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Abstract

The irruption of Automated Fibre Placement (AFP) has permitted the conceiving of
new composite materials in which the fibres are no longer straight but can follow
curvilinear paths. These are known as variable angle tow (VAT) or tow-steered
composites. Although beneficial, this new class of composites leads to new modelling
challenges. In this context, and due to these materials’ hierarchical and multiscale
behaviour, advanced numerical methods need to be conceived to analyse, design and
optimise them thoroughly.

Different modelling techniques are utilised accordingly because of the interaction
between the scales in composites. For instance, at the component level, it is common
to use classical lamination theories that predict the structure’s global performance
well. However, as soon as the engineer needs to investigate what is happening at the
innermost scales, the fidelity of the analysis tools must be increased. At this stage,
more computationally demanding models are required.

Due to the changes in the modelling strategies, new governing equations need to
be generated for each scale. To avoid generating ad hoc equations for all the composite
scales, one can employ the Carrera Unified Formulation (CUF). CUF permits deriving
the governing equations for an arbitrary structural theory without making any a priori
assumption. Based on CUF, this thesis derived numerical solutions based on the Finite
Element Method (FEM) to investigate the component, layer and fibre scale of VAT
composites. In detail, the component and fibre scales were modelled by coupling
CUF with classic FEM. In contrast, novel embedded CUF-FEM models have been
developed to study the layer scale. This new approach permits the analysis of complex
configurations with no mesh and geometry limitations.

Apart from generating numerical models, the fabrication process of tow-steered
structures was of interest. In particular, the defects arising during the fabrication and
their ultimate influence on the mechanical behaviour of the structure were investigated.
Since these components are manufactured with hierarchical materials such as fibre-
reinforced composites, defects can occur at different scales, i.e., fibre-matrix and layer
levels. Furthermore, defects can be subdivided into uncertainty and deterministic flaws.
Examples of the latter are the fibre volume fraction variability and misalignments. In
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contrast, gaps and overlaps are deterministic defects, as we can predict their position
by simulating the AFP manufacturing process.

Last, the optimisation of the mechanical performance of VAT components was
addressed. In detail, the fundamental frequency, buckling load, vertical deflection,
strain concentration factor, and strength were optimised. These characteristics were tai-
lored considering a defect-free laminate. Additionally, the effect of the manufacturing
condition, i.e. defect-free or in the presence of gaps and overlaps, on the fundamental
frequency optimisation was tackled.
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Chapter 1

Introduction

1.1 Motivation

During the past decades, composite materials have increased their popularity in engi-
neering applications thanks to their higher stiffness and strength as well as their lighter
weight compared with metallic alloys. Although the aerospace industry represents
the main end user, composites are nowadays extensively employed in the automotive,
civil, biomedical and energy engineering fields. Concerning the aerospace sector, the
two biggest companies, Airbus and Boeing, have increased the presence of composites
in their commercial aircraft since the 1970s decade. Indeed, in their latest releases,
the A350 and B787 respectively, composites represent more than 50% of the aircraft
weight.

Composite are materials that comprise two or more constituents that have different
mechanical and chemical properties, which combined exhibit properties that differ
from those of the individual components. A classic example are the fibre-reinforced
polymers, which combine the high stiffness of fibres and the ductile properties of
the polymer matrix. Some of the most spread fibres are carbon, glass and aramid.
In engineering applications, composites are used to conceive layups or textiles [1].
These can be manufactured for a broad variety of shapes in a more automated process.
From the designer standpoint, composite materials offer a larger number of design
parameters, or design variables, compared to traditional metallic alloys. Some of them
can be the material selection, the volume ratio between fibre and matrix, the total
number of plies and their orientations. As a consequence, a composite structure is
more versatile and can be better optimised for different load cases, leading to lighter
and more cost-efficient designs.

As mentioned before, the orientation of the composite ply is a common design
variable in the optimisation process of a composite structure. Since the introduction of
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(a)

(b)

Figure 1.1 Examples of (a) AFP and (b) ATL machines by MTorres©.

composites in the industry, the fibre orientation has been supposed to remain constant
within the layer. By simply modifying the stacking sequence of a component, the
structural weight could be reduced and the mechanical performance be enhanced
compared to a metallic part. However, the designer would not be exploiting all the
potential of composites.

Thanks to the irruption of new manufacturing technologies such as Automated
Fibre Placement (AFP), or Automated Tape Laying (ATL), new families of composites
can be conceived. Examples of AFP and ATL machines, from MTorres©, are illustrated
in Fig. 1.1. Specifically, with these new fabrication processes, engineers can conceive
composite structures in which the fibre orientation can vary within the layer [2]. In
this manner, the in-plane stiffness of the individual layer is no longer constant across
the ply. This is the principal moto of tow-steered composites.

Variable stiffness composites (VSC) permit to redistribute the load carrying capac-
ity within the layer. This is possible thanks to the consideration of multiple design
variables used to generate a curvilinear fibre path, as in Fig. 1.2, instead of just one,
as occurred in straight-fibre composites. In this regard, the elastic properties vary
point-wise within the ply of the VSC. By considering additional design variables,
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Figure 1.2 Variable stiffness lower wing skin piece manufactured by iCOMAT©.

variable angle tow (VAT) have the potential to further improve the performance of
composite structures compared to their straight-fibre counterparts.

The possibility to design low-weight and high-performance structures comes with
the price of uncertainty and modelling assumptions. A multiscale approach must
be adopted to comprehend the mechanical response of composite structures under
different working and environmental conditions. Therefore, the structural analysis
is usually decoupled into a series of models that address the physics of the involved
scale [3]. For instance, the arrangement of the constituents at the microscale, also
referred to as fibre-matrix scale in this thesis, affect the effective properties of the
homogenised material. Then, the layups and textiles that conform the test coupons
are included in structural models at the mesoscale, which is known as layer scale in
this document too. Last, the dynamic response, buckling performance, stiffness and
strength of the structural components is studied at the macroscale with simulation
tools such as the Finite Element Method (FEM). In this numerical framework, the
constitutive information gathered at each scale is commonly propagated following a
bottom-up approach, that is, from the fibre-matrix scale up to the final structure [4].
Nonetheless, many of the models involved in this process were initially derived for
the analysis of metallic structures, especially at the larger scales. As a consequence,
engineers tend to be suspicious of the simulations and huge amount of resources is
devoted to experimental campaigns throughout the design process. The pyramidal
diagram of the virtual testing of composites is illustrated in Fig. 1.3, from [5]. In this
framework, the ideal scenario is to boost the development of reliable and efficient
models for composites which will increase the confidence in the simulation.

The main limitation of the metal-oriented simulation tools is the inability to predict
accurately the stress state of the structure. Conversely to components made of out
isotropic materials, in composite structures, transverse and shear deformations play
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Figure 1.3 Pyramidal diagram of multiscale testing of composite materials. Adapted with
permission from Falzon and Tan [5].

a major role in the mechanical performance, especially in the failure mechanisms.
Being able to capture precisely the failure onset and the subsequent propagation needs
an analysis tool capable of giving an accurate approximation of the strain and stress
fields at the different scales involved. Therefore, it becomes mandatory to establish
a numerical framework capable of providing high accuracy with a cost-effective
computational cost.

1.2 State of the art

1.2.1 Variable stiffness pioneers and theories for laminated struc-
tures

The new fabrication processes brought the emergence of novel families of composites,
namely VAT, in which fibres are steered following curvilinear paths, thus enabling
additional design possibilities. However, the concept of VSC is not new. Indeed, in the
early 1990s, Leissa and Martin [6] investigated how nonuniformly spaced fibres affect
the free vibration and buckling characteristics of straight-fibre composites. They found
that these two aspects could be improved by as much as 21 and 38%, respectively. Kuo
et al. [7] succeeded in the experimental and numerical testing of flexible composites
presenting continuous fibre with sinusoidal patterns. The experimental results showed
good agreement with the theoretical predictions for the constitutive relations for the
longitudinal and transverse tensile behaviour. The strength and buckling performance
of perforated plates was addressed by Hyer and Lee [8]. They found improvements in
the failure loads over classical composites. Then, Gürdal and Olmedo [9–11] proposed
a linearly varying fibre path depending on the in-plane coordinates. A parametric
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analysis of the in-plane stiffness and buckling was carried out by modifying the
parameters that define the fibre path. They demonstrated that increases in the critical
load up to 80% were possible with the variable stiffness concept.

The previous works employed the Classical Laminated Plate Theory (CLPT) [12],
which is a generalisation of the Kirchhoff-Love plate theory [13] for multi-layered
structures. Some of them [7, 9, 10] used closed-form solutions, while others [11]
solved numerically the set of partial differential equations. In addition, the work by
Hyer and Lee [8] utilised the FEM to solve the numerical problem and CLPT as the
structural theory. Other structural theories have been developed to account for the
shear stress components. This is the case of the First Shear Order Deformation Theory
(FSDT) that extends the Reissner [14] and Mindlin [15] formulations. Typically,
commercial codes employ these formulations. However, their applicability is limited
to a narrow range of applications, e.g., when dealing with thin-walled structures and
without local effects. Contrariwise, more accurate shell formulations are required
when a prediction of the transverse stresses are needed. For doing so, several high-
order two-dimensional (2D) formulations were derived. As an example, Reddy [16]
conceived a simple high-order theory for laminated composite structures. Besides,
Reddy and Liu [17] proposed a shear model that considered a parabolic distribution of
transverse shear deformation in the thickness direction. Carrera [18, 19] established
the unified formulation (CUF) to generate various refined shell theories. Cinefra and
Carrera [20] performed linear analyses of cylindrical composite structures using shell
finite elements and different through-the-thickness kinematics.

1.2.2 Multiscale models for composites

Composites are hierarchic materials. This means that the overall behaviour of a
structure depends on what is happening at the innermost scales and how it propagates
to upper levels. Capturing all the details at the finer scales in the numerical simulation
of a large structure is not feasible because of the enormous computational cost it would
require. Doing that would be similar to performing Direct Numerical Simulations
(DNS) in Computational Fluid Dynamics. Therefore, another strategy needs to be
chosen. In this regard, multiscale modelling facilitates the treatment of this numerical
problem. Typically, a multi-step approach is followed to solve the problem, considering
the different length scales. Through this method, all the analyses are linked from the
constituent level to the whole operating structure, thus creating a bottom-up flow of
information, as depicted by Llorca et al. [4]. In this manner, the microstructural level
is solved by computational micromechanics to retrieve accurate constitutive models
useful for the structural study at the mesoscale level, as presented in [21, 22].
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Focusing on the innermost scales, micromechanical models constitute helpful tools
to predict how the presence of voids, the fibre arrangement, fibre volume fraction, or
the constituents’ geometry affect the overall response of the homogenised equivalent
material. In recent decades, a plethora of analytical, semi-analytical and numerical
methods have been developed, demonstrating the continuous evolution of this research
field. Many of these methods assume that the fibre arrangement follows a periodic
pattern, recalling the Repeating Unit Cell (RUC) concept. Some examples of analytical
formulae are the rule of mixtures [23], Rosen and Hashin upper and lower bounds
[24], Hashin and Shtrikman [25], the elasticity-based cell method [26], or the Mori-
Tanaka method [27]. More advanced solutions have been proposed by other authors
based on semi-analytical methods. The Method of Cells (MOC) [28], the Generalised
Method of Cells (GMC) [29] and the High-Fidelity Method of Cells (HFGMC) [30]
are some examples, and they are suitable for more general cases. Last, another widely
spread approach consists in applying adequate boundary tractions or displacements to
a Representative Volume Element (RVE) and subsequently performing conventional
analyses to calculate the elastic properties, as proposed in [31]. Additionally, recent
works use experiments and commercial software to retrieve the homogenised features
of RVE models, as in [32].

From the mesoscale standpoint, research efforts have been made towards the
simulation of textile composites rather than variable stiffness. For instance, some
studies performed a two-step homogenisation based on GMC to calculate the ho-
mogenised elastic properties of woven composites [33]. Other popular methods are
the voxel-based FEM, which drastically alleviates the pre-processing time for unit cell
generation. As a counterpart, voxel-based methods usually provide inaccurate stress
fields, especially along the interfaces [34]. In the case of VSC, the mesoscale analysis
have been devoted to the characterisation and modelling of defects.

1.2.3 Manufacturing of variable stiffness composites and defect
modelling

As commented before, VAT structures are generally manufactured by AFP machines
because of their high deposition rate. In this process, bands of fibres, referred to
as tows, are placed on a mould. Usually, several tows are laid down altogether in
a single pass of the AFP machine head. This band of tows is called a course. The
centreline of the course is placed along the designed curvilinear path. Nonetheless, to
avoid the presence of defects, there exists a limitation on the minimum turning radius
of the AFP machine head. Heinecke and Willberg [35] gathered in their review the
whole spectrum of manufacturing defects induced by the AFP process, some of which
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are available in Chapter 4. Considering the defects within the numerical model is
paramount to better understand the mechanical behaviour of a composite structure.
Depending on how defects are taken into account, their modelling strategies can be
divided into intrusive and non-intrusive techniques. The work by Blom et al. [36]
pioneered the gap modelling. They proposed a mesh refinement to thoroughly capture
the fibre-free regions and assign them the elastic properties of the resin. Similarly,
Falcó et al. [37, 38] developed a procedure capable of generating structured meshes.
In this manner, a better geometric description of the tow-drop areas was achieved.

The Continuous Tow Shearing (CTS) [39] manufacturing technique, developed
during the last decade, theoretically avoids the presence of gaps and overlaps. CTS
steers the tows by shearing instead of bending, as AFP does. This results in thickness
variations, which can be modelled following the strategies proposed by Kim et al. [40].
The first strategy keeps the thickness constant, which can be used to verify closed-form
solutions. The second is employed when different fibre paths are identical and shifted
along a shifting direction. The third option considers the presence of several fibre
paths whose tow width is adjusted and, therefore, the thickness increases in order to
keep the cross-sectional area constant. Once the fibre paths are defined and chosen the
modelling approach for the thickness variations, a 3D model is generated transforming
a 2D shell model. Following these strategies, Lincoln et al. [41] studied the sensitivity
to imperfections in variable stiffness cylinders manufactured with CTS. McInnes et
al. [42] compared the usage of 2D shell elements against 3D shell elements for the
analysis of CTS-manufactured VAT cylinders. They demonstrated the need of 3D
continuum shell elements, allowing for greater fidelity representing the geometry of a
CTS structure. In addition, the 3D shell models need a lower mesh resolution while
maintaining the solution accuracy in comparison to 2D meshes of the same in-plane
resolution.

Intrusive techniques can be devoted to void modelling too. Several works have been
carried out in the last years. For instance, Dill et al. [43] investigated the influence
of voids on the stress concentration factor by introducing a small disk, consisting
of orthotropic plies, at the centre of the laminate. Another strategy was proposed
by Huang and Talreja [44], in which flattened cylindrical voids were placed at the
interface of a unidirectional composite in an RVE.

The non-intrusive techniques (NIT) preserve the mesh utilised for the simulation
of the defect-free structure and vary the properties in those elements where flaws exist.
One of the most extended NIT is the Defect Layer Method (DLM), introduced by
Fayazbakhsh et al. [45], and employed in the modelling of gaps and overlaps. In
DLM, the first step is identifying the gap or overlap areas within the lamina depending
on the coverage percentage. A 0% coverage means a complete gap strategy, yielding
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a constant thickness ply, whereas 100% implies a complete overlap presenting non-
uniform thickness distribution. Once they are located, the properties of the FE vary
according to the defect area percentage. DLM showed a great agreement with the
results presented by Blom et al. [36]. In addition, Akbarzadeh et al. [46] showed the
effects of transverse shear deformation and the consideration of manufacturing defects
in the numerical model. By coupling DLM with CLPT, FSDT and third-order shear
deformation theory (TSDT), they demonstrated that for relatively thick plates major
discrepancies arise between CLPT and TSDT. Noevere and Collier [47] utilised DLM
in an interface developed to couple the path created by CGTech’s Verticut Composite
Programming and HyperSizer by Collier Research Corporation. The interface allows
passing the data generated by the fibre deposition simulation to the FE solver to
perform the stress analysis employing shell models. DLM has also been considered for
the non-linear buckling analysis of tow-steered plates in the work by Marouene et al.
[48]. They showed great correspondence between experimental and numerical results
and demonstrating, once again, that overlaps increase both the in-plane stiffness and
buckling load up to a 40% and 69% with regard to a complete gap strategy.

Butler et al. [49] successfully modelled defects related to fibre misalignments
namely, homogeneous ply angle perturbation, prismatic and non-prismatic in-plane
fibre waviness. The first was modelled as a random perturbation following a Gaussian
distribution of null mean and a certain standard deviation. The second was applied
across the structure by means of a wave function including three random parameters
that define the location, amplitude and width of the defect. The prismatic and non-
prismatic waviness followed truncated Gaussian and uniform distributions for the
parameters mentioned above. The effect of these flaws was investigated by employing
the Multilevel Monte Carlo (MLMC) approach, see Giles [50], in which hierarchic
mesh refinements are performed to reduce the variance of the estimator. Ferreira et al.
[51] established another way for modelling waviness. They modelled the waviness of
non-crimp fabric composites utilising straight mesoscale 3D elements in which the
material mechanical properties are modified according to the actual fibre direction
instead of reproducing the actual wave with curved elements, as in the case of [52].

At the microscale level, as far as the author concern, just a small number of
paper have modelled voids using NIT. One of these studies was conducted by Van
Den Broucke et al. [53]. They investigated a woven geometry and assumed a linear
increase in the laminate thickness with voids as well as the presence of voids in
resin rich regions between the yarns. Choudhry et al. [54] took voids into account
through multiplication of the matrix properties by a void compensation factor, which
is calculated as a weighted sum of the matrix and void volume fraction.
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Other NIT that are becoming trendy are the stochastic fields [55]. Indeed, they are
employed in this thesis to map defects at the different layers involved in a laminate. A
thorough explanation and mathematical description of the two random field techniques
utilised are available in Section 4.3.1. The great advantage of these fields is that they
can easily account for defects and propagate them through the different scales involved
in a structure. For instance, in this thesis, uncertainty defects occurring at the layer and
fibre-matrix scale are considered first individually and, subsequently, altogether. The
effect of spatially varying material elastic properties has been studied. As an example,
Scarth et al. [56] considered the influence of material elastic properties on the free
vibration and buckling. Similarly, van den Broek et al. [57] studied the impact of
Young modulus and thickness variability on the buckling performance of plates and
shells. Murugan et al. [58] investigated the influence of uncertain material elastic
properties on the reaction forces of an helicopter hub. Choi et al. [59] performed
stochastic progressive failure analysis of composites. They assumed that the the
material strengths used in the failure criteria and the fracture energies varied spatially.
This uncertainty increased the scattering of the strength in the specimens, specially
in matrix tension damage. Mesoscale manufacturing defects modelled as random
fields have been also investigated. Scarth and Adhikari [60] included misalignments in
laminated plates and studied their influence on the lamination parameters. Similarly,
Balokas et al. [61] investigated the impact of yarn distortion and waviness on the
stiffness and strength of braided composites. van den Broek et al. [62] addressed the
influence of fibre misalignments on the post-buckling behaviour and enhancing the
structural performance. Uncertainty at the microscale level has also been of interest. In
particular, Dey et al. [63] considered spatial variation of the elastic properties of fibre
and matrix, and evaluated their influence on the structural natural frequencies. They
showed that considering uncertainty at the microscale broadens the margins compared
to the macroscale defected structure while keeping the same degree of stochasticity, i.e.,
the same standard deviation. Guimarães et al. [64] investigated how the fibre volume
fraction variability affects the flutter velocity, flutter frequency and the total mass of
straight-fibre and tow-steered plates. Moreover, they employed Polynomial Chaos
Expansion (PCE) as response surface model to accelerate the uncertainty quantification
analysis. The mathematical background of PCE is available in Section 4.3.2 of this
thesis.

1.2.4 Optimisation of variable stiffness composites

The last topic in which this work focuses is the structural optimisation of composites
structures and, in particular, VAT components. Composite materials offer additional
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possibilities to tailor the mechanical behaviour of the structure by varying the number
of layers and the fibre orientation of the single ply. This design flexibility has captivated
the attention of engineers who conceived new design strategies to exploit the full
potential of composites. These methods rely on the mathematical background of
calculus and, specifically, on optimisation theory. The scope of this thesis is not
delving into the mathematics of optimisation, but retrieve the better possible layups
for certain applications and investigate the effect that structural theories have on the
optimum result. If the reader is interested in a thorough explanation of the optimisation
elements and mathematical fundamentals, the author suggests the books by Haftka
and Gürdal [65], and by Martins and Ning [66]. It was indeed Haftka who, in his
seminal work with Walsh [67], introduced integer programming for the stacking
sequence optimisation for buckling of straight-fibre laminates. After that, Le Riche
and Haftka [68] proposed an integer-valued Genetic Algorithm (GA) to maximise
the buckling load. In this work, 0◦, ±45◦ and 90◦ plies were encoded to perform the
genetic operators. The same authors then proposed an improved version of GA for
the minimum thickness design of composite laminates [69]. One of the advantages of
GA is that is eases the coding of manufacturing constraints, or design rules, gathered
in the work by Irisarri et al. [70]. Despite this advantage, integer-valued GA leads to
non-convex problems, which are cumbersome to face in structural optimisation. To
circumvent this issue, Fukunaga and Sekine derived a strategy based on lamination
parameters [71]. The equations of the lamination parameters impose constraints
on the design space of the lamination parameters to determine the feasible convex
region where laminate configurations exist. In aeroelastic tailoring enabled design it is
common to split the optimisation process in two steps. Because of the large numbers
of design variables, the first subproblem utilises gradient-based optimisation. This step
provides a distribution of the patch thicknesses and directional stiffness that satisfy
the safety margins in a series of multidisciplinary criteria. During this phase, the
design variables are the shell thicknesses, stringer dimensions and stacking sequences
in terms of lamination parameters. Note that these magnitudes are continuous and,
therefore, gradient-based algorithms are utilised. The second subproblem is a discrete
optimisation process that transforms the previous stiffness distribution into one that
satisfies all the design and manufacturing rules. In particular, the process that has just
been described is the one conducted by Embraer for their regional jet portfolio and
is depicted in the work by Silva et al. [72]. In the latter work [72], manufacturing
design rules are applied using the formulation derived by Macquart et al. [73, 74]. A
similar two-step optimisation process is followed at Airbus, as mentioned in the work
by Ntourmas et al. [75]. Catapano and Montemurro [76] used a bi-level multiscale
approach for the optimum design of sandwich plates based on polar parameters [77].
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In the first level, they determine the optimal geometry of the unit cell of the sandwich
core and the geometric parameters of the laminated skins. The second level scheme
provides the optimal layup of the skins.

The optimisation above techniques were initially applied to retrieve the optimal
layups of straight-fibre laminates, but they were extended to VAT structures. For
instance, Serhat and Basdogan [78] utilised laminations parameters to predict the
optimal fibre paths and imposed manufacturability by calculating the curvature radius
point-wise. Khani et al. [79] extended to VAT laminates the approach implemented by
IJsselmuiden et al. [80]. In these works, their authors derived a conservative failure
envelope, based on Tsai-Wu failure criterion [81], that guarantees a failure-free region
of the lamination parameter space regardless of the fibre orientations involved in the
layup sequence. In the case of VAT [79], the lamination parameters for each node of
the FE model was considered as design variables. The two-level approach based on
polar parameters has also been extended to optimise VAT structures. Indeed, Catapano
et al. [82] applied it to the optimisation of VAT components manufactured by Fused
Filament Fabrication and Continuous Filament Fabrication.

In straight-fibre composites, the available orientations are limited to a fixed number
and, hence, integer-valued problems arose. Contrariwise, in tow-steered composites,
the parameters involved in the fibre path definition are continuous. Therefore, encoding
is unnecessary if employing GA or other evolutionary algorithm like Particle Swarm
Optimisation (PSO). Nik et al. [83] used a surrogate model to mimic the in-plane
stiffness and buckling load of VSC plates and used it as the objective function of the
optimisation problem, which was solved by GA. Later, Nik et al. [84] proceeded
accordingly to their previous work embedding the gaps and overlaps originated during
the AFP process. Vijayachandran et al. [85] conducted a multi-objective optimisation
where the in-plane stiffness, buckling load and mass were the objectives. They used
Bezier’s curves to model the fibre paths and Artificial Neural Network (ANN) as
surrogate model for the aforementioned magnitudes, and GA as the optimiser. In
addition, Vijayachandran and Waas [86] proceeded as in [85] to minimise the stress
concentration around a cutout. Groh and Weaver [87] developed a procedure devoted to
the weight minimisation of plates manufactured by CTS. In this case, the weight is not
only related to the number of layers, but also to the fibre path design parameters because
of the coupling between the steering angle and thickness due to CTS. They used GA
and included static failure and buckling requirements as optimisation constraints. PSO
has also been considered as evolutionary algorithm for structural optimisation. Singh
and Kapania [88] maximised the buckling load of curvilinearly stiffened VAT plates,
in which the design variables were the fibre path definition angles and the parameters
employed to define the shape of the stiffeners. Similarly, PSO was utilised by Zhao
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and Kapania [89] to optimise the the buckling load of VSC laminates with a cutout
imposing maximum curvature and parallel fibre path constraints.

It is worth mentioning that all of the above works employed ESL models based on
CLPT or FSDT approaches for both the analysis and optimisation of VSC composites.
Many of them relied on the FEM to solve the mechanical problem. Nevertheless, semi-
analytical methods have also been devoted to the study of VAT, see for instance the
works by Vescovini et al. [90–92]. However, to the author’s knowledge, very little or
no research has been devoted to the optimisation of VAT structures modelled by an LW
approach. Only few works have investigated the behaviour of tow-steered structures
using various structural theories. As an example, Demasi et al. [93] implemented 2D
ESL, Zig-Zag and LW CUF models for the stress analysis of thick VAT laminates,
while Viglietti et al. [94] carried out free vibration analysis using variable kinematic
models.

1.3 Outline

This thesis is composed of seven chapters that depict the development of a platform
that uses high-order numerical models that considers the defects, both uncertain
and deterministic, that arise during manufacturing consideration and their effect on
the mechanical performance of tow-steered composites. Moreover, the structural
optimisation of the latter is also addressed, paying special attention to the effect of the
selected structural theory on the retrieved optimal solution. The general layout of the
document is as follows:

• Chapter 2 introduces the high-order 1D and 2D models adopted in this research.
The presented methodology is formulated with the CUF formalism. In the CUF
framework, the kinematics of beam, plate and shell are expressed as the generic
expansion of the generalised displacements utilising arbitrary cross-section and
thickness functions. Depending on the selected function type and order, various
beam, plate and shell theories may be derived. In this work, Taylor, Lagrange
and Hierarchical Legendre polynomials are considered. When laminated VAT
structures are analysed, Equivalent Single Layer and Layer-wise modelling
approaches will be used. According to CUF and introducing the FEM, the
governing equations can be written in a general and compact form in terms of
Fundamental Nuclei, which are the building block of the proposed theory by
exploiting the Principle of Virtual Displacements.

• Chapter 3 provides the theoretical background for the numerical models de-
veloped to study the meso and microscale. The Component-Wise approach is
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utilised for such purpose. In this regard, the different constituents are modelled
using the same family of finite elements, precisely 1D elements. On the one
hand, mesoscale models are generated through the novel Embedded Component-
Wise approach, which facilitates the meshing operations and further reduces
the computational cost. On the other hand, microscale models are derived by
combining the Mechanics of Structure Genome and CUF. In this case, a non-
isoparametric strategy is used to capture perfectly the curved geometry of the
fibres and inclusions over the beam’s cross-section.

• Chapter 4 is devoted to the defects that arise during the fabrication of variable
stiffness composites. First, the main flaws due to the AFP steering process are
described. Second, the turning radius limitation is depicted along with analytical
formulae to calculate it. Subsequently, uncertainty defect modelling is discussed.
The Polynomial Chaos Expansion used to quantify the influence of randomly
distributed defects on the mechanical performance is reported too. Last, the AFP
manufacturing process is simulated in order to include the gaps and overlaps
that appear in the numerical model. The defects are mapped in the FEM model
through the Defect Layer Method.

• Chapter 5 describes the components required to pose mathematically the op-
timisation problem. Then, a classification depending on a series of criteria is
made. Such criteria include: (i) how the objective and constraint function are
evaluated, (ii) the search method that is used, and (iii) the kind of algorithms
that are utilised to solve the optimisation problem. Last, the functioning of a
Genetic Algorithm works is available.

• Chapter 6 discusses some of the results obtained. The interest is primarily
focused on the efficiency and reliability of the proposed methodology to study
the different scales involved in the analysis of variable stiffness composite
structures. The effect of uncertainty defects propagated through the scales on
the mechanical performance is addressed. In addition, the effect of the selected
structural theory on the retrieved optimal solution is investigated for a series of
structural optimisation problems. This is conducted by considering pristine and
defected variable angle tow plates as well as manufacturing limitations.

• Chapter 7 summarises the present work and draws the concluding remarks
highlighting the major outcomes of this thesis. Some research ideas are proposed
for future investigations relying on the developments achieved throughout this
PhD.
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• Appendix A reports the three-dimensional Hashin failure criteria formulae used
to capture the failure onset on composite structures. Besides, the computation of
the safety factor used in the strength maximisation problem is depicted.



Chapter 2

Derivation of high-order 1D and 2D
models using CUF

This chapter introduces the Carrera Unified Formulation (CUF) and its application
in the straightforward generation of 1D (beam) and 2D (plate, shell) high-order
models hierarchically and automatically within a finite element framework. In essence,
CUF, using an index notation, permits the unifying of all the structural theories
in a single formula and the formulation of low-to-high fidelity models in a simple
manner. The fundamental concept of CUF is the introduction of theory expansion
functions, in addition to standard finite element interpolation functions, to enrich the
kinematic description of the beam’s cross-section and plate/shell thickness. This leads
to generating 1D and 2D CUF models, similar to 3D solid finite elements in terms of
solution accuracy but with a considerably lower computational burden.

2.1 Preliminaries

Consider beam and plate models described in a Cartesian reference frame (x,y,z). In
contrast, an orthogonal curvilinear system (α,β ,z) is employed for shell geometry,
as illustrated in Fig. 2.1. In the beam model, the y axis denotes the beam axis, while
the cross-section lays on the x− z plane. For the plate and shell models, x− y and
α −β correspond to the in-plane coordinates, respectively, and z denotes the through-
the-thickness direction. The derivation of the following theoretical formulation is
independent of the choice of the cross-section or thickness.
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Figure 2.1 Representative geometry and reference system of (a) beam, (b) plate and (c) doubly-
curved shell.

The 3D stationary displacement field of an arbitrary point within the structural
domain can be expressed as follows:

Beam, Plate: uk(x,y,z) = {uk
xuk

yuk
z}T

Shell: uk(α,β ,z) = {uk
αuk

β
uk

z}T
(2.1)

in which the superscript k refers to the kth layer in the case that a laminated structure is
considered, and T denotes the transpose operator. The strain, εεε , and stress, σσσ , tensors
are expressed in the Voigt notation as:

Beam, Plate:
εεεk = {εk

xx εk
yy εk

zz 2εk
xz 2εk

yz 2εk
xy}T

σσσ k = {σ k
xx σ k

yy σ k
zz σ k

xz σ k
yz σ k

xy}T

Shell:
εεεk = {εk

αα εk
ββ

εk
zz 2εk

αz 2εk
β z 2εk

αβ
}T

σσσ k = {σ k
αα σ k

ββ
σ k

zz σ k
αz σ k

β z σ k
αβ

}T

(2.2)

In the proposed methodology, small displacements are assumed. Therefore, the
geometrical relations between strains and displacements will only consider the linear
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differential operator B, which is a 6×3 matrix containing the following terms:

Beam, Plate: B =



∂x 0 0
0 ∂y 0
0 0 ∂z

∂z 0 ∂x

0 ∂z ∂y

∂y ∂x 0



Shell: B =



∂α

Hα
0 1

Hα Rα

0
∂β

Hβ

1
Hβ Rβ

0 0 ∂z

∂z − 1
Hα Rα

0 ∂α

Hα

0 ∂z − 1
Hβ Rβ

∂β

Hβ

∂β

Hβ

∂α

Hα
0



(2.3)

where ∂x =
∂ (·)
∂x , that is, the derivative with respect to the x direction. The same applies

for α , β , y and z directions. Thus, the displacement-strain relation can be written as:

εεε
k = Buk (2.4)

The stress-strain relation may be expressed by employing the material properties. As
far as material non-linearities are not considered in this work, Hooke’s law states in
vectorial form:

σσσ
k = Ck

εεε
k (2.5)

in which Ck is the material linear elastic matrix. In the case of orthotropic materi-
als, e.g., straight-fibre carbon/epoxy unidirectional lamina, Ck reads in the material
reference system as:

Ck =



Ck
11 Ck

12 Ck
13 0 0 0

Ck
22 Ck

23 0 0 0
Ck

33 0 0 0
Ck

44 0 0
Ck

55 0
sym Ck

66


(2.6)

where the Ck
i j coefficients depend on the Young moduli E, the Poison’s ratio ν and

the shear moduli G, and the fibre angle orientation θ . Note that 1 denotes the fibre
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Figure 2.2 Variation of the material reference system with respect to the global reference
system in the case of a VAT lamina. Direction 1 corresponds to the fibre direction while 2 and
3 represent the transverse directions.

direction in the material reference frame. In contrast, the 2 direction is transverse to
the fibre direction in the plane of the lamina, and 3 is perpendicular to the plane of the
lamina.

