
29 June 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fault Grading Techniques for Evaluating Software-Based Self-Test with Respect to Small Delay Defects / Bartolomucci,
Michelangelo; Deligiannis, Nikolaos; Cantoro, Riccardo; Sonza Reorda, Matteo. - (In corso di stampa). (Intervento
presentato al convegno International Symposium on On-Line Testing and Robust System Design (IOLTS)).

Original

Fault Grading Techniques for Evaluating Software-Based Self-Test with Respect to Small Delay Defects

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2988804 since: 2024-05-17T07:32:46Z

IEEE

Fault Grading Techniques for Evaluating
Software-Based Self-Test with Respect to

Small Delay Defects
Michelangelo Bartolomucci, Nikolaos I. Deligiannis, Riccardo Cantoro, Matteo Sonza Reorda

Department of Control and Computer Engineering, Politecnico di Torino, Italy

Abstract—A widely adopted practice for in-field testing of
electronic devices uses Software-Based Self-Test (SBST) in the
form of Software Test Libraries (STLs). Typically, STLs target
the stuck-at and Transition Delay Fault (TDF) models. However,
to face the new defects introduced by the most recent semicon-
ductor technologies, new fault models must be adopted. Small
Delay Defects (SDDs) play an increasingly important role in this
scenario. Unlike TDFs, SDDs slightly increase the paths’ timing,
whose size is not in the same order of magnitude of the clock
period. These defects can cause failures during the operational
phase if they affect the critical paths. Remarkably, in scan testing
the propagation time of a fault is limited, as a fault effect has to
reach the scan flip-flops to be detected. However, in functional
testing, the fault effect may require several clock cycles before
reaching an observable point. Thus, the delay due to the fault
cannot be indefinitely long.

As there will be the need to move to delay faults when
developing STLs, it is important to use the timing information
correctly in functional fault simulations. SDDs are the typical
choice. In this paper, we implemented a fault grading process for
STLs to show how the fault coverage they can achieve changes
when the delay defect increases (from SDDs to the extreme case
of TDFs). The work uses static timing analysis; although this
is known to yield pessimistic results in some cases, it gives a
very good indication of the trend in fault coverage as the SDDs
approximate TDFs. Differences in fault coverages with respect
to the TDF model are highlighted, while an assessment of the
effects of multi-cycle delays is also provided.

Index Terms—Small Delay Defects, Delay Test, Safety-Critical
Domain, Functional Safety, Processors

I. INTRODUCTION

In the dynamic realm of digital technology, ensuring the
reliability and effective testing of digital circuits emerges as
a fundamental requirement. As our reliance on electronic sys-
tems grows, ensuring digital circuits’ seamless and error-free
operation becomes crucial for various applications, ranging
from consumer electronics to safety-critical systems, e.g., in
aerospace and healthcare.

In the safety-critical domain, from the manufacturers’ stand-
point meeting the high and stringent reliability thresholds,
imposed by the respective safety standards (e.g., ISO-26262
for the automotive industry) is not enough. They must further
guarantee that a fault will never produce a system failure that
will put at danger a human life or endanger the environment.

A common test procedure that is widely in the end-of-
manufacturing phase but most importantly during the mission
phase of the systems (as in-field test) is functional testing.
In the case of end-of-manufacturing, functional testing is

performed to detect any defects that may have escaped the
traditional structural test. When in-field testing is targeted,
a functional test is performed first due to its flexibility.
Moreover, functional test is guaranteed not to target any fault
that cannot propagate and cause a system failure. Furthermore,
functional testing is favored as a form of in-field testing
because the system company (i.e., the customer) can also
launch it, knowing the achieved fault coverage, which is
assessed by the manufacturing company, which developed the
STL.

In-field test is sometimes applied through Software-Based
Self-Test (SBST) for the development of Software Test Li-
braries (STLs) [1]. STLs are a collection of test programs and
are typically executed during the idle times of the system to
ensure that the system functions correctly and safely. They
represent a suitable solution due to their non-intrusiveness as
they preserve the system state and do not alter it, are flexible,
and can provide coverage for the widest possible number of
faults.

