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Abstract: In today’s digital landscape, where privacy preservation is of paramount importance, Android has implemented
new features to enhance transparency: the Privacy Indicators (PIs). Our study employs eye-tracking technol-
ogy to investigate how users perceive and interact with these indicators. As a visual alert system, PIs signal
when sensitive resources, like camera or microphone, are in use. However, the structure of Android’s permis-
sion model, susceptible to exploitation by malevolent or commercial apps, places an excessive responsibility
on PIs. They act as the final alert for users against the misuse of permissions in unexpected contexts. We
conducted a controlled experiment with 29 participants who were exposed to various privacy scenarios while
their eye movements were tracked and recorded. Our findings reveal a significant gap in PIs effectiveness,
particularly in high-engagement tasks, indicating a need for more eye-catching privacy notifications. These
findings suggest the need for redesigning some privacy interfaces to make them more effective. The study’s
insights contribute to the broader discussion on balancing functionality with user privacy and the methodology
of utilizing eye tracking in user experience research.

1 INTRODUCTION

Android, the undisputed leader in the mobile device
world, has become an integral part of our everyday
lives, with its ubiquitous operating system deeply en-
trenched into the fabric of our digital experiences.
The platform’s widespread adoption brings to the fore
critical questions about user privacy and the efficacy
of mechanisms designed to protect it. Android’s per-
mission model, a framework established to regulate
app access to sensitive resources like cameras and
microphones, is central to this discussion. However,
users’ growing trust in applications increasingly chal-
lenges this system’s effectiveness, often leading to a
casual approach to granting permissions.

The inherent complexities of Android’s permis-
sion model and user behavior underscore the need
for robust privacy safeguards. This is where Privacy
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Indicators (PIs) come into play. Implemented as vi-
sual cues within the operating system, PIs aim to alert
users when sensitive resources such as camera and
microphone are accessed (Figure 1). Yet, questions
linger about their actual impact and visibility in every-
day use, especially when permissions are exploited in
non-contextualized or malicious ways.

PIs became a part of the Android operating sys-
tem starting from Android 12. They are a critical up-
date in Android’s ongoing evolution to enhance user
awareness and control over privacy. This study seeks
to evaluate the practical impact of this significant fea-
ture in real-world scenarios, providing insights into its
effectiveness and areas for potential improvement.

Our study seeks to illuminate this crucial aspect
by employing eye-tracking technology, a method tra-
ditionally reserved for fields such as marketing and
medical research, now repurposed to scrutinize user
interactions with PIs. This innovative approach al-
lows for an objective, real-time analysis of how users
notice and process PIs amidst various interactive tasks
on their smartphones.

In this context, we conducted a controlled experi-
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ment involving 29 participants to empirically investi-
gate user interaction with Privacy Indicators on An-
droid devices. These participants, drawn from di-
verse backgrounds, interacted with a series of tasks
designed to simulate real-world smartphone usage.
Through eye-tracking, our objective was to monitor
how and when these users noticed the Privacy Indica-
tors during different types of interactions, especially
in scenarios where resource use might not be antici-
pated.

Through a comprehensive experimental setup, we
aim to probe the depths of user attention and response
to PIs, assessing their prominence and effectiveness in
real-world scenarios. This investigation is particularly
timely given the increasing sophistication of apps in
seeking permissions under benign guises, only to ex-
ploit them for less scrupulous purposes, as explored
in the research by (Guerra et al., 2023).

Figure 1: An example of Privacy Indicator in action on An-
droid 12.

Our experiment revealed critical insights into user
engagement with PIs. The findings suggest that the
classic PIs in their current form are often unnoticed,
especially in high-engagement tasks, highlighting a
potential vulnerability in privacy protection. This un-
derscores the need for more intuitive and noticeable
privacy indicators that can effectively alert users to
resource access in real-time.

Our research endeavors to contribute significantly
to the discourse on mobile privacy by bridging the
gap between technological capability and user behav-
ior. The insights gleaned from this study are expected
to inform the design of more intuitive and effective
privacy features, steering the mobile computing land-
scape toward a safer, more privacy-conscious future.