In laminated composite structures, the material reference frame is rotated with
respect to the global reference system by the fibre orientation θ , which, in the case of
tow-steered composites, depends on the in-plane coordinates, i.e., θ(x,y) or θ(α,β ).
As a result,

σσσ
k = C̃k

εεε
k (2.7)

where:
C̃k = TCkTT (2.8)

being T the rotation matrix [12]. In the case of variable stiffness composites, T will
depend on the in-plane coordinates, i.e., T(x,y) or T(α,β ). An illustrative example of
how the material reference system varies with the in-plane coordinates is available in
Fig. 2.2.

2.2 Carrera Unified Formulation

For decades, many efforts have been dedicated to the derivation of advanced theories
able to tackle various structural problems. To solve some of the issues related to
classical approaches, CUF was introduced as a generator of structural theories for
beams, plates and shells [95]. In the CUF formalism, the 3D field of displacements
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can be expressed as:

Beam: uk(x,y,z) = Fk
τ (x,z)u

k
τ(y) τ = 1, ...,M

Plate: uk(x,y,z) = Fk
τ (z)u

k
τ(x,y) τ = 1, ...,M (2.9)

Shell: uk(α,β ,z) = Fk
τ (z)u

k
τ(α,β ) τ = 1, ...,M

where Fτ denotes a set of arbitrary expansion functions depending on the cross-section
coordinates, x and z, in the case of beam models, and on the thickness coordinate z
when plate and shell models are considered; uτ represents the vector containing the
generalised displacements and M denotes the number of expansion terms. Precisely,
the selection of Fτ and M are the inputs of the analysis and define the structural theory
adopted for the model. In recent years, three families of expansion functions have
emerged as ideal options due to their inherent capabilities: the Taylor Expansion (TE)
[96], Lagrange Expansion (LE) [97] and Hierarchical Legendre Expansion (HLE)
[98]. Considering the modelling of laminated composite structures, two approaches
are devised, namely Equivalent Single Layer (ESL) and Layer-Wise (LW). In this
document, ESL models are derived using TE, whereas LW is obtained by employing
LE. Throughout this thesis, the acronyms TEN and LEN indicate the use of Taylor
and Lagrange expansions of Nth order assumed for the x− z cross-section or thickness
direction z, respectively.

TE class considers the Taylor series of the x− z cross-section or the z direction as
Fτ . Therefore, it results in a hierarchic basis where the order N is user-defined. As an
example, the first-order TE (TE 1) for 1D and 2D models can be written as:

1D:
ux = ux1 + xux2 + zux3

uy = uy1 + xuy2 + zuy3

uz = uz1 + xuz2 + zuz3

2D:
ux = ux1 + zux2

uy = uy1 + zuy2

uz = uz1 + zuz2

(2.10)

As one can appreciate, classical beam, plate and shell models can be derived by
selectively removing some of the terms of the first-order expansion. If interested, the
reader can find further information about TE in [99, 100].

The LE family uses Lagrange polynomials to build 1D and 2D high-order struc-
tural theories, and the isoparametric formulation is exploited to deal with intricate
geometries. In the case of beams, LE is employed as Fτ to describe the cross-section
geometry, while in the case of plates and shells, LE is used along the thickness di-
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Figure 2.3 Lagrange expansions on the: (a) cross-section, (b) thickness, for 1D and 2D models,
respectively.

rection. Throughout this work, three sets of Lagrange polynomials have been used
for both 1D and 2D models. These are illustrated in Fig. 2.3. Concretely, four-point
(L4), nine-point (L9) and sixteen-point (L16) polynomials have been employed to
describe the beam’s cross-section. The polynomial order of L4, L9 and L16 is bi-linear,
bi-quadratic and bi-cubic, respectively. In the case of 2D models, the acronym LDN,
that is, Lagrange expansion Displacement-based of Nth order, is assumed. In this case,
LD1, LD2 and LD3 refer to using linear, quadratic and cubic Lagrange expansion
functions, respectively. They are used along the thickness direction to describe linear
to high-order kinematics. For the sake of clarity, the interpolation functions of an L4
beam model are reported in the following:

Fτ =
1
4
(1− rτr)(1− sτs) τ = 1,2,3,4 (2.11)

in which r and s represent the natural coordinates and vary from −1 to 1. At the
same time, rτ and sτ are the coordinates of the four points whose numbering and
location in the natural reference frame are depicted in Fig. 2.3. Note that LE uses pure
displacements unknowns, i.e., it only has displacements as degrees of freedom.

The HLE class employs Legendre polynomials to generate 1D high-order theories.
This set of interpolation functions was originally defined by Szabó and Babuška [101]
for the p-version of the Finite Element Method. They are based on an orthogonal basis
and constitute a fully hierarchical set. The Legendre polynomials can be obtained
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recurrently as:

L0 = 1

L1 = ξ (2.12)

Lk =
2k−1

k
ξ Lk−1(ξ )−

k−1
k

ξ Lk−2(ξ ) k = 2,3, ...

The roots of Lk coincide with the Gauss points, and the resultant polynomial set
constitutes an orthonormal basis. The set of interpolation functions in the 1D case can
be expressed as:

L̃1 =
1
2
(1− r)

L̃2 =
1
2
(1+ r) (2.13)

L̃k = φk−1(r) k = 3,4, ..., p+1

where φ j(r) are the normalised integrals of Lk:

φ j(r) =

√
2 j−1

j

∫ r

−1
L j−1(ξ )dξ j = 2,3,4, ... (2.14)

In Eq. (2.13), L̃1 and L̃2 are linear function ranging from 0 to 1 in the natural
domain, that is, r ∈ [−1,1]. Thus, they are referred to as nodal modes. The L̃k functions
are higher-order polynomials that vanish at the edges of the interval and are known as
internal modes.

The orthogonality of the Legendre set of functions is defined as:

∫ 1

−1

dL̃i

dr
dL̃ j

dr
dr = δi j, for i ≥ 3 and j ≥ 1 (2.15)

where δi j is the Kronecker’s delta.
Generalising the above procedure, one can expand to quadrilateral [−1,1]× [−1,1]

domains and obtain a 2D set of interpolating polynomials. In a 2D domain, it is possible
to define three classes of expansions, namely, nodal, side and internal, constructed by
the product of the 1D Legendre polynomials. Figure 2.4 shows examples of the HLE
functions.

Nodal expansions They are the same as the bi-linear Lagrange expansion (L4),
reported in Eq. (2.11).
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Figure 2.4 Types of HLE expansion functions.

Side expansion They are defined for polynomial order greater or equal to 2 (p ≥ 2).
Their functions are:

Fτ(r,s) =
1
2
(1− s)φp(r) τ = 5,9,13,18, ...

Fτ(r,s) =
1
2
(1+ r)φp(s) τ = 6,10,14,19, ...

Fτ(r,s) =
1
2
(1+ s)φp(r) τ = 7,11,15,20, ...

Fτ(r,s) =
1
2
(1− r)φp(s) τ = 8,12,16,21, ...

(2.16)

Internal expansion They are defined for p ≥ 4, and a given polynomial set includes
(p−2)(p−3)/2 functions. They are obtained as a product of the 1D Legendre modes
L̃k from Eq. (2.13):

Fτ(r,s) = φp1(r)φp2(s) p1, p2 = 2,3,4... and p = p1 + p2 (2.17)

For example, the set of internal functions when p = 6 are:

F28(r,s) = φ4(r)φ2(s)

F29(r,s) = φ3(r)φ3(s)

F30(r,s) = φ2(r)φ4(s)

(2.18)

HLE gather the features of other refined beam theories. On the one hand, the
displacement field can be enriched hierarchically, as for TE models. On the other hand,
HLE allows the discretisation of the cross-section into subdomains, as for LE models.
The advantage of HLE models is that the cross-section can be discretised just once,
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Figure 2.5 Jacobian transformation of the quadrilateral domains of a generic cross-section.

and the convergence is achieved by systematically increasing the polynomial order p
[101]. Therefore, there is no need for remeshing.

2.3 Cross-section mapping

Standard isoparametric elements utilise the same set of interpolating functions to
characterise the geometry and displacements. When dealing with curved geometries,
the isoparametric elements introduce a numerical error due to the inability to capture
the exact geometry. In the case of large domains, this error might be unacceptably
large and non-isoparametric techniques become mandatory.

First, let us consider the Jacobian transformation of a quadrilateral domain, defined
in the natural (r,s) plane, into the global coordinate system (x,z) represented in Fig.
2.5, in which one side is curved. The mapping functions are written as follows:

x = Qx(r,s),

z = Qz(r,s)
(2.19)

Some mapping techniques involve first- and second-order approximations, which
involve the L4 and L9 inteporlating functions. Nevertheless, they still introduce
numerical error. To mitigate it, the blending function method (BFM), introduced by
Gordon and Hall [102], is employed. BFM makes it possible to describe the actual
geometry of the domain of interest, thus ensuring that the exact domain is integrated
in the energy terms. In this thesis, the BFM is used to derive non-isoparametric HLE
domains which are able to represent with high accuracy the surface of arbitrary curved
cross-sections.

In the quadrilateral domain illustrated in Fig. 2.5, the curved edge can be described
mathematically in the 2D space by a pair of parametric functions x = x3(r) and
z = z3(r). For instance, if cubic polynomials are employed to describe the geometry,
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Figure 2.6 Mapping of the cross-section domain by BFM.

one can write the following relations:

x3(r) = ax +bxr+ cxr2 +dxr3,

z3(r) = az +bzr+ czr2 +dzr3
(2.20)

which guarantee the conditions:

x3(−1) = X3 x3(1) = X4

z3(−1) = Z3 z3(1) = Z4
(2.21)

In this context, the mapping functions are expressed as follows:

x = Qx(r,s) = Fτ(r,s)Xτ +

(
x3(r)−

(
1+ r

2
X3 +

1− r
2

X4

))
1+ s

2

z = Qz(r,s) = Fτ(r,s)Zτ +

(
z3(r)−

(
1+ r

2
Z3 +

1− r
2

Z4

))
1+ s

2

(2.22)

where Xτ and Zτ correspond to the vertex of the quadrilateral domain in the global
coordinate system, and τ = 1, ...,4. The first term of the right hand side corresponds
to the first-order mapping, The subsequent term adds the area between z3(r) and the
straight line between vertices 3 and 4, highlighted in Fig. 2.5. The term (1+ s)/2
denotes the blending function as it is added to vanish the transformation at the opposite
edge of the quadrilateral domain.

If the blending operation is applied to all the four sides of the quadrilateral domain,
one obtains the following:

x = Qx(r,s) =
1− s

2
x1(r)+

1+ r
2

x2(s)+
1+ s

2
x3(r)+

1− r
2

x4(s)−Fτ(r,s)Xτ ,

z = Qz(r,s) =
1− s

2
z1(r)+

1+ r
2

z2(s)+
1+ s

2
z3(r)+

1− r
2

z4(s)−Fτ(r,s)Zτ .

(2.23)
Note that each side is represented by parametric functions xi and zi, being i = 1, ...,4,
as depicted in Fig. 2.6.
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(a) ESL (b) LW

Figure 2.7 ESL and LW behaviours of the primary variables in the thickness direction of a 2D
model.

From the beam modelling perspective, this approach permits to decouple the
discretisation of the cross-section from the order of the structural theory. In this
manner, the surface of any curved section can be modelled a priori, and the order
of the HLE can be chosen according to the level of accuracy desired. Therefore, no
computational effort is wasted to capture the desired geometry.

2.4 Modelling of laminated composite structures

There exists two approaches when modelling laminated composite structures, namely
Equivalent Single Layer (ESL) and Layer-Wise (LW). The ESL approach considers
the cross-section as a single domain in which the expansion functions Fτ are defined,
and the stresses are computed considering the resulting strains in each layer of the
displacement-based models. Therefore, the stiffness matrix is derived through the
homogenisation technique of the properties of each layer by summing all the contri-
butions for each layer. It is known that multi-layered structures are heterogeneous.
In this regard, ESL models lead to continuous transverse strains along the thickness,
and discontinuous transverse stresses at the layer interfaces [103]. Despite this draw-
back, ESL approaches are still employed for many applications due to their simplicity
and fairly good performance. Indeed, ESL theories provide a good approximation
for global responses such as buckling loads, fundamental frequencies and transverse
deflections, but tend to provide inaccurate 3D stress distribution predictions.

On the opposite side, LW theories consider the displacement field within each
material layer. Thus, the continuity of the displacements at the interface is guaranteed,
although not automatically [104]. With LW models, the strain and stress distributions
are evaluated thoroughly. Throughout this thesis, LW models are derived by using LD
as Fτ , which posses pure displacement degrees of freedom. In addition, the continuity
of displacements is guaranteed because we place these expansion function at the
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Figure 2.8 Differences in the assembly procedure of ESL and LW models.

top and bottom of each layer. This is illustrated in Fig. 2.7. For completeness, the
differences in the assembly procedure of ESL and LW for a 2D structure are depicted
in Fig. 2.8.

2.5 The Finite Element Method

The Finite Element Method (FEM) is employed to solve the structural problem thanks
to its versatility in modelling complex geometries as well as different boundary and
loading conditions. Regardless of the beam, plate or shell model kinematics, FEM is
used to discretise the generalised displacement vector along the y-axis in beams, or the
in-plane coordinates, (x,y) or (α,β ), when plates or shells are considered, respectively.
The generalised displacement vector can be written as follows:

Beam: uk
τ(y) = Ni(y)qk

τi i = 1, ...,Nn

Plate: uk
τ(x,y) = Ni(x,y)qk

τi i = 1, ...,Nn

Shell: uk
τ(α,β ) = Ni(α,β )qk

τi i = 1, ...,Nn

(2.24)

in which Ni represents the shape functions, qτi are the unknowns nodal variables,
Nn stands for the number of nodes per element and i indicates summation. When
modelling beam structures, 1D FE with two (B2), three (B3) and four (B4) nodes, that
is, linear, quadratic and cubic approximations along the beam axis, are used. In the
case of plates and shells, 2D FE with four (Q4), nine (Q9) and sixteen (Q16) nodes are
adopted as shape functions for the x− y and α −β planes.
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CUF and FEM can be combined by substituting Eq. (2.24) into Eq. (2.9), yielding
as a result the following expression for the 3D field of displacements:

Beam: uk
τ(y) = Fk

τ (x,z)Ni(y)qk
τi τ = 1, ...,M i = 1, ...,Nn

Plate: uk
τ(x,y) = Fk

τ (z)Ni(x,y)qk
τi τ = 1, ...,M i = 1, ...,Nn

Shell: uk
τ(α,β ) = Fk

τ (z)Ni(α,β )qk
τi τ = 1, ...,M i = 1, ...,Nn

(2.25)

For the sake of completeness, Fig. 2.9 depicts the CUF and FEM model approximation
of 1D and 2D structures.

2.6 Derivation of the governing equations

In the calculus of variation, a variational statement is formulated to find the stationary
solutions of an integral problem. In detail, in solid mechanics, the variational formula-
tion minimises the total potential energy of a structure, which sums the contributions of
the internal and external energies. In this context, to derive the governing equations of
a linear elastic problem, the Principle of Virtual Displacements (PVD) is used. It states
that for all kinematically admissible virtual displacements, a body is in equilibrium if
the work done by the internal stresses equals the work done by the external loads:

δLint = δLext −δLine (2.26)

in which δLint , δLext and δLine represent the virtual variations of the strain energy,
the external loads and the inertia loads, respectively.

The virtual variation of the internal work corresponds to the elastic strain energy
and is defined as:

δLint =
∫

V
δεεε

T
σσσdV, (2.27)

where V is the volume of the body. The external work includes the contribution of
surface loads, PS, line loads, Pl , and point loads, P,

δLext =
∫

S
δuT PSdS+

∫
l
δuT Pldl +δuT P. (2.28)

The virtual variation of the inertial loads is defined as:

δLine =
∫

V
δuT

ρüdV (2.29)
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Figure 2.9 CUF and FEM representation of (a) 1D and (b) 2D model approximation.
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Figure 2.10 CUF assembly technique.

in which ρ is the material density and ü is the acceleration vector. As a result, the
PVD can be written as:∫

V
δεεε

T
σσσdV +

∫
V

δuT
ρüdV =

∫
S

δuT PSdS+
∫

l
δuT Pldl +δuT P. (2.30)

Introducing Eqs. (2.25), (2.3), rewriting the Hooke’s law as σσσ = C̃B(NiFτ)qτi,
and considering the virtual displacements as δu = N jFsδqs j, the governing equations
from Eq. (2.30) reads as:

δqT
s j

[∫
V

B(N jFs)
T C̃B(NiFτ)dV

]
qτi +δqT

s j

[∫
V

ρINiN jFτFsdV
]

q̈τi =

δqT
s j

∫
S

N jFsPSdS+δqT
s j

∫
l
N jFsPldl +δqT

s jP,
(2.31)

where I is the 3×3 identity matrix. This expression can be written in a compact form
as:

δqT
s jk

i jτsqτi +δqT
s jm

i jτsq̈τi = δqT
s jFs j (2.32)

in which:
ki jτs =

∫
V

B(N jFs)
T C̃B(NiFτ)dV

mi jτs =
∫

V
ρINiN jFτFsdV

(2.33)

are the 3×3 fundamental nucleus of the stiffness and mass matrices, respectively.
Note that the formal expressions of ki jτs and mi jτs remain constant regardless of the
structural theory or FE chosen. Indeed, this is where the main potentiality of CUF
resides [95]. From a coding point of view, any structural model can be created by
looping through the four indices τ , s, i and j. This procedure is illustrated in Fig. 2.10.
For the case of orthotropic materials with a generic orientation of the fibres in space,
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the global components of the elasticity tensor C̃ are computed by means of the rotation
matrix without affecting the definition of the FNs. Thus, the components of the ki jτs

nucleus can be written as:

ki jτs
xx =

∫
V

C̃11∂x(N jFs)∂x(NiFτ)dV +
∫

V
C̃16∂x(N jFs)∂y(NiFτ)dV

+
∫

V
C̃44∂z(N jFs)∂z(NiFτ)dV +

∫
V

C̃16∂y(N jFs)∂x(NiFτ)dV

+
∫

V
C̃66∂y(N jFs)∂y(NiFτ)dV

ki jτs
xy =

∫
V

C̃12∂x(N jFs)∂y(NiFτ)dV +
∫

V
C̃16∂x(N jFs)∂x(NiFτ)dV

+
∫

V
C̃45∂z(N jFs)∂z(NiFτ)dV +

∫
V

C̃26∂y(N jFs)∂y(NiFτ)dV

+
∫

V
C̃66∂y(N jFs)∂x(NiFτ)dV

ki jτs
xz =

∫
V

C̃13∂x(N jFs)∂z(NiFτ)dV +
∫

V
C̃44∂z(N jFs)∂x(NiFτ)dV

+
∫

V
C̃45∂z(N jFs)∂y(NiFτ)dV +

∫
V

C̃36∂y(N jFs)∂z(NiFτ)dV

ki jτs
yx =

∫
V

C̃12∂y(N jFs)∂x(NiFτ)dV +
∫

V
C̃26∂y(N jFs)∂y(NiFτ)dV

+
∫

V
C̃45∂z(N jFs)∂z(NiFτ)dV +

∫
V

C̃16∂x(N jFs)∂x(NiFτ)dV

+
∫

V
C̃66∂x(N jFs)∂y(NiFτ)dV

ki jτs
yy =

∫
V

C̃22∂y(N jFs)∂y(NiFτ)dV +
∫

V
C̃26∂y(N jFs)∂x(NiFτ)dV

+
∫

V
C̃26∂x(N jFs)∂y(NiFτ)dV +

∫
V

C̃66∂x(N jFs)∂x(NiFτ)dV

+
∫

V
C̃55∂z(N jFs)∂z(NiFτ)dV

ki jτs
yz =

∫
V

C̃23∂y(N jFs)∂z(NiFτ)dV +
∫

V
C̃45∂z(N jFs)∂x(NiFτ)dV

+
∫

V
C̃55∂z(N jFs)∂y(NiFτ)dV +

∫
V

C̃36∂x(N jFs)∂z(NiFτ)dV

ki jτs
zx =

∫
V

C̃13∂z(N jFs)∂x(NiFτ)dV +
∫

V
C̃36∂z(N jFs)∂y(NiFτ)dV

+
∫

V
C̃44∂x(N jFs)∂z(NiFτ)dV +

∫
V

C̃45∂y(N jFs)∂z(NiFτ)dV

(2.34)
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ki jτs
zy =

∫
V

C̃23∂z(N jFs)∂y(NiFτ)dV +
∫

V
C̃36∂z(N jFs)∂x(NiFτ)dV

+
∫

V
C̃45∂x(N jFs)∂z(NiFτ)dV +

∫
V

C̃55∂y(N jFs)∂z(NiFτ)dV

ki jτs
zz =

∫
V

C̃36∂z(N jFs)∂z(NiFτ)dV +
∫

V
C̃44∂x(N jFs)∂x(NiFτ)dV

+
∫

V
C̃45∂x(N jFs)∂y(NiFτ)dV +

∫
V

C̃45∂y(N jFs)∂x(NiFτ)dV

+
∫

V
C̃55∂y(N jFs)∂y(NiFτ)dV

(2.35)

The individual expressions of each component of the stiffness FN can be written for
beam and plate elements by accordingly using their respective shape and expansion
functions. Recall that in the case of beam models, the displacement field can be
expressed as u=Ni(y)Fτ(x,z)uτ . Substituting that expression into the ki jτs

xx component,
one has:

ki jτs
xx =

∫
V

C̃11N jFs,xNiFτ,xdV +
∫

V
C̃16N jFs,xNi,yFτdV

+
∫

V
C̃44N jFs,zNiFτ,zdV +

∫
V

C̃16N j,yFsNiFτ,xdV

+
∫

V
C̃66N j,yFsNi,yFτdV

(2.36)

Conversely, in the case of plate models, the displacement field reads as u=Ni(x,y)Fτ(z)uτ .
In this context, ki jτs

xx can be expressed as:

ki jτs
xx =

∫
V

C̃11N j,xFsNi,xFτdV +
∫

V
C̃16N j,xFsNi,yFτdV

+
∫

V
C̃44N jFs,zNiFτ,zdV +

∫
V

C̃16N j,yFsNi,xFτdV

+
∫

V
C̃66N j,yFsNi,yFτdV.

(2.37)

Note that in the above equations, the comma in the suffix denotes partial derivative.
Later, in Section 2.9, numerical integration will be discussed. As of now, the

reader should know that when straight-fibre composites are considered, the C̃ matrix
is constant within the lamina and can be extracted from the integral. However, in the
case of tow-steered composites, the lamination angle is no longer constant in each ply,
and thus C̃ needs to be kept within the integral.



32 Derivation of high-order 1D and 2D models using CUF

2.7 Free vibration analysis

The undamped free vibration problem can be written as follows:

Mq̈+Kq = 0 (2.38)

where M and K are the structure’s mass and stiffness matrices, respectively. They are
obtained by looping over the FN’s indices i, j, τ and s of the single FE. By imposing
an harmonic solution as q = q̃eiωt , Eq. (2.38) is expressed as the following eigenvalue
problem: (

K−ω
2
i M

)
q̃i = 0 (2.39)

where ωi and q̃i are the ith natural frequency and eigenvector, respectively.

2.8 Buckling analysis

The buckling analysis consists of solving the following equation:

|KT |= 0, (2.40)

in which KT is the tangent stiffness matrix of the structure. The expression for this
matrix is derived by linearising the virtual variation of the internal strain energy:

δ
2(Lint) =

∫
V

δ
(
δεεε

T
σσσ
)

dV =
∫

V

[
δ
(
δεεε

T)
σσσ +δεεε

T
δσσσ

]
dV (2.41)

Substituting Eq. (2.25), the constitutive law, and the geometrical relations between
strains and displacements, the previous equation can be rewritten as follows:

δ
2(Lint) = δqT

s jk
i jτs
T δqτi = δqT

s j

(
ki jτs +ki jτs

σ +ki jτs
T1

)
δqτi (2.42)

where ki jτs
σ and ki jτs

T1
denote the 3×3 FN of the geometric stiffness matrix and the

nonlinear contribution to the tangent matrix, respectively. The former strictly depends
on the internal stress state of the structure. It is worth recalling that the stress state
depends on the model’s accuracy. This thesis does not report the equations that allow
computing the tangent stiffness matrix but can be found in [105]. Linearised buckling
analyses are performed under the following assumptions:

• The pre-buckling deformation can be neglected.

• The initial stress remains constant and varies neither in magnitude nor in direc-
tion during buckling.
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• At bifurcation, the equilibrium states are infinitesimally adjacent so that a
linearisation is possible.

Under these hypothesis, the buckling load can then be defined via a scalar load factor
λ such that σσσ = λσσσ0. At bifurcation, there exists a critical value λcr of the load factor
for which an equilibrium configuration exists where:

|K+λcrKσ |= 0 (2.43)

in which Kσ denotes the assembled geometric stiffness matrix of the structure.

2.9 Numerical calculation of FE integrals considering
VAT composites

In the case of materials whose properties do not vary spatially, as it would happen
with isotropic materials or straight-fibre composites, the components of the material
stiffness matrix are constant within the integration volume V and they can be removed
from the integrals in Eq. (2.34).

The integration of the FN integrals for the 1D case foresees the calculation of two
integrals: one in the beam axis direction, and another over the beam’s cross-section. In
this context, the fourth term of ki jτs

xx can be split into:

C̃16

∫
A

Fτ,xFsdA
∫

l
N j,yNidy (2.44)

where A is the cross-section area, and l is the length of the beam. If normalised
coordinates ξ and ν are accounted for the cross-section, and η is considered for the
beam axis, the above integral can be computed independently of the actual geometry
of the beam. For instance, if a quadrilateral subdomain is considered over the cross-
section, the following arises:

∫
A

Fτ,xFsdxdz =
∫ 1

−1

∫ 1

−1
Fτ,ξ Fs|J2D|dξ dη (2.45)

where |J2D| is the Jacobian determinant of the transformation. Partial derivatives have
to be computed with respect to the normalised coordinates according to the chain rule
as follows:

∂Fτ

∂x
=

∂Fτ

∂ξ

∂ξ

∂x
+

∂Fτ

∂ν

∂ν

∂x
∂Fτ

∂ z
=

∂Fτ

∂ξ

∂ξ

∂ z
+

∂Fτ

∂ν

∂ν

∂ z

(2.46)
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The evaluation of Eq. (2.46) requires knowing ξ = ξ (x,z) and ν = ν(x,z). These
explicit relations are often difficult to establish and, therefore, it is preferable to use
the chain rule as:

∂Fτ

∂ξ
=

∂Fτ

∂x
∂x
∂ξ

+
∂Fτ

∂ z
∂ z
∂ξ

∂Fτ

∂ν
=

∂Fτ

∂x
∂x
∂ν

+
∂Fτ

∂ z
∂ z
∂ν

(2.47)

Equation (2.47) can be rewritten in matrix form as follows:{
∂Fτ

∂ξ

∂Fτ

∂ν

}
=

[
∂x
∂ξ

∂ z
∂ξ

∂x
∂ν

∂ z
∂ν

]
︸ ︷︷ ︸

J2D

{
∂Fτ

∂x
∂Fτ

∂ z

}
(2.48)

Note that the steps above can compute the derivatives and Jacobian involving Fs terms.
Similarly, the integral of the shape functions along the beam axis from Eq. (2.44)

can be computed as: ∫
l
N j,yNidy (2.49)

where the term N j,y is computed as follows:

dN j

dy
=

dN j

dη

dη

dy
=

1
|J1D|

dN j

dη
(2.50)

being |J1D|= l/2 is the Jacobian of the 1D transformation. Therefore, Eq. (2.49) can
be computed in the natural reference frame in the following form:

∫
l
N j,yNidy =

∫ 1

−1
N j,η

1
|J1D|

Ni|J1D|dη =
∫ 1

−1
N j,ηNidη (2.51)

Then, by substituting Eqs. (2.45) and (2.51) into Eq. (2.44), the fourth term of ki jτs
xx is

rewritten as follows:

C̃16

∫ 1

−1

∫ 1

−1
Fτ,ξ Fs|J2D|dξ dη

∫ 1

−1
N j,ηNidη (2.52)

In the case of 2D models, when calculating the FN integrals, the domain is split
into the structure’s midplane and the thickness direction. In this regard, the fourth term
of ki jτs

xx of Eq. (2.34) can be written as follows:

C̃16

∫
t
FτFsdz

∫
Ω

N j,yNi,xdΩ (2.53)
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where t is the thickness, and Ω is the midplane area. The normalised coordinates ξ and
η are accounted for the midplane, and ν is considered for the thickness direction. If a
quadrilateral element is utilised for the midplane discretisation, the following arises:

∫
Ω

N j,yNi,xdxdy =
∫ 1

−1

∫ 1

−1
N j,ηNi,ξ |J2D|dξ dη (2.54)

The partial derivatives need to be calculated with respect to the normalised coordinates
through the chain rule as follows:

∂Ni

∂x
=

∂Ni

∂ξ

∂ξ

∂x
+

∂Ni

∂η

∂η

∂x
∂Ni

∂y
=

∂Ni

∂ξ

∂ξ

∂y
+

∂Ni

∂ν

∂ν

∂y

(2.55)

which requires knowing ξ = ξ (x,y) and η = η(x,y) beforehand. Knowing those
explicit relations is seldom easy and, thus, is preferable to use the chain rule as:{

∂Ni
∂ξ

∂Ni
∂η

}
=

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
︸ ︷︷ ︸

J2D

{
∂Ni
∂x
∂Ni
∂y

}
(2.56)

These derivation above can be implemented straightforwardly for the case of N j.
The integral of the expansion functions along the plate thickness from Eq. (2.53)

is computed as: ∫
l
FτFsdz =

∫ 1

−1
FτFs|J1D|dν (2.57)

being |J1D| = t/2 the Jacobian of the 1D transformation in the thickness direction.
Last, by incorporating Eqs. (2.54) and (2.57) into Eq. (2.53), one has:

C̃16

∫ 1

−1
FτFs|J1D|dν

∫ 1

−1

∫ 1

−1
N j,ηNi,ξ |J2D|dξ dη (2.58)

2.9.1 Gaussian quadrature

The Gaussian quadrature approximates the integral of a function in the ξ ∈ [−1,1]
domain with the sum of the values of the function evaluated at the ith Gauss point,
f (ξi), multiplied by a weight wi. This reads mathematically as:

∫ 1

−1
f (ξ )dξ ≈

ngp

∑
i=0

wi f (ξi) (2.59)
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in which ngp denotes the number of Gauss points where the function f is evaluated.
The Gauss quadrature can also be extended for the integration over surfaces:

∫ 1

−1

∫ 1

−1
f (ξ ,η)dξ dη ≈

ni
gp

∑
i=1

nm
gp

∑
m=1

wiwm f (ξi,ηm) (2.60)

As the reader can observe, the above expressions present an approximation sign ≈.
However, this sign can turn into an equal if the appropriate number of Gauss points is
used and the integrand functions is a polynomial. Given a number of Gauss points ngp,
a polynomial of order at most (2ngp−1) is integrated exactly. As a consequence, given
a polynomial function of order p, the minimum number of Gauss points necessary to
calculate exactly the integral is given by:

ngp = 1+
⌊ p

2

⌋
(2.61)

where ⌊·⌋ indicates the floor function. The Gauss point can be defined as the roots of
the Legendre polynomials:

Pn(z) =
1

2πi

∮
(1−2tz+ t2)−1/2t−n−1dt (2.62)

and the weights are derived using the following equation:

wi =
2

(1− x2
i )[P′

n(xi)]2
(2.63)

Following the previous reasoning, the computation of the integrals from Eqs. (2.52)
and (2.58) is made as follows:

1D case:

C̃16

∫
A

Fτ,xFsdA
∫

l
NiN j,ydl =

C̃16

∫ 1

−1

∫ 1

−1
Fτ,ξ Fs|J2D|dξ dν

∫ 1

−1
NiN j,η |J1D|dη ≈

C̃16

nl
gp

∑
l=1

nn
gp

∑
n=1

Fτ,ξ (ξl,νn)Fs(ξl,νn)|J2D(ξl,νn)|wlwn

nm
gp

∑
m=1

Ni(ηm)N j,η(ηm)|J1D(ηm)|wm

(2.64)
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2D case:

C̃16

∫
t
FτFsdz

∫
Ω

Ni,xN j,ydΩ =

C̃16

∫ 1

−1
FτFs|J1D|dν

∫ 1

−1

∫ 1

−1
Ni,ξ N j,η |J2D|dξ dη ≈

C̃16

nn
gp

∑
n=1

Fτ(νn)Fs(νn)|J1D(νn)|wn

nl
gp

∑
l=1

nm
gp

∑
m=1

Ni,ξ (ξl,ηm)N j,η(ξl,ηm)|J2D(ξl,ηm)|wlwm

(2.65)

The calculation of the above integrals will be exact depending on the number of
Gauss points used for each of the integrals. If the 1D case uses as Fτ bi-linear Lagrange
polynomials, the maximum polynomial order of an integral in the cross-section is
provided by

∫
A FτFsdA, and equals four. Therefore, nl

gp = nn
gp = 2 are necessary to

compute exactly the integral over the cross-section. If the 1D model uses as Ni cubic
Lagrange polynomials, the maximum polynomial order is given by

∫
l NiN jdl and

equals six. Hence, a total of nm
gp = 4 Gauss points are needed to compute the exact

value of the integral along the beam axis. A similar reasoning is made when 2D
structures are involved.