Currently, the dominant fault models are the stuck-at (SAF)
and transition delay (TDF) fault models as they adequately
model the vast majority of defects that may manifest in an
operational scenario. However, in the last few years, it has been
observed that as new technological advancements yield denser
and faster circuits, the number of test escapes increases. This
negative trend is attributed primarily to defects not adequately
modeled by the adopted fault models. As a solution to alleviate
this problem, new fault models have been proposed, like those
of the Cell-Aware Test [2] and the Small-Delay Defects (SDD)
testing [3].

However, the problem of generating STLs, even for the
dominant models, i.e., SAFs and TDFs, is an arduous task for
the test engineers. Albeit certain automated solutions exist to
partially assist in the generation of the test programs, typically
a significant amount of manual effort is required for their
development and evaluation.

In this paper we propose a novel technique for assessing
and profiling STLs, written for the TDF model, characterizing
them in terms of their SDD detection capabilities. We present
the results of a fault grading process for STLs that shows
how the fault coverage (FC) is impacted as the delay value
at the fault site increases, approximating the extreme case of
a TDF. The delay information is derived from a commercial
static timing analysis tool. The method has been applied to

functional units of a single issue, scalar pipelined RISC-V
processor.

The rest of the paper is organized as follows. In Section II,
we delve into the background of SDDs, exploring motivations
and elaborating upon relevant works. In Section III we present
our method and in Section IV the experimental results. Lastly,
in Section V we draw some conclusions and provide insight
into our future works on this topic.

II. BACKGROUND

A. Small Delay Defects

An SDD is a type of delay fault occurring in between
interconnections that can make the circuit fail during at-speed
operation. Such defects are typically caused by small voids
in the interconnections, e.g., due to the deposition of particles
on the silicon during fabrication, resulting in weak, resistive
defects in the circuit.

When an SDD is manifested in the circuit’s longest (critical)
path, it can cause the total delay of the path to violate the
global clock timing [4]. They are different from gross delay
faults (covered by the TDF model), which cause the circuit
to fail regardless of the path they affect. More specifically,
the TDF model assumes that single circuit nodes, rather
than paths, introduce large delay values (Ï clock period) on
both polarities (i.e., slow-to-rise and slow-to-fall); thus, all
transitions passing through the node are going to be delayed
past the clock period. Hence, when performing TDF-oriented
ATPG, the algorithm will try to propagate the fault effect
with minimal computational effort. This means that the critical
paths are not explicitly enumerated for performance reasons
since the time required for enumerating the total paths of
a modern sequential circuit can be enormous [5], and thus
potential SDDs are left untested. The timing-aware ATPG [6]
has been proposed to amend this obstacle. Delay information
in standard delay format (SDF) is incorporated through the test
generation phase, which is utilized to identify critical circuit
paths and target SDDs effectively and systematically.

However, it may be possible that an SDD cannot be prop-
agated through the critical part of the circuit. This implies
that even with timing-aware ATPG patterns, these defects
will remain undetected at the operational frequency. This
category of SDDs is called hidden delay defects. If they
remain undetected, their latency may grow due to aging effects
and may cause early life failure and reliability issues. To
solve this problem, the post-ATPG method of faster-than-at-
speed testing (FAST) [7] has been introduced. FAST utilizes
the already computed test patterns and evaluates their fault
detection capabilities under multiple, faster than the operating
frequency timing checks.

However, in the context of functional testing (e.g., during
in-field testing) and when STLs are utilized, there is no
definitive method for effectively evaluating the fault detection
capabilities of the programs concerning SDDs.

B. Relevant Works

The problem of identifying critical paths in a sequential
circuit has bothered the research community in the past. In [8],
the authors propose a versatile method for enumerating all or
a user-specified number of the longest sensitizable paths of
a circuit by encoding the path search as an instance of the
Boolean Satisfiability (SAT) problem. The same methodology
is employed in [9] for generating tests that sensitize paths
of user-defined lengths while considering the complex timing
behavior of manufacturing defects influenced by process vari-
ations. In [10], the authors present an innovative approach for
analyzing reachable sensitizable paths in sequential circuits.
This approach integrates a SAT-based path-enumeration algo-
rithm with a model-checking solver to assess the reachability
of circuit states. Specifically, the method identifies the longest
sensitizable paths within a circuit and determines the minimal-
length test sequences that can sensitize these paths from a
given initial state.