2 RELATED WORKS

2.1 Android Permission Model
Evolution and Privacy Concerns

In Android, access to sensitive user data (such as con-
tacts in the address book, received messages, or calen-
dar appointments) or critical system resources (such
as the camera, microphone, or biometric sensors) by
applications is regulated through the mechanism of
permissions(Wang et al., 2021).

The inception of Android’s permission model was
marked by a simplicity that, while facilitating early
user experience, left much to be desired in terms of
privacy safeguards. From unrestricted resource access
in Android 1.0, the model evolved through subsequent
releases. Android 3.0 introduced external storage pro-
tections, and Android 4.4 required permissions to be
declared at installation, with Android 5.0 adding new
permissions into the mix, albeit still at install-time
(Felt et al., 2012).

However, these iterations did not offer real-time
access management, presenting a dilemma: users
could either accept all permissions wholesale or aban-
don app installation (Peruma et al., 2018). The choice
led to an all-or-nothing decision that was insufficient
for nuanced privacy management. It was observed
that the permissions system’s lack of contextualiza-
tion failed to communicate the risks effectively to the
users (Wijesekera et al., 2018).

With Android 6.0, Google reformed its permis-
sion model to allow for runtime requests, marking a
significant pivot towards user-centric privacy controls
(Shen et al., 2021). This approach is intended to pro-
vide greater transparency by enabling users to grant
permissions based on immediate app usage. Thus,
in this Android version, the user can reject an ac-
cess request (in Android 11, the approval can even
be limited to a single usage) and revoke previously
approved permissions from the system settings. In
the runtime model, permissions are granted to the en-
tire application, rather than to specific features or us-
age contexts, leading to a prevalent misuse of non-
contextualized permissions by a majority of applica-
tions (Guerra. et al., 2023). This approach limits the
control over how, when, and why data access is made
(Scoccia et al., 2021). A customized, user-centered
permission model can contextualize the request for
permission use. This approach has been effectively
used to identify and prevent malicious applications
holding logic bombs(Fasano et al., 2023). An im-
provement to the permission model is made in An-
droid 12, which introduced Privacy Indicators and a
privacy dashboard to assist users in managing their
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data more effectively, aiming to rectify previous mod-
els’ limitations (Shen et al., 2021). In (Guerra et al.,
2023), authors conducted a controlled experiment to
assess PIs effectiveness. However, our research in-
troduces a novel methodology by incorporating eye
tracking to objectively measure user interaction with
Privacy Indicators (PIs). Unlike previous studies that
relied on user-reported detection of resource usage,
our approach captures real-time, visual engagement
data to determine whether users notice the PI when re-
sources like the camera or microphone are accessed.
This allows for a more granular analysis of user at-
tention and perception. By tracking eye movement,
we can discern not just whether users are aware of re-
source usage, but also the exact moments and context
in which these indicators are observed or overlooked,
providing richer insights into the design’s efficacy.

2.2 Eye Tracking in Mobile Computing
Privacy

The application of eye-tracking technology in under-
standing user interaction with privacy and security
features on digital platforms is emerging as a crucial
research direction. Studies by Furman et al. (Fur-
man and Theofanos, 2014) and Egelman et al. (Egel-
man, 2013) have employed eye tracking to evaluate
how different information presentations affect user
decisions in authentication scenarios. These stud-
ies reveal that while additional information may in-
crease reading time, it doesn’t necessarily influence
decision-making processes such as using Facebook
Connect. The pioneering work by (Punde et al., 2017)
demonstrated the broad applications of eye track-
ing across various fields, providing a foundation for
its integration into privacy studies. Building upon
this, research by (Carter and Luke, 2020) utilized eye
tracking to probe the eye-mind connection, reveal-
ing the subconscious processes that guide visual at-
tention and, by extension, privacy-related behaviors
on digital platforms. Expertise in computer secu-
rity also plays a significant role in user engagement
with security features. Arianezhad et al. (Arianezhad
et al., 2013), monitoring eye movements, found that
individuals with security knowledge spend more time
looking at security indicators. Similarly, Whalen et
al. (Whalen and Inkpen, 2005) demonstrated the ten-
dency for users to overlook security indicators with-
out explicit prompting, underscoring the potential for
inattentional blindness in digital security contexts. As
eye-tracking devices become more accessible and in-
tegrated into everyday technology, active eye-tracking
applications are being explored for security purposes.
Miyamoto et al. (Miyamoto et al., 2014) developed