So far, the effect of VAT composites on the computation of the integrals has not
been discussed, as the coefficients of the material stiffness matrix have been assumed
constant across the volume of integration. In the case of tow-steered composites, these
coefficients vary pointwise across the in-plane domain and need to be included into
the integrals, yielding:

1D case:
∫

V
C̃16(x,y)Fτ,xFsNiN j,ydV

2D case:
∫

V
C̃16(x,y)FτFsNi,xN j,ydV =

∫
t
FτFsdz

∫
Ω

C̃16(x,y)Ni,xN j,ydΩ

(2.66)

Note that in the 1D case, the integral cannot be split into beam axis and cross-section
integrals given the dependency of C̃16 on the x and y coordinates, which are related
to the cross-section and beam axis integrals, respectively. Thus, for the 1D case a 3D
integral needs to be performed. On the opposite side, when a 2D model is considered,
the through-the-thickness integrals can be computed independently from the midplane
integrals, which includes the material stiffness matrix coefficient. The numerical
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computation of the integrals is carried out by Gaussian quadrature as follows:

1D case:∫ 1

−1

∫ 1

−1

∫ 1

−1
Fτ,ξC̃16FsNiN j,η |J2D||J1D|dηdξ dν ≈

nl
gp

∑
l=1

nn
gp

∑
n=1

nm
gp

∑
m=1

C̃16(ξl,ηm,νn)Fτ,ξ (ξl,νn)Fs(ξl,νn)Ni(ηm)N j,η(ηm)

|J2D(ξl,νn)||J1D(ηm)|wlwnwm

2D case:∫ 1

−1
FτFs|J1D|dν

∫ 1

−1

∫ 1

−1
C̃16Ni,ξ N j,η |J2D|dξ dη ≈

nn
gp

∑
n=1

Fτ(νn)Fs(νn)|J1D(νn)|wn

nl
gp

∑
l=1

nm
gp

∑
m=1

C̃16(ξl,ηm)Ni,ξ (ξl,ηm)N j,η(ξl,ηm)|J2D(ξl,ηm)|wlwm

(2.67)

An adequate number of Gauss points are needed to calculate exactly the integrals. The
number of points depends on the order of the polynomial function one aims to integrate.
In the case of classical laminates, the number of points is easily determined by knowing
the order of the shape and expansion functions used. However, when VAT laminates
are involved, apart from the shape and expansion functions, one has to consider the
material stiffness coefficient, which order is not known a priori. These coefficients
depend on the rotation matrix T(x,y), which involves trigonometric functions of the
local fibre orientation and is evaluated at the Gauss integration points. Besides, the
fibre orientation follows a polynomial law. This means that the Gauss integration will
always be approximative and never exact since the Gauss approximation is exact only
for polynomial functions. Therefore, the number of Gauss points needs to be increased
to better approximate the integrals. Based on the author’s experience, the number of
integration points for the VAT case is nVAT

gp = nCL
gp +2, being nCL

gp the number of Gauss
points for classical laminates, which is obtained from Eq. (2.61).



Chapter 3

High-order multiple scales modelling

This chapter is devoted to the mathematical derivation of high-order models for com-
posite multiscale applications. In particular, embedded finite element mesoscale and
microscale models based on the Mechanics of Structure Genome (MSG) are described
and incorporated within the CUF framework. These multiscale techniques rely on
the Component-Wise (CW) approach introduced in [106]. The CW strategy permits
alleviating the computational cost related to multi-component and/or multiscale struc-
tures. In classical modelling strategies, different structural components are modelled
through various element types, e.g., beams, shells or solids. Instead, the CW method
allows modelling all the multiple constituents with the same kind of finite element. In
particular, this research foresees the usage of 1D FE. The CW approach enables the
tuning of the capabilities of the model by (i) choosing the component that requires a
more detailed model and (ii) setting the order of the structural model to be used. In
addition, the FE mathematical models can be built using only physical boundaries, as
beam axes or plate/shell reference surfaces are no longer necessary.

3.1 Embedded mesoscale models

Despite the significant advancement in FE modelling, the classic CW approach foresees
the continuity of the displacements at the constituents interface by properly discretising
the shared nodes of the different components, as illustrated in Fig 3.1a. On the other
hand, with the embedded CW, the constituents’ meshes do not need to match. Instead,
a differentiation between host and embedded elements is considered, as shown in Fig.
3.1b. These aspects are explained in the following.

The classical embedded finite element method superimposes an embedded mesh
onto a host grid without modifying the volume of the host element to account for the
space that the embedded mesh occupies. The classical FE method is based on energy



40 High-order multiple scales modelling

(a) Conforming mesh.

Embedded componentHost component

(b) Host and embedded meshes.

Figure 3.1 Representation of a generic reinforced structure using two meshing approaches: (a)
Conforming meshes and (b) Host (black) and embedded (red) meshes. In (a), both constituents
share the same FE discretisation and cross-section, whereas in (b), two different FE meshes
and cross-sections are used.

methods in which the internal energy of an element is approximated by an integral
of the strain energy over the element volume. The same occurs when approximating
the inertial energy, in which the mesh mass is calculated as a volume integral of the
material density. Because of the extra volume of the embedded element, there is an
increase in inertia and strain energy, which lately affects the system solution [107].
In this regard, the integral over the host component should not consider the volume
occupied by the embedded part to avoid volume redundancy. Therefore, the virtual
variations of the internal and inertial energies from Eqs. (2.27) and (2.29) can be
reformulated as:

δLint =
∫

VH

δεεε
hT

σσσ
hdVH︸ ︷︷ ︸

Host strain energy

+
∫

VE

δεεε
eT

σσσ
edVE︸ ︷︷ ︸

Embedded strain energy

−
∫

VE

δεεε
hT

σσσ
hdVE︸ ︷︷ ︸

Redundant host strain energy

, (3.1)

δLine =
∫

VH

δuhT
ρ

hühdVH︸ ︷︷ ︸
Host kinetic energy

+
∫

VE

δueT
ρ

eüedVE︸ ︷︷ ︸
Embedded kinetic energy

−
∫

VE

δuhT
ρ

hühdVE︸ ︷︷ ︸
Redundant host kinetic energy

. (3.2)

The displacement degrees of freedom of the embedded elements must be tied to
those of the host element to avoid slipping between the host and embedded nodes.
For doing so, the displacements in the embedded nodes are interpolated from the
displacements of the host nodes via the host shape and expansion functions as:

ue
e j
= ∑

k
Nhk

i (ye j)F
hk
τ (xe j ,ze j)u

h
hk
, (3.3)

where hk is the kth node of the host grid, and e j is the jth node of the embedded grid.
Nhk

i and Fhk
τ are the shape function and expansion function of hk, and (xe j ,ye j ,ze j) are
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the coordinates of e j. Equation (3.3) can be rewritten in a compact form as follows:

ue = wT uh. (3.4)

where ue and uh are the displacement unknown vectors of the embedded and host
parts, respectively, and w is the assembled interpolation matrix resulting from Eq.
(3.3). Rearranging Eqs. (3.1) and (3.2), and recalling that σσσh = Chεεεh and σσσ e = Ceεεεe,
yields:

δLint =
∫

VH

δεεε
hT

Ch
εεε

hdVH +
∫

VE

δεεε
eT
(Ce −Ch)εεεedVE =

δuhT

s j

∫
VH

B(Nh
j Fh

s )C
hB(Nh

i Fh
τ )u

h
τidVH +δueT

s j

∫
VE

B(Ne
j F

e
s )(C

h −Ce)B(Ne
i Fe

τ )u
e
τidVE =

δuhT

s j kh,i jτsuh
τi +δueT

s j ke,i jτsue
τi,

(3.5)

δLine =
∫

VH

δuhT
ρ

hühdVH +
∫

VE

δueT
(ρe −ρ

h)üedVE =

δuhT

s j

∫
VH

INh
i Nh

j Fh
τ Fh

s ρ
hüh

τidVH +δueT

s j

∫
VE

INe
i Ne

j F
e
τ Fe

s (ρ
e −ρ

h)üe
τidVE =

δuhT

s j mh,i jτsüh
τi +δueT

s j me,i jτsüe
τi,

(3.6)

in which kh,i jτs, ke,i jτs, mh,i jτs and me,i jτs are the stiffness and mass FN of the host
and embedded components, respectively. Equations (3.5) and (3.6) can be expanded
through the τ and s expansion indices, and the i and j FE indices to obtain the following
expressions regarding the whole structure under consideration:

δLint = δuhT
Khuh +δueT

Keue (3.7)

δLine = δuhT
Mhüh +δueT

Meüe (3.8)

Introducing Eq. (3.4) into Eqs. (3.7) and (3.8), the virtual variation of the internal and
inertial work can be expressed as follows:

δLint = δuhT
(

Kh +wKewT
)

uh (3.9)

δLine = δuhT
(

Mh +wMewT
)

üh (3.10)

Concerning the external forces acting on the whole structure, these will be applied
directly to the host constituent unless volumetric forces are acting on the structure.
Therefore, the virtual work of the external loading can be written as follows:

δLext =
∫

VH

δuhT

s j PN jFs|(xp,yp,zp)dVH = δuhT
Fext (3.11)



42 High-order multiple scales modelling

Last, considering all the terms stemming from the PVD applied to host and embedded
components, one can get the following expression:(

Mh +wMewT
)

üh +
(

Kh +wKewT
)

uh = Fext (3.12)

The methodology depicted above can be used to analyse tow-steered composite
structures at the mesoscale. For instance, the actual fibre courses are described through
beam elements embedded into a matrix region modelled by 1D or 2D elements. Figure
3.2 illustrates the fibre course-matrix ensemble, where the matrix acts as the host, and
the fibre is the embedded component. The embedded CW is useful for predicting
stress states in regions where gaps exist with no mesh limitations or the need for
cumbersome meshing operations. Note that although 1D or 2D elements can be used
as host grids, an L or LD expansion must be used to achieve a 3D-like representation
of the host constituent, respectively. For instance, in Fig. 3.2, the matrix is modelled
by straight 1D elements with Lagrange expansion, while the embedded fibre utilises
curved 1D elements and Lagrange expansion. Current efforts are devoted to coupling
host elements using LE and embedded employing TE to reduce the computational
burden further. Of course, classic 3D FE can also be employed as the host grid.

3.2 Microscale models

This section is devoted to deriving the MSG governing equations for purely elastic
heterogeneous solids. First, the assumptions of micromechanical analyses and the
variational asymptotic method are applied to the repeated unit cell (RUC) problem.
Subsequently, 1D high-order models are employed to solve the RUC problem, which
in this thesis concerns the fibre-matrix scale. Later, an extension to tackle the ther-
moelasticity problem is reported. Note that tensorial notation is preferred to vectorial
notation as operations between tensors and vectors are easier to describe.

3.2.1 Variational asymptotic method for the unit cell problem

Micromechanical analyses rely on a series of assumptions. The first one is that the
size of the RUC is significantly smaller than the dimension of the global structure.
This can be posed mathematically as y = x/δ , with δ being a scaling parameter that
characterises the size of the RUC, and y and x are the local and global reference
systems of the RUC, respectively. The second assumption is that the loading and
boundary conditions associated with the macroscale problem do not affect the effective
material properties provided by the RUC analysis at the microscale. In addition,
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Figure 3.2 Representation of a fibre course embedded into a matrix component.
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Ω

L

y₃

y₂

y₁

Figure 3.3 Local coordinate system for RUC problem.

Heterogeneous material Homogeneous material

Figure 3.4 Representation of heterogeneous and homogenised material. The former accounts
for the fibre and matrix material properties, whilst the latter uses the effective material proper-
ties.

the local solutions have an average value over the RUC corresponding to the global
solution of the upper-scale problem. In the case of the displacement field u(x,y), this
assumption reads as:

ū(x) =
1
V

∫
V

u(x;y)dV (3.13)

where ū is the averaged displacements vector, which only depends on the global coor-
dinates, u(x;y) is the local field of displacements, which depends on both global and
local coordinates, and V is the volume associated to the RUC. Furthermore, periodic
boundary conditions are applied to guarantee the compatibility of deformations relative
to the neighbouring RUCs. They can be expressed as:

ui(x1,x2,x3;0,y2,y3) = ui(x1 +L1,x2,x3;L1,y2,y3)

ui(x1,x2,x3;y1,0,y3) = ui(x1,x2 +L2,x3;y1,L2,y3)

ui(x1,x2,x3;y1,y2,0) = ui(x1,x2,x3 +L3;y1,y2,L3),

(3.14)

where Li is the characteristic dimension of the RUC in the yi direction as illustrated in
Fig. 3.3.

According to MSG [108], by minimising the difference between the strain energies
of the heterogeneous material and the homogenised one, shown in Fig. 3.4, one
can retrieve the solution to the stationary value problem, expressed as the following
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functional:

Π =
1
2

〈
Ci jklεi jεkl

〉
− 1

2

(
C∗

i jkl ε̄i jε̄kl

)
(3.15)

in which the first term refers to the strain energy of the heterogeneous composite
represented by the RUC, whereas the second one is that of the homogenised material,
and ⟨·⟩ denotes the volume average. Ci jkl and εi j are the fourth-order elastic tensor and
the second-order strain tensor, respectively. Likewise, C∗

i jkl and ε̄i j are the fourth-order
elastic tensor and second-order strain tensor of the homogenised material, respectively.

One can formulate the variational statement over a single RUC to not solve the
stationary problem for every point in the global system x. In this regard, one can
express the field of displacements u as the sum of the global displacement ū plus the
difference as:

u(x;y) = ū(x)+δ χ(x;y), (3.16)

where χ denotes the fluctuation functions about the global displacement and is scaled
down by a δ factor.

Because of the differences in the coordinate systems of the scales that are relevant
to the multiscale problem, one needs to calculate the derivative of a field of the type
u(x,y) as:

∂u
∂x j

+
1
δ

∂u
∂y j

(3.17)

Thus, applying Eq. (3.17) to the derivatives of Eq. (3.16), the strain variables can be
expressed as:

εi j(x;y) = ε̄i j(x)+χ
(i, j)(x;y) (3.18)

in which

ε̄i j(x) =
1
2

(
∂ ūi(x)

∂x j
+

∂ ū j(x)
∂xi

)
(3.19)

and
χ
(i, j)(x;y) =

1
2

(
∂ χ i(x;y)

∂y j
+

∂ χ j(x;y)
∂yi

)
(3.20)

Recalling Eq. (3.13), it can be written that ūi = ⟨ui⟩ and ε̄i j = ⟨εi j⟩. This implies
that ⟨χ i⟩ = 0 and ⟨χ(i, j)⟩ = 0. Subsequently, employing the field of displacements
and strain from Eqs. (3.16) and (3.18), and assuming the second term of (3.15) as
constant, the unknown fluctuation terms can be retrieved by minimising the following
functional:

Π
∗ =

1
2

〈
Ci jkl

[
ε̄i j +χ

(i, j)
][

ε̄kl +χ
(k,l)

]〉
(3.21)
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3.2.2 Unified high-order finite beam elements for the unit cell
problem

MSG can be utilised to solve a 3D problem with different elements varying over the
three directions, such as particle-reinforced composites, or a 2D problem in which the
phases vary within the plane, such as fibre-reinforced composites. Figure illustrates
the local coordinate system of the RUC, using a square-pack microstructure as an
example. The beam axis, with length L, coincides with the fibre direction y1, while
the y2 − y3 plane identifies the cross-section of the beam model Ω. In this research,
1D CUF-based models are employed to solve the RUC problem by assuming that
the fluctuation unknowns can be expanded over the cross-section through arbitrary
expansions Fτ depending on the cross-sectional coordinates as follows:

χ(x;y1,y2,y3) = Fτ(y2,y3)χτ(x;y1) τ = 1, ...,M (3.22)

being M the number of expansion terms considered in the kinematic model.
The problem in the beam axis direction y1 is solved by employing FEM. In this

work, the fibre direction is discretised through 1D standard elements. Therefore, the
generalised fluctuations unknowns χ

τ(x;y1) are interpolated with Lagrange shape
functions Ni on the y1 direction as:

χ
τ(x;y1) = Ni(y1)χτi(x) i = 1, ...,N (3.23)

where N represents the number of beam nodes and χ
τi(x) is the nodal unknown vector.

The global strains in the Voigt notation are written as:

ε̄εε
T = {ε̄11 ε̄22 ε̄33 2ε̄13 2ε̄23 2ε̄12} (3.24)

and, thus, it is allowed to express the geometrical relations

εεε = ε̄εε +Bχ, (3.25)

being B the differential operator defined in Eq. (2.3).
Subsequently, stresses and strains are related, for the purely elastic case, by the

Hooke’s law as:
σσσ = Cεεε (3.26)

where C is the 6×6 material matrix condensed from the fourth-order tensor Ci jkl .
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The functional in Eq. (3.21) can be rewritten as:

Π
∗ =

1
2

∫
V
(ε̄εε +Bχ)T C(ε̄εε +Bχ)dV (3.27)

Periodic boundary conditions are applied to the RUC. In detail, these are applied on
the sides of the cross-section (χ+

τ = χ−
τ ) and on the sections orthogonal to the fibre

direction (χτ1 = χ
τn). Then, substituting Eq. (3.23) into Eq. (3.22), and the latter into

Eq. (3.27), the functional Π∗ reads in CUF form as:

Π
∗ =

1
2

(
χT

s jE
τsi jχ

τi +2χT
s jD

s j
hε

ε̄εε + ε̄εε
T Dεε ε̄εε

)
(3.28)

where

Eτsi j =
∫

Ω

∫
l
(B(FsN jI))T CB(FτNiI)dΩdy1 Ds j

hε
=

∫
Ω

∫
l
(B(FsN jI))T CdΩdy1

Dεε =
∫

V
CdV

(3.29)
being I the 3×3 identity matrix. Eτsi j and Ds j

hε
are the 3×3 and 3×6 fundamental

nuclei of the purely elastic RUC problem, which contain the complete details related to
the structural problem. In addition, Dεε is the averaged stiffness matrix of the material.
Lately, one can calculate the assembled E and Dhε matrices for the RUC problem by
looping throughout the τ , s, i and j indices. The explicit equations of the Eτsi j FN are
already available in Eq. (2.34). The extended form of the eighteen components of Ds j

hε

are reported in the following:

Ds j
hε,11 =C11

∫
l
N jdy1

∫
A

Fs,xdA+C16

∫
l
N j,ydy1

∫
A

FsdA

Ds j
hε,12 =C12

∫
l
N jdy1

∫
A

Fs,xdA+C26

∫
l
N j,ydy1

∫
A

FsdA

Ds j
hε,13 =C13

∫
l
N jdy1

∫
A

Fs,xdA+C36

∫
l
N j,ydy1

∫
A

FsdA

Ds j
hε,14 =C44

∫
l
N jdy1

∫
A

Fs,zdA Ds j
hε,15 =C45

∫
l
N jdy1

∫
A

Fs,zdA

Ds j
hε,16 =C16

∫
l
N jdy1

∫
A

Fs,xdA+C66

∫
l
N j,ydy1

∫
A

FsdA

Ds j
hε,21 =C12

∫
l
N j,ydy1

∫
A

FsdA+C16

∫
l
N jdy1

∫
A

Fs,xdA

Ds j
hε,22 =C22

∫
l
N j,ydy1

∫
A

FsdA+C26

∫
l
N jdy1

∫
A

Fs,xdA

Ds j
hε,23 =C23

∫
l
N j,ydy1

∫
A

FsdA+C36

∫
l
N jdy1

∫
A

Fs,xdA

(3.30)
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Ds j
hε,24 =C45

∫
l
N jdy1

∫
A

Fs,zdA Ds j
hε,25 =C55

∫
l
N jdy1

∫
A

Fs,zdA

Ds j
hε,26 =C26

∫
l
N j,ydy1

∫
A

FsdA+C66

∫
l
N jdy1

∫
A

Fs,xdA

Ds j
hε,31 =C13

∫
l
N jdy1

∫
A

Fs,zdA Ds j
hε,32 =C23

∫
l
N jdy1

∫
A

Fs,zdA

Ds j
hε,33 =C33

∫
l
N jdy1

∫
A

Fs,zdA

Ds j
hε,34 =C44

∫
l
N jdy1

∫
A

Fs,xdA+C45

∫
l
N j,ydy1

∫
A

FsdA

Ds j
hε,35 =C45

∫
l
N jdy1

∫
A

Fs,xdA+C55

∫
l
N j,ydy1

∫
A

FsdA

Ds j
hε,36 =C36

∫
l
N jdy1

∫
A

Fs,zdA

(3.31)

The fluctuation unknowns that minimise the functional in Eq. (3.28) can be
computed by solving the linear system of equations:

Eχ =−Dhε ε̄εε (3.32)

Assuming that the fluctuation is linearly proportional to ε̄εε , i.e.:

χ = χ0ε̄εε (3.33)

and plugging it into Eq. (3.32), one obtains the following linear system:

Eχ0 =−Dhε (3.34)

where χ0 is a 3×6 matrix. Last, substituting Eq. (3.33) into Eq. (3.27), one can
calculate

Π
∗ =

1
2

ε̄εε
T C∗

ε̄εε (3.35)

being

C∗ =
1
Ω

[
χT

0 Dhε +Dεε

]
(3.36)

where ε̄εε denotes the global strains and C∗ is the matrix containing the elastic coeffi-
cients of the equivalent material. Moreover, Dhε and Dεε are the assembled arrays of
their aforementioned fundamental nuclei.

By reintroducing the fluctuation solutions into the geometrical and constitutive
relations, the local fields over the RUC can be derived. Recall that the complete
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solution to the fluctuation function is:

χ = χ0ε̄εε (3.37)

As a consequence, the local strain field becomes:

εεε = ε̄εε +B(FτNiχ), (3.38)

and using Hooke’s law, the local stress field of the original heterogeneous material is
computed as:

σσσ = Cεεε (3.39)

3.2.3 Extension to the thermo-elastic unit cell problem

The mathematical derivation of the thermo-elastic unit cell equations is made in this
part. Note the hypothesis mentioned in Section 3.2.1 holds. Of course, additional
terms due to the thermal effects must be included in the functional from Eq. (3.15).
Indeed, it now reads as follows:

Π =
1
2

〈
Ci jklεi jεkl +2βi jεi jθ + cv

θ 2

T0

〉
− 1

2

(
C∗

i jkl ε̄i jε̄kl +2β
∗
i jε̄i jθ + c∗v

θ 2

T0

)
(3.40)

where βi j is the second-order thermal strain tensor, T0 is the reference temperature at
which there exists a stress-free condition, cv is the specific heat per unit volume at
constant volume, and θ represents the difference between the current temperature and
T0.

Following the procedure from Eq. (3.16) to Eq. (3.20), Eq. (3.21) can be rewritten
as:

Π
∗ =

1
2

〈
Ci jkl

[
ε̄i j +χ

(i, j)
][

ε̄kl +χ
(k,l)

]
+2βi j

[
ε̄i j +χ

(i, j)
]

θ + cv
θ 2

T0

〉
(3.41)

Utilising the coupling between MSG and CUF, depicted in Eqs. (3.22) and (3.23),
and recalling that in the thermo-elastic problem, stresses and strains are related by
Hooke’s law as:

σσσ = Cεεε +βββθ (3.42)

where βββ is a 6×1 matrix condensed from the second-order tensor βi j.
In this context, Eq. (3.27) contains additional terms, and arises as:

Π
∗ =

1
2

∫
V

[
(ε̄εε +Bχ)T C(ε̄εε +Bχ)+2βββ (ε̄εε +Bχ)θ + cv

θ 2

T0

]
dV (3.43)
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which can be written in CUF form as:

Π
∗ =

1
2

(
χT

s jE
τsi jχ

τi +2χT
s jD

s j
hε

ε̄εε + ε̄εε
T Dεε ε̄εε +2χT

s jD
s j
hθ

θ +2ε̄εε
T Dεθ θ +Dθθ

θ 2

T0

)
(3.44)

The equation above provides additional fundamental nuclei and volume integrals,
reported in the following:

Ds j
hθ

=
∫

Ω

∫
l
(B(FsN jI))T

βββdΩdy1 Dεθ =
∫

V
βββdV Dθθ =

∫
V

cvdV (3.45)

Ds j
hθ

is the 3×1 FN due to the thermal effects, and Dεθ and Dθθ are the average thermal
stiffness matrix and averaged specific heat of the material, respectively. Moreover,
Dhθ is the assembled matrix for the thermoelastic RUC problem obtained by looping
on the s and j indices. The extended expression of Ds j

hθ
is:

Ds j
hθ ,11 = β11

∫
l
N j,y1dy1

∫
Ω

FsdΩ+β13

∫
l
N jdy1

∫
Ω

Fs,y3dΩ+β12

∫
l
N jdy1

∫
Ω

Fs,y2dΩ

Ds j
hθ ,21 = β22

∫
l
N jdy1

∫
Ω

Fs,y2dΩ+β23

∫
l
N jdy1

∫
Ω

Fs,y3dΩ+β12

∫
l
N j,y1dy1

∫
Ω

FsdΩ

Ds j
hθ ,31 = β33

∫
l
N jdy1

∫
Ω

Fs,y3dΩ+β23

∫
l
N jdy1

∫
Ω

Fs,y2dΩ+β12

∫
l
N j,y1dy1

∫
Ω

FsdΩ

(3.46)
The fluctuation unknowns that minimise the functional from Eq. (3.44) can be

computed by solving the linear system of equations:

Eχ =−Dhε ε̄εε −Dhθ θ (3.47)

Assuming that the fluctuation is linearly proportional to ε̄εε and θ , i.e.:

χ = χ0ε̄εε +χ
θ θ (3.48)

and substituting it into Eq. (3.47), one gets the following linear system:{
Eχ0 =−Dhε

Eχ
θ =−Dhθ

(3.49)

where the term χ
θ is a 3×1 matrix. Last, plugging Eq. (3.48) into Eq. (3.43), one can

calculate

Π
∗ =

1
2

ε̄εε
T C∗

ε̄εε + ε̄εε
T

β̄ββθ +
1
2

c̄v
θ 2

T0
(3.50)
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being

C∗ =
1
Ω

[
χT

0 Dhε +Dεε

]
β̄ββ =

1
Ω

[
1
2
(DT

hε
χ

θ +χT
0 Dhθ )+Dεθ

]
c̄v =

1
Ω

[
χT

θ Dhθ T0 +Dθθ

] (3.51)

where β̄ββ is the effective thermal stress coefficients vector and c̄v is the effective specific
heat. Moreover, Dhθ , Dεθ and Dθθ are the assembled arrays of their aforementioned
fundamental nuclei. The effective coefficients of thermal expansion can be retrieved
as:

ᾱαα =−C∗−1
β̄ββ (3.52)

By reintroducing the fluctuation solutions into the geometrical and constitutive
relations, the local fields over the RUC can be derived. Recall that the complete
solution to the fluctuation function is:

χ = χ0ε̄εε +χ
θ θ (3.53)

Consequently, the local strain field becomes:

εεε = ε̄εε +B(FτNiχ), (3.54)

and using Hooke’s law, the local stress field of the original heterogeneous material is
computed as:

σσσ = Cεεε +βββθ (3.55)



Chapter 4

Defect modelling

The presence of defects is almost unavoidable during the manufacturing process of
composites. Since they are hierarchic and heterogeneous materials, flaws can be
present at different scales. In this regard, some flaws can be witnessed by the naked eye,
while others require specific machinery to be appreciated. In addition, the occurrence
of some defects cannot be predicted by engineers and, thus, should be treated as
uncertain. Instead, by simulating the fabrication process, the engineers can foresee
where flaws are likely to occur.

This chapter presents the most common defects that appear during the AFP steering
process and manufacturing limitations. Subsequently, a distinction between uncer-
tainty and deterministic defects is made. The modelling techniques used to include
these two families in the numerical framework are discussed. Moreover, an uncertainty
quantification technique such as Polynomial Chaos Expansion is introduced after
describing how uncertainty defects are modelled.

4.1 Defect classification

This section introduces the manufacturing defects that arise during the fabrication of
VAT composites by the Automated Fibre Placement (AFP) technique and how they
can be modelled within FE method. These are enlisted and briefly depicted in the
following:

Angle deviation It occurs when the AFP machine deviates from the guiding curves
that serve as a reference and is mainly due to the chosen course width. Consequently,
broader fibre courses imply larger angle deviations, and narrower ones increase the
manufacturing time. Therefore, a trade-off between quality and fabrication time is
needed.
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Figure 4.1 Example of tow misalignment generating a gap during AFP process.

Tow misalignment It is caused by an inaccurate positioning of the deposition head
due to inertial effects on the machine structure and process speed. A graphical
representation is available in Fig. 4.1.

Waviness It can occur in- and out-of-plane within the ply. The former is produced by
the steering of the fibres and the presence of complex surfaces. The latter is affected
by tooling as well as fibre steering. The out-of-plane waviness harms the composite
parts’ strength and stiffness.

Gap and overlap They are the most common and studied defects that occur in AFP-
manufactured parts. They are related to both the processability of the material and
the machine parameters. Besides, the quality of the material also affects the tow
width, which could fluctuate. A 0% overlap strategy means that only gaps will occur
within the ply. A 100% overlap implies that only overlaps will be present. These two
strategies can be referred to as full-gap or full-overlap, respectively. These two defects
are illustrated in Fig. 4.2. As shown there, a coverage percentage between 0% and
100% implies a combination of gaps and overlaps.

Twisting It is a defect that barely happens thanks to the sophisticated process control
and material quality employed during manufacturing. Nevertheless, when it happens,
it will be within the material supply and payout system of the AFP end effector due to
the movement of the AFP machine along the fibre path. It might also be caused during
the steering of the fibres, and, as a consequence, gaps will arise close to the twisted
tows, as represented in Fig. 4.3.

Bridging and crowning They occur because of a lack of pre-tension within the tows,
which allows the AFP machine to place tows on concave and convex surfaces. Bridging
happens when fibres are deposited on concave geometries, while crowning appears
when steering over convex surfaces. In this regard, the fibre tow pre-stress needs to
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(a) (b) (c)

Figure 4.2 Different coverage strategies: (a) Full-gap. (b) 50% gap and 50% overlap. (c)
Full-overlap.

Figure 4.3 Twisted tow induced by the AFP process.
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Figure 4.4 Bridging and crowning defects within a ply.

Figure 4.5 Wrinkle and upfold within a ply.

be monitored and adjusted throughout the entire fibre/fed system. Figure 4.4 shows a
schematic representation of these two defects.

Tow wrinkling and upfolding They arise when the adhesion between the pre-
impregnated tow and the tool surface fails. They may also stem from fibre steering.
The edges of the fibre course present different curvature radii, i.e., one side lengthens
while the other compresses. Therefore, the tensile and compressive stress within the
tow may lead to eventual fold up or wrinkle, as represented in Fig. 4.5.

Voids and inclusions The already present voids in the raw material can be reduced to
a small extent by compaction during the AFP process. In this context, an insufficient
compaction of the tows increases the chances of entraping air. Likewise, small or large
gaps and overlaps promote void formation.

Residual stresses and process-induced imperfections (PID) These defects are
induced during the curing phase and arise in the cured part. Besides fibre steering,
gaps and overlaps facilitate the emergence of residual stresses and PID.

Fuzz formation It is caused by shredded material at the edges of a narrow tow. Each
part of the AFP machine that contacts the fibre tows interacts with the fibre constituent.
In detail, the friction with the tow edges leads to an accumulation of fuzz that may
contaminate the laminate during fibre placement. Fuzz formation might be due to
fluctuations in the width of the fibre tow. A graphical representation is available in Fig.
4.6.
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Figure 4.6 Fuzz ball within a ply.

