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Abstract

Axisymmetric modes in elongated plasmas are normally associated with a well-
known ideal instability resulting in a vertical shift of the whole plasma column. This
vertical instability is stabilized by means of passive feedback consisting of eddy
currents induced by the plasma motion in a nearby wall and/or in plasma-facing
components. When a thin resistive wall is considered, the n=0 mode dispersion
relation can be studied analytically with reduced ideal Magneto Hydrodynamic
(MHD) models and is cubic. Under relevant conditions, two roots are oscillatory
and weakly damped. These oscillatory modes present Alfvénic frequency and
are dependent on plasma elongation and on the relative position of the plasma
boundary and of the wall. The third root is unstable and represents the so-called
resistive wall mode (RWM). We focus on the two oscillatory modes, dubbed Vertical
Displacement Oscillatory Modes (VDOM), that can be driven unstable due to their
resonant interaction with energetic ions. The fast ion drive, involving MeV ions
in present days tokamak experiments such as JET, may overcome dissipative and
resistive wall damping, setting an instability threshold. The effects of energetic
particles are added within the framework of the hybrid kinetic-MHD model. An
energetic ion distribution function with ∂F/∂E > 0 is required to drive the instability,
achievable with pitch angle anisotropy or with an isotropic distribution in velocity
space with regions of positive slope as a function of energy. The latter situation can
be achieved by considering losses of fast ions or due to fast ion source modulation.
The theory presented here is partly motivated by the observation of saturated n=0
fluctuations in the Joint European Torus (JET), which were initially interpreted in
terms of a saturated n=0 Global Alfvén Eigenmode (GAE). Modeling of recent JET
discharges using the NIMROD extended-MHD code will be presented, focusing on
mode structure and frequency dependence. It is early for us to conclude whether
the mode observed at JET is a VDOM rather than a GAE, nevertheless, we discuss
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the main points of distinction between GAE and VDOM that may facilitate their
experimental identification.
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Chapter 1

Introduction

1.1 Nuclear fusion

Nuclear fusion reactions occur when two light nuclei combine, releasing a large
amount of energy due to a slight loss of mass during the process. Stars derive their
energy from such reactions. Since the latter half of the 20th century, scientists have
been actively researching controlled thermonuclear fusion as a means of producing
electricity.

The development of a functional fusion reactor still stands now as a significant
scientific challenge. The successful realization of controlled thermonuclear fusion
as a novel energy source holds immense potential, impacting both societal and
environmental perspectives. This pursuit involves harnessing the energy generated by
fusion reactions in a controlled manner for practical electricity generation, presenting
an opportunity for a clean and nearly limitless power supply. The realization of a
fusion reactor represents a substantial scientific and technological milestone, with
far-reaching implications for meeting our increasing energy demands. It transcends
mere scientific curiosity, evolving into a critical solution for addressing our current
and future energy needs while prioritizing environmental sustainability. In essence,
the journey toward controlled fusion is not solely a scientific endeavor but a pathway
that could revolutionize our approach to energy production in the 21st century.

The complexities inherent in mastering nuclear fusion lie in the extreme condi-
tions essential for its realization. Fusion reactions need exceedingly high tempera-
tures to occur. In such conditions, nuclei acquire enough energy to overcome the
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strong repulsion between positively charged nuclei, known as the Coulomb barrier.
This overcoming of the Coulomb barrier is facilitated by a quantum mechanical
phenomenon called tunneling. Despite lacking sufficient classical energy to surpass
the barrier, there is a small probability that particles can tunnel through it due to their
wave-like nature. When nuclei tunnel through the barrier, they come within range
of the strong nuclear force, which is attractive at very short distances. This force
then binds the nuclei together, resulting in nuclear fusion. This reaction results in
the release of a large amount of energy. Therefore, the exploitation of controlled
nuclear fusion demands the creation and sustenance of these complex and extreme
conditions, representing a significant scientific and engineering challenge.

Fig. 1.1 Fusion reaction cross sections as a function of the centre of mass energy (temperature)

Figure (1.1) depicts the cross section for various nuclear fusion reactions plotted
against the center of mass energy. Achieving a noteworthy cross section necessitates
high energies, pushing the fuel into a plasma state, a state of matter character-
ized by ionization, where collective phenomena play a crucial role. Figure 1.1
also underscores why contemporary fusion research predominantly concentrates on
deuterium-tritium (D-T) plasmas.

The specific fusion reaction considered is:

2
1D+3

1 T →4
2 He(3.5MeV )+1

0 n(14.1MeV ). (1.1)
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This reaction exhibits the highest fusion cross section at a lower temperature with re-
spect to other reactions. This particular reaction, offers a balance where a substantial
cross section is achievable at temperatures that align with experimental conditions.

To harness fusion energy in laboratory environments, it is crucial to satisfy a
well-established condition known as the Lawson criterion [4]. In the context of the
deuterium-tritium (D-T) reaction, the 4

2He particles, often referred to as α particles,
play a pivotal role. Their task is to exchange their energy to the plasma, ensuring the
self-sustaining high-temperature condition required for continuous thermonuclear
burn. This process is essential for maintaining the balance between energy losses and
inputs, enabling the effective exploitation of fusion energy in controlled laboratory
settings.

dW
dt

= Paux +Pα −Ploss (1.2)

Here W ∼ 3nT is the energy density of a plasma with temperature T and density
n = nelectrons = nions. The plasma heating input power is represented by Paux; Pα is
the α particles heating power density and Ploss takes into account the different losses
caused by conducting, radiative and convective phenomena. In order to quantify
the power losses, the plasma confinement time, τE , is introduced: Ploss =W/τE ∼
3nT/τE . The alpha particles heating in a D-T plasma, follows:

Pα = nDnT ⟨σv⟩Eα =
1
4

n2⟨σv⟩Eα (1.3)

where Eα = 3.5MeV and ⟨σv⟩ is the velocity averaged fusion reaction cross section.
For a D-T plasma with temperature between 10keV and 20keV , the fusion reaction
rate can be approximated by ⟨σv⟩ ≃ c0T 2. The criterion for ignition, requiring the
alpha heating to overcome the power losses without auxiliary heating, Pα ≥ Ploss,
can be written as:

nτET >
12

Eαc0
> 3×1021keV · s ·m−3 (1.4)

where nτET is typically referred as the “fusion triple product".