EyeBit, an eye-tracking system that encourages users
to verify the URL before inputting sensitive data to
combat phishing. Installing input fields only after
confirming the user’s gaze on the URL bar is an inno-
vative approach to instilling secure online behaviors.

Despite the established utility of eye tracking,
its application to privacy indicators (PIs) on mobile
devices remains underexplored. Conventional stud-
ies have simulated user interactions with app proto-
types and followed up with questionnaires to gauge
resource usage awareness post-interaction (Guerra
et al., 2023). Our research diverges from these
methodologies by employing real-time eye tracking
to capture immediate user responses to PIs. This di-
rect measurement of attention allocation offers a nu-
anced understanding of user engagement with PIs and
addresses the potential shortfalls of self-reported data.

The challenges of ensuring user attention to pri-
vacy prompts, as investigated by (Anderson et al.,
2016), highlight the importance of overcoming ha-
bituation. Our study aims to mitigate this through
the objective analysis provided by eye tracking, con-
trasting previous approaches that lacked this real-time
evaluative component. By doing so, we align with
the recommendations by (Shen et al., 2021) and (El-
bitar et al., 2021) for more personalized and contex-
tually appropriate privacy controls, aiming to present
a comprehensive overview of how users perceive and
process privacy notifications within their digital expe-
riences.

Our research contributes to this dynamic field
by investigating the real-time detection of Privacy
Indicators using smartphone-embedded eye-tracking
technology. We assess not only the attention drawn by
these indicators but also their design and position rel-
ative to user gaze patterns during various interactive
tasks. By doing so, we address the gap in understand-
ing the immediate impact of PIs on user behavior and
awareness in mobile computing.

3 EMPIRICAL STUDY DESIGN

The primary aim of our study is to understand
user perception of Privacy Indicators (PIs) using
eye tracking, given their critical role as defined by
Google in signaling live resource use. Specifically,
we focus on how users detect and react to PIs that
denote unauthorized access to sensitive resources
such as cameras or microphones by potentially
malicious applications. Additionally, the study
explores user responsiveness to two innovative PI
designs across various interactive contexts. As the
sole alert mechanism for sensitive resource usage,
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these indicators present a unique opportunity to
measure their conspicuousness and the immediacy of
user awareness facilitated by them. The research was
driven by the following question:

RQ1: Do the app characteristics influence the
effectiveness of Privacy Indicators (PIs)?

A controlled experiment involving human sub-
jects was designed to address this RQ.

3.1 Context Selection

The context for our study was crafted to mirror real-
world usage where Privacy Indicators (PIs) play a piv-
otal role in alerting users to the live use of sensitive
device resources like cameras or microphones. Un-
like simulations of app environments, our experiment
utilizes a web application with integrates eye-tracking
technology to create a controlled setting that closely
replicated user interactions with actual device notifi-
cations. The subjects comprised a group of 29 uni-
versity students, selected for their commonality with
the general Android user population. The web ap-
plication was designed as the interactive ’object’ of
the study, in an Android environment where classic
and alternative PIs were triggered unexpectedly. This
consisted of two main categories of tasks: low spatio-
temporal attention tasks (quizzes) and high spatio-
temporal attention tasks (games). Including these di-
verse tasks allowed us to evaluate the PIs effective-
ness across a spectrum of user engagement levels,
providing insights into how attention to PIs might
vary with user cognitive load. Unlike previous stud-
ies that simulated popular applications, we designed
a singular application tailored to the experiment’s re-
quirements, ensuring a consistent platform for all par-
ticipants. Before initiating the experimental tasks,
participants provided detailed information about their
personal devices, including vendor, model, and oper-
ating system, to ensure comprehensive data relevance
and to prepare the experimental setup adequately. We
excluded devices solely running Apple’s iOS to main-
tain focus on Android’s user interface, which could
influence the study’s outcomes due to cross-platform
differences. Within our application, we designed the
display of Classic privacy indicators, as presently in-
corporated in the latest Android versions, to trigger
without user anticipation. This setup allowed us to ex-
plore user perceptions in a setting that mimicked po-
tential malicious application behavior. To better un-
derstand if an implementation of more visible PIs can
affect the achieved results, we also introduced two in-
novative PI designs—edge and disk—each exhibited