Regarding the area of functional test generation, in [11]
the authors, building on top of their previous works, propose
a deterministic, timing-aware ATPG system for identifying
and testing for SDDs in non-scan circuits. This methodology
determines the longest sensitizable paths for fault activation
and generates sub-sequences for each fault, starting from
the circuit’s initial state to avoid over-testing. The process
incorporates various phases, including synchronization, path
generation, fault propagation, and sequence connection, each
contributing to formulating a comprehensive and efficient
testing strategy.

In [12] the authors propose a novel approach for auto-
matically generating functional microprocessor test sequences
targeting SDDs by utilizing bounded model checking. This
work is the first to automate functional test program generation
for small-delay faults in processors, highlighting the signifi-
cance of applying formal methods and constraint-based ATPG
to enhance testing effectiveness while maintaining processor
functionality and operational integrity.

In [13] the authors introduce PHAETON, an advanced tool
designed for the automated generation of functional test se-
quences that target small-delay faults within microprocessors.
The tool utilizes SAT-based approaches and the principles
of bounded model checking. The tool is shown to identify
the longest sensitizable paths for testing and to incorporate
mechanisms to ensure that generated test sequences are func-
tional, meaning they can be directly applied in a real processor
environment without additional hardware modifications.

In [14], the authors introduce a novel algorithm for diag-
nosing SDDs in compressed test responses, a first in address-
ing timing issues amidst manufacturing variations and new
FinFET defect behaviors. The approach combines variation-
invariant structural analysis, GPU-accelerated simulation, and
variation-tolerant matching, showing high accuracy and scal-
ability on benchmark circuits. It’s designed for enhancing
fault candidate data for volume diagnosis rather than preci-
sion diagnosis, which deals with multiple faults and requires

uncompressed data. However, this work focuses on scan-based
designs, diverging from the functional-based approach that we
are focusing on in this paper.

In [15], the authors address the challenge of accurately
assessing the fault coverage of STLs used for in-field testing
of integrated circuits in safety-critical applications. Traditional
fault simulation tools, designed for end-of-manufacturing tests,
do not suffice for in-field scenarios where STLs operate, due
to their different requirements and operational contexts. The
paper differentiates between Sequential Circuit Fault Simu-
lation (SC-FSIM) and Self-Test Procedures Fault Simulation
fault simulation (STP-FSIM), highlighting the computational
challenges of the latter and proposing optimized method-
ologies to balance accuracy and computational efficiency.
These methodologies leverage commercial tools to facilitate
adoption in professional settings. Experimental results validate
the effectiveness of these techniques, especially in the context
of the automotive sector’s stringent safety standards, like ISO
26262.

Lastly, in [16], the authors present a method for enhancing
digital peripheral testing in SoCs by using SBSTs for detecting
delay and stuck-at faults. Their approach aims to complement
or replace traditional scan-based testing, potentially lowering
costs and improving fault coverage without additional power
consumption. A case study on a digital communication pe-
ripheral showcases that SBSTs can uniquely identify faults
not detectable by scan methods, particularly in transition delay
faults. The study also explores SDDs and the role of function-
ally untestable faults, emphasizing the synergy between SBST
and scan testing for a thorough testing strategy in SoCs.

III. PROPOSED GRADING METHOD

Our goal is, given an STL, which has been written for a
TDF fault model, to asses its fault detection capabilities for
SDDs while utilizing commercial electronic design automation
(EDA) tools.

After synthesizing the RT-level description of our sequential
circuit, which acts as our circuit under test (CUT), we obtain
the gate-level description and the circuit’s delay information
in SDF. To extract the timing information of each path of the
CUT, we resort to static timing analysis (STA) [17]. Using a
commercial STA, we can identify the exact delay and slack of
all structural paths within the CUT.