To satisfy the relation of Eq. (1.4) in laboratory plasmas, researchers have ex-
plored two distinct approaches: inertial confinement and magnetic confinement.
The former involves high-power lasers to heat and compress a fuel pellet, achieving
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remarkably high densities (n ∼ 1031m−3) within an extremely brief confinement
time τE ∼ 10−11s. Very recent experiments reported outstanding advancements of
the inertial fusion approach [5]. Conversely, magnetic confinement relies on the use
of strong magnetic fields to confine a plasma with lower density (n ∼ 1020m−3) for a
confinement time exceeding τE ∼ 1s.

The magnetic confinement method takes advantage of the fundamental nature of
a plasma, comprising charged particles responsive to electromagnetic fields. When
subject to the Lorentz force, a moving charged particle exhibit a gyrating motion
characterized by a finite excursion referred to as the Larmor radius and a frequency
known as the cyclotron frequency. In magnetic confinement devices, the magnetic
field is carefully engineered to ensure that the drift motions of particles remain
small compared to their Larmor radius. As a result, particles predominantly follow
the magnetic field lines, which act as guides, preventing plasma particles from
reaching the walls of the device. This magnetic configuration effectively serves as
a containment structure for the plasma. The magnetic force thus acts against the
plasma pressure that tends to make the plasma expand outwards. This is described
using the ratio between plasma pressure and magnetic pressure, called β parameter:

β =
8πnkbT

B2 . (1.5)

Good confinement is characterized by β ≪ 1. Since the early stages of research
in controlled nuclear fusion, a variety of magnetic confinement devices have been
conceptualized and thoroughly examined. The majority of contemporary fusion
experiments draw inspiration from the success of a well-established design known
as Tokamak.

1.2 Tokamak

The tokamak, conceived by the Soviets in the late ’60s, remains a cornerstone in
controlled nuclear fusion research. While modifications have been implemented to
improve its performance, the fundamental principles of the tokamak design persist
in present-day machines. Figure (1.2) illustrates the core schematic of a tokamak:
external toroidal field coils induce a toroidal magnetic field, and the plasma current
itself generates a poloidal field, resulting in a total helical magnetic field.
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Fig. 1.2 Simplified Tokamak scheme.

This plasma current is induced within a transformer circuit, where the internal
solenoid serves as the primary component. External poloidal coils play a crucial role
in shaping the plasma and adjusting its vertical position. The ohmic heating, origi-
nating from the plasma current, contributes to heating the plasma, yet its efficiency
diminishes at higher temperatures, due to the resistivity scaling with temperature,
η ∝ T−3/2. To reach the high temperatures required for fusion, several heating meth-
ods have been developed. Notably, neutral beam injection (NBI) involves launching
high-energy neutrals into the plasma, while ion cyclotron resonant heating (ICRH)
employs high-power, ∼ 10MHz electromagnetic waves, resonant with the ion cy-
clotron motion. Both these techniques introduce ions in the plasma with energies that
can be order of magnitudes larger with respect to the plasma thermal energy. These
energetic ions will decelerate through collisions, mainly with electrons, heating the
plasma in the process. The other common heating technique is the electron cyclotron
resonant heating (ECRH), which uses ∼ 100GHz electromagnetic waves to transfer
energy to the electrons.

The most promising path toward achieving controlled thermonuclear fusion as
a new energy source currently revolves around the tokamak devices. Numerous
projects are in various stages of development, offering potential breakthroughs in
fusion research. Worldwide, several tokamak experiments are actively operating.
Among these, the JET (Joint European Torus) tokamak experiment stands out as
possibly the one that obtained the most advanced performances. Unfortunately, the
decommissioning of JET started while this thesis is being written. Nevertheless, JET
has yielded numerous noteworthy results during its very long operation. Very recent
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experimental observations from JET play a crucial role in the context of the research
presented in this work.

The leading next-step in tokamak device is the ITER project, the International
Tokamak Experimental Reactor. Currently under construction in southern France,
ITER represents a collaborative effort involving technologically advanced countries
worldwide. On an italian national level, the Divertor Test Tokamak experiment
(DTT) is now undert construction at the ENEA laboratories in Frascati. Meanwhile,
at MIT, the SPARC project, a compact, high magnetic field device that holds promise
for advancing fusion research, will be completed before the end of the decade.

1.3 Equilibrium and stability

The performance of a magnetic confinement device is undoubtedly tied to the princi-
ples of equilibrium and stability. The study of these properties in plasmas is often
conducted using a fluid model known as Magneto Hydro Dynamics (MHD), which
will be discussed in Chapter 3 and is further detailed in Ref. [1].