twice to the user under various task conditions.

3.2 Experimental Procedure

We explored three distinct PIs (Figure 2), each with
unique visual characteristics meant to signal the user
about the real-time usage of sensitive resources. Here
we detail these indicators, which were the focal point
of our investigation, describing their design rationale
and expected impact on user experience and privacy
awareness:

• Classic PI: this is the current implementation of
PI in the latest versions of Android. This indicator
typically appears as a small icon at the top right
edge of the screen, generally within the status bar,
indicating the use of either the camera or micro-
phone. In our experiment, this PI was designed to
emulate this typical behavior closely. It appeared
as a predefined icon – a simple camera or micro-
phone symbol – to signal the operation of these
resources. The icon was intended to be discreet
yet noticeable enough to inform the users without
causing significant distraction from their primary
tasks on the device.

• Disk PI: this is conceptualized as a dynamic vi-
sual cue to enhance the visibility of the resource
usage notification. It consists of an outer ring
that maintains a constant size while the inner cir-
cle size changes, creating a pulsating effect. The
color of the disk alternates between green and yel-
low, providing an additional visual signal of the
camera or microphone in use. This design in-
tended to make the classic indicator more visible
without radically altering its form or position, pre-
senting a potentially more eye-catching and thus
effective notification method.

• Edge PI: this is an innovative alternative, inspired
by the edge lighting feature found in certain Sam-
sung devices. It is represented as a small, colored
slider that animates horizontally across the top
edge of the screen, from left to right, and fades out
as it moves along its path. The animation includes
a fading trail to draw the user’s attention subtly,
aiming to determine whether motion and transient
visual changes could more effectively alert users.
The choice to confine the edge effect to the top of
the screen was a deliberate design constraint, con-
sidering the limitations of measuring visibility for
indicators that occupy the full screen on a mobile
device.

The experimental procedure of our study was a
structured investigation into how users perceive and
interact with Privacy Indicators (PIs) while engaging
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Figure 2: Comparative Display of Classic Privacy Indica-
tors and Proposed Alternatives.

in distinct tasks within a specialized web application
enriched with eye-tracking technology. This bespoke
platform was designed to record precise user reac-
tions to classic and alternative PIs under conditions
that closely mimic real-world application usage.

The study was conducted in a dedicated univer-
sity classroom designed to minimize distractions and
optimize eye-tracking accuracy. Specific measures,
such as intense uniform lighting and a monochromatic
backdrop, were taken to ensure high-quality data cap-
ture and minimize potential error sources. The partic-
ipants were instructed on maintaining a stable posture
and were briefed about the calibration process and
the tasks they would undertake during the experiment.
The indicators were displayed briefly at the top of the
screen while users were engaged in the designed ac-
tivities, capturing their attention and response patterns
using eye-tracking metrics.

At the beginning, participants were familiarized
with the experimental protocol. The experimental
procedure was delineated as follows (Figure 4):

• Initiation: users start with reading the instruc-
tions and granting necessary permissions.

• Calibration: the task proceeds with the calibra-
tion interface, engaging with the system to train
the eye tracker.

• Task Engagement: users are perfor the assigned
tasks, during which PIs can be presented.

