface Type
Time (s) Keystrokes

Classical AI-Enhanced Reduction Classical AI-Enhanced Reduction

Simple 187 143 -23% 184 126 -31%
Complex 372 116 -68% 141 74 -47%

Table 1: Comparison of time and keystrokes required for building tutor interfaces: Classical vs. AI-Enhanced

Another approach involves the controlled generation of sub-
elements, where the system assists designers by generating specific
components or suggestions based on user input. Stylette [4] is a
system that allows end-users to customize web elements based on
natural language instructions, while Rewire [17] suggests alterna-
tive layouts for a given user interface based on design heuristics
and user feedback.

With respect to the above methods, our approach differs in two
key aspects. First, it focuses on the application domain of tutor
design. Second, it integrates both unsupervised generation at the
interface level and controlled generation of components. This is in
contrast to previous works, focused on the refinement of specific UI
components [4], generation of layouts without human intervention
[6], or layout generation without AI support [19].

2 AI-ENHANCED TUTOR INTERFACE
BUILDER

Our method for enhancing the ATB with generative AI capabilities
involves three key components: a Domain Specific Language (DSL)
for communicating with the LLM, prompt engineering to guide the
generation process, and two levels of interaction for flexibility and
control.

We define a compact DSL to represent tutor interface layouts,
which includes fundamental elements such as title[value] for
specifying the tutor’s title, row and column for representing hori-
zontal and vertical arrangements of elements, label[value] for
defining text labels, and input[placeholder] for defining input
fields with optional placeholder text. These elements can be com-
bined to generate complex tutors. The DSL representation enables
efficient communication with the LLM and ensures that the gen-
erated HTML output adheres to the desired template, preventing
inconsistencies and deviations from the intended layout and aes-
thetics that may arise if a tutor’s HTML interface is generated
directly from the LLM.

To guide the generative model in creating appropriate tutor in-
terfaces, we engineered a prompt consisting of different sections.
The System Description provides an overview of the desired tutor
interface, emphasizing the importance of a clear problem statement
and a step-by-step resolution pathway to align with the educational
objectives. The Format Explanation explains the DSL format used
to represent the tutor interface layout, enabling the model to gen-
erate layouts that conform to the specified format. The Design
Instructions specify design principles, such as separating input
elements, arranging elements within rows and columns, and avoid-
ing interactive buttons within the layout. The Task Instruction
instructs the model to transform a detailed description of the tu-
tor into the compact DSL representation, ensuring that the model

understands its primary objective and generates the desired out-
put format. Finally, a set of representative Examples serves as a
reference for the model on how to apply the above principles in
different contexts.

We introduce two levels of interface generation to fit into differ-
ent design phases. First, Interface Generation supports creating
a complete tutor interface layout based on the provided detailed
description. It serves as a starting point for tutor designing. This
allows the user to start from a generated user interface aligned with
the design principles specified in the prompt. We argue that the
refined user interface will be more likely to follow these principles.
In addition, interface generation could be particularly useful for
users who prefer a more automated approach or have limited time
for customization. On the other hand, Component Generation
outputs designs for specific and reusable interface components;
e.g., widgets for equations or other forms and flows. This capability
aims to let users create interfaces that closely match their specific
intent at a lower scope, while still benefiting from the efficiency
and consistency provided by the generative model.

Our AI-enhanced tutor interface builder is implemented on top
of the existing ATB interface, leveraging an HTML/Javascript front-
end and a Flask backend. We utilize GPT-4 1 as the LLM engine to
power the generation process. The interface and component gener-
ator are integrated into ATB’s user interface as toolbar widgets.

3 PRELIMINARY EVALUATION
To evaluate the efficiency of the AI-enhanced Apprentice Tutor
Interface Builder, we conducted a small-scale comparison with a
previous version. We compared the performances of four team
members against the reported performances of high-expertise in-
dividuals from the ATB paper. Although comparing our team’s
performance with that of the high-expertise ATB participants is
not a strictly controlled comparison, we believe their high level of
expertise significantly influences their performance, making it a
suitable basis for preliminary comparison. Furthermore, to support
our findings andmitigate some of the issues associatedwith compar-
ing different participant groups, we employed the Keystroke-Level
Model [2]. This model evaluates the efficiency of the interface by
measuring the minimum number of keystrokes required to com-
plete tasks, providing a quantitative measure of user interaction
efficiency.

Evaluation Setup. Users were asked to design the same two in-
terfaces used in a prior ATB evaluation [16]: a simple interface
for a sequential problem and and a more complex interface for an
arithmetic equation solver, both illustrated in Figure 2. We recorded

1version gpt-4-0613
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Figure 2: This image illustrates the two interfaces used in the evaluation: On the left, the ’Simple’ interface, designed for
sequential problem-solving tasks, offers a user-friendly layout with simple input fields. On the right, the ’Complex’ interface
is tailored for an arithmetic equation solver, featuring a more advanced layout with multiple input fields and operational
functions to handle equations.

the time taken for each task to compare the efficiency of the two
approaches.

Results. As shown in Table 1, using AI assistance consistently
reduced the time required to build both simple and complex. In-
terestingly, the efficiency gain was more pronounced in the case
of the complex interface, with a 68% reduction in time compared
to the classical approach. This can be attributed to the fact that
the complex interface, tailored for an arithmetic equation solver,
required a more advanced layout with multiple input fields and op-
erational functions. In this scenario, the AI assistance likely played
a more significant role as users could leverage it to generate the
equation components and layout elements more efficiently. On the
other hand, the efficiency gain for the simple interface was lower
but substantial, at 23%. This lower gain can be explained by the
need for users to manually type all the labels in the simple interface,
a process that was not necessary for the complex interface. This
manual input likely offset some of the efficiency gains provided by
the generative AI capabilities. Furthermore, although the reduction
in absolute keystrokes is not as substantial as the time savings, it
still supports the overall improvements in efficiency.

Limitations. While this small-scale comparison provides promis-
ing indications of generative AI potential to improve tutor’s in-
terface design efficiency, particularly for complex tutors, further
large-scale studies with diverse participants, tasks, and detailed
feedback are necessary to validate these findings and gain deeper
insights into the tool’s impact on user satisfaction and the design
process.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an approach to improve the design of in-
telligent tutors’ with Generative AI. The comparison demonstrates
the potential of the approach to significantly increase efficiency of
interface designing, particularly for complex interfaces. To develop

further our approach, we aim to address the following research
questions:

• RQ1: How can generative interface tools best integrate into
educators’ tutor building efforts?

• RQ2:What is the optimal configuration to balance design
freedom and control for educators?

• RQ3: To what extent can automatic design tools meet the
diverse requirements of real-world tutoring contexts?

To address these questions, we plan to conduct a study involving
educators to assess our approach. This study will provide insights
into how generative interface tools can best meet the needs of edu-
cators. Moreover, understanding how well these tools can accom-
modate the diverse requirements of real-world tutoring contexts is
crucial for their successful adoption. By actively involving educators
in the development process, we can identify interaction patterns
that align our solutions with their needs, ultimately enhancing the
quality and accessibility of intelligent tutoring systems.

Finally, we believe that our approach could be extended and
applied to a wider range of tutor-building tools, such as CTAT [5].
By investigating the generalizability of our approach, we aim to un-
lock new ways of integrating generative AI in supporting educator-
driven tutor design. Moreover, the concepts and methods presented
in this paper could also find applications in other areas of end-user
design, such as website builders or game development tools, open-
ing up new possibilities for empowering non-expert users to create
engaging and effective digital experiences.
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