To provide an introductory overview, it’s important to highlight that achieving
and maintaining MHD equilibrium and stability are indispensable prerequisites
for a magnetic confinement device. Instabilities within the plasma can lead to
various adverse outcomes, ranging from a deterioration in device performance to the
sudden termination of the plasma, a phenomenon called plasma disruption, that may
endanger the machine integrity. Therefore, a thorough understanding and control
of MHD equilibrium and stability are critical factors in the design and operation of
magnetic confinement devices for successful plasma discharges. The primary goal
of MHD in the context of magnetic fusion, is to investigate a magnetic configuration
capable of maintaining a stable equilibrium. This equilibrium must have parameters,
such as plasma pressure and current, sufficiently large to satisfy the criteria outlined
in Eq. (1.4) achieving and sustaining controlled thermonuclear fusion. An important
outcome of ideal MHD is that plasma stability can be explored through the analysis
of normal modes of the plasma. These modes involve oscillations around the torus
and in the poloidal direction, characterized by toroidal and poloidal mode numbers
denoted as n and m, respectively. These integer numbers define the number of
oscillations along each direction. This approach allows for a comprehensive study
of the dynamic behavior of the plasma system and the associated magnetic field,
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providing valuable insights into the stability characteristics of the fusion device.
In the realm of MHD, a rich nomenclature of model variations can be identified
based on distinct assumptions and simplifications. The most simple variant is the
"Ideal MHD" model, characterized by numerous simplifications, that often allows
for analytic work and can describe some of the most dangerous plasma instabilities.
Moving beyond the simplicity of Ideal MHD, more sophisticated versions are often
labeled as "extended MHD". These advanced versions take into account factors such
as finite resistivity or kinetic effects, offering a more comprehensive understanding
of plasma behavior.

In this thesis, particular attention will be directed towards the significance of
kinetic effects associated with the presence of energetic ions. To investigate the
impact of energetic ions on the MHD stability of the plasma, we will introduce
the hybrid kinetic MHD model in Chapter 3. The presence of ions with energies
significantly higher than the plasma’s thermal energy holds crucial implications for
plasma stability. A notable example are sawtooth oscillations, periodic relaxations
of the plasma profile induced by plasma instabilities. The presence of energetic ions
can lead to the occurrence of "monster" sawteeth, characterized by a substantial
increase in both period and amplitude of these relaxations. Without proper consid-
eration, sawtooth oscillations may result in disruptions, posing concerns for new
high-performance devices, such as DTT [6].

1.4 Content of the thesis

Within the framework of normal modes arising from Ideal MHD in the tokamak con-
figuration, toroidally axisymmetric modes, characterized by toroidal mode number
n = 0, take center stage in this thesis. These modes exhibit a notable characteristic:
their structure is constant along the toroidal direction. In tokamak plasmas, various
types of axisymmetric modes, such as geodesic acoustic modes and global Alfvén
modes, have been observed and extensively investigated.

Of particular interest for our investigation are vertical displacement oscillatory
modes, a type of axisymmetric mode that has received comparatively less attention.
These modes emerge due to the non-circular plasma cross-section in a tokamak and
will be the central focus of our analytical and numerical exploration.
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1.4.1 Plasma vertical stability

In the pursuit of improved performance, modern tokamak experiments very often
consider the magnetic divertor configuration (Figure (1.3)) and make use plasma
shaping.

Fig. 1.3 Schematic diagram of a divertor (single null configuration),[1]

The magnetic divertor, characterized by single or double null divertor configura-
tions with one or two magnetic X-points, confines the plasma within a last-closed-
magnetic-surface. This design proves effective in managing the flux of thermal
plasma directed towards the inner metallic wall of the toroidal confinement chamber,
successfully addressing challenges associated with plasma-wall interactions.

Plasma shaping plays an important role by optimizing the total current carried
by the plasma. This approach enhances the overall confinement performance of a
tokamak experiment. On the other hand, plasma shaping, through elongating the
plasma cross-section, is strongly linked with dangerous axisymmetric movements
of the plasma column, referred to as vertical displacement events (VDE). The non-
circular plasma cross-section renders the plasma equilibrium unstable at the Ideal
MHD level, specifically against axisymmetric (n = 0) displacements in the vertical
direction. This vertical instability manifests as a rigid shift of the entire plasma
vertically, potentially leading to disruptions. In the case of an unstable VDE, the
termination of the multi-Mega-Ampere plasma current occurs within a characteristic
Alfven time scale τA = R0/vA (where R0 is the toroidal major radius and vA is the
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propagation velocity of Alfven waves). Typically measured in microseconds, this
termination induces dangerous electromagnetic stresses on the confinement device.
Therefore, in tokamak experiments, special precautions are necessary to prevent
the onset of VDEs. A conductive wall surrounding the plasma, along with specific
plasma-facing components, provides a passive feedback mechanism for stabilizing
the vertical instability. This measure results in the emergence of stable oscillations
with a frequency close to the characteristic Alfven frequency 2π/τA, referred to in
this work as Vertical Displacement Oscillatory Modes (VDOM). Additionally, a new
instability, growing on the timescale of wall resistive diffusion, arises. Thanks to
its slower growth rate, this non-rotating n = 0 resistive wall mode is stabilized in
tokamaks through an active feedback system utilizing coils positioned outside the
vacuum chamber.

1.4.2 Particle resonances

As previously mentioned, the effective confinement of energetic particles resulting
from fusion reactions, such as fusion αs with energies in the MeV range, is a critical
aspect in realizing a fusion reactor. In current tokamaks, populations of energetic
particles can be produced through heating techniques to explore their impact on
plasma behavior. These energetic ions exhibit non-Maxwellian distributions in
velocity space, being out of thermodynamic equilibrium, and serve as a free energy
source that can be used to trigger various types of macroscopic instabilities.

Very often, the presence of superthermal ions in the plasma can induce insta-
bilities through resonant interactions between these particles and the normal mode
fluctuations of the thermal plasma. The resonance condition involves frequencies
associated with the periodic motion of magnetically confined energetic particles
matching with the frequency of oscillations of thermal plasma collective modes. Due
to their high energy, energetic particles exhibit various forms of periodic motion, and
each associated frequency can resonate with different normal modes. For example,
the precessional motion around the torus of energetic ions has frequencies that res-
onate with the n = 1,m = 1 MHD mode, resulting in what is known as "fishbone
oscillations", discussed for the first time in Ref. [7] and [8]. The periodic motion
of particles in the poloidal plane, describing so-called trapped and passing orbits,
presents a higher oscillation frequency compared to the precessional frequency. Res-
onances between this motion and MHD modes may involve modes with Alfvenic
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(a) (b)

Fig. 1.4 Spectrograms from different JET discharges showing n=0 modes, (a) [2] and (b) [3]

frequencies. An example of these are Toroidal Alfven Eigenmodes (TAE) [9] and
Ellipticity indiced Alfvén Eigenmodes (EAE) [10], important plasma modes that are
destabilized only in the presence of energetic ions.