• Interaction Logging: all user interactions with
the tasks and PIs are logged alongside eye-
tracking data.

• Data Submission: upon completing each task,
data are submitted to the server.

After giving participants the instructions and en-
suring their consciousness about the experiment, they
started the calibration phase to adapt the eye-tracking
system to their individual visual and interactive pat-
terns. Each participant was asked to follow and touch
specific points on their screen, which were high-
lighted to attract focus (Figure 3). The calibration
phase was a recurring step in the experiment, serv-
ing as a gateway between tasks to ensure the contin-
ued accuracy of the eye-tracking data. The calibra-
tion process was meticulously designed to require a
minimum of 70% accuracy. This threshold was estab-
lished as an optimal balance between precision and
usability. Indeed, posing an higher threshold would
result in frequent recalibrations, disrupting the exper-
iment flow, while lower values would compromise
data integrity. In case participants failed to achieve
70% accuracy, the system prompted a recalibration
until the required precision level was reached. After
the initial calibration phase, continuous drift correc-
tion is applied throughout task execution, refining the
calibration with each interface touch to progressively
enhance the eye-tracking data accuracy.

Figure 3: Calibration process screen displaying markers for
eye-tracking accuracy improvement.

After the calibration phase, participants engaged
in a series of six tasks, alternating between quizzes
and games to challenge their attention and cognitive
load (Figure 5). These tasks were intended to ex-
plore the effectiveness of PI notifications within apps
that significantly differ in terms of user engagements:
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Figure 4: Sequential Diagram of the Controlled Experiment Process.

low spatio-temporal attention during quizzes and high
spatio-temporal attention during interactive gaming
scenarios. The sequence of tasks was carefully or-
chestrated as follows:

Q1 [Classic PI] Participants began with a quiz de-
signed to assess their focus on content and sub-
sequent noticeability of the Classic PI.

G1 [Edge PI] The next task was an interactive game
intended to examine how the alternative Edge PI
performed in an environment requiring high user
interaction.

Q2 [Disk PI] Another quiz session followed, this
time using the Disk PI, to test its visibility in a
low spatio-temporal attention context.

G2 [Classic PI] The sequence returned to a gaming
task with the Classic PI to evaluate consistency
across task types.

Q3 [Edge PI] A repeat of the quiz format provided
another data point for the Edge PI, reassessing its
effectiveness.

G3 [Disk PI] Finally, the Disk PI was revisited during
a gaming task to complete the set of experimental
conditions.

To simulate a realistic usage scenario, PIs and
their alternatives were displayed for exactly eight sec-
onds, randomly materializing within a three seconds
interval following the onset of a corresponding task.
This randomness introduced an element of unpre-
dictability, mimicking real-world notifications that of-
ten occur without prior user expectation.

User actions and eye-tracking data throughout the
tasks were logged to a remote server in real-time. This
logging included timestamps of each PI display, gaze
fixation, duration, and the user’s interactions with the
task at hand. Such data are collected and subsequently
analyzed to understand whether the PIs were noticed
and how the interaction context and cognitive load in-
fluence their visibility and the user’s attention engage-
ment.

Figure 5: Two of the experiment tasks requiring low
spatio-temporal attention (Quiz) on the left and high spatio-
temporal attention (Game) on the right.

3.3 Pilot Study

Before running our experiment, we conducted a pilot
study with 8 participants in an offline setting. Such
a study was promoted from March 22, 2023, to April
13, 2023. We tested the previously described exper-
imental protocol, and we checked whether the tasks
were feasible, whether the instructions were sufficient
and explicit, whether the web app worked on different
devices and their usability, and whether users experi-
enced problems or had doubts during execution. None
of the users reported problems in understanding and
completing the tasks.

3.4 Data Availability

The data supporting the findings of this study, derived
from observations collected as participants performed
the tasks, are publicly available 1.