4.2 Manufacturing limitations

Apart from the previous defects, other manufacturing quantities are paramount when
designing VAT components. The first that is considered in this document is the
minimum turning radius of the AFP machine rmin, which is usually enforced through
a constraint in the optimisation problem as:

− 1
rmin

≤ κ ≤ 1
rmin

(4.1)

An analytic expression to calculate the curvature of a generic tow-angle distribution
was derived by Brooks and Martins [109] and is depicted in the following. Let us
consider a 2D unit tangent vector −→t to a fibre path θ(x,y), see Fig. 4.7, as:

−→t (θ) = cos(θ)î+ sin(θ)ĵ. (4.2)

Then, performing the curl operator over the vector field −→t and keeping the only
non-zero vector component gives:

κ(x,y) = (∇×−→t (θ)) · k̂ =
∂θ

∂x
cos(θ)+

∂θ

∂y
sin(θ) = ∇θ ·−→t (θ), (4.3)

which can be evaluated to assess whether a design is manufacturable or not. Note
that î, ĵ and k̂ denote the unitary vectors of a Cartesian reference frame. Besides, θ ’s
explicit dependence on x and y is omitted for conciseness.

If one considers the expression of the linear variability of the fibre orientation
angle proposed by Olmedo and Gürdal [10] and assuming φ = 0◦, Eq. (4.3) can be
rewritten as follows:

κ(x) = sgn(x)
T1 −T0

d
cos

(
T0 +

T1 −T0

d
x
)

(4.4)
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in which sgn(·) denotes the sign function.

Figure 4.7 Illustration of the AFP turning radius in a linearly varying fibre path at a certain
(x,y) in-plane location.

4.3 Uncertainty defects and quantification

4.3.1 Stochastic fields

Composite structures are not exempt from flaws arising during the fabrication process.
For instance, the composite material may present variability of their intrinsic properties
such as different Young’s modulus, shear modulus or material strengths. Other can be
strictly related to the manufacturing process, such as an unexpected void content due
to some pressure variation when the composite part was in the autoclave. Additional
geometrical features that can present variability are the ply thickness, the presence
of fibre waviness or misalignments, or even variability in the direction of the applied
loads.

In order to consider these possible variations, they have to be included in the
numerical model, which can be done using stochastic fields. They are n-dimensional
fields that spread a parameter in space following a specific probability distribution.
Several techniques exist that can be used for the computation of random fields. Spanos
and Zeldin [110] wrote a thorough review in the late 90s, which gathered some of the
most extended methodologies, such as the Covariance Matrix Decomposition (CMD),
spectral method, the auto-regressive moving-average (ARMA) method, noise shower
method, scale refinement method and turning band method.

In this research, the CMD [111] was considered first, thanks to its straightfor-
wardness in generating stochastic fields. CMD just needs a correlation function and a
correlation length. It starts with the generation of the covariance matrix C through a
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correlation function, which is commonly based on an exponential function as follows:

C(x,x′) = e−
|xi−x′i|

Lci

C(x,x′) = e−
||x−x′||

Lci ,

(4.5)

in which Lci is the correlation length in the ith direction. Note that the numerator at
the exponentials refers to the distance between the reference points in which random
variables are to be computed. In the case of flat structures such as plates, the numerator
corresponds to the Euclidean distance. However, in the case of shells, the geodesic
distance is more representative of the structure.

Using CMD, stochastic fields are calculated through the multiplication of a matrix
with a random vector:

h = Lξξξ (4.6)

where L is a decomposed version of the correlation matrix R and ξξξ a vector with zero
mean and a unit variance. The correlation matrix is generated as follows:

Ri j =
cov(hi,h j)

σiσ j
→ R =


1 C(x1,x2) . . . C(x1,xn)

C(x2,x1) 1 . . . C(x2,xn)
... . . . ...

C(xn,x1) C(xn,x2) . . .1

 (4.7)

in which C(xi,x j) = C(x j,xi). Then, taking the definition of the covariance:

cov[hi,h j] = E[hih j]−E[hi]E[h j] (4.8)

and recalling that the field has a null mean, it is possible to show that R can be
decomposed into two matrices:

R = cov[h,h] = E(h,hT )−0 ·0 = E(Lξξξ (Lξξξ )T ) = LE(ξξξ ξξξ
T
)LT = LLT (4.9)

Because R is symmetric and positive semi-definite, it can be decomposed using
eigendecomposition in the form of:

R = QΛΛΛQT (4.10)
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Figure 4.8 Example of a generic random field generated by CMD over a [⟨0,45⟩] VAT ply.
The correlation lengths are Lcx = 0.125 m and Lcy = 0.025 m, and field standard deviation
σH = 1.5.

where ΛΛΛ is a diagonal matrix containing the eigenvalues of R, and Q contains the
eigenvectors of the matrix. Therefore, L can be extracted as follows:

R = QΛ̃ΛΛΛ̃ΛΛQT = LLT → L = QΛ̃ΛΛ (4.11)

being Λ̃ΛΛ = diag(
√

λ ), and λ the eigenvalues of R. In this manner, utilising the
decomposed correlation matrix L, it is possible to generate random fields employing
Eq. (4.6) as:

Hi = H̃ +σHLi jξ j (4.12)

where Hi is the value of the random field at point i, H̃ and σH are the mean value and
standard deviation of the field. An illustrative example of a random field generated
by CMD over a [⟨0,45⟩] VAT ply is available in Fig. 4.8. The covariance matrix is
generated using the first kernel reported in Eq. (4.5), and the correlation lengths are
Lcx = 0.125 and Lcy = 0.025 m, and standard deviation σH = 1.5.

A similar procedure to CMD is the Karhunen-Loève expansion (KLE) [112], which
can be seen as a particular case of the orthogonal series expansion where the orthogonal
functions are the eigenfunctions of a Fredholm integral equation of the second kind
with the autocovariance function as the kernel. In this case, the stochastic field can be
expressed as:

H(x;ω) = H̃ +∆H(x;ω), (4.13)

in which ω represents the stochastic nature of the field, H̃ is the mean value of the
field, and ∆H denotes the Gaussian variation of the random field about its mean. This
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last term can be expressed as a truncated series including M terms as follows:

∆H(x;ω) =
M

∑
i=1

ξi(ω)
√

λiϕi(x), (4.14)

where ξi(ω) is a set of zero-mean independent Gaussian random variables, and λi and
ϕi are the eigenvalues and eigenfunctions of the Fredholm integral:∫

C(x,x′)ϕi(x′)dx′ = λiϕi(x) (4.15)

Depending on the kernel, analytical solutions can be derived. For instance, for a
squared plate and using as kernel:

C(x,y;x′,y′) = σ
2
He−

|x−x′|
Lcx − |y−y′|

Lcy , (4.16)

one can write that the fn eigenfunction as the following product:

ϕn(x,y) = ϕ
(1)
i (x)ϕ(2)

j (y) (4.17)

and
λn = λ

(1)
i λ

(2)
j . (4.18)

Substituting Eqs. (4.16), (4.17) and (4.18) into Eq. (4.15), reads as:

λ
(1)
i λ

(2)
j ϕ

(1)
i (x)ϕ(2)

j (y) =
∫ Lcx/2

−Lcx/2
e−

|x−x′|
Lcx ϕ

(1)
i (x)dx′

∫ Lcy/2

−Lcy/2
e−

|y−y′|
Lcy ϕ

(2)
j (y)dy′, (4.19)

whose solution is the product of the individual solutions of the following two equations:

λ
(1)
i ϕ

(1)
i =

∫ Lcx/2

−Lcx/2
e−

|x−x′|
Lcx ϕ

(1)
i (x)dx′

λ
(2)
j ϕ

(2)
j (y) =

∫ Lcy/2

−Lcy/2
e−

|y−y′|
Lcy ϕ

(2)
j (y)dy′

(4.20)

The solution of the first equation has the following eigenvalues:

λ
(1)
i =

2/Lcx

ω2
i +(1/Lcx)2 , (4.21)
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and eigenfunctions:

ϕ
(1)
i (x) =

cos(ωix)√
a+ sin(2ωia)

2ωi

for i odd

ϕ
(1)
i (x) =

sin(ωix)√
a− sin(2ωia)

2ωi

for i even
(4.22)

being a the semi-length of the x domain, and ωi the solution of the transcendental
equation:

1
Lcx

−ωi tan(ωia) = 0 for i odd

ωi +
1

Lcx
tan(ωia) = 0 for i even

(4.23)

Note that the same procedure is made to solve for λ
(2)
j and ϕ

(2)
j (y). Of course, Lcx and

a must be substituted by Lcy and the semi-length in the y domain, respectively. If more
complex geometries or more complex kernels are considered in the stochastic analysis,
Eq. (4.15) can be solved numerically employing the FEM as explained in the book by
Ghanem and Spanos [112]. Additionally, other numerical methods to generate KLE
are depicted in the work by Betz et al. [113]. Last, an example of a stochastic field
generated by KLE is represented in Fig. 4.9. In detail, the first fifteen eigenvalues, the
first and second eigenfunctions and the stochastic field over a [⟨0,45⟩] VAT lamina are
illustrated. The covariance kernel from Eq. (4.16) with Lcx = 0.125 and Lcy = 0.025
m, and a standard deviation σH = 1.5 are considered.

To conclude this section, it is worth mentioning that the above methods are limited
to simulating Gaussian random fields. If needed, these methods may readily be
extended to simulating non-Gaussian fields as a translation process, which is defined
using a nonlinear transformation of an underlying Gaussian stochastic field of the form
[114, 115]

Z(x;ω) = g(Y (x;ω)) = F−1[Φ(Y (x;ω))] (4.24)

in which Z(x;ω) is a non-Gaussian random field with marginal Cumulative Distribu-
tion Function (CDF) F , Φ is the standard Gaussian CDF, Y (x;ω) is an underlying
Gaussian field, and g denotes a nonlinear memoryless transformation.

4.3.2 Polynomial Chaos Expansion

Addressing the uncertainty in the mechanical performance of composite materials is
becoming an increasingly important field, as reliability analysis tends to be performed
after designing a component. However, the cost of dealing with uncertainty is the large
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(a) Eigenvalues (b) First eigenfunction

(c) Second eigenfunction (d) Random field

Figure 4.9 (a) First fifteen eigenvalues, (b) first and (c) second eigenfunctions, and (d) random
field generated by KLE over a [⟨0,45⟩] ply. The correlation lengths are Lcx = 0.125 m and
Lcy = 0.025 m, and field standard deviation σH = 1.5.
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amount of data needed. This information is commonly obtained through Monte Carlo
simulations, which repeatedly evaluate expensive computational models.

Metamodels, or surrogate models, attempt to decrease the cost of uncertainty
analyses by substituting expensive computational models with inexpensive surrogates.
Throughout the decades, a plethora of methods have been employed to characterise
uncertainty, among which Polynomial regression, Kriging processes [116], Radial
Basis functions [117], Support Vector regression [118] and Polynomial Chaos expan-
sion (PCE) [112]. The latter is considered in this thesis to accelerate the uncertainty
quantification of the buckling response of VAT affected by spatially varying waviness
and fibre volume fraction. The mathematical foundations of PCE are depicted in the
following. PCE can be generally expressed as:

Y (ξ1,ξ2, ...,ξr) = a0Γ0 +
∞

∑
i=1

a1iΓ1(ξi1(ω))+
∞

∑
i=1

i

∑
j=1

ai1i2Γ2(ξi1(ω)ξi2(ω))+ ...

(4.25)
where ξi1(ω) is a set of independent standard Gaussian variables and Γp(ξi1(ω), ...,ξip(ω))

is a set of multivariate Hermite polynomials of order p; ai1, ...,aip are deterministic
coefficients and ω represents the random nature of the magnitudes involved. Equation
(4.25) can be rewritten as:

Y (ξ1,ξ2, ...,ξn) =
r

∑
i=0

βiψi(ξi(ω)) (4.26)

in which βi and ψi(ξi(ω)) are equivalent to ai1, ...,aip and Γp(ξi1(ω), ...,ξip(ω)), re-
spectively. It is worth mentioning that, depending on the nature of the uncertainty
quantities involved, i.e., Gaussian, uniform, beta distribution, and so forth, the polyno-
mial basis varies as depicted in [119]. The number of terms involved in a PCE up to
order p are calculated as:

N =
(r+ p)!

r!p!
(4.27)

being r the number of variables involved, and p the degree of the polynomial. An
interesting feature of PCE is that thanks to the orthonormality of the polynomial
basis, the first two statistical moments, namely the mean value and standard deviation,
are encoded within the PCE coefficients. The mean value Ỹ and variance σ2

Y of the
stochastic process Y can be calculated using the following expressions:

Ỹ = β0

σ
2
Y =

r

∑
i=1

β
2
i .

(4.28)
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Figure 4.10 Representation of a linearly varying fibre path. (a) General case. (b) φ = 0◦.

In this thesis, the PCE independent variables ξi(ω) correspond to the standard Gaussian
terms considered in the KLE, reported in Eq. (4.14).

4.4 Deterministic defects

As opposed to the imperfections depicted in the previous section, the presence and
location of deterministic defects can be predicted by modelling the material deposition
process. This is referred to as manufacturing process simulation and can be used
to foresee where gaps and overlaps are likely to occur in the case of tow-steered
composites.

In this investigation, the linear fibre variation proposed by Olmedo and Gürdal
[10] is considered. The linear variation can be expressed as:

θ(x′) = φ +T0 +
T1 −T0

d
|x′| (4.29)

in which T0 and T1 are the fibre orientations at x′ = 0 and x′ = d, respectively, and d
is the length along which the fibre orientation varies from T0 to T1; last, φ is the fibre
rotation path angle and defines the axis along which the courses are steered, i.e., x-axis,
y-axis, or a combination of both since x′ = xcosφ + ysinφ . It is commonly found that
φ = 0◦ or φ = 90◦, and in those cases, d equals the semi-width, a/2, or semi-length,
b/2, of the plate, respectively. All these parameters are represented in Fig. 4.10 for a
better understanding.

In order to visualise the fibre deposition process, it is necessary to obtain an analytic
equation that provides the in-plane position of the fibre courses. In this regard, the
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centre line of a fibre course can be calculated as follows:

dy
dx

= tanθ (4.30)

in which θ takes the expression from Eq. (4.29). Assuming φ = 0◦, and therefore
d = a/2, the solution to the previous differential equation reads as:

y(x) =



a
2(T0−T1)

[
ln(cosT0)+ ln

(
cos

(
−T0 +2T1 +

2(T1−T0)
a x

))]
−a ≤ x ≤−a

2

a
2(T1−T0)

[
− ln(cosT0)+ ln

(
cos

(
T0 +

2(T0−T1)
a x

))]
−a

2 ≤ x ≤ 0

a
2(T0−T1)

[
− ln(cosT0)+ ln

(
cos

(
T0 +

2(T1−T0)
a x

))]
0 ≤ x ≤ a

2

a
2(T1−T0)

[
ln(cosT0)+ ln

(
cos

(
−T0 +2T1 +

2(T0−T1)
a x

))]
a
2 ≤ x ≤ a

(4.31)
Note that Eq. (4.31) provides the equations for the fibre path for the outer regions

of the considered plate. This is needed because in cases where φ ̸= 0◦, portions of
the fibre course will lay outside the plate domain. In this manner, one constructs the
so-called manufacturing mesh.

Let us focus on a single fibre course being steered. A course comprises several
tows. The number of tows, ntow, laid down by the AFP head can vary. Most AFP
machines can simultaneously place eight, twelve, sixteen, twenty-four or thirty-two
tows. Since each of these tows has a fixed width, wtow, the width of the single course
can be calculated as wcourse = ntowwtow. Therefore, to model a single tow, one needs
to consider not only the course reference path from Eq. (4.31) but also its left and right
edges. These features are illustrated in Fig. 4.11. Their analytical expressions are:

Left edge:

{
xl = x− pl sinθ(x)
yl = y+ pl cosθ(x)

Right edge:

{
xr = x+ pl sinθ(x)
yr = y− pl cosθ(x)

(4.32)

Recall that the previous set of equations was derived for the case when φ = 0◦. If the
chosen VAT design considered φ ̸= 0◦, Eq. (4.32) can be rewritten as:

Left edge:

{
xφ

l = xl cosφ − yl sinφ

yφ

l = xl sinφ + yl cosφ

Right edge:

{
xφ

r = xr cosφ − yr sinφ

yφ
r = xr sinφ + yr cosφ

(4.33)
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Figure 4.11 Schematic representation of how the projected vertical width varies with the
steering process.

Table 4.1 Defects arising within the plate depending on the fibre parameters and the manufac-
turing strategy.

Condition Contact at edge Contact at centre
|cosT0|> |cosT1| Gap at centre Overlap at edges
|cosT1|> |cosT0| Overlap at centre Gap at edges

Focusing on a generic fibre course, one can observe that the vertical projection of
the course width diminishes or increases, depending on the T0 and T1 fibre path angles.
The projected width can be calculated as:

wpro j =
wcourse

cosθ
, (4.34)

and can be visualised in Fig. 4.11. Steering fibre bands along a fixed direction
and shifting the AFP head perpendicularly to generate the subsequent fibre course
leads to gaps and/or overlaps. The location where they appear depends on the fibre
path definition angles, T0 and T1, and the steering strategy. For instance, one can
impose contact between two adjacent courses at the plate’s edge or centre. Figure 4.12
illustrates the case of a [⟨0,45⟩] plate in which the fibre courses touch at the edge, Fig.
4.12a, and at the centre of the plate, see Fig. 4.12b. The yellow area highlights a gap
area, whereas the green one indicates an overlap area.

Depending on the chosen fibre orientation parameters and the region where the
fibre courses contact each other, one will find gaps and overlaps at the edge or centre
of the plate. These conditions are summarised in Table 4.1. The previous flaws
affect large areas because the course width is kept constant throughout the deposition
process. In order to reduce the defect area, the course width has to decrease or increase
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(a) Gaps (b) Overlaps

Figure 4.12 Example of a plate with [⟨0,45⟩] stacking sequence with full gap (a) and full
overlap (b) manufacturing strategy.

whenever a course intersects the successive one, or it does not reach the precedent
course’s edge, respectively. The increase or decrease of the course width is achieved
by cutting an individual tow and restarting its deposition. This comports the generation
of small triangular defected regions, as observed in Fig. 4.13.

It is worth recalling that the described methodology was derived only for linearly
varying fibre paths. However, if other variability strategies are utilised, the former
procedure should be tweaked as the solution to the differential equation in Eq. (4.30)
will be different.

4.5 Coupling manufacturing process simulation and
FEM

So far, the concept of manufacturing mesh has been utilised to create the fibre courses
that compose the laminated VAT plate, and depending on the chosen manufacturing
strategy, one can obtain a 100% gap- or 100% overlap-defected plate. Foreseeing the
position of such defects makes it possible to calculate the percentage of defects within
a layer. This percentage is computed by tessellating the plate domain into a series of
rectangular partitions and computing the defected area within each subdomain. This
process is repeated for each layer comprising the laminated VAT component.

After calculating the defect area of each manufacturing subdomain, it is necessary
to map these defects onto the FE mesh. For simplicity, in this study, the manufacturing
and FE grids are divided into the same number of subdomains. Therefore, there is a
one-to-one relation between the manufacturing and FE meshes.
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(a) Gaps

(b) Overlaps

Figure 4.13 Gap and overlap defect correction over a [⟨0,45⟩] ply. The zoomed areas show the
triangular gaps and overlaps that are generated.
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Figure 4.14 Normalised elastic properties with respect to the gap percentage area of the gap-
modified defect layer. Adapted with permission from Fayazbakhsh et al. [45].

The Defect Layer Method (DLM), introduced by Fayazbakhsh et al. [45], is used
to modify the relative properties of each FE. In the case of a full-gap strategy, the
material elastic properties are penalised according to the laws shown in Fig. 4.14,
whereas the modified density, ρmod, is calculated using the rule of mixtures as:

ρmod = ρresinAgap +ρtow(1−Agap) (4.35)

where Agap is the gap defect area within the FE, and ρresin and ρtow are the resin
and pre-impregnated tow densities, respectively. Conversely, when a full-overlap
design is chosen, the material properties are kept the same as in the pre-impregnated
material, and each FE’s thickness is increased proportionally to the overlap area within
the FE. Experiments showed that two superimposing tows do not lead to a twofold
thickness increase due to the compaction pressure in the autoclave [120]. Therefore,
the thickness increase is topped up by 95% of the original thickness. In this manner,
the modified thickness tmod is calculated as:

tmod = 0.95tply(1+Aoverlap) (4.36)

in which Aoverlap is the overlap defect area within the FE, and tply is the nominal
thickness of the pre-impregnated tow. As an illustrative example, Fig. 4.15 shows each
FE’s fibre courses and the gap and overlap area.

As the reader can infer, when using DLM to model gaps, a multimaterial plate
model is generated. In that model, the individual ply thicknesses are invariant and
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Defect area [%]

(a) Gaps
Defect area [%]

(b) Overlaps

Figure 4.15 Gap and overlap defect correction over a [⟨0,45⟩] ply. The greyscale map shows
the defect area within each FE.
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equal to those of the defect-free laminated component. Therefore, LW models can
be easily developed by modifying the material properties of each FE in the in-plane
and thickness directions, as appreciated in Fig. 4.16a. In contrast, when modelling
overlaps with DLM, the thickness of each FE and layer varies spatially. Currently,
new methodologies are being studied to develop full LW plates with the presence
of overlaps. However, in the framework of this thesis, high-order ESL models are
preferred to model this kind of defect. In this regard, the integration domain along
the thickness for an ESL model varies for each FE. Indeed, with the present approach,
generating an LW model accounting for overlaps is a cumbersome task because of the
stair-like through-the-thickness discretisation required; see Fig. 4.16b. LW overlap
modelling encompasses a significant increase in DOF that might not report additional
benefits in the prediction of global responses of the structure, such as buckling load or
fundamental frequency, which tend to be quantities of interest during the optimisation
phase.

x
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Through-the-thickness slice

(a) Gap modelling

x

y

x
z

(b) Overlap modelling

Figure 4.16 Gap and overlap models resulting from coupling between DLM and FE.



Chapter 5

The optimisation problem

This chapter describes the main components needed to establish an optimisation
problem. A description of the necessary features is made until construction of the
mathematical statement. Then, the optimisation problem can be classified according
to different criteria. These comprise how the functions involved are evaluated, i.e.,
direct simulations or surrogate models; whether a local or global search strategy is
conducted; and the algorithm classification, depending on how the iterative process is
handled.

5.1 Optimisation problem formulation

Optimisation problems are present in various everyday-activities, such as economics,
management, manufacturing, physics, biology and, of course, engineering [121, 122].
Concerning the latter, this research is devoted to the structural design optimisation of
variable stiffness composite structures, with a special focus on how the different struc-
tural theories chosen to analyse the aforementioned components affect the optimum
solution in a series of linear static applications.

In the design optimisation process, the engineers have to translate their intent to a
mathematical statement that can be solved by an optimization algorithm. To generate
this statement, the designer needs to describe the problem and establish all the goals
and requirements. It is also essential to identify all the possible inputs and outputs of
the analysis, as well as its limitations.

The first step is to identify the design variables that describe the system. These
must not depend on each other or any other parameter, and the optimiser must be free
to choose the values of the design variables independently. In this manner, the design
variables are input parameters that remain constant throughout the analysis process.
Depending on the nature of the design variables, they can be defined as continuous
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or discrete. Continuous variables are real numbers that are allowed to vary within a
specified range. Conversely, a variable is referred to as discrete when it is allowed to
take only a predefined number of values. The latter is common in structural sizing
problems. For instance, in the optimisation of composite laminates, specific thickness
values of the plies are available by the material suppliers.

The second step is the definition of the objective function, which is the quantity
that determines whether a design is better than other. Depending on the problem, the
objective function can be minimised or maximised. For instance, in the aeronautic
sector, a structural engineer might want to minimise the structural weight of an aircraft,
whereas an operation engineer would try to maximise the range of a vehicle. The
selection of the objective function is not trivial. In many applications, optimising a
certain feature could lead to a poor performance on another one. In this regard, it is not
obvious which one of these features is the most appropriate to consider as objective
function, as the trade-off will depend on the end-user preferences. The consideration
of multiple objective functions within a single optimisation process is referred to as
multiobjective optimisation. This is a topic that goes beyond the scope of this work,
although it should be considered in future research activities.

The last step towards the definition of the optimisation problem is the identification
of the constraints. The constraints are functions of the design variables that one wants
to restrict in some way. As in the case of the objective function, the constraints are
computed through models whose complexity can vary, i.e., from simple equations up
to Finite Element or Computational Fluid Dynamic solvers. The feasible region is the
set of points that fulfil all constraints, and one aims to minimise the objective function
within this feasible design space.

Constraints can be divided into two categories: equality and inequality constraints.
The former restricts a function to being equal to a fixed value, while the latter requires
the function to be less or equal to a certain value. In addition, inequality constraints
can be active or inactive at the optimum point. Active means that the constraint is
equal to the fixed value, whereas an inactive one implies that the function is less than
the certain value. In this regard, if one of the constraints is inactive at the optimum, this
constraint could have been removed from the problem with no change in its solution.
However, knowing this information in advance is a difficult task.

After having introduced the design variables, objective function and constraints,
one can include them in an optimisation problem statement. Mathematically, the
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optimisation problem is formulated as follows:

min
x

f (x) s.t.


gi(x)≤ 0 i = 1, ...,ng

h j(x) = 0 j = 1, ...,nh

xL ≤ x ≤ xU

(5.1)

where f (x) is the objective function that aims to be minimised; gi(x) and h j(x) are
the inequality and equality constraints, respectively; and xL and xU are the lower and
upper limits of the design variables x.

5.2 Optimisation problem classification

Optimisation algorithms can be classified depending on a series of attributes, and no
single optimisation algorithm is effective or appropriate for all possible optimisation
problems. In this work, different strategies have been considered to solve the structural
optimisation problems. According to [66], one can subdivide the strategies in terms of
the function evaluation, algorithm and search method as:

• Function evaluation:

{
Direct
Surrogate model

• Search method:

{
Local
Global

• Algorithm:

{
Mathematical
Heuristic

5.2.1 Function evaluation

Concerning the function evaluation, it can be done directly by solving the numerical
models involved in the system. That is, in the case of structural optimisation, the output
will be provided by the FE solver. In this research, the direct simulations are performed
by using the in-house CUF-based FE solver. Another possible way to evaluate the
functions involved is by building a surrogate model, or metamodel, that mimics the
desired output, whether it is the objective or a constraint function. This strategy might
be preferred when computationally demanding simulations are involved, as it could
be the case of buckling or fundamental frequency optimisation, in which different
structural matrices have to be calculated prior to solving an eigenvalue problem. In
particular, in this work, a metamodel based on polynomial functions was utilised
to optimise the fundamental frequency and buckling of tow-steered plates. These
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results are available in Sections 6.5.1 and 6.5.2, respectively, while the mathematical
background is depicted in the following.

Although in this manuscript polynomial expressions are used to construct a sur-
rogate model, other mathematical instruments can be used to solve the optimisation
problem. That is the case of Artificial Neural Networks (ANN) [85], Kriging processes
[123], Polynomial Chaos Expansion [112] or Radial Basis Functions [124]. The math-
ematical derivation of how the polynomial surrogate model is created will consider
a second-order polynomial, although it can be easily extended to higher orders. The
expression for the second-order polynomial can be expressed as:

f (x) = ξ0 +
n

∑
i=1

ξixi +
n

∑
i=1

n

∑
j=i+1

ξi jxix j +
n

∑
i=1

ξiix2
i (5.2)

where ξ0, ξi and ξi j are the polynomial coefficients, xi are the independent variables
and n the number of independent variables. To fit the surrogate model to the data set,
the least squares method is used to calculate the polynomial coefficients. If a total of
Ns samples are employed to construct the surrogate model and two design variables,
n = 2, are considered, the regression problem reads as:

f = ΨΨΨξξξ (5.3)

in which f is a Ns ×1 column vector containing the data samples of the function that
one aims to mimic, ξξξ contains the coefficients of the polynomial and ΨΨΨ is a matrix
with the Ns values of the design variables, i.e.:

ΨΨΨ =


1 x11 x12 x11x12 x2

11 x2
12

1 x21 x22 x21x22 x2
21 x2

22
...

...
...

...
...

...
1 xNs1 xNs2 xNs1xNs2 x2

Ns1 x2
Ns2

 , (5.4)

which, in general, is not a square matrix [125]. Therefore, the coefficient vector can
be calculated as:

ξξξ = (ΨΨΨT
ΨΨΨ)−1

ΨΨΨ
T f (5.5)

5.2.2 Search method

The classification in terms of the search method is related to the way in which the
design space is explored. On the one hand, the local search starts from a single point
and forms a sequence of points that hopefully converges into a local optimum. On the
contrary, global search algorithms try to investigate the whole design space aiming to
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find the global optimum. Despite its name, a global search method does not guarantee
that any optimum found is a global one.

It is a common that gradient-based algorithms are recalled as local search and
gradient-free algorithms as global search. However, this is a mistake and they should
be viewed as independent attributes. As an example, a global search can be performed
to provide starting points for a gradient-based strategy. Likewise, some gradient-free
algorithms are based on local search strategies.

The selection of search type is essentially related to the modality of the design
space. A local search is be sufficient if the design space is unimodal, as it will converge
to the global optimum. Contrariwise, if the design space is multimodal, a local search
will converge to an optimum that might be local. A global search increases the chances
of converging to a global optimum, although is not guaranteed by any means.

5.2.3 Optimisation algorithm

Regarding how the iterative process associated to the optimization algorithm is con-
ducted as well as the optimality criteria, these can be divided in gradient-based and
heuristic.

Gradient-based are based on mathematical principles associated to the iterative
procedure and the optimality criteria. On the contrary, gradient-free algorithms can be
subdivided into mathematical and heuristic in terms of optimality criteria and iterative
process. In this context, the mathematical gradient-free algorithms are referred to as
derivative-free algorithms. Heuristic gradient-free algorithms consider a large variety
of nature-inspired algorithms, such as Genetic Algorithm (GA) and Particle Swarm
Optimisation (PSO). In the case of heuristic algorithms, the optimality criteria is an
issue since they do not prove that a given point is a local optimum. This clashes
with mathematical optimality criteria, which are unambiguous about optimality and
converge to an optimum.

This work considers the CUF-based FE solver a black-box whose input are the
fibre path orientation angles, and whose output is the objective function. In this context,
one could consider choosing a gradient-based optimiser in which the calculation of the
derivatives is made by finite-differences. However, when estimating the derivatives
using finite-differences one faces the so-called step-size dilemma. Estimating the
derivative has a truncation error of O(h), or O(h2) when using second order, and one
would like to choose a small step size in order to reduce this error. However, as the step
size diminishes, roundoff error becomes dominant. In this manner, given the opposite
trends of the truncation and roundoff errors, there is an optimal size step for which
the sum of the two errors is at a minimum. In the literature, one can find different



5.2 Optimisation problem classification 77

approaches to calculate the gradients. This is the case of the Complex Step derivative
approximation [126], and Algorithmic differentiation (AD) [127, 128], also known
as Automatic differentiation. However, these two later methods require access to the
source code.

Considering the above information about the treatment of the FE solver, and with
the aim to explore the whole design space, this research employs two optimisation
algorithms. First, an in-house GA is used for the fundamental frequency and buckling
optimisation of variable stiffness composites plates in Sections 6.5.1 and 6.5.2. The
developed GA is depicted in the following. Later, for the vertical deflection, strain
concentration and strength optimisation problems, see Sections 6.5.3, 6.5.4 and 6.5.5,
an optimisation algorithm incorporated in modeFrontier© [129] that combines global
and local search, and balances the direct simulation and surrogate model-based optimi-
sation. The fundamental frequency optimisation accounting for manufacturing defects
in Section 6.5.6 is solved similarly to the latter three optimisation problems.

The optimisation problems that are faced in Sections 6.5.1 to 6.5.6 consider a fixed
number of plies and aim to optimise the fibre path of the individual layers to minimise
the objective function. Instead, if the scope of the optimisation problem is minimising
the mass and the number of layers is allowed to vary, a different optimisation strategy
should be pursued. In this case, the optimisation problem is categorised as a mixed-
integer, and other approaches should be considered to solve it. For example, one
could consider a multiobjective optimisation problem in which one of the objectives is
mass minimisation and the other is fundamental frequency maximisation. Then, after
studying the Pareto front, one could select the optimal configuration of its convenience.

Genetic Algorithm

GA comprise a family of gradient-free optimisation algorithms inspired by the evolu-
tion theory. They implement a repeated process of slight stochastic variations followed
by selection. In each iteration, or generation, new offspring are generated from their
parents. In other words, each new candidate solution is generated from solutions
already evaluated. Based on their fitness, i.e.: the value of the objective functions,
the better offspring are selected to become the parents of the next generation. In
this context, three operators are involved in the generation of new offspring, namely:
selection, crossover and mutation. A flowchart depicting the optimisation process is
included in Fig. 5.1. Unlike gradient-based optimisers, GA starts with a random set of
solutions, also called population. For each of the population individuals, the objective
and constraint functions are evaluated. A termination criteria is then checked. If it is
not satisfied, the population is modified by the aforementioned operators and a new
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Figure 5.1 Flowchart of a generic GA.
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population is created. Subsequently, the generation counter is incremented to indicate
that one generation of the GA is completed.