This study focuses on the resonant interaction between the motion of energetic
particles in the poloidal plane and the n = 0 vertical displacements. Similar to the
cases of fishbones and TAE, the presence of fast ions represents a free energy source
for the oscillatory mode arising from the stabilization of the vertical instability.
Given suitable conditions, the wave-particle resonant interaction has the potential to
destabilize the VDOM.

1.4.3 JET experimental observations

Recent experimental observations from the JET tokamak represent a partial moti-
vation for the research outlined in this thesis. Plasma discharges featuring fast ion
populations with energies extending into the MeV range exhibit the destabilization
of n = 0 modes with Alfvénic frequency. The presence of these modes is identi-
fied through measurements of magnetic perturbations using Mirnov Coils. Figure
1.4 presents magnetic spectrograms illustrating the various modes (with different
toroidal mode number) observed in the experiment.

The spectrograms reported in Fig. 1.4, refer to two similar shots in which a
particular heating scheme, called third harmonic heating was employed in JET. A
combination of NBI and ICRH tuned to heat the beam ions was used in order to
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produce an energetic population of Deuterium with energies in the range 100 keV −
1 MeV . The frequency of the n = 0 modes is f0 ∼ 320−330kHz.

More recently, during the last DT3 experimental campaign, n = 0 modes driven
by alpha particles resulting from D-T fusion reactions have been detected at a slightly
lower frequency, approximately ∼ 180kHz. Similar types of axisymmetric Alfvénic
oscillations have been observed in various tokamak experiments, such as TFTR [11]
and MAST [12]. Some of these observations have been identified as Global Alfvén
Eigenmodes with n = 0 [13]. The objective of this work is to offer a new theoretical
description proposing an alternative interpretation for these observations, framing
them in terms of Vertical Displacement Oscillatory Modes destabilized by fast ions.

1.5 Outline of this thesis

In this thesis, the focus is on exploring Vertical Displacement Oscillatory Modes
(VDOM) in tokamak plasmas, which emerge due to the passive feedback stabilization
of the ideal vertical instability. These oscillations exhibit an Alfvénic characteristic
frequency, and their destabilization can occur through resonant interaction with MeV
ions.

The primary aim of this study is to provide a first theoretical investigation
of the VDOM. Initial insights into the main characteristics of the mode and its
destabilization due to fast ion effects are highlighted using simplified models that
allow for analytic treatment. More realistic conditions are then considered for
numerical Magnetohydrodynamics (MHD) simulations, taking a step closer to the
potential identification of these modes in present-day tokamak experiments.

The analytical depiction of the VDOM is obtained within the framework of Ideal
MHD, taking into account the plasma feedback stabilization achieved with a nearby
resistive wall. The analysis is further expanded to include the resonant interaction
with energetic ions, employing the hybrid-kinetic MHD model. To deepen our
understanding, the analytical models are complemented with numerical simulations
using the NIMROD code. This transition from simplified analytical models to
realistic plasma geometries and profiles is crucial for a comprehensive understanding
of the mode characteristics.
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The thesis is structured as follows: Chapter 2 delves into particle trajectories in
tokamaks, deriving the drift kinetic equation for a comprehensive kinetic description
of the plasma. In Chapter 3, the magnetohydrodynamic model is introduced, extend-
ing from ideal MHD to include kinetic effects in the hybrid kinetic MHD model. The
extended energy principle is discussed for the study of plasma stability in presence
of superthermal ions. The importance of the equilibrium distribution function of
fast ions in stability studies is highlighted. At the end of this chapter, distributions
functions considering the effect of sawtooth oscillations firstly derived by us in [14]
are reported.

Chapter 4 studies the VDOM dispersion relation within the ideal MHD frame-
work, considering a resistive wall as a passive feedback system around the plasma,
following [15]. In addition to the VDOM solution, a focus on the resistive wall
mode growth near marginal stability, based on [16], is presented in this chapter.
Chapter 5 incorporates the kinetic effects of resonant superthermal ions using dif-
ferent distribution functions in the hybrid kinetic MHD model, as discussed in [17].
In Chapter 6, reporting the results of [18, 2] the simplified models from Chapters
4 and 5 are extended to realistic tokamak conditions using the NIMROD MHD
code, incorporating experimental data from recent JET discharges. These last three
chapters report the bulk of the original results described in this work.

Finally, Chapter 7 concludes this thesis by summarizing the key findings and
contributions.



Chapter 2

Particles trajectories

To describe the mechanism behind the wave-particle interaction that induces kinetic-
MHD instabilities in tokamaks, a thorough understanding of the motion exhibited
by magnetically confined particles is essential. The movement of ions is entirely
dictated by the magnetic configuration of the device. Therefore, we will provide a
brief overview of the tokamak magnetic configuration. Three distinct frequencies
associated with particle motion, corresponding to three invariants, can be identified:
the cyclotron frequency linked to the particle Larmor gyration, the bounce (or
passing) frequency of the particle motion in the poloidal cross-section, and the
precession frequency characterizing the motion along the torus. This chapter aims
to provide the description of particle trajectories using a Lagrangian formalism,
particularly focusing on the Drift kinetic approximation. The subject of this chapter
has been extensively covered in various books. For more detailed descriptions of
the topics discussed herein, well-known publications on Plasma Physics provide
valuable resources. A non-exhaustive list includes [19–21].