As depicted in Figure 1, the paths within a sequential circuit
belong to four categories according to their start and end
points. These are:

1) A path beginning from a primary input (PI) and ending
to a primary output (PO), colored in red.

2) A path beginning from a primary input (PI) and ending
to an FF, colored in yellow.

3) A path beginning from an FF and ending to an FF,
colored in green.

4) A path beginning from an FF and ending to a PO,
colored in blue.

The timing information concerning PIs and POs is typically
tailored to the specific application context. For instance, if the

Flip-Flops

Flip-Flops

Prim
ary O

utputsPr
im

ar
y

In
pu

ts

Fig. 1: Path types in a sequential circuit.

CUT is integrated into a System-on-Chip (SoC), this timing
data relies on the interactions with peripherals. It cannot be
directly inferred from the logic synthesis of the standalone
CUT unless these application-specific timings are considered
constraints on PIs and POs, typically through SDC files (in
Synopsys terminology) during synthesis. Therefore, without
loss of generality, this paper focuses on SDDs affecting the
paths from FFs to FFs. These timing concerns are strictly
determined by the structural characteristics of the CUT and are
independent of external factors. However, considering that the
PI/PO timing information is available, the proposed grading
method can be equally applied.

These paths are considered the fault sites for SDDs. Consid-
ering an arbitrary path, then the corresponding SDD latency
is computed as:

SDDlatency “

#

slackmin ` K ˆ pslackmax ´ slackminq 0 ď K ď 1.0

K ˆ clock period K ą 1.0

Let us consider the case depicted in Figure 2. The slackmin
value refers to the slack of the longest (critical) path, whereas
slackmax refers to the slack of the shortest path of the circuit.
Hence, for K values less than 1.0, the SDD latency equals
values in the range of rslackmin, slackmaxs. These delay values
are added on top of the minimum slack of the critical path
of the CUT. However, as K exceeds the value 1.0, the SDD
latency can induce multi-clock cycle violations on the CUT,
approximating the effects of a TDF on the circuit.

Circuit paths are ranked from top to bottom, with the longest
(critical) paths having small slack values, while shorter paths
exhibit more significant slack values. When an SDD occurs
in the critical path with a relatively small latency (denoted
by a small K value), it activates only that critical path. This
activation does not impact longer, less critical paths, as they
would not experience timing violations. However, as fault

Time

setup

min slackdata arrival time

transition is applied transition is captured

longest path

shortest path
max slack

Fig. 2: Sequential circuit path ranking

latency increases, more timing violations occur, activating
additional paths for propagating the violation to observable
points. In the context of functional test, this means that as the
latency of an SDD increases, inducing more path violations
on the CUT, the probability of fault detection increases too in
a proportional manner.

By utilizing the STA tool, we can identify the slack time
for each SDD fault site. In an iterative manner, by considering
different K values, we can generate a set of fault lists that
differ in the latency of each fault. The next step is to run a
fault simulation campaign of the CUT, considering all of the
generated fault lists.

However, it is known that STA is pessimistic, and the
longest paths may be false paths (non-sensitizable). This will
result in a low coverage for low K values. Furthermore, by
increasing K by a constant value for each fault site, we are not
considering the different distributions of paths i.e., some fault
sites may activate a higher percentage of new paths than others
when increasing K. However, this grading method gives us a
good indication of the FC trend.

Lastly, the proposed method is generic and can be applied
to any sequential circuit used as a CUT.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

As a case study, we used five different STLs that have
been developed for the in-order 4-stage RISC-V processor
CV32E40P [18]. Three STLs were written for the processor’s
load and store unit (LSU) and two for the multiplier unit.
The processor’s RT-level description was synthesized via Syn-
opsys Design Compiler using the Silvaco 45nm technology
library [19]. Table I reports the TDF coverage achieved by
the test programs on the functional units we employ as targets
within our CUT.