GAs present different methods for representing the design variables. There are two
broad categories: binary-encoded and real-encoded GA. The former utilises bits to rep-
resent the design variables, while real-encoded keep the same real value representation
used in most other optimisation algorithms. In binary-encoded GAs, each variable is
represented as a binary number with m bits. In the binary representation, each bit has a
location j and a value b j, which is either 0 or 1. To represent a real-valued variable in
the finite interval xi ∈ [xi,L,xi,U ], one has to divide it into 2m −1 intervals, which size
is given by:

∆xi =
xi,U − xi,L

2m −1
. (5.6)

The genetic operators will act and manipulate directly the binary representation.
After these operators are applied, decoding is necessary to evaluate the objective
and constraint functions of the successive generation. To decode each design variable,
the following expression is used:

xi = xi,L +
m−1

∑
j=0

b j2 j
∆xi (5.7)

As depicted in Fig. 5.1, the first action that is needed is initialising the population.
This can be made at random. When using binary encoding, one can assign each bit a
50% chance of being either 0 or 1. This can be done by generating a random number
r in the [0,1] interval. If r ≤ 0.5, the bit is set to 0 and 1 if r > 0.5. For a population
containing np individuals, with n design variables and m bits being used to encode
each variable, a total of np ×n×m bits need to be generated. On the contrary, when
a real-encoded GA is used, the whole set of design variables of an individual can be
obtained as follows:

x = xL + rT (xU −xL) , (5.8)

where r is a vector containing random values following a uniform distribution in the
[0,1] range, i.e.: ri ∼ U (0,1). Of course, more effective methods can be employed to
create the initial population that spans across the whole design space. For instance,
Latin Hypercube Sampling (LHS) permits to explore the design space more effectively
[130].

To characterise the individuals genotype, i.e.: the genes containing the design
variables, two approaches can be followed. The first is the consideration of a set of
binary strings to represent the design parameters. For instance, a set of two design
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variables, x1 and x2, that equal 8 and 10, respectively, can be written as:

01000︸ ︷︷ ︸
x1 = 8

01010︸ ︷︷ ︸
x2 = 10

. (5.9)

The second approach directly considers the value of the design variable as it is. That
is, in the aforementioned case, one will just have x1 = 8 and x2 = 10. This approach
is referred to as real-encoded. As the reader can observe, if the binary strings are
considered, coding and decoding operations will be necessary to evaluate the objective
function and constraints comprised in the optimisation problem. A discussion on how
the genetic operators act on the individual genotypes depending on its characterisation
is available in the following.

Selection This operation selects the parents for the next generation based on their
fitness performance. It is possible that an individual is selected as parent more than
once, in which case it will contribute its genes to more than one child. There exists a
plethora of methods for the parent selection, among which roulette and tournament
selection are two of the most spread. The former chooses the parents by simulating
a roulette wheel in which the area of the section of the wheel corresponding to an
individual is proportional to the individual’s expectation. Then, a random number is
generated to select one of the sections with a probability equal to its area. Instead,
the tournament selection chooses each parent by comparing the fitness function of a
set of individuals and cherry-picking the one with best fitness. This two methods can
be applied straightforwardly regardless of the encoding approach since they use the
values of the objective function.

Crossover This operator serves to generate individuals with new genotypes in the
population. As in the case of selection, there exists a number of crossover operators in
the GA literature. In most of the cases, two individuals are picked from the population
at random and a portion of their genes are exchanged to create new design variables
combination. Single- or multiple-point crossover methods are utilised when binary-
encoding is considered. In a single-point crossover operator, this is performed by
randomly choosing a crossing position and exchanging all the design variables on the
right side of the crossing side. Instead, when real-encoding is used, a standard method
is linear crossover, which generates two or more points in the line defined by the two
parent points. Another option for real-encoding is a crossover as in the binary case.
All these crossover methods are devised in Fig. 5.2.

Mutation As in the case of the crossover operator, the mutation operator is also
responsible for the search aspect of GA. The main purpose of the mutation is to keep
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Binary-encoding:

Real-encoding:

Parent 1

Parent 2

1 0 1 1 1 0 0

1 0 0 0 1 0 1

Crossover point

Offspring 1

Offspring 2

1 0 1 0 1 0 1

1 0 0 1 1 0 0

Crossover point

xp1

xp2

xc2

xc1

Linear crossover

xc1 = 0.5xp1 + 0.5xp2
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xp1 = [x1
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xp2 = [x1
p2,x

2
p2,x

3
p2]

xc1 = [x1
p1,x

2
p2,x

3
p2]
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Figure 5.2 Crossover operators for binary- and real-encoded GA. The linear crossover operator
foresees that parent 2 is more fit than parent 1 ( f (xp2)< f (xp1)).

Table 5.1 Mutation operator acting on a binary-encoded individual.

Before mutation 1 0 1 1 1 0 0
After mutation 1 0 1 1 0 0 0

diversity in the population. In the binary-encoded approach, the mutation procedure
requires the creation of a random number ri for every bit or design variable, so that
ri ∼ U (0,1). If this random number is lower than the mutation probability pm, then
the bit or design variable is modified. In this regard, a 1 would become 0, and vice
versa. This is illustrated in Table 5.1. Conversely, in the case of real-encoded design
variables, the mutated design variable can be perturbed as follows:

xmut
i = xi +(ri −0.5)∆i (5.10)

where ∆i is a predefined maximum perturbation in the ith design variable.



Chapter 6

Numerical results

Based on the formulations derived in the previous chapters, this section discusses
multiscale analysis, optimisation and design of VAT structures. First, the stress state at
the layer scale of VAT composite plates and shells is predicted using the methodology
depicted in Section 2. These results are included in [131]. Second, layer and fibre scale
analyses are conducted based on the embedded CW approach described in Section 3.1.
These outcomes are present in [132]. Subsequently, the application of MSG-CUF for
thermo-elastic problems at the fibre-matrix scale is shown. These results were reported
in [133]. A second set of results is devoted to studying the mechanical performance
of VAT composites affected by uncertainty defects at different material scales. The
manufacturing flaws are modelled through stochastic fields, described in Section 4.3,
and propagated from the fibre scale up to the layer scale. These cases are available
in [134–137]. Last, the mechanical characteristics of tow-steered composites are
optimised. Not only are optimal angle distributions sought, but the effect of different
structural theories on the retrieval of optimum design variables is also investigated.
The optimisation results are partially included in [138, 139].

6.1 Stress state prediction of VAT plates and shells

6.1.1 Clamped VAT plate

b=1 m a=1 m

h=0.1 m 

z

y

x
h/2

h/2

LAYER 2

LAYER 1

Pz

Pz

Figure 6.1 Geometry and loading condition of the clamped VAT plate.
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The first numerical assessment regards a two-layered squared VAT plate introduced
in Demasi et al. [93]. The plate has a width a equal to one meter, presents a width-
to-thickness ratio a/h = 10 and has a θ = [⟨90◦,45◦⟩,⟨0◦,45◦⟩] stacking sequence. A
pressure pz = 10 kPa is applied on the top surface, whereas all the edges are clamped.
Table 6.1 provides the material properties of the composite material considered in this
analysis. Figure 6.1 shows the laminated structure.

Table 6.1 Material properties of the two-layered squared VAT plate from Demasi et al. [93].

E1 [GPa] E2 = E3 [GPa] G12 [GPa] G23 [GPa] ν12 = ν13 [-] ν23 [-]
137.9 8.96 7.10 6.21 0.30 0.49

A convergence study is carried out first to perform accurate calculations. This
analysis considers nine-node quadratic Q9 FE, while a third-order LD expansion per
layer is employed in the thickness direction. Table 6.2 gathers the vertical deflection
at the plate’s centroid, while Fig. 6.2 presents the σxz and σzz stress components in
the thickness direction at (−0.25,−0.25) m. From these results, it is evident that the
14×14Q9 mesh provides converged and accurate results regarding vertical deflection
uz and stress prediction.

The effect of the structural theory on the predicted deflection and stress distribution
is now addressed. A series of high-order TE-based ESL models are confronted against
the reference results and those obtained with the previous LW models. Each model is
discretised with a 14×14Q9 mesh. Table 6.2 enlists the vertical deflection, while Fig.
6.3 provides the transverse stress distribution. It is appreciated that low-order ESL
models underestimate the vertical deflection. Indeed, at least a sixth-order structural
theory is needed to predict the same deflection value as the LW-1LD3 model. Despite
predicting the same value of uz, a disagreement is found in retrieving the transverse
stress components. It is appreciated in Fig. 6.3 that the ESL-TE 1 cannot predict the
σxz and σzz components, which present linear trends. The ESL-TE 3 structural theory
produces a quadratic distribution of σxz, but discontinuous at the layer’s interface; the
predicted σzz does not match that of the reference. Last, the sixth-order ESL theory

Table 6.2 Mesh convergence on the deflection at the two-layered squared plate’s centroid. Each
model employs a 1LD3 expansion per layer.

Mesh DOF −uz ·106 [m]
8×8 Q9 6069 6.37

12×12 Q9 10092 6.40
14×14 Q9 17661 6.41
16×16 Q9 22869 6.41
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(a) σxz. (b) σzz.

Figure 6.2 Convergence study of the transverse stress distributions for the clamped VAT plate.
Calculated through the thickness at (−0.25,−0.25) m.

Table 6.3 Effect of the structural theory on the deflection at the two-layered squared plate’s
centroid. Each model employs a 14×14 Q9 mesh.

Model DOF −uz ·106 [m]
ESL-TE 1 5046 5.68
ESL-TE 3 10092 6.34
ESL-TE 4 12615 6.39
ESL-TE 6 17661 6.41
ESL-TE 7 20184 6.41
LW-1LD3 17661 6.41

of structures captures well the σxz component at the top and bottom of the laminate
and struggles at the interface. Conversely, the transverse normal component perfectly
matches that of the reference and the LW-1LD3 model. Last, it is appreciated that the
proposed LW-1LD3 is in perfect correlation with the reference results.

6.1.2 Clamped VAT shell

The second numerical assessment concerns a six-layered clamped VAT shell com-
ponent, which fibres are steered in θ = [0⟨0,50⟩,90⟨0,75⟩,45⟨0,15⟩]s. The shell’s
geometrical properties and boundary conditions are illustrated in Fig. 6.4, and the
material properties are reported in Table 6.4.

Table 6.4 Material properties of the clamped VAT shell.

E1 [GPa] E2 = E3 [GPa] G12 [GPa] G23 [GPa] ν12 = ν13 [-] ν23 [-]
165.0 9.00 5.60 2.80 0.34 0.50
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(a) σxz. (b) σzz.

Figure 6.3 Effect of different structural theories on the transverse stress distributions for the
clamped VAT plate. Calculated through the thickness at (−0.25,−0.25) m. Each model
employs a 14×14Q9 mesh.

α

β β
 = 1 m

Rα = 1.25 m

φ = 0.2 rad

z
α

pz = 10 kPa

ClampedClamped

(a)

α

β

T ≡ (0.25,0.5) m
V ≡ (0.375,0.75) m

(b)

Figure 6.4 Graphical description of the clamped curved VAT panel: (a) geometry and boundary
conditions; (b) points were magnitudes are measured at.
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Table 6.5 Mesh convergence for the vertical displacement calculated at the centroid of the
clamped VAT shell. All the meshes employ a 1LD2 expansion.

Model DOF -uz ·106 [m]
6×2Q9 2535 2.37

10×5Q9 9009 2.93
20×10Q9 33579 3.00
30×15Q9 73749 3.01

First, a convergence study is performed. A 1LD2 expansion per layer is employed
in the thickness direction. Table 6.5 gathers the vertical deflection at the centroid of
the shell. Figure 6.5 represents the σαα , σzz, σβ z and σαβ stress components along
the thickness direction at point V, see Fig. 6.4b. One can observe small discrepancies
between the FE meshes regarding vertical deflection and in-plane stress components
σαα and σαβ . Nevertheless, these are more evident in the transverse stress components
σzz and σβ z. From these results, it is inferred that a 20×10Q9 mesh is necessary to
obtain a good prediction of stresses as it produces very close results to those obtained
with the 30×15Q9 discretisation.

The next step addresses the influence of the chosen structural theory on stress
prediction. A series of LW-LD and ESL-TE expansions are compared against the
results provided by commercial software Abaqus [140]. For this purpose, the 20×10Q9
mesh is employed, while the Abaqus model utilises 80×40×18 C3D20R quadratic
solid elements. Figure 6.6 represents the stress components along the thickness at
point V. It is observed that the ESL-TE models cannot capture the σβ z component.
In contrast, the remaining stress components agree with those obtained by the 1LD2
and 1LD3 expansions. Moreover, the 1LD1 structural theory does not retrieve the
transverse components well. In detail, the σαz and σβ z present a constant, or linearly-
varying, value within the layer and do not have null value at the top and bottom of
the laminate. This occurs because with the LD1 expansion, the field of displacements
varies linearly within the ply, and hence, the transverse strains and stresses are constant
within the layer. The same reasoning applies to compute σzz. Concerning the ESL-TE
models, they accurately predict the in-plane stress components while underperforming
in evaluating the transverse shear terms, especially the low-order ESL-TE 1 and ESL-
TE 2 theories. Nevertheless, ESL-TE 3 and ESL-TE 4 calculate these components
better as they practically satisfy the null value condition at the top and bottom. In
this regard, higher-order ESL theories could eventually provide these components
accurately. The Abaqus model could not provide accurate results for the transverse
components. Therefore, they are not included in Figs. 6.6c to 6.6e.
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(a) (b)

(c) (d)

Figure 6.5 Convergence study of the stress distributions for the clamped VAT shell calculated
through the thickness at point V.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6 Effect of different structural theories on the stress distributions for the clamped VAT
shell. Calculated through the thickness at point V. Each model employs a 20×10Q9 mesh.
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Figure 6.7 Fibre-matrix beam geometry with host and embedded meshes, dimensions and
boundary conditions.

6.2 Embedded unified finite elements

The efficiency and effectiveness of the embedded CW method are showcased by com-
paring it against classic beam theories, commercial FE tools and the already existing
CW approach [106]. The following nomenclature is adopted: HAB4-XL9+ECB4-
Y L9, where A and C denote the number of cubic beam elements (B4), using Lagrange
shape functions, employed to discretise the host and embedded components, respec-
tively; X and Y represent the number of cross-sectional bi-quadratic subdomains (L9)
that describe the host and embedded beam cross-section, respectively. Note that the B4
beam elements and L9 cross-sectional subdomains are selected based on the author’s
experience.

6.2.1 Square-pack unit cell subject to bending load

A fibre-matrix square-pack RUC subject to a bending load, taken from [141], is used
to verify the proposed methodology. A graphical representation is available in Fig. 6.7.
The length of the microstructure is L = 1 mm, whereas the width b = 0.1 mm, and
the fibre volume fraction Vf = 0.5027, which implies a fibre diameter d = 0.08 mm.
For simplicity, both constituents have been considered isotropic. The fibre Young’s
modulus E = 202.04 GPa and ν = 0.2128, while those of the matrix are E = 3.252
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GPa and ν = 0.355. The structure is clamped on one end, and a concentrated load
Fz =−0.1 N is applied at y = L.

The model is verified by comparing the vertical displacement, longitudinal and
transverse shear stress components at different locations of the fibre-matrix ensemble
obtained by various numerical models available in the literature. In detail, classic
beam theories such as Euler-Bernouilli (EBBT) and Timoshenko (TBT), refined CW,
based on LE and HLE, and Nastran solid models (HEXA8) are reported in Table 6.6.
In addition, the distribution of the longitudinal and shear transverse stress components
along the thickness are illustrated in Fig. 6.8. The solutions include Nastran HEXA8
and HLE8-CW models. These results suggest the following:

• From the displacements reported in Table 6.6, one notices that EBBT, TBT,
L- and HLE-CW, and HEXA8 are more compliant numerical models than the
embedded CW. The reason is twofold: (i) The embedded CW models use
less FE to achieve convergence, while L- and HLE-CW employ ten cubic and
quadratic elements, respectively; (ii) Both L- and HLE-CW use a cross-section
discretisation that better describes the circular shape of the fibre. The former
utilises a combination of nine- and six-node elements, while the latter employs
a mapping strategy to characterise the fibre domain.

• The embedded CW models remarkably capture the stress field within the fibre-
matrix body. The normal in-plane component σyy in Fig. 6.8a perfectly matches
the HEXA8 and HLE8 results. The transverse shear σyz is perfectly captured by
increasing the cross-section elements of the host beam. Indeed, the parabolic
shape is retrieved when nine and sixteen L9 cross-section descriptions are
utilised.

6.2.2 Global-local analysis of laminated beam

In this case, a composite cross-ply beam including fibres, matrix, and homogenised
layers from [141] is modelled with the embedded CW and confronted against the
literature. The total length of the beam is L = 40 mm, while the width and thickness are
b = 0.8 mm and t = 0.6 mm, respectively. A [0,90,0]◦ layup sequence is considered,
having each ply equal thickness. The fibre diameter is 0.16 mm and is as long as the
length of the beam. The disposition of the fibre, matrix and homogenised layers is
depicted in Fig. 6.9. The material properties of the different constituents are enlisted
in Table 6.7. Note that the properties of the homogenised layers are retrieved through
the rule of mixtures. A concentrated load Fz =−1 N is applied at (0,L,0). Twelve L9
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Table 6.6 Vertical displacement and stress tensor components for the different numerical
models of the cantilevered fibre-matrix square-pack.

Model Model name DOF
uz [mm] σyy [MPa] σyz [MPa]

at [0,L,0] at [0,L/2,d/2] at [−d/2,L/2,d/2]
References

Nastran HEXA8 fine [141] - 296160 -7.857·10−2 9.555·102 -0.3394
EBBT [142] - 363 -7.811·10−2 9.469·102 -0.1962
TBT [142] - 605 -7.835·10−2 9.469·102 -0.1962

12L9+8L6 [142] - 7533 -7.933·10−2 9.450·102 -0.2500
HLE4 [141] - 4557 -7.771·10−2 9.400·102 -0.3022
HLE8 [141] - 15531 -7.775·10−2 9.361·102 -0.3558

Present model
H1B4-4L9+E1B4-12L9 Model 1.1 300+684 -7.635·10−2 9.015·102 -0.2933
H2B4-4L9+E2B4-12L9 Model 1.2 525+1197 -7.739·10−2 8.914·102 -0.5943
H3B4-4L9+E3B4-12L9 Model 1.3 750+1719 -7.773·10−2 9.378·102 -0.2796
H4B4-4L9+E4B4-12L9 Model 1.4 975+2223 -7.791·10−2 9.264·102 -0.2715
H5B4-4L9+E5B4-12L9 Model 1.5 1200+2736 -7.801·10−2 9.344·102 -0.2759
H5B4-9L9+E5B4-12L9 Model 1.6 2352+2736 -7.809·10−2 9.305·102 -0.3045

H5B4-16L9+E5B4-12L9 Model 1.7 3888+2736 -7.816·10−2 9.330·102 -0.2825
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Figure 6.8 Through-the-thickness stress distribution of the cantilevered square-pack at midspan.

Table 6.7 Material elastic properties of the cross-ply composite beam constituents, taken from
Carrera et al. [141].

Constituent E11 [GPa] E22 = E33 [GPa] ν12 = ν13 [-] ν23 [-] G12 = G13 G23 [GPa]
Fibre 202.038 12.134 0.2128 0.2704 8.358 4.756

Matrix 3.252 3.252 0.355 0.355 1.20 1.20
Layer 103.173 5.145 0.2835 0.3124 2.107 2.353
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+

=

Figure 6.9 Cross-ply beam with embedded 0◦ fibre. The host grid considered the 0◦ and 90◦

layers as well as the matrix. The embedded grid models the fibre.

subdomains are used to characterise their cross-section for both the host and embedded
components.

The vertical deflection and stresses from the literature references and the present
approach are enlisted in Table 6.8. The reference results were obtained with Nastran
HEXA8 solid elements and HLE-based CW models from [141]. The displacement
is evaluated at the loaded end, while the stresses are measured at the fibre centroid at
midspan. In addition, the through-the-thickness distributions of σyy and σyz predicted
with the different models are available in Fig. 6.10. The following comments can be
made:

• The displacements enlisted in Table 6.8 agree with those provided by the ref-
erences. Similarly, the longitudinal stress σyy in Fig. 6.10a are well correlated
with those provided by the HLE6 model from [141].

• The σyz component is illustrated in Fig. 6.10b. A good agreement is found
for the homogenised layer region, that is, above z =−0.12 mm. Also, Models
2.1.4 and 2.1.6 of the current methodology capture the reference’s trend in the
fibre domain. Discrepancies at the fibre-matrix interface are observed due to the
interpolation of the host displacements.

6.2.3 Non-crimp textile

A non-crimp fabric composite is analysed in the following. The material properties
of the fibre tows and matrix are reported in Table 6.9. The planar dimensions of the
textile are 2×2 mm and 0.24 mm thick. Each tow has an elliptical section with major
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Table 6.8 Vertical displacement and stress tensor components for the different numerical
models of the cantilevered cross-ply with embedded fibre at 0◦.

Model Model name DOF
uz [mm] σyy [MPa] σyz [MPa]

at [0,L,0] at [b/8,L/2,−0.2] at [b/8,L/2,−0.2]
References

Nastran HEXA8 [141] - 1579653 -15.69 -5.928·102 -2.147
HL2 [141] - 5859 -10.46 -3.717·102 -124.390

HLE4 [141] - 14601 -14.98 -5.659·102 -2.381
HLE6 [141] - 29295 -14.98 -5.659·102 -2.408

Present model
H1B4-12L9+E1B4-12L9 Model 2.1 756+684 -14.96 -5.646·102 -1.805
H2B4-12L9+E2B4-12L9 Model 2.2 1323+1197 -14.97 -5.618·102 -1.026
H3B4-12L9+E3B4-12L9 Model 2.3 1890+1710 -14.98 -5.605·102 -1.876
H4B4-12L9+E4B4-12L9 Model 2.4 2460+2223 -14.98 -5.666·102 -2.287
H5B4-12L9+E5B4-12L9 Model 2.5 3024+2736 -14.98 -5.651·102 -1.865
H6B4-12L9+E6B4-12L9 Model 2.6 3591+3249 -14.98 -5.647·102 -2.469
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Figure 6.10 Through-the-thickness stress distribution at [b/8,L/2] of the cantilevered cross-ply
with embedded fibre at 0◦.

Table 6.9 Material elastic properties of the non-crimp fabric composite.

Constituent E11 [GPa] E22 = E33 [GPa] ν12 = ν13 [GPa] G12 = G13 [GPa]
Tow 184.5 10.13 0.26 6.95

Matrix 3.5 3.5 0.35 1.30



94 Numerical results

Figure 6.11 Non-crimp textile representation. The host grid represents the matrix, while the
embedded one represents the warp and weft yarns.

and minor axes equal to 0.8 and 0.1 mm, respectively. Four sets of 1D embedded
elements are considered, corresponding to the fibre tows in both directions, while 1D
host elements are employed for the matrix constituent. The yarns in the x-axis are
labelled warp yarns, while those oriented along the y-axis are referred to as weft yarns.
This configuration is illustrated in Fig. 6.11.

The embedded CW model is compared with an Abaqus 3D (ABQ3D) model com-
prising 229040 C3D8R elements from [143]. The simulation outcomes are provided in
Table 6.10 and Fig. 6.12. The displacements in Table 6.10 are evaluated at the matrix
between the warp and weft yarn, while stresses are measured at the warp fibre. The
results suggest the following:

• There is a good agreement between the solid ABQ3D model and the present
embedded CW in terms of ux, σxx and σyy. They present a 0.04%, -0.09% and
4.84% relative difference between ABQ3D and Model 3.4.

• The embedded CW overestimates the uy displacement compared to the ABQ3D
solution. A 22.62% relative difference between ABQ3D and Model 3.4 is found.

• Regarding the through-the-thickness stress distributions in Fig. 6.12, the em-
bedded CW models predict perfectly the σxx stress component by ABQ3D. A
slight difference in the bottom region of the warp fibre is observed in Fig. 6.12a.
On the other hand, the σyy distribution differs in the matrix and the weft fibre
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regions. These differences are mainly due to the overprediction of uy in the
matrix.

Table 6.10 Displacements and stresses of non-crimp fabric subject to uniaxial pulling.

Model Model name DOF
ux [mm] uy [mm] σxx [MPa] σyy [MPa]

at [0.5,0.5,0] at [0.5,0.5,0] at [0.5,0.5,0.06] at [2.5,7.5,0.06]
References

ABQ3D [143] - 756696 7.499·10−2 2.272·10−3 9191.97 94.27
Present model

H3B4-10Q9+E3B4-22Q9 Model 3.1 1650+12120 7.507·10−2 2.825·10−3 9195.27 107.53
H4B4-10Q9+E4B4-22Q9 Model 3.2 2145+15756 7.506·10−2 2.800·10−3 9203.13 106.05
H5B4-10Q9+E5B4-22Q9 Model 3.3 2640+19392 7.502·10−2 2.803·10−3 9185.29 99.13
H5B4-20Q9+E5B4-22Q9 Model 3.4 4095+15756 7.502·10−2 2.786·10−3 9183.67 98.83
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Figure 6.12 Through-the-thickness stress distribution at (0.5,0.5) of the non-crimp fabric.

6.3 Thermo-elastic microscale analyses

This section tests the thermo-elastic microscale models developed in Section 3.2
against analytical, semi-analytical and established software tools such as SwiftComp
[144]. Homogenised material properties for fibre- and particle-reinforced composites
and stress recovery in fibre-reinforced composite microstructures are retrieved. The
differences between SwiftComp and the present approach reside in the fact that the
former uses 2D FE for fibre-reinforced RUC and 3D FE when particles are involved.
Conversely, the proposed method uses 1D FE along the longitudinal direction and 2D
expansions for the cross-section.
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Table 6.11 Effective CTEs of fibre-reinforced composite B/Al square-pack provided by the
literature and the present approach, considering different HLE polynomial order. The fibre
volume fraction is set to 0.47.

Model DOF α11 ·106 [K−1] α22 ·106 [K−1]
Reference solutions

Rosen and Hashin [24] - 10.99 16.69
VAMUCH [144] - 10.99 16.69

Voigt [145] - 12.09 12.09
Reuss [146] - 16.00 16.00
MOC [28] - 10.85 16.89
GMC [29] - 10.85 16.88

HFGMC [30] - 10.91 16.34
Tamma and Avila [147] - 10.77 17.34

CUF-MSG
HLE 2 240 11.06 16.48
HLE 4 582 11.02 16.59
HLE 6 1140 11.02 16.60
HLE 8 1914 11.02 16.61

6.3.1 Homogenisation of fibre- and particle-reinforced composites

The first numerical assessment comprises a boron fibre embedded in an aluminium
matrix, referred to as B/Al hereinafter, arranged in a square-pack geometry. A linear
beam element is used because the fluctuations will be invariant along the fibre direction.

The two constituents are isotropic, with E = 379.3 GPa, ν = 0.10 and α = 8.1 ·
10−6 K−1 for the boron fibre, while the properties of the aluminium are E = 68.3 GPa,
ν = 0.30 and 23.0 ·10−6 K−1. The validation against analytical formulae (Rosen and
Hashin [24]), Voigt [145] and Reuss [146]) as well as semi-analytical (MOC [28],
GMC [29], HFGMC [30]) and numerical solutions [147]. Different HLE orders are
utilised to calculate the homogenised α11 and α22. The resulting CTEs are enlisted in
Table 6.11 for a fixed fibre volume fraction equal to 47%. There is a good correlation
between the proposed method and the reference results, except for Voigt and Reuss,
which are alternative versions of the rule of mixtures.

The effect of the fibre volume fraction on the longitudinal and transverse CTE is
illustrated in Fig. 6.13. An eighth-order HLE is used for the cross-section definition. A
good agreement between CUF-MSG and the literature solutions is observed across the
fibre volume range. Again, the most significant differences are found when compared
to the Voigt [145] and Reuss [146] analytical solutions.

A silicon carbide fibre embedded in a copper matrix, referred to as SiC/Cu com-
posite, is taken into account to predict the effective specific heat. The SiC/Cu RUC
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(a) α11 (b) α22

Figure 6.13 Variation of the CTEs of fibre-reinforced composite B/Al square-pack with regard
to the fibre volume fraction. An eighth-order HLE is used as expansion function.

Figure 6.14 Variation of the effective specific heat of the fibre-reinforced SiC/Cu square-pack
with regard to the fibre volume fraction. An eighth-order HLE is used as expansion function.

presents a square-pack fibre arrangement. The fibre and matrix are considered as
isotropic materials. The SiC fibre material properties are E = 410 GPa, ν = 0.14,
α = 4.0 ·10−6 K−1 and cv = 2327.73 kJ/(m3K), while the copper matrix has E = 117
GPa, ν = 0.34, α = 22.0 ·10−6 K−1 and cv = 3485.09 kJ/(m3K). Figure 6.14 presents
the variation of the specific heat in a fibre volume fraction range between 10 and 60%.

The influence of the geometry of the reinforcement particles on the thermal proper-
ties is studied now. Parallelepiped and cylindrical inclusions are modelled. The latter
is illustrated in Fig. 6.15. When dealing with inclusions, the constituent distribution
varies over the 3D space of the RUC. Thus, six four-node cubic beam elements are
utilised to capture the correct description of changes along the beam axis. The different
phases are involved in the numerical model thanks to the CW capabilities.
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Figure 6.15 HLE beam model of cylindrical particle-reinforced RUC. Li denotes the length of
the inclusion along which the mapped circular expansion is used.

Figure 6.16 Variation of the effective longitudinal CTE α11 of a particle-reinforced glass/epoxy
composite with regard to the particle percentage. An eighth-order HLE is used as expansion
function.

A glass/epoxy particle-reinforced composite is studied first. The glass properties
are E = 72.38 GPa, ν = 0.20 and α = 5.0 ·10−6 K−1, while the epoxy matrix foresees
E = 2.75 GPa, ν = 0.35 and α = 54.0 ·10−6 K−1. The outcomes produced by both
inclusion types are compared against the Mori-Tanaka (MT) method [27], which is
widely used for reinforced materials. Note that MT does not consider the geometry of
the reinforcement constituent. Results are included in Fig. 6.16. Minor differences
between rectangular and cylindrical inclusions are observed for low particle volume
fractions, while greater discrepancies arise for larger particle percentages. In addition,
MT overestimates the CTE value compared to both inclusion geometries.

The effect on the geometry on the homogenised CTEs α11 and α22 is further
addressed by comparing the previous geometries against a spherical inclusion modelled
in SwiftComp. The results are enlisted in Table 6.12. The longitudinal CTE α11 of the
spherical reinforcement lies between those of the cylindrical and rectangular inclusion.



6.3 Thermo-elastic microscale analyses 99

Table 6.12 Effective CTEs of particle-reinforced composite glass/epoxy provided by the
literature and the present approach, considering different HLE polynomial order and inclusion
geometry. The particle volume fraction is set to 0.3.

Model Expansion theory α11 ·106 [K−1] α22 ·106 [K−1]
VAMUCH Spherical [144] - 35.50 34.97

Mori-Tanaka (MT)[27] - 46.50 9.31

CUF-MSG Cylindrical
HLE 3 33.79 38.73
HLE 6 33.86 38.78
HLE 8 33.87 38.78

CUF-MSG Rectangular
HLE 3 36.85 36.80
HLE 6 36.93 36.89
HLE 8 36.93 36.90

Figure 6.17 Variation of the effective specific heat of the fibre-reinforcedSteel/Al square-pack
with regard to the particle volume fraction. An eighth-order HLE is used as expansion function.

On the contrary, the transverse CTE α22 of the spherical inclusion is lower than the
ones provided by the MSG-CUF models.

The effect of the geometry of the inclusion on the effective specific heat is investi-
gated in the following. An aluminium matrix is strengthened with a steel inclusion. The
steel particle assumes E = 200 GPa, ν = 0.30, α = 12.0 ·10−6 K−1 and cv = 3609.6
kJ/(m3K), while the aluminium thermo-elastic properties are E = 68.3 GPa, ν = 0.33,
α = 23.0 ·10−6 K−1 and cv = 2619.1 kJ/(m3K). The effective specific heat as a func-
tion of the particle volume fraction is represented in Fig. 6.17. It is worth noting
that no difference is appreciated between the cylindrical and rectangular inclusion, as
opposed to the previous inclusion study. However, slight differences are appreciated if
compared to Rosen and Hashin [24] analytical method.
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6.3.2 Stress recovery of fibre-reinforced composites

The local stress recovery for the different constituents at the RUC level is a complex
step in microscale analysis after a load is applied to the global structure. Capturing
high gradients in strain/stress solutions needs highly refined models. In the present
work, high-order HLE kinematics are required to provide accurate solutions.

y1

y3

y2

Figure 6.18 HLE beam model of an hexa-pack RUC.

The local stress state of a glass/epoxy with a hexa-pack fibre arrangement is
predicted. The glass fibre is considered as isotropic with E = 72.38 GPa, ν = 0.20 and
α = 5.0 ·10−6 K−1. The epoxy matrix is also isotropic with E = 2.75 GPa, ν = 0.35
and α = 55.0 ·10−6 K−1. The fibre volume fraction is set to 0.30. Figure 6.18 depicts
the hexa-pack configuration as an HLE beam model. The cross-section is modelled
through fifteen expansion subdomains, in which five correspond to the fibre and the
remaining ten to the matrix.