2.1 Particles trajectories in Tokamaks

2.1.1 Constants of motion

A straightforward method for characterizing particle motion is to examine the 6D
space of positions x and velocities v. Through the exploitation of system symmetries
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and conserved quantities, it is possible to minimize the number of variables required
to describe the particle trajectory.

In the absence wave-particle interactions or collisions, the total energy of a
particle is an invariant of its equilibrium orbit when the electric field evolves on
shorter timescales compared with the cyclotron motion. In the presence of a cross-
field electric potential φ , the particle energy consists both kinetic and electrostatic
potential energy. It’s worth noting that for superthermal particles, the potential
energy is significantly smaller than the kinetic energy, and can be neglected in certain
conditions. The symmetry in the toroidal direction of the Tokamak configuration
introduces one other invariant of the particle motion, the canonical toroidal angolar
momentum:

Pϕ =
Ze
c

ψ +mRvϕ . (2.1)

Here, Ze and m represent the particle charge and mass, respectively; R is the particle
major radius (detailed below); vϕ denotes its velocity in the toroidal direction, and
ψ represents the poloidal magnetic flux. In addition to these two exact conserved
quantities of the particle motion, different adiabatic invariants can be associated with
various periodicities of the trajectory [21].

2.1.2 Gyromotion and drifts

The tokamak configuration can be characterized using this simplified model: The
coordinate system considered is illustrated in Figure (2.1), where ϕ represents the
toroidal angle, θ denotes the poloidal angle, R0 signifies the tokamak major radius,
and r indicates the distance from the magnetic axis. The major radius of the particle
is R = R0 + r cos(θ).
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Fig. 2.1 Schematic of the toroidal coordinate system.

The magnetic field B is:

B(r,θ) =
1
h
[Bϕ0 êϕ +Bθ0(r)êθ ] (2.2)

where Bϕ0 and Bθ0 are respectively toroidal and poloidal magnetic fields and h:

h(r,θ) =
R
R0

= 1+ εcos(θ) (2.3)

with aspect ratio ε = r/R0.

Particles will follow the magnetic field lines, undergoing a gyrating motion with a
frequency known as the cyclotron frequency, denoted as Ωc = ZeB/cm. This motion
occurs within a radius ρL = v⊥/Ωc, referred to as the Larmor radius, v⊥ being the
particle velocity in the plane perpendicular to the field lines. Associated with this
periodic motion is an adiabatic invariant known as the particle magnetic moment,
given by µ = mv2

⊥/2B. This parameter represents the magnetic dipole moment of
the charged particle, akin to viewing the particle as a charged current ring with a
radius ρL. The phenomena studied in this work involve length and time scales that
are much larger than those associated with the gyromotion of particles in tokamaks,
satisfying the ordering k⊥ρL ≪ 1 and ω/Ωc ≪ 1. Thus, the magnetic moment serves
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as a conserved quantity of the particle motion, and in the following we will focus on
the motion of the guiding center of the particle orbit.

The guiding center position experiences several drifts caused by external forces.
Firstly, the presence of an electric field induces the cross-field drift, expressed as:

vE×B =
E×B

B2 (2.4)

Two additional drifts impact the guiding center trajectory: toroidal curvature and
magnetic field gradient drifts:

vD = vκ +v∇B =
1

mΩc
ê∥× (mv2

∥κ +µ∇B) (2.5)

where ê∥ = B/B is the unit vector along the field lines and the field lines curvature
can be defined as κ = (ê∥ ·∇)ê∥. Considering a constant toroidal field Bϕ0 dominant
compared to the poloidal component (Bθ0(r)/Bϕ0 ∼ ε), the ê∥ direction is primarily
toroidal. Under these conditions, it can be demonstrated that vD is mainly in the
vertical direction.

2.1.3 Passing and Trapped particles

The force related to the ∇B drift is also called the mirror force and is strongly
interconnected with the conservation of the magnetic moment µ . Assuming that
the varying magnetic field can be expressed as B = (Bϕ0/h)(1+O(ε2)), it follows
that a particle moving along the field line will experience a more intense magnetic
field on the inside of the torus and a weaker field on the outside. This magnetic field
modulation is of order ε: Bmax −Bmin = B(θ = π)−B(θ = 0)≃ 2εBϕ0 +O(ε2).

Since the magnetic moment µ = mv2
⊥/2B is conserved, the particle velocity

across the field line, v⊥, must vary together with the changing magnetic field. Con-
sidering that the particle kinetic energy E = mv2/2 (neglecting electric potential
contributions to the kinetic energy of the particles) is conserved, it is useful to intro-
duce a new invariant quantity of the guiding center motion of the particles, the pitch
angle:

Λ =
µBϕ0

E
=

v2
⊥

v2 h(r,θ). (2.6)
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The pitch angle varies between 0 ≤ Λ ≤ 1+ ε , and the guiding center velocity along
the field line can be rewrittend as:

v∥ =±v(1−
v2
⊥

v2 )
1/2 =±v(1− Λ

h
)1/2. (2.7)

Two principal types of particle trajectories can be identified for the guiding center
motion in a tokamak:

• Circulating (or passing) particles: This category includes particles for which
0 ≤ Λ ≤ 1−ε . In this regime, the guiding center motion completes a full orbit
around the magnetic axis within a poloidal cross-section.

• Trapped particles: For particles with 1− ε ≤ Λ ≤ 1+ ε , the parallel velocity
v∥ changes sign during the orbit, resulting in a distinctive "banana orbit" when
projected onto the poloidal plane. The trajectory reaches its maximum θ value
at the bounce angle θb, where v∥(θb) = 0.

The two different orbits are sketched in Fig. 2.2.

Fig. 2.2 Scheme of the projection on the poloidal cross section of particle orbits in tokamaks:
passing particles (a) and trapped particles (b)
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It is important to remark that the particles dominant motion is along the field lines,
i.e. in the toroidal direction. The orbits depicted in Fig. 2.2 represent projections of
particle motion onto the poloidal plane. Completion of these orbits may necessitate
a significant number of toroidal passes.