STL TDF Coverage [%] TAT [CCs]

MULT 1 89.01 48,209
MULT 2 49.72 22,215
LSU 1 71.91 1,910
LSU 2 71.28 1,185
LSU 3 65.29 1,305

TABLE I: TDF coverage of STLs

The STA tool we used to compute the slack values of
each SDD fault site was PrimeTime by Synopsys. Each slack
value reported for every SDD fault was then quantized in the
following manner. For K ď 1, we use an increment 0.05 and
begin with minimum K “ 0.00 and maximum K “ 1.0. For
K ą 1, we use multiples of the clock period (CCs). Namely,
2, 3, and 4 times the clock period. The total number of SDD
fault lists generated are:

‚ 1.0 / 0.05 + 1 = 21 fault lists for K ď 1
‚ 3 fault lists for K ą 1

In total, 24 SDD fault lists were generated, with a Test
Generation Time of 1m25s, each. The generated fault lists
enumerate 5,760 faults for the LSU and 15,728 for the
multiplier. For the fault simulation campaigns, we used Z01X
by Synopsys. The STLs were used as a stimulus source in
the form of eVCD. The latter was generated by performing
a logic simulation of each STL on the processor’s gate-level
description in QuestaSIM by Siemens. Our experiments were
performed on a machine using x2 Intel(R) Xeon(R) Gold
6238R processors and 256GB of RAM.

B. Results

The results of the SDD fault simulation campaigns are
shown in Figure 3. The total runtime of all fault simulations
for the LSU per STL was 38.68, 36.43, and 35.19 minutes
for STL1, STL2, and STL3 respectively. For the case of the
multiplier, the total runtime was 121.12 and 149.41 minutes
for the respective STLs.

1) K ď 1: In Figure 3a and Figure 3c, the results
concerning smaller-than-the-clock period SDD latencies are
presented for the LSU and the multiplier respectively. Both
plots’ min and max slack ticks represent each fault’s minimum
and maximum latency, computed with K “ 0.00 and K “ 1.0,
respectively.

For the LSU, we observe that STL2 and STL3 showcase
a similar trend in terms of FC, whereas STL1 reaches anal-
ogous FC percentages for K values greater than 0.85. This
is attributed to the fact that the STL1 contains instructions
with fewer variations of the memory-related instructions of
the supported instruction set architecture. The baseline FC
achieved for SDD fault lists computed the minimum fault
latencies were 40.80%, 46.42%, and 46.58% for the STL1,
STL2, and STL3, respectively. The maximum FC achieved for
the SDD fault lists computed with the maximum fault latencies
were found to be 57.61%, 57.99%, and 56.70%.

For the multiplier, we observe that albeit the two STLs
initially showcase similar behavior, after a certain point (for

min_slack
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

max_slack
1.00

Faults' Delay for K

40.0

42.5

45.0

47.5

50.0

52.5

55.0

57.5
Fa

ul
t C

ov
er

ag
e

LSU STL 1
LSU STL 2
LSU STL 3

(a) Fault coverage behavior for LSU and K ď 1.

min_slack max_slack 2 CC 3 CC 4 CC TDF
Faults' Delay

40

45

50

55

60

65

70

Fa
ul

t C
ov

er
ag

e

LSU STL 1
LSU STL 2
LSU STL 3

(b) Fault coverage behavior for LSU for all K values.

min_slack
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

max_slack
1.00

Faults' Delay for K

0

10

20

30

40

50

60

70

80

Fa
ul

t C
ov

er
ag

e

MULT STL 1
MULT STL 2

(c) Fault coverage behavior for Multiplier and K ď 1.

min_slack max_slack 2 CC 3 CC 4 CC TDF
Faults' Delay

0

20

40

60

80

Fa
ul

t C
ov

er
ag

e

MULT STL 1
MULT STL 2

(d) Fault coverage behavior for Multiplier for all K values.

Fig. 3: Performance of TDF STLs for SDDs in the Multiplier and LSU for various K values.

K “ 0.40) there exists a notable difference between the two
curves which results in a deviation of approximately 30% (for
the maximum fault latencies). This deviation is attributed to
the fact that STL2 comprises fewer variations of operands for
the multiplier unit than STL1. The baseline FC achieved in
this case is 2.47% and 6.93%, whereas the FC achieved for
the maximum fault latency considered is 83.25% and 48.44%
for the STL1 and STL2, respectively.