The stress state that arises within the RUC when a unitary longitudinal strain ε11

and a 100 K temperature raise is represented in Fig. 6.19. An eighth-order HLE
was utilised to obtain the accurate 3D stress contour. Besides, Figs. 6.19b and 6.19d
show the variation of σ22 and σ23 along the diagonal highlighted in Fig. 6.18. It
is appreciated that the HLE2 model cannot provide an accurate stress distribution.
Indeed, it overestimates the σ22 and σ23 components as appreciated in Figs. 6.19b and
6.19d. The HLE4 provides similar results to those by the HLE6 and HLE8 models for
the σ22 term. However, it is not sufficient to calculate accurately the transverse shear
component σ23. In this regard, additional side and internal expansion terms of the HLE
are necessary; recall Section 2.2 and the work by Carrera et al. [141]. These results
demonstrate that high-order HLE kinematics allow the stress gradients that occur at
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the fibre-matrix interface to be captured. This is better observed for the transverse
stresses where the fibre and matrix are under tension and compression states.
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Figure 6.19 Stress state due to a unitary longitudinal strain ε11 and a 100 K raise in temperature
of a glass/epoxy hexa-pack. An eighth-order HLE is used as expansion function in the 3D
representation.

6.4 Influence of uncertainty defects

This section provides numerical studies regarding the influence of layer and fibre scale
uncertainty defects on the mechanical performance of VAT composites. In detail, the
impact of fibre misalignments, or fibre waviness, on the stress state and buckling load
prediction is analysed first. Secondly, the effect of fibre waviness and variability in
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the fibre volume fraction on the buckling performance and fibre-matrix stress state is
studied.

6.4.1 Layer scale uncertainty

Stochastic stress analysis

First, the 3D stress state and the failure modes of Hashin 3D criteria are studied when
fibre misalignments are considered within the numerical model. The Correlation Matrix
Decomposition (CMD) technique was considered first to generate the random fields
that will map the misalignments into the integration points of the virtual model. The
waviness field was supposed to have a null mean and a standard deviation σθ = 1.5◦

according to the literature [148]. The VAT component under study was already
presented in Section 6.1.1. Table 6.13 reports the considered material strengths.

Table 6.13 Material strengths used for the failure indices uncertainty analysis of the two-layered
clamped plate from Section 6.1.1.

XT [MPa] XC [MPa] YT [MPa] YC [MPa] S12 [MPa] S13 = S23 [MPa] ZT [MPa]
2586.0 1620.0 94.0 340.50 152.66 174.54 60.0

A thousand Monte Carlo simulations were performed, and the statistical envelopes,
namely mean value, 95% confidence interval and minimum-maximum range, of the
stress state at point (−0.25,−0.25) m are represented in Fig. 6.20. Table 6.14 contains
the statistics of the stress field at 2z/h = 0.416. It is appreciated that the mean value
barely differs from the pristine solution. Additionally, the 95% confidence interval
does not present a significant variation in the stress components. On the contrary,
the minimum-maximum range of σxx and σyy shows a vast variability, which can
be deleterious for the failure indices. The transverse stress components present a
lower minimum-maximum range, which is reasonable as only in-plane waviness is
considered in the numerical model.

The failure indices are represented in Fig. 6.21 along its mean value, 95% con-
fidence interval and minimum-maximum range. Fibre failure, see Figs. 6.21a and

Table 6.14 Pristine value and statistics of the stress field evaluated at 2z/h = 0.4160 for the
[⟨90,45⟩,⟨0,45⟩] clamped VAT plate after performing the Monte Carlo analysis.

σxx ·10−5 [Pa] σyy ·10−5 [Pa] σzz ·10−5 [Pa] σxz ·10−5 [Pa] σyz ·10−5 [Pa] σxy ·10−5 [Pa]
Pristine -0.1158 -0.0729 -0.0853 -0.1661 -0.1256 0.1505

Mean value -0.1151 -0.0727 -0.0854 -0.1661 -0.1254 0.1507
Standard deviation 0.0368 0.0085 0.0007 0.0023 0.0037 0.0118

Range [-0.2421,0.04714] [-0.10763,-0.03586] [-0.08529,-0.08521] [-0.1735,-0.1559] [-0.1386,-0.1089] [0.1120,0.2024]
95% C.I. [-0.1174,-0.1128] [-0.07324,-0.07219] [-0.08763,-0.08258] [-0.1662,-0.1659] [-0.1256,-0.1252] [0.1499,0.1514]
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(a) (b)

(c) (d)

(e) (f)

Figure 6.20 Through-the-thickness stress field, measured at point Q, for the pristine and flawed
[⟨90,45⟩,⟨0,45⟩] clamped plate. The fibre misalignment field has a null mean and standard
deviation equal to σθ = 1.5◦.
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(a) (b)

(c) (d)

Figure 6.21 Through-the-thickness Hashin 3D failure indices, measured at (−0.25, −0.25) m,
for the pristine and flawed [⟨90,45⟩,⟨0,45⟩] clamped plate. The fibre misalignment field has a
null mean and standard deviation equal to σθ = 1.5◦.

6.21b, is first analysed. From Fig. 6.21a, and the expression to calculate the Fi-
bre Tension failure index, reported in Appendix A, it is inferred that in 2z/h ∈
(−0.66,−0.40)∪ (0,0.10), the σ11 stress component has a compression character.
Furthermore, the lower ply is mainly subject to compression state in σ11 when the
misalignments are modelled. The upper lamina is subject to compressive σ11, although
some outliers with σ11 > 0 are present, which leads to the data represented in Fig.
6.21a when 2z/h > 0.10.

The matrix failure modes are represented in Figs. 6.21c and 6.21d. There is a clear
differentiation between matrix tension and compression failure modes, as opposed to
fibre failure. In case of matrix failure at point (−0.25,−0.25) m, the structure will
fail because of matrix compression in the upper ply, as this failure mode presents the
largest value.
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Stochastic buckling analysis

After studying how mesoscale flaws such as misalignments affect the 3D stress state
and failure indices, it is time to understand how it may affect the buckling load. In
detail, the effect of the selected structural theory on the buckling load prediction is
addressed. As in the previous case, the CMD method is used to construct the stochastic
fields that spread the waviness throughout the structure.

The object under consideration is a four-layered squared balanced and symmetric
VAT plate with θ = [0±⟨45,0⟩]s. The width and length are equal to a = b = 0.254
m, and ply thickness tply = 0.127 mm. The plate is clamped on the left edge, and
a compression load is exerted on the right edge, whereas the top and bottom edges
are free to deform. For the random field characterisation, a misalignment standard
deviation σθ = 1◦ is employed for this case.

The first five buckling loads, computed with LW and ESL models, are reported in
Table 6.15. Furthermore, their respective buckling modes are illustrated in Figs. 6.22
to 6.24. It is inferred that low-order kinematics cannot accurately predict the buckling
loads compared to LW models, especially in the higher modes. There are noticeable
differences when observing the buckling modes. In detail, in those modes where the
ESL-TE 1 cannot predict the bending-torsional couplings, since TE 1 corresponds to a
Timoshenko beam model. In contrast, the ESL-TE 3 provides similar results for the
first, second, third and fifth modes.

Table 6.15 Buckling loads Ncri of the [0±⟨45,0⟩]s VAT structure computed with different
beam models.

Model DOF Ncr1 [kN/m] Ncr2 [kN/m] Ncr3 [kN/m] Ncr4 [kN/m] Ncr5 [kN/m]
ESL-TE 1 288 0.55 1.14 2.11 3.27 4.81
ESL-TE 3 960 0.74 0.94 1.55 1.70 2.65

LW-L9 18144 0.73 0.88 1.22 1.58 1.75

The uncertainty study is conducted through a thousand Monte Carlo simulations.
The resulting mean values and standard deviations of the first five buckling loads are
available in Table 6.16. It is observed that the ESL-TE 3 model provides accurate
results for the first buckling load yet still overestimates the remaining four if compared
to the LW model. Nevertheless, it is remarkable that the ESL-TE 3 and LW standard
deviations are similar for the first four buckling loads.

The Probability Density Function (PDF) of the buckling loads are displayed in
Fig. 6.25. Note that the fifth buckling load’s PDF is not shown because it does not
show a normal distribution. In addition to the PDF of the buckling loads, the effect of
misalignments on the buckling modes is addressed by computing the Modal Assurance
Criterion (MAC) matrix. Each mode shape of each Monte Carlo sample is compared
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(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 6.22 Buckling modes of the pristine [0 ±⟨45,0⟩]s panel with clamped-free boundary
conditions using an LW-L9 model.

(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 6.23 Buckling modes of the pristine [0 ±⟨45,0⟩]s panel with clamped-free boundary
conditions using an ESL-TE 1 model.

Table 6.16 Mean value and standard deviation of Ncri for the [0 ±⟨45,0⟩]s VAT panel using
ESL-TE 1, ESL-TE 3 and LW-L9 structural theories.

Load
ESL-TE 1 ESL-TE 3 LW-L9

Mean [kN/m] Std. Dev. [N/m] Mean [kN/m] Std. Dev. [N/m] Mean [kN/m] Std. Dev. [N/m]
Ncr1 0.55 4.64 0.74 4.08 0.73 5.14
Ncr2 1.14 14.35 0.95 5.03 0.88 4.96
Ncr3 2.11 23.82 1.55 8.32 1.22 7.19
Ncr4 3.27 37.76 1.70 9.01 1.58 10.68
Ncr5 4.80 54.78 2.53 60.38 1.75 9.84
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(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 6.24 Buckling modes of the pristine [0 ± ⟨45,0⟩]s VAT panel with clamped-free
boundary conditions using an ESL-TE 3 model.

with its counterpart of the pristine structure using the following equation:

MAC(i)
j,k =

|φ T
i, jφref,k|2

(φ T
i, jφi, j)(φ T

ref,kφref,k)
(6.1)

where MAC(i)
j,k is the ith sample of the jth and kth column of the MAC matrix; φi, j is

the jth eigenvector of the ith sample, and φref,k is the kth eigenvector of the reference
mode, i.e., the mode of the pristine structure. In this manner, the statistics of the
MAC matrix are computed and available in Fig. 6.26. Figure 6.26c shows the mean
value and standard deviation of each entry of the MAC matrix. In detail, the floor
colour corresponds to the mean value of MACi, j, and the height of the bar to its
standard deviation. According to the statistics from the ESL-TE 1 case, one can
say that this structural model cannot distinguish between the modes of a flawed and
pristine structure as all the diagonal terms practically equal one and present a low
standard deviation except the fifth buckling mode. Then, as one introduces higher-
order kinematics, the variability in the modes due to the fibre misalignments can be
appreciated; see Figs. 6.26b and 6.26c. In this manner, it is proven that LW models can
catch eventual resemblances between the buckling modes of the flawed and pristine
structures.

Concerning the fifth buckling load predicted by the ESL-TE 3 model, Fig. 6.26b
shows that the mean value for MAC5,5 is nearly 0.2, while MAC2,5 and MAC4,5 mean
values equal 0.6 and 0.35, respectively. PDF of MAC2,5 and MAC4,5 are available in
Fig. 6.27a, while the statistics of MAC5,5 are illustrated as an histogram in Fig. 6.27b.
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Figure 6.25 PDF of buckling loads Ncri for the [0 ± ⟨45,0⟩]s VAT plate presenting fibre
misalignment with standard deviation equal to σθ = 1◦ employing ESL-TE 1, ESL-TE 3 and
LW-L9 models. Mode 1 ▲, Mode 2 □, Mode 3 ■, Mode 4 ◦, Mode 5 •
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(a) MAC criterion using ESL-TE 1

(b) MAC criterion using ESL-TE 3

(c) MAC criterion using LW-L9

Figure 6.26 Mean MAC values and standard deviation between buckling modes of pristine
[0 ±⟨45,0⟩]s VAT panel and defected one employing ESL-TE 1, ESL-TE 3 and LW-L9
expansions. The fibre misalignment field has a null mean and standard deviation equal to
σθ = 1◦.
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(a) MAC2,5 and MAC4,5 PDFs. (b) MAC5,5 histogram.

Figure 6.27 (a) PDFs of MAC2,5 and MAC4,5 indices, and (b) MAC5,5 histogram of the ESL-
TE 3 analysis of the [0±⟨0,45⟩]s VAT plate.

This histogram tells that nearly 23% of the Monte Carlo samples are gathered around
MAC5,5 ≈ 1, corresponding to Ncr5 ≈ 2.65 kN/m. The remaining 77% approximately
equals 0, and its buckling load is around Ncr5 ≈ 2.50 kN/m. This implies that when
misalignments are considered, the ESL-TE 3 model overestimates the critical load and
may alter its respective buckling mode.

6.4.2 Layer and fibre scale uncertainty

This part is devoted to analysing VAT structures subject to uncertain manufacturing
defects that appear at both the layer and fibre scale. The layer scale defects were
already discussed in Section 6.4.1, that is, fibre misalignments, while the fibre scale
uncertainty is related to the fibre volume fraction variability within the laminate. These
two defects are modelled as a stochastic field using the Karhunen-Loève expansion
(KLE). A null mean and standard deviation σθ = 1.5◦ are considered for the layer
scale field, as shown in [148]. The fibre scale defect assumes a mean volume fraction
Vf = 0.60 and standard deviation σV f = 0.05, as considered in [64].

Stochastic buckling analysis

The defects mentioned above are included in two VAT plates with orientations [0±
⟨45,0⟩]s and [90± ⟨0,45⟩]s, referred to as Case 1 and Case 2, respectively. The
structures involved in this study are square plates with a = b = 0.254 m and single ply
thickness tply = 0.127 mm. The plate is clamped on the left edge, a pressure P = 7.75
kPa is exerted on the right edge, and the top and bottom edges are free to deform.
Since multiscale defects are considered in this research item, material properties for
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Table 6.17 Elastic properties of the constituents of the composite material and the homogenised
material properties for a fibre volume fraction Vf = 0.60.

Constituent E11 [GPa] E22 [GPa] G12 [GPa] G23 [GPa] ν12 [-] ν23 [-]
Fibre 235.0 14.0 28.0 5.60 0.20 0.25

Matrix 4.80 4.80 1.79 1.79 0.34 0.34
Homogenised Vf =0.60 143.17 9.64 6.09 3.12 0.252 0.349

Generate i( ) ~N(0,1) for KLE 

Fibre vol frac (Vf )

KLE assigns

KLE assigns

Fibre misalignment (  )

 C=C(x*,y*,Vf)

 (x*,y*)= (x*,y*)+ (x*,y*) 

Rotation matrix: T=T( (x*,y*)) 

Nominal ibre orientation

             (x*,y*)

  Defected ibre orientation

 (x*,y*)= (x*,y*)+ (x*,y*) 

Microscale

   defect

Mesoscale 

   defect

E11,E22,E33,G12,G13

G23, 12, 13, 23

Polynomial regression

Homogenisation

C=T(x*,y*, )C(x*,y*,Vf)T(x*,y*, )T

Compute Kij s

Assemble K

Stochastic structural response

PCE Surrogate Model

Figure 6.28 Flow-chart of the stochastic buckling analysis considering microscale and
mesoscale defects.

both the fibre and matrix constituents are considered. These are available in Table 6.17
along with the homogenised properties when Vf = 0.60 are reported too.

The defects are included as depicted in Fig. 6.28 and explained in the following.
First, r = nplynde f n ξi(ω) terms for the KLE are generated through Latin Hypercube
Sampling (LHS) for each analysis, where nply stands for the number of plies in the
VAT component, ndef is the number of defects considered, and n is the number of terms
per each KLE. When the structural analysis begins, a fibre volume fraction and fibre
misalignment field are generated with the KLE and are assigned to each integration
point. In the first instance, the homogenised properties of the material are retrieved
through a polynomial regression. The samples used to build such polynomials were
obtained employing the MSG-CUF models established in Section 3.2. The polynomial
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fitting is available in [136]. The homogenised material properties are then used to
calculate the material stiffness matrix C, which is then rotated into the structural
reference frame, taking into account the misalignment ∆Θ to obtain C̃. Afterwards,
the stiffness FN is computed for each FE, and the global stiffness matrix is assembled.
Subsequently, the equilibrium state is calculated, and the internal stress state is utilised
to calculate the geometrical stiffness matrix. Finally, the stochastic buckling response
is retrieved.

As one can observe in Fig. 6.28, the multiscale defect propagation and generation
of the assembled stiffness and geometrical stiffness matrices are contained in a module
that is substituted by a Polynomial Chaos Expansion (PCE) surrogate model. The
PCE is built with 300 Monte Carlo simulations and allows the computation of the
first two statistical moments of the first six buckling loads. Those 300 samples were
considered the minimum number of simulations necessary to achieve convergence
in the computation of the mean value and standard deviation using PCE as shown in
[136]. The deterministic buckling load, as well as the mean value and coefficient of
variation (COV) computed with first- and second-order PCE for Case 1 and Case 2
laminations, are reported in Table 6.18. It is observed that first- and second-order PCE
provided very similar mean and standard deviation values. Moreover, by using PCE,
one can accelerate the calculation of statistical moments needed for reliability analyses.
The PDFs of each buckling load are available in Fig. 6.29. Case 1 PDF shows some
overlapping regions between the first and second loads and between the fourth, fifth
and sixth. Indeed, the upper and lower tails of the fourth and sixth critical loads slightly
overlap around 350 N. For Case 2, the overlapping tails appear between the second
and third loads and the fourth, fifth and sixth loads. Despite the overlapping tails,
it was found that no mode switching occurred and that the buckling loads increased
altogether simultaneously.

Figure 6.30 provides the 3D MAC matrices. It is inferred that no swapping occurs
between buckling modes. For the two fibre paths considered, the main diagonal
components have a mean value close to one, while some other terms present values
between 0.40 and 0.50. It means that the modes of the flawed structures are similar to
those of the pristine ones. Regarding the standard deviations of the MAC terms, Case 1
presents similar values to those obtained when only fibre volume fraction variability is
considered, see [136]. On the contrary, in Case 2, these standard deviations increased,
which agrees with the behaviour of Case 2 COV of the buckling loads.
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Table 6.18 Case 1 and 2 deterministic buckling loads, mean value and COV calculated by
first- and second-order PCE accounting for spatially varying fibre volume fraction and fibre
misalignments.

Case
Buckling Deterministic 1st order PCE 2nd order PCE 1st order PCE 2nd order PCE

Load Load [N] mean [N] mean [N] COV [%] COV [%]

Case 1

Fcr1 143.59 143.30 143.34 4.52 4.42
Fcr2 159.07 159.29 159.26 3.91 3.79
Fcr3 216.77 217.22 217.23 3.61 3.41
Fcr4 310.21 309.82 309.76 3.59 3.39
Fcr5 366.45 366.75 366.76 5.02 4.88
Fcr6 407.53 407.09 406.99 4.05 3.93

Case 2

Fcr1 26.05 26.13 26.14 3.96 3.88
Fcr2 48.64 48.65 48.65 3.57 3.46
Fcr3 60.27 60.42 60.41 5.32 5.22
Fcr4 81.31 81.32 81.32 3.72 3.63
Fcr5 109.30 109.67 109.66 4.08 4.05
Fcr6 134.89 135.11 135.11 3.75 3.68

(a) (b)

(c) (d)

Figure 6.29 Case 1 buckling load PDFs: (a) Fcr1, Fcr2 and Fcr3. (b) Fcr4, Fcr5 and Fcr6. Case
2 buckling load PDFs: (c) Fcr1, Fcr2 and Fcr3. (d) Fcr4, Fcr5 and Fcr6. Spatially varying fibre
volume fraction and fibre misalignments are accounted for.
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(a)

(b)

Figure 6.30 3D MAC matrices of (a) Case 1 (b) Case 2. Spatially varying fibre volume fraction
and fibre misalignments are accounted for.
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Figure 6.31 Flow-chart of the stochastic microscale stress analysis considering microscale and
mesoscale defects.

Stochastic fibre scale stress analysis

The following study addresses the stochastic fibre-scale stresses that occur when fibre
volume fraction and fibre misalignments are considered. The investigated structure
consists of two layers with layup sequence [⟨90,45⟩,⟨0,45⟩], simply-supported edges
and a uniform pressure pz = 10 kPa applied on top. Two width-to-thickness ratios are
investigated: a/h = 10 and a/h = 100; the width and length are a = b = 1 m. The
material properties used in this numerical study are reported in Table 6.17.

As in the stochastic buckling analysis considering multiscale uncertainty defects,
the flow-chart in Fig. 6.31 depicts the defect propagation and microscale stress retrieval
process. The propagation of defects and the computation of the stochastic structural
response are conducted as in the previous study. The principal difference occurs
after retrieving the strains and stresses at the layer scale. The strains in the material
reference frame and the local fibre volume fraction are fed into the MSG-CUF method,
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β

Figure 6.32 Micromechanics Cartesian and cylindrical reference frames used for the microscale
stress tensor. Axis y1 and et are coincident. β is defined as the angle between y2 and the radial
en.

see Section 3.2, to compute the stresses at the fibre-matrix level. The microscale
stress sensitivity is performed with a total of a thousand Monte Carlo analyses. First-
and second-order statistical moments of the stresses at the fibre-matrix interface are
calculated. Note that the microscale stress components are transformed into the
cylindrical reference frame shown in Fig. 6.32.

In the case of the thick plate (a/h = 10), the layer strain state at point (-0.25,-0.25,-
0.02) m is used to retrieve the stress level at the fibre scale. The polar plots in Fig. 6.33
include the normal tn and shear ts, tt stresses of both fibre and matrix constituents. The
radial direction of the polar plots provides the magnitude, while the circumferential
direction represents angle β from Fig. 6.32. Based on the data displayed in Fig. 6.33,
the following comments are made:

• The circumferential stresses from Figs. 6.33a and 6.33b, present the largest
differences between the nominal and mean value, especially in the ranges β ∈
[45,135]◦ and β ∈ [225,315]◦. As appreciated in Table 6.19, in those ranges,
the pristine stresses are below the maximum-minimum range of the uncertainty
analysis.

• The longitudinal stress of the fibre component in Fig. 6.33c has an oval shape,
whose maximum is slightly lower than 15 kPa and its minimum is about 7 kPa.
On the contrary, the matrix tt has a two-lobed shape with peak values about 35
kPa at β = 0◦ and β = 180◦, see Fig. 6.33d.
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• The radial stresses tn in Figs. 6.33e and 6.33f are practically identical. This
is because the continuity of radial stresses has to be guaranteed in the normal
direction of the fibre-matrix interface.

• Overall, a small variability is observed. The 95% confidence intervals are very
shallow, and the maximum-minimum ranges are not large, except for the fibre tt .

Table 6.19 Normal and shear stresses statistics of the RUC constituents at β = 75◦ for the
simply-supported [⟨90,45⟩,⟨0,45⟩] thick (a/h = 10) laminate. Range indicates the minimum
and maximum values registered in the Monte Carlo simulations.

Constituent Magnitude tn [kPa] ts [kPa] tt [kPa]

Fibre

No defects -4.08 41.96 5.55
Mean 0.31 47.82 6.74

95% interval [0.27,0.35] [47.72,47.93] [6.54,6.94]
Range [-1.61,2.02] [42.60,53.20] [-1.52,18.93]

Matrix

No defects -4.36 7.73 4.18
Mean 0.03 14.43 6.53

95% interval [0,0.07] [14.37,14.50] [6.51,6.57]
Range [-2.04,1.76] [11.67,17.42] [4.95,7.88]
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(a) ts fibre (b) ts matrix

(c) tt fibre (d) tt matrix

(e) tn fibre (f) tn matrix

Figure 6.33 Stress distribution of the fibre and matrix constituents at its interface, along with
statistical data. Stresses are reported in a cylindrical reference frame. Data corresponds to the
simply-supported [⟨90,45⟩,⟨0,45⟩] thick (a/h = 10) laminate.

Concerning the thin plate (a/h = 100), the layer strain state at point (0,0,5) mm,
where the minimum σxx is located. The multiscale defect Monte Carlo analysis yields
the fibre scale stress state illustrated in Fig. 6.34. The following is appreciated:
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• The circumferential stresses ts are reported in Figs. 6.34a and 6.34b. For the
fibre constituent, it presents an oval shape ranging from −5 MPa to −2 MPa
in the non-defective case. The matrix presents a four-lobed distribution where
the stresses vary between −3 MPa and −0.5 MPa. The highest compression
stresses are observed at β = 45,135,225,315◦.

• A constant value about −85 MPa is appreciated for the fibre in Fig. 6.34c. The
matrix presents a two-lobed shape with peak compression values at β = 0◦ and
β = 180◦, see Fig. 6.34d.

• The continuity of tn is demonstrated in Figs. 6.34e and 6.34f, as well as in Table
6.20. In addition, it presents a peak value of about 0.50 MPa at β = 90◦ and
β = 270◦.

• In general, there is no large variability when the pristine distributions are com-
pared with their stochastic counterparts, except for Figs. 6.34a and 6.34b in the
β ∈ [75,135]◦ and β ∈ [255,295]◦ ranges. In these ranges, differences of 1 MPa
are observed.

• As in the case of the thick plate, the fibre longitudinal stress is undergoing more
significant variability in terms of minimum-maximum range.

Table 6.20 Normal and shear stresses statistics of the RUC constituents at β = 75◦ for the
thin laminate’s minimum value of σxx. Range indicates the minimum and maximum values
registered in the Monte Carlo simulations.

Constituent Magnitude tn [MPa] ts [MPa] tt [MPa]

Fibre

No defects 0.52 -4.71 -85.01
Mean 0.091 -5.23 -84.46

95% interval [0.087,0.094] [-5.26,-5.21] [-84.64,-84.28]
Range [0,0.18] [-6.28,-4.58] [-89.78,-79.54]

Matrix

No defects 0.54 -1.05 -2.27
Mean 0.12 -1.68 -2.48

95% interval [0.11,0.12] [-1.69,-1.67] [-2.49,-2.47]
Range [0.02,0.21] [-2.08,-1.44] [-2.77,-2.27]
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(a) ts fibre (b) ts matrix

(c) tt fibre (d) tt matrix

(e) tn fibre (f) tn matrix

Figure 6.34 Stress distribution of the fibre and matrix constituents at its interface, along with
statistical data. Stresses are reported in a cylindrical reference frame. Data corresponds to the
simply-supported [⟨90,45⟩,⟨0,45⟩] thin (a/h = 100) laminate and minimum σxx.
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6.5 Optimisation of VAT plates

This section gathers the optimisation of a series of mechanical properties of VAT plates.
For the vast majority of results, uncertainty or deterministic manufacturing defects have
not been considered. The mechanical features optimised are the fundamental frequency,
buckling load, vertical deflection, strain concentration, strength maximisation, and
fundamental frequency considering deterministic defects. A polynomial surrogate
model coupled with a GA has been used for the first two optimisations. For the
following three features, a solver from modeFrontier© [129] that combines global
and local search and utilises the actual FE simulations has been chosen. The last
optimisation uses the surrogateopt from MATLAB© [149], which presents a similar
search strategy as the one from modeFrontier©. The main scope of this section is
to understand the influence of structural theory on the retrieval of optimal design
variables.

6.5.1 Fundamental frequency optimisation

Before proceeding with the optimisation, is mandatory to verify the numerical ap-
proach. For doing so, the free vibration problem from Akhavan and Ribeiro [150]
is considered. This considers a three-layered squared plate with layup sequence
θ = [⟨0,45⟩,⟨−45,−60⟩,⟨0,45⟩]. The plate has a width and length a = b = 1 m, and a
width-to-thickness ratio a/h = 10, having each layer the same thickness. The structure
is clamped on its four edges and the material properties are reported in Table 6.21.

Table 6.21 Material properties of the VAT plate considered for the free vibration analysis, from
Akhavan and Ribeiro [150].

E1 [GPa] E2 = E3 [GPa] G12 [GPa] G23 [GPa] ν12 = ν23 [-] ρ [kg/m3]
173.00 7.20 3.76 3.76 0.29 1540.00

Different Taylor and Lagrange expansion functions have been considered for the
verification. All the numerical models employ a 10×10 Q9 mesh. The FE mesh
convergence is not included for the sake of brevity. The results are gathered in Table
6.22. First- and second-order TE provide higher natural frequencies than the reference
model. Third- and fourth-order TE are closer to the reference but slightly higher than
the LW models. The LW solutions present differences among them. LD1 results lay
between ESL-TE 2 and LD2, while LD3 computes lower frequencies than LD2 with
increased DOF and computational time. In this regard, a 10×10 Q9 FE mesh and 1
LD2 per layer are used in the optimisation problem.
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Table 6.22 Convergence analysis of the first five natural frequencies for the fully-clamped
[⟨0,45⟩,⟨−45,−60⟩,⟨0,45⟩] plate from Akhavan and Ribeiro [150]. Each model employs a
10×10 Q9 mesh. The relative difference between each model and the reference is reported in
the superscript.

Model DOF f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz]
Ref.[150] - 613.79 909.04 1231.65 1337.69 1484.53

TE 1 2646 638.874.09% 955.515.11% 1278.433.80% 1419.716.13% 1553.574.65%

TE 2 3969 634.393.36% 943.643.81% 1273.883.43% 1399.974.66% 1542.343.89%

TE 3 5292 611.17−0.43% 908.11−0.10% 1218.00−1.11% 1338.390.05% 1473.10−0.70%

TE 4 6615 611.04−0.45% 907.83−0.13% 1217.56−1.14% 1337.690% 1789.1420.52%

TE 5 7938 609.49−0.70% 903.63−0.60% 1214.24−1.41% 1328.60−0.68% 1467.81−1.13%

TE 6 9261 609.49−0.70% 903.63−0.60% 1214.24−1.41% 1328.59−0.68% 1774.4619.53%

1 LD1 5292 621.641.28% 917.660.95% 1244.851.07% 1347.150.71% 1499.661.02%

1 LD2 9261 609.91−0.63% 903.93−0.56% 1216.18−1.26% 1328.88−0.66% 1469.58−1.01%

1 LD3 13230 608.60−0.85% 900.62−0.93% 1213.16−1.50% 1322.06−1.17% 1464.94−1.32%

(a) LW-LD2 response surface.

-90 -45 0 45 90

-90

-45

0

45

90

580

600

620

640

660

680

700

720

740

(b) LW-LD2 contour plot.

Figure 6.35 Response surface and contour plot of the fully-clamped [⟨T0,T1⟩,⟨90+T0,90+T1⟩]s
plate with width-to-thickness ratio a/h = 10. Red crosses in (a) indicate the sample points
used to construct the surrogate models.

The fundamental frequency optimisation problem can be defined as follows:

min
x

− f1(x), (6.2)

in which x = {T0,T1} is the vector containing the design variables. The considered
structure is a fully-clamped plate with θ = [0⟨T0,T1⟩,0⟨90+T0,90+T1⟩]s as in [150].
The lower and upper boundaries are xL =−90◦ and xU = 90◦, respectively. The plate
geometric dimensions are a = b = 1 m, and the material properties are enlisted in
Table 6.21. Two width-to-thickness ratios are considered: a/h = 10 and a/h = 100,
for thick and thin plates, respectively. Three theories of structures are considered for
the optimisation process: ESL-TE 1, ESL-TE 3 and LW-LD2.

A polynomial surrogate model that mimics f1 is used. In this context, f1 is
approximated by f̃1, i.e.: f1 ≈ f̃1, in Eq. (6.2). Fifteen samples were generated
employing LHS to generate the training data, and a truncated fourth-order polynomial
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was employed as the response surface. The surrogate model’s 3D representation and
contour plot are presented in Fig. 6.35. The GA used to solve the optimisation problem
considers 40 individuals per generation, with an 80% crossover probability and 5%
mutation probability.

Table 6.23 Optimal results of the unconstrained first fundamental frequency optimization
problem for the fully-clamped [⟨T0,T1⟩,⟨90+T0,90+T1⟩]s plate, and comparison between
surrogate model f̃1 and direct analysis f1 of the optimized stacking sequence.

a/h = 10 a/h = 100
LW-LD2 ESL-TE 1 ESL-TE 3 LW-LD2 ESL-TE 1 ESL-TE 3

⟨T0, ⟨−90, ⟨−90, ⟨−90, ⟨−90, ⟨−90, ⟨−90,
T1⟩ [◦] −2.92⟩ −2.30⟩ −2.41⟩ −1.15⟩ −1.26⟩ −1.15⟩
f̃1 [Hz] 735.23 769.86 738.96 125.48 126.51 125.60
f1 [Hz] 737.43 774.47 741.71 123.21 124.19 123.24

Error [%] -0.29 -0.59 -0.37 1.84 1.87 1.91

Table 6.23 reports the design variables that maximise the fundamental frequency.
The LW and ESL models provide similar solutions for both thick and thin laminates. It
is observed that for all the optimum layups, T1 is negative, as appreciated in Figs. 6.36.
Fibres are pointing towards the x =±a/2 edges with constant T1. In these edges, the
local elastic modulus in the x direction is greater than the region with x = 0. Contrarily,
at x = 0, the fibres point towards the y =±b/2 edges, presenting maximum transverse
stiffness.