The frequencies associated with different orbits can be obtained using the bounce-
averaging formalism, as detailed below for both passing and trapped particles and
discuss in further detail in [20, 22]. We assume a circular flux surfaces MHD
equilibrium, and consider the guiding center’s excursion from its associated flux
surface to be negligible.

Passing

The characteristic time required for a passing particle to complete a closed orbit
in the poloidal plane, and consequently its associated frequency, can be studied by
examining its integral expression over a full orbit:

τt =
∮

dτ ≈
∮ dl

v∥
(1+O(vD/v∥)). (2.8)

To express dl, it can be rewritten as follows:

rdθ

Bθ

=
Rdϕ

Bϕ

=
dl
B

→ dl =
rB
Bθ

dθ ≈ R0q(r)dθ (2.9)

with safety factor, q(r) = rBϕ/R0Bθ .
When considering a small radial excursion of a guiding center orbit from a given
flux surface r = r0, expressed as r(t) = r0 + δ r with |δ r| ≪ r0, the function q(r)
approximates to nearly constant over the orbit. It follows that

τt ≈ R0q
∮ dθ

v∥
=

R0q
v

∫ 2π

0

dθ

(1−Λ/h)1/2 (2.10)

Defining a parameter κ:

κ
2 =

1
2
+

1
2ε

(1−Λ);

(1−Λ) = 2εκ
2 − ε; (2.11)
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the denominator of the integral of Eq. (2.10) can be rewritten as a function of the
poloidal angle:

(1− Λ

h
) =

1
h
(1+ εcos(θ)−Λ) =

(1−Λ+ εcos(θ))
1+ εcos(θ)

(2.12)

In the limit of deeply passing particles we consider 1−Λ ∼ O(1), thus κ2 ∼
O(1/ε). In this situation we obtain at zeroth order in ε:

(1−Λ+ εcos(θ))
1+ εcos(θ)

= (1−Λ)+O(ε) = 2εκ
2 +O(ε) (2.13)

With Eq. 2.13 the transit time integral is straightforward and reads:

τt =
R0q

v
1

(2εκ2)1/2

∫ 2π

0
dθ =

√
2

R0q
v
√

ε

π

κ
(2.14)

Approaching instead the passing-trapped limit, 1−Λ is of order O(ε) and κ2 ∼O(1),
therefore we can approximate:

(1−Λ+ εcos(θ))
1+ εcos(θ)

= (1−Λ+ εcos(θ))+O(ε2)

≈ (2εκ
2 − ε + εcos(θ)) = 2εκ

2
(

1− 1
κ2

1− cos(θ)
2

)
= 2εκ

2
(

1− 1
κ2 sin2(θ/2)

)
(2.15)

Substituting Eq. (2.15) back into Eq. (2.10), the transit time can be written as:

τt =
R0q

v

∫ 2π

0

dθ

(1−Λ/h)1/2 =
R0q

v
1

(2ε)1/2κ

∫ 2π

0

dθ(
1− 1

κ2 sin2(θ/2)
)1/2 (2.16)

Then, changing integration variable θ = 2φ , dθ = 2dφ :

τt =
R0q

v
1

(2ε)1/2κ
2
∫

π

0

dφ(
1− 1

κ2 sin2(φ)
) = 2

√
2

R0q
v
√

ε

K (1/κ2)

κ
(2.17)

Here, K (x) denotes the "complete elliptic integral of the first kind". The limit of
Eq. 2.17 for κ ≫ 1, coincides with the result of Eq. 2.14 obtained in the deeply
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passing limit. The two results thus match at the zeroth order in ε for 1 ≫ 1−Λ ≫ ε .
In the following we will thus consider the transit time described by Eq. 2.17 at the
zeroth order in ε . A more rigorous derivation for arbitrary order in ε can be found in
the recent work by Stephens et al. [22] that agrees with our expression in the small ε

limit. The transit frequency can thus be defined as:

ωt =
2π

τt
=

π√
2

v
√

ε

R0q
κ

K (1/κ2)
(2.18)

Trapped

Similarly to what we described for passing particles, the characteristic time required
for a trapped particle to complete a closed banana orbit in the poloidal plane is
obtained from its integral expression over a full orbit. Assuming again small radial
excursion of the particle orbits from the flux surfaces, the bounce time can be written
as:

τb ≈ R0q
∮ dθ

v∥
=

4R0q
v

∫
θb

0

dθ

(1−Λ/h)1/2 (2.19)

where θb is the bounce angle associated with the sign change of v∥. From Eq. (2.7)
one obtains, to first order in ε , that (Λ−1)/ε = cos(θb), and with the definition of
κ in Eq. (2.11):

κ
2 =

1− cos(θb)

2
= sin2(θb/2) (2.20)

We then introduce a new variable ζ defined through:

sin(θ/2) = κ sin(ζ ) (2.21)

The denominator of Eq. (2.19) can be rewritten as a function of ζ :

(1− Λ

h
) =

1
h
(1+ εcos(θ)−Λ) = ε(2κ

2 −1+ cos(θ))+O(ε2)

≈ 2ε(κ2 − cos(θ)−1
2

) = 2ε(κ2 − sin(θ/2)2) = 2ε(κ2 −κ
2 sin(ζ )2)

= 2εκ
2 cos2(ζ ) (2.22)
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Substituting in the integral expression, and changing the integration variable, we
obtain:

τb =
4R0q

v

∫
π/2

0

1√
2εκ cos(ζ )

2κ cos(ζ )dζ√
1−κ2 sin2(ζ )

=
4
√

2R0q
v
√

ε
K (κ2) (2.23)

The bounce frequency then reads:

ωb =
2π

τb
=

π

2
√

2
v
√

ε

R0q
1

K (κ2)
(2.24)

In tokamak plasmas, the frequencies associated with the orbits discussed above
are significantly smaller compared to the cyclotron frequency for both thermal plasma
particles and fast ions (Ωc ≫ ωt ,ωb). In the following chapters, the analysis will
focus on this periodic motion of the fast ions in the poloidal plane. For superthermal
particles the bounce and transit frequencies can be comparable with the frequecy of
Alvénic modes ωt ,ωb ∼ ωA = 2π/τA, leading to wave-particle resonances. As for
the case of the gyromotion, associated with the periodic motion of the guiding center
in the poloidal plane it is possible to identify the second adiabatic invariant:

Jl =
∮

v∥dl. (2.25)

where the integration is over a complete bounce/passing orbit.