For both cases, as we initially expected, the FC remains
relatively low since smaller latencies induce path timing
violations in fewer critical paths of the CUTs. However, as
the SDD latency approaches the respective path’s slack value,
we observe a drastic increase in the FC. This is justified as
the more severe the SDD becomes (in terms of latency), the
more paths are violated in the CUT; hence, the easier it is to
detect the fault.

Interestingly, we observe that the monotonicity of the FC
plots for both cases is violated at a certain point. For the LSU,
this happens when moving from K “ 0.60 to K “ 0.65 and

for the multiplier when moving from K “ 0.20 to K “ 0.25.
As mentioned previously, as the latency of the SDD increases,
so do the path violations that occur in the CUT, such as slower,
shorter paths in the presence of the fault become critical. This
drop in the FC can be attributed to path reconvergencies that
cancel the fault effects.

2) K ą 1: In Figure 3b and Figure 3d, on top of the
cases considered for K ď 1.0 (colored in green) we further
incorporate the results concerning larger-than-the-clock period
SDD latencies (colored in purple) as well as the case of the
TDF (colored in cyan).

For the LSU, we observe that for all STLs, the FC plots
show a notable increase when moving for the case of K “ 1.0
to K “ 2ˆCC. The magnitude of this increment showcases
that we are still far from the case of gross delay faults.
In general, for the fault latencies of 2ˆCC up to 4ˆCC
we observe small increments in the FC. The maximum FC
reached, for K “ 4ˆCC is 68.27%, 67.96%, and 60.08% for
STL1, STL2, and STL3 respectively. In the last section of the

plot (colored in cyan), we report the FC values of Table I,
for the case of TDF. In this final step, we observe an average
increase of 4.06% in the FC for the three STLs. Noteworthily,
STL1, which achieved lower FC values for low K values,
and thus low SDD latencies, reaches the highest FC when
considering SDDs with high latencies and TDFs. On the con-
trary, STL3, which outperformed STL1 when targeting SDDs
with low latencies, achieved the lowest FC when considering
higher SDD latencies and TDFs. This observation underscores
the critical need for the refinement of grading techniques
tailored specifically to accurately assess STLs. It compellingly
demonstrates that relying solely on test programs designed for
alternative delay fault models, such as TDF, is insufficient for
comprehensive coverage of SDDs.

However, for the multiplier, we observe that for the case of
K “ 1.0 to K “ 2ˆCC, but also for the whole multi-cycle
latency window (in purple) there are very small increments in
the FC. This indicates that the case of gross delay faults is
probably not far off (in terms of FC). For K “ 2ˆCC up to
4ˆCC we observe a saturation in the FC as for STL1 there
is an increase of 0.41% and for STL2 the FC remains stable.
Regarding the TDF, we observe an average increase of 2.34%
in the FC for the rightmost part of the plot.

Overall, we observe that in some cases the TDF coverage
is much higher than the one achieved when considering SDDs
with K “ 1.0 (max slack). This is evident in the case of the
LSU where we observe a deviation of the three STLs between
the TDF and the K “ 1.0 of the order of 14.3%, 13.29%, and
8.59% for STL1, STL2, and STL3 respectively. In the case of
the multiplier, these effects are less evident.

V. CONCLUSIONS

Functional test in the form of STLs is a well-known practice.
However, the dominant models, namely the SAF and TDF do
not fully suffice for modeling all possible defects in systems
of new technology nodes. SDDs are of critical importance in
industries since they have been found to be the source of most
test escapes and reliability problems.

In this paper, we present a methodology, based on commer-
cial EDA tools, to grade the effectiveness of STLs, written for
the TDF model, in terms of SDD fault detection capabilities.
We use an STA tool to derive timing information of paths and
model the latency of each SDD as a function of each path’s
slack.