When a manufacturing constraint, as the maximum allowable curvature, is intro-
duced in the optimisation problem, it can be written as:

min
x

− f1(x) s.t. −1/rmin ≤ κ(x)≤ 1/rmin, (6.3)

where κ(x) is computed with Eq. (4.4). The solutions to the constrained problem are
available in Table 6.24. Similarly to the unconstrained case, LW and ESL approaches
provide close results for thick and thin laminates. The main discrepancy resides in
predicting the fundamental frequency for thick plates, where ESL models overestimate
f1, especially ESL-TE 1. The optimal solutions lay on the constraint bound, meaning
the curvature constraint is active. The fibre paths are illustrated in Fig. 6.37. A
cluster of fibres is appreciated at the middle of the plates in Figs. 6.36 and 6.37 as
the optimal T0 =−90◦. Although the maximum curvature manufacturing constraint is
implemented, a defect-free design is foreseen. Thus, a varying fibre path that reaches
a ±90◦ local orientation is conceptually feasible. That is not the case in which not
only manufacturing limitations but also fabrication defects are considered within the
optimisation problem, as shown in Section 6.5.6.
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(a) [0⟨−90,−2.92⟩] ply.

(b) First modal shape of optimum thick laminate.
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(c) [0⟨−90,−1.15⟩] ply.

(d) First modal shape of optimum thin laminate.

Figure 6.36 Fibre paths and first modal shape of the LW optimum solution for the unconstrained
free vibration optimisation of thick (a,b) and thin (c,d) laminates.

Table 6.24 Optimal results of the constrained first fundamental frequency optimization problem
for the [⟨T0,T1⟩,⟨90+T0,90+T1⟩]s fully-clamped plate, comparison between surrogate model
f̃1 and direct analysis f1 of the optimized stacking sequence, and maximum value of the
steering curvature.

a/h = 10 a/h = 100
LW-1LD2 ESL-TE 1 ESL-TE 3 LW-1LD2 ESL-TE 1 ESL-TE 3

⟨T0, ⟨−90, ⟨−84.68, ⟨−85.84, ⟨−89.73, ⟨−90, ⟨−90,
T1⟩ [◦] −34.96⟩ −31.67⟩ −32.41⟩ −34.58⟩ −34.96⟩ −34.95⟩
f̃1 [Hz] 710.63 739.16 713.76 117.25 118.36 117.40
f1 [Hz] 717.03 751.76 720.08 118.01 118.96 118.07

Error [%] -0.89 -1.67 -0.88 -0.64 -0.50 -0.57
κmax [m−1] 1.57 1.57 1.57 1.57 1.57 1.57
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(a) [⟨−90,−34.96⟩] ply.

(b) First modal shape of optimum thick laminate.
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(c) [⟨−89.73,−34.58⟩] ply.

(d) First modal shape of optimum thin laminate.

Figure 6.37 Fibre paths and first modal shape of the LW optimum solution for the constrained
free vibration optimisation of thick (a,b) and thin (c,d) laminates.
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Figure 6.38 Absolute error between the optimal ⟨T0,T1⟩ obtained by ESL models with respect
to an LW approach. The radius of the circle represents the relative error between the actual
simulations using an ESL approach with respect to LW.

Figure 6.39 Boundary conditions of the twelve-layered [0±⟨T0,T1⟩]3s plate.

Figure 6.38 summarises graphically the difference in the optimum design variables
between the structural theories employed for the unconstrained and the constrained
optimisation problems. It is appreciated that the absolute error between the optimum
⟨T0,T1⟩ obtained with an ESL and an LW approach lies in the ±5◦ range. Moreover,
it is observed that the largest relative error in the predicted fundamental frequency
value is presented when the thick laminate is modelled using an ESL-TE 1 structural
model. This error is much lower when an ESL-TE 3 is employed. In the case of
thin plates, the error committed in the fundamental frequency prediction by the two
ESL is much lower. Therefore, one can say that when maximising the fundamental
frequency of VAT plates, ESL models provide optimum designs similar to an LW
theory of structures.

6.5.2 Buckling optimisation

This section presents the optimal variable stiffness fibre paths to maximise the buckling
load. A twelve-layered plate with [0±⟨T0,T1⟩]3s stacking sequence is considered. The
width a and length b of the plate are a = b = 0.254 m, and the thickness of each ply is
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tply = 0.127 mm. The plate is subject to a uniform shortening ux = u0 along x =±a/2,
while the transverse displacements are restrained at y =±b/2, as depicted in Fig. 6.39.
The material properties are enlisted in Table 6.25.

Table 6.25 Material properties of the VAT plate considered for the analysis, from Gürdal et al.
[11]. G23 was taken from Zhao and Kapania [89].

E1 [GPa] E2 = E3 [GPa] G12 [GPa] G23 [GPa] ν12 = ν23 [-]
181.00 10.27 7.17 4.00 0.28

Taylor and Lagrange expansions are used for the verification of the numerical
model. The [0±⟨T0,T1⟩]3s from [11] is considered for verification purposes. For the
sake of brevity, the mesh convergence study is omitted. Convergence is reached with a
10×10 Q9 mesh. The comparison between the expansion functions and the reference
is made in terms of the non-dimensional buckling load factor Kcr, defined as:

Kcr =
Fcra2

E1h3b
, (6.4)

where h is the total thickness of the plate. The results are available in Table 6.26. It is
observed that ESL models provide the closest solutions to the reference one, which
uses CLPT and the Rayleigh-Ritz method. As the order of the TE increases, lower
values of Kcr are obtained. Indeed, the ESL-TE 3 model provides the same value
as 1LD2 with an 84% reduction in degrees of freedom. The buckling optimisation
problem can be stated as follows:

min
x

−Fcr(x), (6.5)

in which x = {T0,T1} are the design variables of the [0±⟨T0,T1⟩]3s stack. Again,
the lower and upper bounds are xL = −90◦ and xU = 90◦. A polynomial surrogate

Table 6.26 Convergence analysis of Kcr for the [0±⟨0,50⟩]3s plate from Gürdal et al. [11].
Each model uses a 10×10 Q9 mesh.

Model DOF Kcr [-]
Ref. [11] – 1.44
ESL-TE 1 2646 1.42
ESL-TE 2 3969 1.40
ESL-TE 3 5292 1.39
ESL-TE 4 6615 1.39
LW-1LD1 17199 1.42
LW-1LD2 33075 1.39
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(a) LW-LD2 response surface.
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(b) LW-LD2 contour plot.

Figure 6.40 Response surface and contour plot of the [0± ⟨T0,T1⟩]3s plate with width-to-
thickness ratio a/h = 167 for the LW-1LD2 model. Red crosses in (a) indicate the sample
points used to construct the surrogate models.

Table 6.27 Optimal results of the unconstrained buckling optimization problem for the
[0±⟨T0,T1⟩]3s plate, and comparison between surrogate model F̃cr and direct analysis Fcr

of the optimized stacking sequence.

a/h = 10 a/h = 167
LW-1LD2 ESL-TE 1 ESL-TE 3 LW-1LD2 ESL-TE 1 ESL-TE 3

⟨T0, ⟨−1.90, ⟨−3.38, ⟨−3.37, ⟨−17, ⟨−17, ⟨−11.77,
T1⟩ [◦] 40.97⟩ 40.46⟩ 40.97⟩ 52⟩ 52⟩ 51.88⟩
F̃cr [N] 8.24·106 9.34·106 8.73·106 3.58·103 3.58·103 3.58·103

Fcr [N] 8.28·106 9.37·106 8.73·106 3.48·103 3.56·103 3.33·103

Error [%] -0.51 -0.31 0.06 2.73 1.00 7.40

model that mimics Fcr is employed to solve the optimisation problem. LHS was used
to generate the fifteen samples utilised to build the response surface. Two width-to-
thickness ratios, a/h = 10 and a/h = 167 for thick and thin laminates, respectively,
and three structural theories are investigated. The 3D visualisation and contour plot
of the LW-1LD2 a/h = 167 plate are depicted in Fig. 6.40. A local and a global
maximum are appreciated.

GA is employed to solve the optimisation problem. A total of 40 individuals per
generation are considered. The crossover probability is set to 80%, while the mutation
probability equals 5%. The optimal solutions are gathered in Table 6.27. In the case of
thin plates, LW and ESL models lead to practically the same optimal fibre paths, the
only difference being the T0 predicted by ESL-TE 3. The results for the thin laminates
are in agreement with those provided by Gürdal et al. [11], where the optimum was
found for ⟨T0,T1⟩= ⟨0,50⟩◦. In their paper, Gürdal et al. allowed T0 and T1 to vary
in the T0,T1 ∈ [0,90]◦ range, while in this document T0,T1 ∈ [−90,90]◦. LW and
ESL provide similar solutions in the case of thick plates. The main difference is the
predicted Fcr value, which is higher when ESL theories are employed.
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(a) [⟨−1.90,40.97⟩] ply. (b) First buckling mode of optimum thick laminate.
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Figure 6.41 Fibre paths and first buckling mode of the LW optimum solution for the uncon-
strained buckling load optimization problem for thick (a,b) and thin (c,d) laminates.
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Although Olmedo and Gürdal [10] demonstrated that the buckling performance
could be increased by steering fibres, they did not consider limitations on the turning
radius of the AFP machine’s head. Thus, constraints have to be incorporated into the
optimisation problem. In this regard, the constrained buckling optimisation problem
reads as follows:

min
x

−Fcr(x) s.t. −1/rmin ≤ κ(x)≤ 1/rmin (6.6)

where κ(x) is calculated through Eq. (4.4). The solutions to this problem are enlisted
in Table 6.28. As for the unconstrained problem, LW and ESL provide close results
when thin a/h = 167 plates are involved. The optimum is around ⟨T0,T1⟩= ⟨20,32⟩◦.
The same occurs for the case of thick a/h = 10 plates, in which the optimal fibre
path is around ⟨T0,T1⟩ = ⟨12,24⟩◦. It is worth noting that constraints are active for
all the retrieved solutions. That means that the optimal designs lay on the constraint
boundary.

Table 6.28 Optimal results of the constrained buckling optimization problem for the
[0±⟨T0,T1⟩]3s plate subjected to uniform end shortening and restrained transverse edges,
comparison between surrogate model F̃cr and direct analysis Fcr of the optimized stacking
sequence, and maximum value of the steering curvature.

a/h = 10 a/h = 167
LW-1LD2 ESL-TE 1 ESL-TE 3 LW-1LD2 ESL-TE 1 ESL-TE 3

⟨T0, ⟨12.10, ⟨9.57, ⟨12.28, ⟨20.81, ⟨17.41, ⟨18.93,
T1⟩ [◦] 23.83⟩ 21.20⟩ 24.01⟩ 33.08⟩ 29.45⟩ 31.08⟩
F̃cr [N] 8.08·106 9.14·106 8.51·106 3.05·103 3.05·103 3.15·103

Fcr [N] 8.08·106 9.05 ·106 8.47 ·106 3.18·103 3.20·103 3.18·103

Error [%] 0.07 1.07 0.49 -3.97 -4.84 -0.59
κmax [m−1] 1.57 1.57 1.57 1.57 1.57 1.57

Figure 6.43 gathers the difference in the optimum design variables between the ESL
and LW structural theories utilised for the unconstrained and constrained optimisation.
The absolute error between the optimal solutions retrieved by ESL and LW is contained
in the ±5◦ range. In addition, it is appreciated that the largest relative error in the
predicted buckling load occurs when the thick laminate is modelled with an ESL-TE
1 model. This error diminishes when an ESL-TE 3 is considered. Contrariwise, the
error committed is much lower when modelling thin laminates. In this context, ESL
models lead to similar optimum designs to those retrieved by an LW approach when
optimising the buckling load of a VAT plate.
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(a) [0⟨12.10,23.83⟩] ply. (b) First buckling mode of optimum thick laminate.
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Figure 6.42 Fibre paths and first buckling mode of the LW optimum solution for the constrained
buckling load optimization problem for thick (a,b) and thin (c,d) laminates.
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Figure 6.43 Absolute error between the optimal ⟨T0,T1⟩ obtained by ESL models with respect
to an LW approach. The radius of the circle represents the relative error between the actual
simulations using an ESL approach with respect to LW.
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6.5.3 Vertical deflection optimisation

The minimisation of the deflection undergone from the plate presented in Section
6.1.1 is now addressed. The geometry, boundary and loading conditions, and material
properties are already described in that section. The optimisation problem can be
stated as follows:

min
x

−uz(x) (6.7)

where x = {T 1
0 ,T

1
1 ,T

2
0 ,T

2
1 } are the design variables of the θ = [⟨T 1

0 ,T
1

1 ⟩,⟨T 2
0 ,T

2
1 ⟩].

For this problem, an optimisation algorithm that combines global and local search
strategies is used to conduct the optimisation process. This algorithm is available in
modeFrontier© and uses the actual FE simulation outcomes as the objective function.

Table 6.29 Optimal designs for the unconstrained deflection optimization problem.

ESL-TE 1 ESL-TE 6 LW-1LD3
⟨T 1

0 , ⟨−90, ⟨−90, ⟨−90,
T 1

1 ⟩ [◦] −5.36⟩ −5.44⟩ −5.44⟩
⟨T 2

0 , ⟨−90, ⟨−90, ⟨−90,
T 2

1 ⟩ [◦] −5.32⟩ −5.44⟩ −5.44⟩
−uz ·106 [m] 3.74 4.16 4.16

The set of optimal solutions retrieved with the different structural theories is
gathered in Table 6.29. It can be observed that ESL and LW models lead to similar
fibre paths, ESL-TE 1 presenting slight differences in T 1

1 and T 2
1 . It is appreciated

that the three solutions have T 1
0 and T 2

0 equal to −90◦. That implies that the structure
is stiffer in the transverse direction at the centre of the plate, where the maximum
deflection is observed. The ⟨−90,−5.44⟩◦ fibre path of the LW optimal solution is
displayed in Fig. 6.44. It is worth mentioning that the optimal fibre path is practically
identical to the fundamental frequency optimisation shown in Section 6.5.1. This
is because maximising the fundamental frequency is equivalent to maximising the
flexural stiffness and, thus, minimising the vertical deflection.

As in the previous optimisation problems, the AFP machine’s maximum turning
radius is imposed as a constraint of the problem. In this regard, the constrained
deflection minimisation problem reads as follows:

min
x

−uz(x) s.t. −1/rmin ≤ κ
k(x)≤ 1/rmin k = 1,2 (6.8)

in which the design variables are the same as in the unconstrained case, and κk denotes
the curvature of the kth layer fibre path.
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(a) [⟨−90,−5.44⟩] ply. (b) Deflection contour of the [⟨−90,−5.44⟩]2 laminate.

Figure 6.44 Fibre paths and contour of the LW optimum solution for the unconstrained
deflection optimization problem.

Table 6.30 Optimal designs for the constrained deflection optimization problem.

ESL-TE 1 ESL-TE 6 LW-1LD3
⟨T 1

0 , ⟨90, ⟨−90, ⟨90,
T 1

1 ⟩ [◦] 34.95⟩ −34.95⟩ 34.95⟩
⟨T 2

0 , ⟨90, ⟨−90, ⟨90,
T 2

1 ⟩ [◦] 34.95⟩ −34.95⟩ 34.95⟩
−uz ·106 [m] 3.90 4.297 4.296

κ1
max/κ2

max [m−1] 1.57/1.57 1.57/1.57 1.57/1.57
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(a) [⟨90,34.95⟩] ply. (b) Deflection contour of the [⟨90,34.95⟩]2 laminate.

Figure 6.45 Fibre paths and contour of the LW optimum solution for the constrained deflection
optimization problem.

Table 6.30 shows the optimal fibre path parameters of the constrained problem. As
seen before, ESL and LW theories provide similar optimal designs. Indeed, ESL-TE 1
and LW-1LD3 designs are identical, while ESL-TE 6 shows the same laminate with
opposite signs. This change in sign is due to the global and local search strategy and
constraint handling of the optimisation algorithm. In any case, a symmetric response
surface of uz is foreseen as a very similar value of the deflection is observed for the
[⟨90,34.95⟩]2 and [⟨−90,−34.95⟩]2 designs. The optimal LW-1LD3 design and the
deflection contour are illustrated in Fig. 6.45.

Last, it is worth noting that the unconstrained and constrained solutions present
the same fibre orientation at the plate centre, i.e., T 1

0 = T 2
0 =±90◦. This means these

parameters are the most important, and the value of T 1
1 and T 2

1 depends on whether
the problem is bounded. The influence of the design parameters on the objective
function can be investigated before triggering the optimisation by performing a global
sensitivity analysis [151].

Table 6.31 Material properties of the VAT plate considered for the SCF and strength optimiza-
tion problems. Taken from Vijayachandran et al. [85].

E1 [GPa] E2 = E3 [GPa] G12 = G13 [GPa] ν12 = ν13 [-]
148.24 8.48 3.94 0.329

6.5.4 Strain concentration factor optimisation

The strain concentration factor (SCF) around the hole of a cutout VAT plate is studied
in this section. The plate has a semi-width a = 0.125 m and a width-to-thickness
ratio 2a/h = 10. The material properties are reported in Table 6.31. Because of the
symmetry of loading and geometry, only a quarter of the plate is considered, and
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symmetry boundary conditions are imposed at planes x = 0 and y = 0. The boundary
and loading conditions are illustrated in Fig. 6.46. The SCF is defined as follows:

SCF =
εxx

ε0
(6.9)

where εxx is the longitudinal strain component in the global reference frame, and ε0 is
the applied strain at x = a, which corresponds to a 1% of the plate semi-width.

z

x

y

uy = 0

ux = 0

ux = 1.25 mm

a = 0.125 m

R = 0.06 m

Figure 6.46 Geometry dimensions and boundary conditions of the notched plate considered in
the SCF and strength optimisation problems.

The objective is minimising the SCF around the plate’s hole. The unconstrained
problem is stated as:

min
x

SCF(x), (6.10)

in which x = {T 1
0 ,T

1
1 ,T

,
0T 2

1 } denotes the design variables vector. The layup sequence
reads as θ = [⟨T 1

0 ,T
1

1 ⟩,⟨T 2
0 ,T

2
1 ⟩]s, and modeFrontier© is used to solve the optimisation

problem.

Table 6.32 Optimal designs for the unconstrained SCF optimization problem.

ESL-TE 1 ESL-TE 4 LW-1LD3
⟨T 1

0 , ⟨−47.53, ⟨−53.29, ⟨−55.18,
T 1

1 ⟩ [◦] −78.99⟩ −76.55⟩ −75.39⟩
⟨T 2

0 , ⟨11.04, ⟨2.04, ⟨−0.62,
T 2

1 ⟩ [◦] −90⟩ −90⟩ −90⟩
SCF [-] 0.60 0.74 0.76

SCF evaluated with an LW-LD3 model
SCF [-] 1.06 0.78 0.76

Table 6.32 gathers the optimisation results of the unconstrained problem when
different structural theories are employed. The outcomes of the optimisation process
are compared against a quasi-isotropic (QI) [90,±45,0] plate with the same dimensions
and loading conditions as the VAT plate under investigation. The QI plate presents
an SCF equal to 3.60. The optimal ESL-TE 1, ESL-TE 4, and LW-1LD3 designs
result in an 83.3%, 79.4% and 78.9% drop in terms of SCF compared to the QI plate,
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respectively. These reductions are obtained by considering the simulation outcome of
each structural model used during the optimisation run. If the ESL-TE 1 and ESL-TE
4 optimal designs used an LW-1LD3 kinematic model, the SCF will differ, as pointed
out in the last row of Table 6.32. This re-evaluation with an LW model is made because
LW presents the highest fidelity. After this re-evaluation, the actual SCF diminishes by
70.5% and 78.3% for the ESL-TE 1 and ESL-TE 4 models, respectively. The resulting
SCF optimal distributions, calculated with LW-1LD3 kinematics, are represented in
Fig. (6.47). The ESL-TE 1 solution decreases steadily from the peak value. In contrast,
ESL-TE 4 and LW-1LD3 show a slight increase in the cutout proximities and suddenly
drop, subsequently reaching a plateau. Figure 6.48 illustrates the optimised fibre paths
and SCF contours. As anticipated in Table 6.32, the retrieved optimal fibre paths
are similar. Despite the similarities, it is remarkable the 39% difference between the
optimal ESL-TE 1 and LW-1LD3, evaluated with the latter kinematics, in the predicted
SCF, see Table 6.32.

Figure 6.47 SCF distribution of the retrieved optimal solutions for the unconstrained opti-
misation problem. The distribution of the ESL optimal designs is computed with LW-1LD3
kinematics.

Although a significant SCF reduction, the previous optimal fibre paths cannot be
manufactured because they exceed the maximum curvature of the AFP head. Thus, a
constrained SCF optimisation problem is posed as follows:

min
x

SCF(x) s.t. −1/rmin ≤ κ
k(x)≤ 1/rmin k = 1,2 (6.11)
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Figure 6.48 Fibre patterns and SCF contours of the retrieved solutions for the unconstrained
optimisation problem. The contour of the ESL optimal designs is computed with LW-1LD3
kinematics.

Table 6.33 Optimal designs for the constrained SCF optimization problem.

ESL-TE 1 ESL-TE 4 LW-1LD3
⟨T 1

0 , ⟨−50.63, ⟨−69.60 ⟨44.87,
T 1

1 ⟩ [◦] −68.56⟩ −51.50⟩ 60.83⟩
⟨T 2

0 , ⟨19.52, ⟨−11.99, ⟨−13.64,
T 2

1 ⟩ [◦] 31.49⟩ −23.54⟩ −25.24⟩
SCF [-] 1.41 1.42 1.38

κ1/κ2 [m−1] 1.56/1.57 1.57/1.57 1.57/1.57
SCF evaluated with an LW-LD3 model

SCF [-] 3.60 1.47 1.38
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The solutions to the constrained problem are available in Table 6.33. Compared to
the QI plate, the SCF drop is lower than the unconstrained problem, as expected. The
retrieved optimal solutions resulted in a 60.8%, 60.5% and 61.6% SCF reduction for
the ESL-TE 1, ESL-TE 4 and LW-1LD3 models, respectively. Nonetheless, When the
optimal ESL-TE 1 and ESL-TE 4 designs are evaluated with LW-1LD3 kinematics,
their SCF equals 3.60 and 1.47, which means a 0% and 40.8% reduction, respectively.
Figure 6.49 shows the SCF distributions calculated with an LW-1LD3 model. The
SCF of the optimal ESL-TE 1 decreases steadily. In addition, it is larger than the
QI distribution between y = 0.06 and y = 0.0095. The LW-1LD3 optimum presents
a significant rise in SCF and a slow decrease. Last, the ESL-TE 4 solution shows a
plateau around the hole and suddenly drops at a steeper rate than the LW-1LD3 optimal
design. Figure 6.50 shows the fibre paths and SCF contours of the optimal solutions
evaluated with an LW-1LD3 structural theory. Higher SCF values compared to the
unconstrained problem are appreciated. The optimal ESL-TE 4 and LW-1LD3 present
smoother SCF transitions around the hole than the optimal ESL-TE 1 design.

Figure 6.49 SCF distribution of the retrieved optimal solutions for the constrained optimisation
problem. The distribution of the ESL optimal designs is computed with LW-1LD3 kinematics.

In the unconstrained problem, the optimum designs were similar for the considered
structural models; contrariwise, the constrained problem leads to slight differences.
They might be due to the constraints and how they subdivide the design space into
feasible and unfeasible regions. The optimal results reported in Table 6.33 show that
ESL-TE 1 and LW-1LD3 optimums share similar orientations with opposite signs.
This is because the function SCF(x) is symmetric with respect to the constraint bounds.
This symmetry is further demonstrated by observing the optimal ⟨T 2

0 ,T
2

1 ⟩ from the
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Figure 6.50 Fibre patterns and SCF contours of the retrieved solutions for the constrained
optimisation problem. The contour of the ESL optimal designs is computed with LW-1LD3
kinematics.
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ESL-TE 4 model, which differs by a couple of degrees from the LW-1LD3 optimal
⟨T 2

0 ,T
2

1 ⟩. In addition, the optimisation algorithm combines global and local search
capabilities. The former implies that the algorithm tries to explore design space. After
finding a promising optimal candidate, it carries out a local search to converge to
the local optimum. In this regard, the solver might have found the solution with the
opposite sign during the global exploration phase. It is related to the nonconvexity of
the optimisation problem, the multimodality, and the eventual noncontinuity of the
objective function.

6.5.5 Strength optimisation

0 0.06 0.125

0

0.06

0.125

Figure 6.51 Control points in which the FI are evaluated through the thickness to perform
the strength maximisation.

The strength of the cutout plate from Section 6.5.4 is maximised in this section.
To do so, the safety factor S F is used as the objective function. The optimisation
problem reads as follows:

max
x

min(S F j(x)) j = 1, ...,ns, (6.12)

where ns denotes the number of through-the-thickness sampling points where S F

is measured. The optimisation problem is posed in terms of the safety factor as in
the work by Groenwold and Haftka [152]. They state that minimising the maximum
FI is equivalent to maximising the minimum S F . The Hashin 3D failure criteria
[153] is evaluated through the thickness at the control points highlighted in Fig. 6.51,
and the safety factor is computed according to the procedure described in Appendix
A.2. Recall that Hashin 3D comprises four failure modes, namely Fibre Tension (FT),
Fibre Compression (FC), Matrix Tension (MT), and Matrix Compression (MC). The
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material strengths were taken from Toray© T800S datasheet [154] and are gathered in
Table 6.34.

Table 6.34 Strength properties of the material used for strength optimization. Taken from
Toray© T800S datasheet [154].

XT [MPa] XC [MPa] YT [MPa] YC [MPa] S12 [MPa] S13 = S23 [MPa]
3290.0 1490.0 79.0 300.0 135.0 87.6

The optimal solutions to the unconstrained optimisation problem are gathered in
Table 6.35. As in the previous optimisation, ESL-TE 1, ESL-TE 4, and LW-1LD3
kinematic models are used to solve the problem in Eq. (6.12). The optimal fibre paths
and FI contours are illustrated in Fig. 6.52. From Table 6.35, it is inferred that
various optimal solutions are achieved for the different structural theories. Likewise,
the safety factors differ from each model. Notably, a lower S F is obtained when the
optimal ESL designs are evaluated with an LW-1LD3 structural theory. Besides, the
failure onset mode changes from FT to MT for the ESL-TE 1 design.

Table 6.35 Optimal designs for the unconstrained strength optimization problem.

ESL-TE 1 ESL-TE 4 LW-1LD3
⟨T 1

0 , ⟨2.31, ⟨90, ⟨4.10,
T 1

1 ⟩ [◦] 28.00⟩ 79.33⟩ 1.70⟩
⟨T 2

0 , ⟨1.95, ⟨9.25, ⟨−0.66,
T 2

1 ⟩ [◦] −1.13⟩ 90⟩ 58.53⟩
S F [-] 0.862(FT) 0.627(MT) 0.824(FT)

S F evaluated with an LW-1LD3 model
S F [-] 0.600(MT) 0.607(MT) 0.824(FT)

Figure 6.52 provides some FI contours and the location where failure is triggered.
The point in which failure onset occurs can be retrieved by following the procedure
depicted in Appendix A.2 for the ns sampling points. The ESL-TE 1 optimum design
is affected by FT at the cutout and the top of the layup. However, if this design is
evaluated with LW-1LD3 kinematics, the failure onset is located at the rightmost edge
and z = −h/2. Concerning ESL-TE 4, the first failure mode triggered is MT in the
middle of the upper edge and z = h/2. Nonetheless, when the ESL-TE 4 optimal
design uses the LW-1LD3 structural theory, the MT onset occurs at the cutout and
bottom in the layup direction. The LW-1LD3 optimum fails due to FT at the hole at
the laminate bottom.
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Figure 6.52 Fibre patterns and FI contours of the retrieved solutions for the unconstrained
optimization problem. The contours of the ESL models are computed with the original ESL
and the LW-1LD3 models. The failure mode that triggers the loss of strength is the only one
represented.

The constrained strength maximisation problem, where the requirement is the
maximum steering curvature, reads as follows:

max
x

min(S F j(x)) j = 1, ...,ns, s.t. −1/rmin ≤ κ
k(x)≤ 1/rmin k= 1,2 (6.13)

The solutions to the problem stated in Eq. (6.13) are available in Table 6.36. It is
observed that nonidentical optimal solutions are retrieved for the different structural
theories under consideration. Furthermore, it is remarkable that the constrained ESL-
TE 4 and LW-1LD3 models provided higher safety factors than their unconstrained
counterparts. Moreover, the three solutions present non-active constraint values. That
is, the κ1 and κ2 requirements are not equal to the maximum allowable value of
κmax = 1.5748 m−1. From a mathematical point of view, it means that the maximum
turning radius might not be considered a constraint when optimising the strength
of VAT components. Of course, this assumption holds only in the present case,
where manufacturing defects, such as gaps or overlaps, are not considered within the
numerical model.

Concerning the failure onset modes, it is appreciated that ESL designs keep it from
unconstrained optimisation. As seen before, the S F value drops when the optimal
ESL are evaluated with an LW-1LD3 model. However, the mode failure mode does
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Table 6.36 Optimal designs for the constrained strength optimization problem.

ESL-TE 1 ESL-TE 4 LW-1LD3
⟨T 1

0 , ⟨6.54, ⟨2.27, ⟨2.91,
T 1

1 ⟩ [◦] 0.70⟩ 7.24⟩ −1.95⟩
⟨T 2

0 , ⟨−1.40, ⟨2.27, ⟨2.27,
T 2

1 ⟩ [◦] 7.85⟩ −3.15⟩ 5.51⟩
S F [-] 0.777(FT) 0.912(MT) 1.08(MC)

κ1/κ2 [m−1] 0.81/1.29 0.69/0.76 0.68/0.45
S F evaluated with an LW-1LD3 model

S F [-] 0.401(FT) 0.644(MT) 1.08(MC)

not vary in the constrained ESL optimal designs. Contrariwise, the LW-1LD3 model
reaches the onset due to MC, differing from the FT mode of the unconstrained solution.

The optimal fibre paths and the FI contours are available in Fig. 6.53. The ESL-
TE 1 optimum fails in FT at the top layer and in the cutout proximities. Nevertheless,
when this design is analysed with the LW-1LD3 kinematics, it fails due to FT at the
same in-plane coordinates but at the interface between the second and third layers.
The ESL-TE 4 optimum fails due to MT at the leftmost edge in the fourth layer. When
this analysis is carried out with LW-1LD3 structural theory, failure happens at the right
edge and z =−h/2. Last, the LW-1LD3 optimal design fails in MC at the right edge,
close to the interface between the first and second plies.



144 Numerical results

(c) LW-1LD3

(a) ESL-TE 1

(b) ESL-TE 4

1st layer 2nd layer

⟨6.54,0.70⟩°

⟨2.27,7.24⟩°

⟨-1.40,7.85⟩°

⟨2.27,-3.15⟩°

⟨2.91,-1.95⟩° ⟨2.27,5.51⟩°

Analysis with original model Analysis with LW-1LD3 model

0 0.06 0.125

0

0.06

0.125

0 0.06 0.125

0

0.06

0.125

0 0.06 0.125

0

0.06

0.125

0 0.06 0.125

0

0.06

0.125

0 0.06 0.125

0

0.06

0.125

0 0.06 0.125

0

0.06

0.125

Figure 6.53 Fibre patterns and FI contours of the retrieved solutions for the constrained
optimization problem. The contours of the ESL models are computed with the original ESL
and the LW-1LD3 models. The failure mode that triggers the loss of strength is the only one
represented.

6.5.6 Fundamental frequency optimisation considering gaps and
overlaps

Table 6.37 Material properties of the pre-impregnated tows and resin used in Akbarzadeh et al.
[46].

E1[GPa] E2 = E3[GPa] G12[GPa] G13 = G23[GPa] ν12 [-] ρ [kg/m3]
Tow 143 9.1 4.82 4.9 0.3 1500

Resin 3.72 3.72 1.43 1.43 0.3 1100

In this case, deterministic manufacturing defects are included within the numerical
model used in the optimisation process. For doing so, the procedure depicted in
Sections 4.4 and 4.5 is followed. This approach is verified against the optimum
results found in [46]. In detail, a sixteen-layered symmetric and balanced [⟨58,39⟩]4s

laminate and width-to-thickness ratio a/h = 200. The width and length of the plate are
a = b = 1 m, and the individual ply thickness equals 0.159 mm. The plate is simply
supported on all four sides. The mechanical properties of the pre-impregnated tows
and the resin are listed in Table 6.37.

The effect of the structural theory on the predicted fundamental frequency is inves-
tigated first. A 6×6 Q9 mesh is employed because of the accuracy and computational
time trade-off. Various ESL and LW models are tested for a complete gap and overlap



6.5 Optimisation of VAT plates 145

Table 6.38 Effect of the structural theory on the first fundamental frequencies. Both LD and
TE expansions are considered along the thickness with a complete gap and overlap condition.
Each model uses a 6×6 Q9 FE mesh.