1https://github.com/rmilanese99/privacy-indicators-e
ye-tracking/
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4 TECHNICAL
IMPLEMENTATION OF THE
USED SYSTEM

In this section, we describe the development of a
web application purpose-built for conducting an ex-
perimental evaluation of Privacy Indicators (PIs) and
two novel alternatives. The application leveraged the
Angular framework for front-end user interaction and
WebGazer.js for eye-tracking capabilities. The web
app served as a testbed to assess the current PI de-
sign’s effectiveness and gauge user response to newly
proposed PI designs under real-world conditions. An-
gular was chosen for its scalability and robustness,
ideal for creating a dynamic web application capa-
ble of supporting the complex functionalities required
by the experiment. The application was structured
to handle various tasks and conditions systematically,
guiding participants through the experiment’s flow
while capturing their interaction data with high fi-
delity. The web application’s design facilitated a re-
sponsive and intuitive user experience, essential for
maintaining participant engagement throughout the
experiment.

4.1 Integration of Eye-Tracking with
WebGazer.js

WebGazer.js (Papoutsaki et al., 2016) provides a ver-
satile eye-tracking solution adaptable to different ex-
perimental scenarios. The library was integrated
into the Angular application to enable real-time gaze
tracking using participants’ webcams, with specific
focus on the accuracy and responsiveness necessary
for tracking quick eye movements.

4.1.1 Calibration Process

The eye-tracking calibration process was a multi-step
procedure designed to adapt to the user’s unique phys-
iology and environmental conditions. Calibration ac-
curacy was enhanced through iterative user engage-
ment with on-screen elements, which refined the pre-
dictive model of WebGazer.js in real-time. The web
application was designed to provide visual cues that
guide users through calibration without overwhelm-
ing or distracting from the core tasks. We used an
improved version of Webgazer.js that was calibrated
continuously throughout the session. This ongoing
calibration, known as drift correction, is dynamically
adjusted based on user interactions, specifically their
touch inputs. Authors in (Papoutsaki et al., 2018) pa-
per provided a foundational basis for understanding
how gaze behavior can be effectively tracked and ad-

justed in real-time, enhancing the accuracy and re-
liability of eye-tracking data, especially in dynamic
user interaction scenarios. This continuous calibra-
tion method is crucial for maintaining the precision
of gaze tracking throughout the session, ensuring that
the data collected reflects the actual user behavior and
interactions. This was achieved through minimalistic
design choices and using Angular’s dynamic render-
ing capabilities to update the interface based on the
progress of the calibration process.

4.2 Privacy Indicator Detection
Mechanism

The ’alert zone’ setup involved defining the perime-
ter within the application view where user attention
was considered focused on the PI. This logic was en-
capsulated within the setPrivacyIndicator() function,
which dynamically adjusted the sensitivity based on
the screen’s real estate and the user’s distance from
the device. A dedicated Angular service was imple-
mented to handle the real-time streaming of gaze data
provided by WebGazer.js. The service utilized an
event-driven model to capture and process gaze coor-
dinates at pre-defined intervals, ensuring the system’s
responsiveness and the accuracy of the collected data.
All gaze data associated with PI detection were times-
tamped and recorded within the user’s session without
storing any video feed. This approach was designed
to respect user privacy and comply with ethical stan-
dards for research involving human subjects.

5 ANALYSIS RESULTS

We analyzed the eye-tracking data collected during
the experiment to investigate the effectiveness of dif-
ferent PIs in attracting users’ focus during tasks re-
quiring different levels of attention. We introduced
two independent variables: the animation extent of
the PI (Classic, Edge, and Disk) and the level of con-
centration required for the task (Quiz and Game). The
dependent variable concerns the eye movement’s lo-
cation and speed as a proxy of attention and aware-
ness of the PI. Specifically, we determined the amount
of time spent looking at the PI by measuring the total
duration of fixations within a 250 pixel radius around
it. We also defined unintended or false fixations as a
total cumulative fixation duration of less than 150 ms
and excluded them from subsequent analyses. These
criteria were adopted to account for the noise and
variability introduced by our smartphone-based eye-
tracking approach. Out of 174 observations, 3 were
discarded based on these criteria, while a further 37
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were excluded because the participant completed the
task too quickly to achieve the required level of atten-
tion, and often before the PI was displayed.