As a case study, we used a RISC-V processor and assessed
the effectiveness of STLs targeting TDFs in the core’s LSU
and multiplier unit. We considered a wide variety of SDD
latency values, beginning from very small to multi-cycle la-
tencies approximating the case of TDFs. From the experiments
performed on the two functional units, we observed that
relying solely on test programs designed for alternative delay
fault models, such as TDF, is not guaranteed to adequately
coverage of SDDs.

As future work, we plan to emphasize improving the ac-
curacy of the proposed grading method (e.g., by excluding
false paths). Furthermore, we plan to extend the considered

STLs both in covering different functional units and also con-
sidering STLs developed for other fault models. For instance,
to investigate the correlation between the Path Delay Faults
and SDDs. Furthermore, in our grading method, we plan to
incorporate parameters such as aging and process variations.

ACKNOWLEDGMENT

This publication is part of the project PNRR-NGEU which
has received funding from the MUR – DM 117/2023

REFERENCES

[1] M. Psarakis et al. “Microprocessor Software-Based Self-
Testing”. In: IEEE Design & Test of Computers 27 (2010),
pp. 4–19.

[2] F. Hapke et al. “Cell-Aware Test”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 33
(2014), pp. 1396–1409.

[3] Y. Sato et al. “Invisible Delay Quality - SDQM Model Model
Lights Up What Could Not Be Seen”. In: IEEE International
Conference on Test (ITC). 2005.

[4] P. Muthukrishnan and S. Sathasivam. “A Technical Survey
on Delay Defects in Nanoscale Digital VLSI Circuits”. In:
Applied Sciences 12 (2022).

[5] K. Christou et al. “Identification of Critical Primitive Path
Delay Faults Without any Path Enumeration”. In: IEEE VLSI
Test Symposium (VTS). 2010.

[6] X. Lin et al. “Timing-Aware ATPG for High Quality At-
speed Testing of Small Delay Defects”. In: IEEE Asian Test
Symposium (ATS). 2006.

[7] T. Yoneda et al. “Faster-Than-At-Speed Test for Increased Test
Quality and In-Field Reliability”. In: IEEE International Test
Conference (ITC). 2011.

[8] M. Sauer et al. “Efficient SAT-Based Search for Longest
Sensitisable Paths”. In: IEEE Asian Test Symposium (ATS).
2011.

[9] M. Sauer et al. “SAT-based Analysis of Sensitisable Paths”.
In: IEEE International Symposium on Design and Diagnostics
of Electronic Circuits and Systems (DDECS). 2011.

[10] M. Sauer et al. “Analysis of Reachable Sensitisable Paths in
Sequential Circuits with SAT and Craig Interpolation”. In:
IEEE International Conference on VLSI Design (VLSI). 2012.

[11] M. Sauer et al. “Functional Test of Small-Delay Faults Using
SAT and Craig Interpolation”. In: IEEE International Test
Conference (ITC). 2012.

[12] A. Riefert. “An Effective Approach to Automatic Func-
tional Processor Test Generation for Small-Delay Faults”. In:
IEEE/ACM Design, Automation & Test in Europe Conference
& Exhibition (DATE). 2014.

[13] A. Riefert et al. “A Flexible Framework for the Automatic
Generation of SBST Programs”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 24 (2016),
pp. 3055–3066.

[14] S. Holst et al. “Variation-Aware Small Delay Fault Diagnosis
on Compressed Test Responses”. In: 2019 IEEE International
Test Conference (ITC). 2019.

[15] A. Floridia et al. “Fault Grading Techniques of Software Test
Libraries for Safety-Critical Applications”. In: IEEE Access 7
(2019), pp. 63578–63587.

[16] M. Grosso et al. “Software-Based Self-Test for Delay Faults”.
In: VLSI-SoC: New Technology Enabler. 2020.

[17] Kukimoto, Y. and others. “Static Timing Analysis”. In: Logic
Synthesis and Verification. Springer US, 2002, pp. 373–401.

[18] M. Gautschi et al. Near-Threshold RISC-V Core With DSP
Extensions for Scalable IoT Endpoint Devices. 2017.

[19] Silvaco 45nm Open Cell Library. https://si2.org/open-cell-
library.