Model DOFs f1 [Hz]
Complete gap

Ref [46] - 30.95
ESL-TE 1 1041 32.17
ESL-TE 2 1521 31.91
ESL-TE 3 2028 31.90
LW-1LD1 8619 31.89
LW-1LD2 16731 31.89
LW-1LD3 24843 31.89

Complete overlap
Ref [46] - 36.19

ESL-TE 1 1014 37.00
ESL-TE 2 1521 36.65
ESL-TE 3 2028 36.64
ESL-TE 4 2535 36.64
ESL-TE 5 3042 36.64

manufacturing strategy. The results are enlisted in Table 6.38. A good agreement
between the proposed method and the reference is appreciated. It is observed that, in
the complete gap case, there is no significant difference between ESL and LW models
in terms of the predicted f1. Only ESL theories are employed to study the complete
overlap strategy. This is because a local thickness increase needs to be associated with
each FE, which would require a significant rise in computational burden. This issue
has already been explained in Section 4.5. Again, no significant difference is observed
as the order of the TE increases.

Table 6.39 Geometric and material properties of the VAT plate taken into account for the
optimisation. Taken from Akhavan and Ribeiro [150].

Parameter Value
a = b [m] 1

h [m] 0.01
E1 [GPa] 173

E2 = E3 [GPa] 7.2
G12 = G13 = G23 [GPa] 3.76

ν12 = ν13 = ν23 [-] 0.29
ρ [kg/m3] 1540

Once the model is verified, the optimisation problem can be posed. The objective
is to maximise the first natural frequency of a three-layered laminate by adjusting the
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lamination angles T0 and T1 for each ply. Table 6.39 reports the geometry dimensions
and material properties. The optimal defect-free, complete gap and complete overlap
conditions are investigated and a limitation on the curvature of the fibre path κmax =

1.5748 m−1 is incorporated. In this regard, the problem reads as follows:

min
x

− f1(x) s.t. −1/rmin ≤ κ
k(x)≤ 1/rmin k = 1,2,3 (6.14)

where x = {T 1
0 ,T

1
1 ,T

2
0 ,T

2
1 ,T

3
0 ,T

3
1 }. The workflow illustrated in Fig. 6.54 solves the

constrained optimisation problem.
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Figure 6.54 Flowchart of the surrogate-based optimisation framework considering manufactur-
ing defects and constraints. CUF is used to solve the mechanical problem and DLM to map
the fabrication flaws.

Table 6.40 provides the optimal results for the pristine and defected models and
different structural theories. It is observed that the optimal fibre paths differ depending
on the modelling condition, i.e., defect-free or with fabrication flaws. The fact that
a quasi-symmetric layup is retrieved is remarkable. That is, ⟨T 1

0 ,T
1

1 ⟩ ≈ ⟨T 3
0 ,T

3
1 ⟩. In
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addition, it is worth noting that for the complete gap strategy, the first and third layers
present an almost unsteered design. As demonstrated in the previous optimisation
results, very similar optimal stacking sequences are obtained regardless of the selected
structural theory. A graphical representation of the design space for the three man-
ufacturing conditions is available in Fig. 6.55. In these plots, it has been assumed
⟨T 1

0 ,T
1

1 ⟩ = ⟨T 3
0 ,T

3
1 ⟩ while the fibre orientation of the second layer is equal to the

optimal solution. The defect-free and complete overlap contour plots resemble each
other. Contrariwise, the complete gap map presents higher fundamental frequency
values at the centre of the design space.

Table 6.40 Optimal designs for the constrained fundamental frequency optimisation problem
considering defect-free, complete gap and complete overlap condition.

ESL-TE 1 ESL-TE 3 LW-1LD1
Defect-free

⟨T 1
0 ,T

1
1 ⟩ [◦] ⟨88.31,43.35⟩ ⟨88.25,43.29⟩ ⟨89.62,44.71⟩

⟨T 2
0 ,T

2
1 ⟩ [◦] ⟨−56.84,−15.69⟩ ⟨−34.99,−17.86⟩ ⟨−56.55,−42.80⟩

⟨T 3
0 ,T

3
1 ⟩ [◦] ⟨87.77,42.95⟩ ⟨88.38,43.40⟩ ⟨88.80,43.98⟩

f1 [Hz] 120.74 119.57 119.35
Complete gap

⟨T 1
0 ,T

1
1 ⟩ [◦] ⟨−1.28,0.54⟩ ⟨−0.38,−1.09⟩ ⟨−1.42,0.26⟩

⟨T 2
0 ,T

2
1 ⟩ [◦] ⟨48.89,19.74⟩ ⟨53.76,37.26⟩ ⟨46.66,37.14⟩

⟨T 3
0 ,T

3
1 ⟩ [◦] ⟨−0.65,2.32⟩ ⟨−2.28,0.35⟩ ⟨−1.21,−0.15⟩

f1 [Hz] 116.77 115.77 115.89
Complete overlap

⟨T 1
0 ,T

1
1 ⟩ [◦] ⟨35.36,−6.16⟩ ⟨35.49,−5.93⟩ -

⟨T 2
0 ,T

2
1 ⟩ [◦] ⟨65.25,21.75⟩ ⟨64.64,21.97⟩ -

⟨T 3
0 ,T

3
1 ⟩ [◦] ⟨33.37,−8.50⟩ ⟨34.29,−9.42⟩ -

f1 [Hz] 124.68 123.20 -

Last, the first modal shape of the optimised manufacturing conditions is available
in Fig. 6.56. The defect-free and complete overlap designs present an ellipse-like
lobe pointing towards the top left and bottom right corners, whereas the complete
gap optimal design has a rounder shape. Because of the different mode shapes, one
could optimise the modal shape for a particular application rather than the fundamental
frequency in future investigations.
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(a) LW-1LD2 defect-free response surface.
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(b) LW-1LD2 defect-free contour plot.

(c) LW-1LD2 complete gap response surface.
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(d) LW-1LD2 complete gap contour plot.

(e) ESL-TE 3 complete overlap response surface.
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(f) ESL-TE 3 complete overlap contour plot.

Figure 6.55 Response surfaces and contour plots of the defect-free, complete gap and complete
overlap condition. For each configuration, T 2

0 and T 2
1 are equal to those of the optimal solution

and it is assumed ⟨T 1
0 ,T

1
1 ⟩= ⟨T 3

0 ,T
3

1 ⟩= ⟨T0,T1⟩.
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(a) Defect-free. (b) Complete gap.

(c) Complete overlap

Figure 6.56 First mode shape of the optimal defect-free, complete gap and complete overlap
configuration.



Chapter 7

Conclusions

7.1 Remarks

This thesis presented an efficient tool for the multiscale analysis of variable stiffness
composites. The different scales have been modelled as beam, plate and shell structures.
For instance, fibre-matrix unit cells have been considered as beams, while tow-steered
components have been modelled as beams, plates and shells. These analyses were
performed using the Carrera Unified Formulation (CUF) as a generator of refined
one-dimensional and two-dimensional models. CUF allows the generation of low-to-
high-order models straightforwardly and hierarchically. In the CUF framework, the
governing equations and the associated Finite Element (FE) arrays of any model are
formulated in terms of Fundamental Nuclei (FNs), whose dimensions are independent
of the order of the structural theory and the strain approximation assumed. Taylor (TE),
Lagrange (LE) and Hierarchical Legendre (HLE) expansions have been employed
throughout the manuscript.

First, plate and shell models were presented and employed to carry out linear
static analyses of VAT components. The models were validated against literature and
commercial software Abaqus. Attention was paid to predicting deflections and 3D
through-the-thickness stress distributions of structures subject to different loads and
boundary conditions.

Second, beam models were devoted to the linear static analysis of straight-fibre
composite structures. Layer- and fibre-scale studies were conducted in detail utilising
the Component-Wise (CW) approach. The layer scale was simulated through the
novel embedded CW method introduced in this thesis. Displacement and 3D stress
distributions over laminated structures and textiles were obtained. On the other hand,
the thermo-elastic behaviour at the fibre scale was modelled following the original
CW method. Non-isoparametric HLE was used to describe the Unit Cell (UC) cross-
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section. Homogenised material thermo-elastic properties and 3D stress distributions
were predicted.

Subsequently, the effect of uncertainty manufacturing defects at the different
structural scales is studied. Specifically, the influence of fibre waviness and fibre
volume fraction on the buckling performance and the stress prediction at the layer and
fibre scale is addressed.

The second set of results focuses on the optimisation of VAT plates. Global re-
sponses such as fundamental frequency and buckling loads are optimised by combining
polynomial surrogate models and Genetic Algorithm (GA). Subsequently, the flexural
and in-plane stiffness and the strength of VAT laminates are optimised through an
optimisation algorithm, implemented in modeFrontier©, that combines global and
local search capabilities. Last, manufacturing defects were also considered for the fun-
damental frequency optimisation. The effect of the structural theory on the optimum
solution was investigated.

7.2 Main contributions

The main novelties and important results obtained during this doctoral research are
summarised in the following:

• The proposed 1D and 2D models can accurately predict the 3D stress state of
straight fibre and tow-steered composite beams, plates and shells.

• Displacements and in-plane stress components provided by equivalent-single-
layer (ESL) and layer-wise (LW) models agree with those from literature or
obtained using commercial software.

• The proposed CUF-based LW models can predict transverse stresses with un-
precedented accuracy and a reduced fraction of degrees of freedom (DOFs)
compared with reference 3D solid models. An accurate stress prediction is
extremely useful for failure considerations.

• Classical theories, such as first-order shear deformation (FSDT), can bring wrong
shear and stress distributions. This is not admissible when pursuing multiscale
analysis, where information exchange between the scales is needed. High-order
approximations, like TE 3 or TE 4, may be sufficient in some circumstances.
However, LW is preferred when an accurate stress prediction is required.

• The introduced embedded CW method represents an efficient approach for the
layer-scale, or mesoscale, analysis of composites. One of the main advantages
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is the simple meshing procedure since the host and embedded components are
meshed separately. In this regard, cumbersome meshing strategies are no longer
needed. Additionally, fewer DOFs are required to simulate intricate geometries
with no loss of accuracy.

• The MSG-CUF coupling allows retrieving homogenised thermo-elastic proper-
ties of heterogeneous fibre- and particle-reinforced materials. This framework
foresees using HLE expansion functions based on a non-isoparametric descrip-
tion of the beam’s cross-section kinematics. Second-to-fourth-order HLE models
are enough to predict homogenised material properties well. At the same time,
higher-order HLE are mandatory to account for the steep stress gradients that
appear within the UC.

• The effect of layer-scale uncertainty defects such as fibre waviness on the 3D
stress state affects especially the normal in-plane stress components σxx and σyy.
A large variability was observed, which may affect the failure index prediction
and eventually initiate the damage evolution unexpectedly.

• Fibre waviness affects the buckling load value. Low-order ESL-TE does not
capture the mean value or the standard deviation of the buckling load, especially
when accounting for higher buckling modes. Higher-order ESL theories provide
similar buckling load mean values and standard deviations for the first modes.

• Regarding the buckling modes, low-order ESL theories cannot capture resem-
blances between the buckling modes of the pristine and flawed structure. Higher-
order ESL models perform better. Nevertheless, LW theories are the ones that
better predict the mode variability between the defect-free and the defective VAT
components.

• An efficient multiscale defect propagation scheme was implemented. Fibre
volume fraction at the fibre level and waviness at the layer scale were incor-
porated within the CUF framework utilising random fields generated with the
Karhunen-Loève expansion (KLE).

• When accounting for multiple defects, the buckling loads present larger standard
deviations than in the single-defected case. Therefore, Probability Density
Functions (PDFs) are wider when flaws at different scales are considered.

• The uncertainty quantification analysis of buckling load can be accelerated using
surrogate models. In this regard, Polynomial Chaos Expansion (PCE) metamod-
els are helpful for reliability analysis or reliability-based design optimisation.
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The surrogate model is constructed with fewer numerical analyses, and the PDF
is retrieved by simply evaluating the PCE model.

• Stochastic stress analyses at the fibre scale were carried out, in which fibre
volume fraction and fibre waviness were propagated throughout the material
scales. A significant difference was found between the nominal fibre scale
circumferential stresses ts and the mean value of the stochastic ts. Moreover,
fibre’s longitudinal stress tt presented larger variability in terms of maximum-
minimum range.

• The normal stress tn continuity between fibre and matrix was guaranteed using
high-order HLE and non-isoparametric subdomains. In this context, a geometri-
cally exact shape of the micromechanical model was generated.

• The effect of the structural theory on the retrieved optimal design variables
for a series of mechanical performances was investigated. In the first instance,
a polynomial surrogate model that mimicked the fundamental frequency and
buckling load of VAT plates was built. The metamodel was combined with
GA to optimise the fundamental frequency and buckling. Direct simulations
were performed in a second series of analyses through modeFrontier© and
MATLAB©. The selected optimisation algorithm combined global and local
search capabilities.

• It has been demonstrated that ESL models lead to similar optimal solutions to
those obtained by an LW approach. This was proven for unconstrained and
constrained problems and different width-to-thickness ratios. However, in the
case of low-order ESL theories, the fundamental frequency is overestimated,
especially when thick plates are studied.

• In the buckling load optimisation of VAT plates, ESL models led to similar
results in terms of buckling load and optimal design variables as those retrieved
by an LW method. This has been proven to be valid for both thin and thick
plates and unconstrained and constrained optimisation problems. Nonetheless,
ESL theories overestimate the buckling load since they lead to stiffer models.

• Surrogate models are helpful in solving optimisation problems because of the
quick evaluation of the objective function or constraints that they mimic. How-
ever, errors might be committed if few samples or a poor sampling strategy
is followed. This might represent an essential issue if failure constraints or
uncertainty are involved in the optimisation problem. Thus, direct simulations
might be preferred in those cases.
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• When minimising the vertical deflection, ESL and LW models provided equiva-
lent results regarding optimal fibre paths. The only difference was the predicted
value of uz.

• Again, ESL and LW approaches led to similar results in optimising the strain con-
centration factor (SCF). Minor differences were observed in the unconstrained
problem. On the other hand, for the manufacture-constraint optimisation, the
optimal fibre orientations had opposite signs, but the fibre path trends were
comparable.

• When optimising the strength of VAT components, different modelling strategies
lead to diverse fibre paths in the unconstrained problem. Similar and practically
non-steered solutions were retrieved in the constrained problem. Surprisingly,
LW and high-order ESL theories yielded larger safety factors than the uncon-
strained problem. It means that maximum curvature constraint may not be
necessary for strength optimisation.

• Considering the manufacturing defects in the optimisation loop, different solu-
tions are obtained for the various fabrication strategies. The optimal defect-free
layup sequence differs from those involving gaps and overlaps. Therefore, the
modal shape a priori varies between the fabrication strategies. This has implica-
tions for optimising the modal shape rather than the fundamental frequency.

• In general, when optimising global continuous magnitudes such as fundamental
frequency, buckling load, vertical deflection or SCF, which ultimately can be
written as first-order derivatives of the displacement, ESL and LW models
tend to provide similar optimal solutions. Contrariwise, when optimising a
discontinuous magnitude like the minimum safety factor, which involves stress
components for its prediction, ESL and LW approaches lead to different optimal
designs.

7.3 Future activities

This thesis has provided the foundations for a plethora of future developments. In this
research, CUF has demonstrated excellent performance for the multiscale analysis of
tow-steered composites, modelled primarily as beams, plates, and shells. Subsequent
research activities can be devoted to multifield problems, i.e., hygro-thermo-elasticity,
heat transfer, and prediction of process-induced deformations and residual stresses,
among others. Also, the fluid-structure interaction, i.e., static and dynamic aeroelastic-
ity, can be investigated.
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From the fibre-matrix and layer scale modelling perspective, new applications
to multiphysics shall be derived. For instance, MSG-CUF could be extended to
piezo-electric and magneto-static and their eventual coupling. On the other hand, the
embedded component-wise approach can be exploited to conduct multiscale analysis
by modifying the MSG governing equations according to the embedded formulation.

Concerning optimisation, future steps should focus on the mechanical performance,
or least-weight minimisation of composite structures, and real-world applications like
aerostructural optimisation of aircraft, spacecraft and wind turbines. Considering
fluid-structure interaction, multidisciplinary optimisation can be tackled in future
CUF-based research.
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E. Özcan, and J. Ninić. Stacking sequence optimisation of an aircraft wing skin.
Structural and Multidisciplinary Optimization, 66(2):31, 2023.

[76] A. Catapano and M. Montemurro. A multi-scale approach for the optimum
design of sandwich plates with honeycomb core. Part II: the optimisation
strategy. Composite Structures, 118:677–690, 2014.

[77] P. Vannucci. Plane anisotropy by the polar method. Meccanica, 40:437–454,
2005.

[78] G. Serhat and I. Basdogan. Lamination parameter interpolation method for
design of manufacturable variable-stiffness composite panels. AIAA Journal,
57(7):3052–3065, 2019.

[79] A. Khani, S. T. IJsselmuiden, M. M. Abdalla, and Z. Gürdal. Design of variable
stiffness panels for maximum strength using lamination parameters. Composites
Part B: Engineering, 42(3):546–552, 2011.



162 References

[80] S. T. IJsselmuiden, M. M. Abdalla, and Z. Gürdal. Implementation of strength-
based failure criteria in the lamination parameter design space. AIAA Journal,
46(7):1826–1834, 2008.

[81] I. M. Daniel and O. Ishai. Engineering mechanics of composite materials.
Oxford university press, New York, New York, USA, 2006.

[82] A. Catapano, M. Montemurro, J.A. Balcou, and E. Panettieri. Rapid prototyping
of variable angle-tow composites. Aerotecnica Missili & Spazio, 98(4):257–271,
2019.

[83] M. A. Nik, K. Fayazbakhsh, D. Pasini, and L. Lessard. Surrogate-based multi-
objective optimization of a composite laminate with curvilinear fibers. Compos-
ite Structures, 94(8):2306–2313, 2012.

[84] M. A. Nik, K. Fayazbakhsh, D. Pasini, and L. Lessard. Optimization of vari-
able stiffness composites with embedded defects induced by automated fiber
placement. Composite Structures, 107:160–166, 2014.

[85] A. A. Vijayachandran, P. Davidson, and A. M. Waas. Optimal fiber paths for
robotically manufactured composite structural panels. International Journal of
Non-Linear Mechanics, 126:103567, 2020.

[86] A. A. Vijayachandran and A. M. Waas. Minimizing stress concentrations
using steered fiberpaths and incorporating realistic manufacturing signatures.
International Journal of Non-Linear Mechanics, 146:104160, 2022.

[87] R. M. Groh and P. Weaver. Mass optimisation of variable angle tow, vari-
able thickness panels with static failure and buckling constraints. In 56th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, page 0452, 2015.

[88] K. Singh and R. K. Kapania. Optimal design of tow-steered composite laminates
with curvilinear stiffeners. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, page 2243, 2018.

[89] W. Zhao and R. K. Kapania. Buckling analysis and optimization of stiffened
variable angle tow laminates with a cutout considering manufacturing con-
straints. Journal of Composites Science, 6(3):80, 2022.

[90] R. Vescovini, E. Spigarolo, E. L. Jansen, and L. Dozio. Efficient post-buckling
analysis of variable-stiffness plates using a perturbation approach. Thin-Walled
Structures, 143:106211, 2019.

[91] R. Vescovini, V. Oliveri, D. Pizzi, L. Dozio, and P. M. Weaver. Pre-buckling and
buckling analysis of variable-stiffness, curvilinearly stiffened panels. Aerotec-
nica Missili & Spazio, 99:43–52, 2020.

[92] R. Vescovini, V. Oliveri, D. Pizzi, L. Dozio, and P. M. Weaver. A semi-analytical
approach for the analysis of variable-stiffness panels with curvilinear stiffeners.
International Journal of Solids and Structures, 188:244–260, 2020.



References 163

[93] L. Demasi, G. Biagini, F. Vannucci, E. Santarpia, and R. Cavallaro. Equivalent
single layer, zig-zag, and layer wise theories for variable angle tow composites
based on the generalized unified formulation. Composite Structures, 177:54–79,
2017.

[94] A. Viglietti, E. Zappino, and E. Carrera. Analysis of variable angle tow compos-
ites structures using variable kinematic models. Composites Part B: Engineering,
171:272–283, 2019.

[95] E. Carrera, M. Cinefra, M. Petrolo, and E. Zappino. Finite Element Analysis of
Structures through Unified Formulation. Wiley & Sons, Hoboken, New Jersey,
USA, 2014.

[96] E. Carrera and M. Petrolo. Refined one-dimensional formulations for laminated
structure analysis. AIAA Journal, 50(1):176–189, 2012.

[97] E. Carrera and M. Petrolo. Refined beam elements with only displacement
variables and plate/shell capabilities. Meccanica, 47:537–556, 2012.

[98] A. de Pagani, A. G. De Miguel, M. Petrolo, and E. Carrera. Analysis of
laminated beams via unified formulation and legendre polynomial expansions.
Composite Structures, 156:78–92, 2016.

[99] E. Carrera, G. Giunta, and M. Petrolo. Beam structures: classical and advanced
theories. John Wiley & Sons, 2011.

[100] E. Carrera, G. Giunta, P. Nali, and M. Petrolo. Refined beam elements with
arbitrary cross-section geometries. Computers & Structures, 88(5-6):283–293,
2010.

[101] B. Szabó and I. Babuška. Finite Element Analysis: Method, Verification and
Validation. John Wiley & Sons, 2021.

[102] W. J. Gordon and C. A. Hall. Transfinite element methods: blending-function
interpolation over arbitrary curved element domains. Numerische Mathematik,
21(2):109–129, 1973.

[103] E. Carrera. Historical review of zig-zag theories for multilayered plates and
shells. Applied Mechanics Reviews, 56(3):287–308, 2003.

[104] E. Carrera. Cz0 requirements: models for the two dimensional analysis of
multilayered structures. Composite Structures, 37(3-4):373–383, 1997.

[105] B. Wu, A. Pagani, W. Q. Chen, and E. Carrera. Geometrically nonlinear refined
shell theories by carrera unified formulation. Mechanics of Advanced Materials
and Structures, 28:1721–1741, 2019.

[106] E. Carrera, A. Pagani, and M. Petrolo. Classical, refined, and component-wise
analysis of reinforced-shell wing structures. AIAA Journal, 51(5):1255–1268,
2013.

[107] V. A. Martin, R. H. Kraft, T. H. Hannah, and S. Ellis. An energy-based study of
the embedded element method for explicit dynamics. Advanced Modeling and
Simulation in Engineering Sciences, 9(1):1–18, 2022.



164 References

[108] W. Yu. A unified theory for constitutive modeling of composites. Journal of
Mechanics of Materials and Structures, 11(4):379–411, 2016.

[109] T. R. Brooks and J. R. R. A. Martins. On manufacturing constraints for tow-
steered composite design optimization. Composite Structures, 204:548–559,
2018.

[110] P. D. Spanos and B. A. Zeldin. Monte Carlo treatment of random fields: A
broad perspective. Applied Mechanics Reviews, 51(3):219–237, 1998.

[111] M. W. Davis. Production of conditional simulations via the LU triangular
decomposition of the covariance matrix. Mathematical Geology, 19:91–98,
1987.

[112] R. G. Ganhem and P. D. Spanos. Stochastic finite elements: a spectral approach.
Springer-Verlag, Berlin, Germany, 1991.

[113] W. Betz, I. Papaioannou, and D. Straub. Numerical methods for the discretiza-
tion of random fields by means of the karhunen–loève expansion. Computer
Methods in Applied Mechanics and Engineering, 271:109–129, 2014.

[114] F. Yamazaki and M. Shinozuka. Digital generation of non-gaussian stochastic
fields. Journal of Engineering Mechanics, 114(7):1183–1197, 1988.

[115] M. Grigoriu. Simulation of stationary non-gaussian translation processes. Jour-
nal of Engineering Mechanics, 124(2):121–126, 1998.

[116] N. Cressie. Statistics for spatial data. John Wiley & Sons, 2015.

[117] M. D. Buhmann. Radial basis functions. Acta numerica, 9:1–38, 2000.

[118] V. Vapnik. The nature of statistical learning theory. Springer science & business
media, 1999.

[119] S. Marelli and B. Sudret. Uqlab user manual – polynomial chaos expansions.
Technical report, Chair of Risk, Safety and Uncertainty Quantification, ETH
Zurich, Switzerland, 2019. Report UQLab-V1.3-104.

[120] M. H. Nguyen, A. A. Vijayachandran, P. Davidson, D. Call, D. Lee, and A. M.
Waas. Effect of automated fiber placement (AFP) manufacturing signature
on mechanical performance of composite structures. Composite Structures,
228:111335, 2019.

[121] V. Oduguwa, A. Tiwari, and R. Roy. Evolutionary computing in manufacturing
industry: an overview of recent applications. Applied Soft Computing, 5(3):281–
299, 2005.

[122] J. McCall. Genetic algorithms for modelling and optimisation. Journal of
Computational and Applied Mathematics, 184(1):205–222, 2005.

[123] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–423, 1989.



References 165

[124] T. Krishnamurthy. Response surface approximation with augmented and com-
pactly supported radial basis functions. In 44th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials conference, page 1748, 2003.

[125] A. I. J. Forrester and A. J. Keane. Recent advances in surrogate-based optimiza-
tion. Progress in Aerospace Sciences, 45(1-3):50–79, 2009.

[126] W. Squire and G. Trapp. Using complex variables to estimate derivatives of real
functions. SIAM review, 40(1):110–112, 1998.

[127] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques
of algorithmic differentiation. SIAM, Philadelphia, PA, USA, 2008.

[128] U. Naumann. The art of differentiating computer programs: an introduction to
algorithmic differentiation. SIAM, Philadelphia, PA, USA, 2011.

[129] L. Nardin, K. Sørensen, S. Hitzel, and U. Tremel. modeFrontier©, a frame-
work for the optimization of military aircraft configurations. In Norbert Kroll,
Dieter Schwamborn, Klaus Becker, Herbert Rieger, and Frank Thiele, editors,
MEGADESIGN and MegaOpt - German Initiatives for Aerodynamic Simulation
and Optimization in Aircraft Design, pages 191–205, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[130] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three
methods for selecting values of input variables in the analysis of output from a
computer code. Technometrics, 42(1):55–61, 2000.

[131] A. R. Sánchez-Majano, R. Azzara, A. Pagani, and E. Carrera. Accurate Stress
Analysis of Variable Angle Tow Shells by High-Order Equivalent-Single-Layer
and Layer-Wise Finite Element Models. Materials, 14(21):6486, 2021.

[132] A. Racionero Sánchez-Majano and A. Pagani. High-order embedded finite
elements for the component-wise analysis of composite laminated structures. In
Proceeding for the American Society for Composites-38th Technical Conference,
2023.

[133] A. R. Sánchez-Majano, R. Masia, A. Pagani, and E. Carrera. Microscale thermo-
elastic analysis of composite materials by high-order geometrically accurate
finite elements. Composite Structures, 300:116105, 2022.

[134] A. Pagani and A. R. Sánchez-Majano. Influence of fiber misalignments on
buckling performance of variable stiffness composites using layerwise models
and random fields. Mechanics of Advanced Materials and Structures, pages
1–16, 2020.

[135] A. Pagani and A. R. Sánchez-Majano. Stochastic stress analysis and failure onset
of variable angle tow laminates affected by spatial fibre variations. Composites
Part C: Open Access, 4:100091, 2021.

[136] A. R. Sánchez-Majano, A. Pagani, M. Petrolo, and C. Zhang. Buckling sensi-
tivity of tow-steered plates subjected to multiscale defects by high-order finite
elements and polynomial chaos expansion. Materials, 14(11):2706, 2021.



166 References

[137] A. Pagani, M. Petrolo, and A .R. Sánchez-Majano. Stochastic characterization
of multiscale material uncertainties on the fibre-matrix interface stress state
of composite variable stiffness plates. International Journal of Engineering
Science, 183:103787, 2023.

[138] A. Racionero Sánchez-Majano and A. Pagani. Buckling and fundamental
frequency optimization of tow-steered composites using layerwise structural
models. AIAA Journal, 61(9):4149–4163, 2023.

[139] A. Pagani, A. Racionero Sánchez-Majano, and D. Zamani. Optimizaion of
variable-stiffness composites considering manufacturing defects and unified
structural theories. In ASME 2024 Aerospace Structures, Structural Dynamics
and Materials Conference, 2024.

[140] M. Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes
Simulia Corp, United States, 2009.

[141] E. Carrera, A. G. de Miguel, and A. Pagani. Component-wise analysis of
laminated structures by hierarchical refined models with mapping features and
enhanced accuracy at layer to fiber-matrix scales. Mechanics of Advanced
Materials and Structures, 25(14):1224–1238, 2018.

[142] E. Carrera, M. Maiarú, and M. Petrolo. Component-wise analysis of lami-
nated anisotropic composites. International Journal of Solids and Structures,
49(13):1839–1851, 2012.

[143] I. Kaleel, A. Garcia de Miguel, M. Petrolo, A. Pagani, E. Carrera, T. M. Ricks,
E. J. Pineda, B. A. Bednarcyk, and S. M. Arnold. Computationally-efficient
structural models for analysis of woven composites. In AIAA Scitech 2020
Forum, page 2110, 2020.

[144] W. Yu and X. Liu. SwiftComp, January 2017.

[145] W. Voigt. Theoretische Studien über die Elasticitätsverhaltnisse der Krystalle.
Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen,
34:3–51, 1887.

[146] A. Reuß. Berechnung der fließgrenze von mischkristallen auf grund der plas-
tizitätsbedingung für einkristalle. ZAMM-Journal of Applied Mathematics and
Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1):49–58,
1929.

[147] K. K. Tamma and A. F. Avila. An integrated micro/macro modeling and com-
putational methodology for high temperature composites. Lastran Corporation
Rochester, NY, Rochester, NY., 1999.

[148] M. P. F. Sutcliffe, S. L. Lemanski, and A. E. Scott. Measurement of fibre wavi-
ness in industrial composite components. Composites Science and Technology,
72(16):2016–2023, 2012.

[149] Y. Wang and C. A. Shoemaker. A general stochastic algorithmic framework for
minimizing expensive black box objective functions based on surrogate models
and sensitivity analysis. arXiv preprint arXiv:1410.6271, 2014.



References 167

[150] H. Akhavan and P. Ribeiro. Natural modes of vibration of variable stiffness
composite laminates with curvilinear fibers. Composite Structures, 93(11):3040–
3047, 2011.

[151] I. M. Sobol. Global sensitivity indices for nonlinear mathematical models
and their monte carlo estimates. Mathematics and Computers in Simulation,
55(1):271–280, 2001.

[152] A. A. Groenwold and R. T. Haftka. Optimization with non-homogeneous failure
criteria like Tsai-Wu for composite laminates. Structural and Multidisciplinary
Optimization, 32:183–190, 2006.

[153] Z. Hashin. Failure criteria for unidirectional fiber composites. Journal of
Applied Mechanics, 47(2):329–334, 1980.

[154] Toray Composite Materials America, Inc. Toray T800S Intermediate Modulus
Carbon Fiber, April 2018.



Appendix A

Computation of Failure Indices

A.1 Three-dimensional Hashin failure criteria

The three-dimensional Hashin failure criteria [153], also referred to as Hashin 3D,
establishes four failure mechanisms, namely fibre and matrix tension and compression.
The expressions that allow to compute them are gathered in the following:

1. Fiber tension:

FI :=
(

σ11

XT

)2

+
σ2

12 +σ2
13

S2
12

(A.1)

2. Fiber compression

FI :=
(

σ11

XC

)2

(A.2)

3. Matrix tension:

FI :=
(σ22 +σ33)
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Y 2
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4. Matrix compression:

FI :=

[(
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](
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(A.4)

where σi j are the stress tensor components in the material reference frame, see Fig.
A.1. In addition, X and Y are the material strengths, in tension T and compression C,
and Si j are the material shear strengths. Failure starts when any of the above FI ≥ 1.
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1

2

3

Figure A.1 Material coordinate system. Direction 1 corresponds to the fibre direction while 2
and 3 represent the transverse directions.

A.2 Safety factor and strength constraint formulation

This appendix depicts the procedure of retrieving the safety factor for the strength max-
imisation problem in Section 6.5.5. Recall that Hashin 3D failure criteria, described
in Appendix A.1, is used. Hashin 3D computes the individual FI through different
mathematical operations involving the stress components in the material coordinate
system. Since linear analyses are considered, these components can be expressed in
terms of a safety factor S F , which is equal to the scalar load multiplier λ that results
in the failure onset. In this context, the stress tensor at which any of the Hashin 3D
FI equals one can be expressed as follows:

σσσ = λσ̃σσ (A.5)

Equations (A.1) to (A.4) can be rewritten at failure onset as:

1. Fiber tension:

FI = λ
2
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12

]
= aλ
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2. Fiber compression:

FI = λ
2
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3. Matrix tension:

FI = λ
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4. Matrix compression:

FI =λ
2
[
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+
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(A.9)

The quadratic equations above can be easily solved, and the safety factor S F

corresponds with the smallest positive root of λ .
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