To answer our RQ, we conducted a two-way
mixed-effects ANOVA, which tests for the presence
of a statistically significant effect of the independent
variables, singly or in interaction, on the dependent
variable. Given a significant effect, we performed
post-hoc comparisons to understand which specific
type (or interaction of types) of task and/or PI suc-
cessfully affected PI awareness. Specifically, we
used Bonferroni-corrected unpaired t-tests for pair-
wise comparisons between different conditions. Im-
portantly, the advantage of this mixed model over al-
ternative solutions is that it takes into account the ef-
fect of between-participant variability. Furthermore,
the interaction between PI and task allows us to in-
vestigate whether a PI might have a specific effect
only on one particular task condition and not on the
other. To sum up, the null hypothesis (H0) is that
there is no association between the type of task and
PI and the awareness of the PI. Conversely, the al-
ternative hypothesis (H1) is that the presence of PI is
noticed differently according to its visual properties
and the characteristics of the attentional context. We
reject the null hypothesis if the p-value is lower than
or equal to 0.05.

In Table 1 and Figure 6 we report the average time
spent looking at the PI in the different conditions.
These data show a strong effect of task type on PI
awareness. Almost all participants didn’t fixate on the
PI when the task required a strong attentional focus
on a different location of the screen (i.e., the Game
condition). This effect appears to be irrespective of
PI animation, although the Disk was marginally more
effective than the others. Since PIs were overlooked
in the Game condition, the effect of the different ani-
mations can be appreciated only in the Quiz condition.
Disk fixations lasted longer than those of the Classic
PI. Interestingly, the Edge PI was almost not noticed
in this condition as well. We attribute this result to
the smaller size of the stimulus and its location to the
outer periphery of the screen, rather than to its anima-
tion type.

Table 1: Average time spent looking at the PI in the different
conditions.

Indicator
Classic Edge Disk

Quiz 965.81 ms 11.08 ms 2114.40 msTask Game 0.0 ms 0.0 ms 224.50 ms

The statistical findings are presented in Table 2.
The ANOVA corroborated our observations, as we
identified significant (p < 0.05) main effects of task

and PI type on the interaction. This outcome indi-
cates that our manipulations were effective in influ-
encing PI awareness. Given the lack of fixations in
the Game setting, post-doc comparisons focused on
the Quiz one. Unsurprisingly, all PIs had a significant
effect, with the Disk being the most effective, and the
Edge being the least effective.

Overall, these results indicate that the PIs were no-
ticed almost exclusively in the Classic and Disk form
during the Quiz task. To further investigate the atten-
tional dynamics of these conditions, we measured the
time elapsed between the onset of the PI and the first
fixation within the PI area. These saccadic reaction
times were shorter for the Disk PI (mean = 1799; std
= 381) compared to the Classic one (mean = 2244; std
= 513), suggesting that our animation provides a mean
for a faster attentional capture. However, an unpaired
t-test revealed no significant difference between the
reaction times to the two PIs.

Figure 6: Average fixation durations on Privacy Indicators
(Classic, Edge, Disk) during low (Quiz) and high (Game)
spatio-temporal attention tasks, highlighting the differential
impact of task type on user’s attention to PIs.

Table 2: Statistical results.
Source Sum Sq. d.f. Mean Sq. F Prob>F
Type 30163156 2 15081578 9.939948 9.71E-05
Task 29526910 1 29526910 19.46056 2.16E-05

Type:Task 19506429 2 9753215 6.428137 0.002187
Error 1.79E-07 0 0
Total 2.84E+08 133

5.1 Discussion

In this section, we discuss the eye-tracking experi-
ment’s outcomes regarding the effectiveness of PIs in
different task contexts.

The data collected indicate that the cognitive load
required by a specific task notably impacts the likeli-
hood of the user detecting a PI. This was particularly
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evident in the Game setting, which is characterized
by a high degree of spatio-temporal focus, and where
both Android’s native PI, as well as alternative anima-
tions, were consistently overlooked. These findings
suggest inattentional blindness, where users caught
up in demanding tasks may fail to notice secondary
stimuli, such as the PIs in this study. Consequently,
a key design goal is to develop PIs that can success-
fully capture the user’s attention without interfering
with their activity.

There is also evidence that the characteristics of
each PI have a direct impact on its visibility, as our
analysis revealed that the Disk was marginally more
effective at capturing user attention than the other PIs
examined in this study. This suggests that specific vi-
sual features, such as variations in color or motion,
may be critical in increasing their detectability, and
confirms the need for extensive research to determine
the optimal design parameters in different usage con-
texts.

The implications of our findings regarding the ef-
fectiveness of PIs have a significant impact on the
privacy of Android users. The Classic PI, as imple-
mented, fails to capture the user’s attention consis-
tently during tasks requiring high levels of concen-
tration, so malicious apps could exploit this flaw to
conceal privacy-damaging actions during periods of
intense user engagement. Therefore, there is an ur-
gent need to design PIs that are more noticeable and
can intelligently adapt to the current level of cogni-
tive load, ensuring that users are alerted to privacy
risks even when completely absorbed in their activity.
This aims to safeguard user privacy using instinctive
and non-disruptive methods, avoiding the danger of
desensitization that can occur with frequent alerts.

While the study provides novel insights into PI
effectiveness, it also presents limitations, including
the controlled environment of the experiment and the
specific demographic of the participants, which may
not fully reflect the diversity of real-world applica-
tion users. The experimental evaluation primarily in-
volved university students, who are generally young
and well-educated. This demographic, while reason-
able for initial testing, does not encompass all possi-
ble user groups, particularly those of different ages,
educational backgrounds, and digital literacy levels.
Recognizing this, the need to conduct field studies be-
comes more evident, as such studies could provide a
more comprehensive understanding of the effective-
ness of privacy indicators across a broader and more
diverse population. This would help to reinforce these
findings in everyday contexts and ensure the applica-
bility of our proposals to a wider range of users.

6 CONCLUSIONS AND FUTURE
DIRECTIONS

Our study contributes significantly to understanding
the effectiveness of Privacy Indicators (PIs) in mo-
bile applications. Our findings suggest that the cur-
rent implementation of the Classic PI in Android is
inadequate for consistently capturing user attention,
particularly in situations that demand high cognitive
engagement. This raises concerns about user privacy,
as these indicators are the primary alert mechanism
against unauthorized resource usage like camera or
microphone access by potentially malicious applica-
tions.

Exploring alternative PIs, such as Disk and Edge,
revealed that animation and visibility play crucial
roles in attracting user attention. The Disk PI, with
its dynamic animation, demonstrated a higher efficacy
in catching the user’s gaze in low-attention scenar-
ios compared to the Classic and Edge PIs. However,
the effectiveness of these indicators in high-attention
tasks remains limited, indicating a need for more in-
novative approaches.

Future research should focus on developing more
effective PIs that can alert users even during high-
concentration tasks. Exploring dynamic and context-
sensitive PIs that adapt their visibility based on the
user’s current activity may prove beneficial. Addi-
tionally, investigating user’s cognitive load and atten-
tion span in relation to PI visibility could offer deeper
insights into designing more effective privacy indica-
tors. Further studies could also explore the integration
of auditory or haptic feedback as supplementary or al-
ternative alert mechanisms.

An intriguing direction for these studies would be
to examine how privacy indicators directly linked to
specific in-app actions, such as submitting responses
in a quiz or completing a level in a game, might influ-
ence users’ awareness and attitudes towards privacy.
Such investigations could deepen our understanding
of the interplay between privacy notifications and user
experience in mobile applications, enriching the on-
going dialogue on digital privacy. The ultimate goal
is to strike a balance between ensuring user privacy
and maintaining a non-intrusive user experience.
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