The final periodic motion exhibited by particles within a tokamak magnetic
configuration is the toroidal precession. This motion is primarily linked to the cross-
field drift, causing particles to deviate from their reference magnetic surface and
inducing a precessional motion of the particle orbits in the toroidal direction. An
estimate for the frequency at which a banana orbit completes a toroidal revolution,
i.e., its precession frequency, is:

ωD =
qv2

⊥
2ΩcrR0

(
2E (κ2)

K (κ2)
−1
)

(2.26)

where κ is defined in Eq. (2.11).
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Fig. 2.3

The toroidal precession motion typically exhibits the slowest frequency, and in
standard conditions, Ωc ≫ ωb,t ≫ ωD is satisfied. Similar to previous cases, this
periodic motion is linked to an adiabatic invariant of particle motion. The third
adiabatic invariant is the magnetic flux enclosed by the precessional drift orbit:

Φ =
∮

vDdl. (2.27)

where the integral is over a full precessional orbit of the center of a banana mo-
tion. The full particle motion in the tokamak configuration, exhibithing the three
periodicities, is displayed in Fig. 2.3.

The conservation of adiabatic invariants of the particle motion has strong im-
plications on the properties and behaviour of a plasma. As we briefly mentioned,
the conservation of the magnetic moment is related to the magnetic mirror force.
Several designs and experiments tried to exploit the mirror confinement in magnetic
configurations with open field lines in the past. The conservation of the second and
third adiabatic invariants strongly impacts the stability of tokamak plasmas [23, 24].
However, a crucial reminder is necessary: the adiabatic invariants are not rigorous
conserved quantities of the particle motion. The theory of adiabatic invariants, well
established within classical mechanics, is discussed extensively for plasma physics in
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the work by Northrop [25], and briefly in a more recent publication from Heidbrink
and White [26].

It is possible to summarize the conditions required to ensure the conservation of
an adiabatic invariant:

• Small orbit variations within the timescale of the periodic motion.

• Perturbations must not resonate with the motion periodicity.

• Small perturbations

These schematic conditions clearly illustrate that the conservation of adiabatic invari-
ants is linked to the phenomena under investigation, rather than the particle motion
itself.

As previously mentioned, in this work we focus our attention on MHD modes
with timescales on the order of the Alfvén time, τA, which may resonate with the
periodic orbits of fast ions in the poloidal plane, ωb,t . The magnetic moment can be
safely considered a constant of particle motion, as briefly discussed in Sec. 2.1.2.
However, for the specific problem addressed in this work, the other two adiabatic
invariants are not conserved. Thus, the particle motion can be characterized by
considering the conservation of total energy E, canonical toroidal momentum Pϕ ,
and magnetic moment µ .

2.2 Drift kinetics

In this section, our focus shifts to a more detailed description of the motion of
superthermal particles, that requires a kinetic model. The perturbations of interest
satisfy the ordering k⊥ρh ≪ 1 and ω/Ωh ≪ 1, where ρh and Ωh represent the Larmor
radius and cyclotron frequency of energetic particles, respectively. The guiding center
velocity correct to first order in δ = ρ/R0 ≪ 1 (dropping the subscript h for Ω and
ρ) is :

Ṙ = v∥ê∥+
1

mΩ
ê∥× (µ∇B+mv2

∥κ −ZeE) = v∥ê∥+vD +vE×B (2.28)

where R denotes the guiding center position, the overdot indicates the time derivative.
The different drifts of the particle motion discussed in Sec. 2.1.2 are assumed to be
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of the same order of magnitude. The E×B drift is comparable to the grad B and
curvature drift if E/B = O(δ ). Therefore, vD ∼ vE×B = O(δ ) while v∥ê∥ = O(1).
Terms of order O(δ 2) have been neglected, including additional particles drifts such
as the so-called polarization drift and the drift (v∥/Ω)ê∥× (∂ ê∥)/∂ t.
The particle acceleration in the parallel direction, correct to order δ , is

mv̇∥ =−µ ê∥ ·∇B+Zeê∥ ·E+mv∥κ · Ṙ (2.29)

The equation of motion detailed above can be obtained through a Lagrangian
formulation of the guiding center motion described by Littlejohn in Ref. [27]:

L =

(
Ze
c

A+mv∥ê∥

)
· Ṙ+

1
Ω

yα̇ − 1
2

mv2
∥− y−Zeφ (2.30)

Here, A and φ denote electromagnetic potentials, y = µB = mv⊥/2 represents the
perpendicular energy and α is the gyroangle in the velocity space. This Lagrangian
is a function of the 6 variables:

L = L (R,v∥,y,α; Ṙ, v̇∥, ẏ, α̇; t) (2.31)

in which α , v̇∥ and ẏ do not appear. Equations (2.28-2.29) can be easily obtained
from the Euler-Lagrange equations correct to order δ

d
dt

(
∂L

∂ q̇i

)
=

∂L

∂qi
(2.32)

with qi, i ∈ 1;6 being the Lagrangian variables. The following relations, showing
the conservation of the magnetic moment, and defining the cyclotron frequency, are
derived form the Euler Lagrange equations:

d
dt

(
∂L

∂ α̇

)
=

∂L

∂α
= 0 → d

dt

( y
B

)
=

dµ

dt
= 0 (2.33)

d
dt

(
∂L

∂ ẏ

)
=

∂L

∂y
= 0 → α̇ = Ω (2.34)
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Within this Lagrangian formalism, it is possible to write the collisionless Vlasov
equation describing the evolution of the particle distribution function:

∂ f
∂ t

+
6

∑
i=1

q̇i
∂ f
∂qi

= 0 (2.35)

→ ∂ f
∂ t

+Ṙ ·∇ f + v̇∥
∂ f
∂v∥

+ ẏ
∂ f
∂y

+ α̇
∂ f
∂α

= 0 (2.36)

where f is the distribution function in terms of the Lagrangian variables: f =

f (R,v∥,y,α; t). By inspection, the term with ∂ f/∂α is multiplied by Ω, and is the
largest. Setting f = f0 + f1 + ... with f1/ f0 = O(δ ), by comparison with the other
leading order terms, it is possible to show that

α̇
∂ f0

∂α
= 0 (2.37)

meaning that f0 is independent of α . Thus, to first order:

∂ f0

∂ t
+ Ṙ ·∇ f0 + v̇∥

∂ f0

∂v∥
+ ẏ

∂ f0

∂y
+ α̇

∂ f1

∂α
= 0 (2.38)

The last term can be eliminated considering the average over the gyroangle,
∮

dαα̇∂ f1/∂α =

0. The other terms Ṙ, v̇∥, and ẏ do not depend on α to first order in δ , and the α-
average is trivial. In this way, one obtains the collisionless drift-kinetic equation:

∂ f0

∂ t
+ Ṙ ·∇ f0 + v̇∥

∂ f0

∂v∥
+ ẏ

∂ f0

∂y
= 0 (2.39)

the subscript "0" will be dropped in the following. At equilibrium, ∂/∂ t = 0, the
distribution function can be described using the invariant of the motions described in
Sec. 2.1.

F = F(E,µ,Pϕ ;σ) (2.40)
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with the total energy of the particle E, canonical toroidal momentum Pϕ and magnetic
moment µ rewritten in terms of the Lagrangian variables:

E =
1
2

mv2
∥+ y+Zeφ(R) (2.41)

µ =
y

B(R)
(2.42)

Pϕ =
∂L

∂ϕ
=

Ze
c

ψ +mRv∥
Bϕ

B
(2.43)

An orbit is uniquely determined by choosing the three invariants. However, an
additional index, denoted as σ , is required to distinguish between co- and counter-
particles. These particles share the same orbit but have opposite sign for v∥.

2.2.1 The linearized drift-kinetic equation

Introducing a perturbation to the system and denoting perturbed quantities with the
subscript "(1)", the distribution function can be expressed as f = F + f (1). The
linearized form of the drift-kinetic equation is then given by:

d f (1)

dt
+ Ṙ(1) ·∇F + v̇(1)∥

∂F
∂v∥

+ ẏ(1)
∂F
∂y

= 0 (2.44)

This can be reformulated by considering the equilibrium dependence on the invariants
of Eqs. 2.41-2.43:

d f (1)

dt
+

(
Ṙ ·∇Pϕ + v̇(1)∥

∂Pϕ

∂v∥

)
∂F
∂Pϕ

+

(
ZeṘ(1) ·∇φ+

+mv∥v̇(1)∥ + y(1)
)

∂F
∂E

+

(
ẏ(1)

B
− y

B
Ṙ(1) ·∇B

)
∂F
∂ µ

= 0 (2.45)
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The terms multiplying each derivative of the equilibrium distribution function can be
rewritten in terms of the perturbed Lagrangian of the particle motion, leading to:

d f (1)

dt
+

(
∂L (1)

∂ϕ
− d

dt
P(1)

ϕ

)
∂F
∂Pϕ

−

−

(
∂L (1)

∂ t
+Ze

dφ (1)

dt

)
∂F
∂E

+µ

(
d
dt

B(1)

B

)
∂F
∂ µ

= 0 (2.46)

We define h(1) as the so-called "nonadiabatic part" of the perturbed distribution
function f (1), such that it satisfies:

dh(1)

dt
=

∂F
∂E

∂L (1)

∂ t
− ∂F

∂Pϕ

∂L (1)

∂ϕ
(2.47)

The perturbed distribution function can be obtained integrating in time as:

f (1) = P(1)
ϕ

∂F
∂Pϕ

+Zeφ
(1)∂F

∂E
−µ

B(1)

B
∂F
∂ µ

+h(1) (2.48)

The perturbed Lagrangian to leading order in δ is:

L (1) =
Ze
c

A(1) · Ṙ−Zeφ
(1)−µB(1)+O(δ ) (2.49)

Higher order terms in delta would lead correction of at least O(δ 2) corrections in
Eq. (2.48). This form of the perturbed Lagrangian can be utilized to solve for h(1)

in Eq. (2.47). The coordinate system R = (ψ,θ ,ϕ) is introduced, where ψ labels
the equilibrium magnetic surfaces, θ is a generalized poloidal angle and ϕ is the
previously defined toroidal angle. Exploiting the toroidal symmetry of the system,
the perturbed Lagrangian is assumed to take the form:

L (1)(R, t) = L̂ (1)(ψ,θ)exp(−iωt − inϕ) (2.50)

where n is the toroidal mode number. Equation (2.47) can be recast as:

dh(1)

dt
=−i(ω −nω∗)

∂F
∂E

L (1) (2.51)
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with ω∗ being a constant of the unperturbed particle motion defined as (∂F/∂Pϕ)/(∂F/∂E).
The formal solution of Eq. (2.51) is

h(1) =−i(ω −nω∗)
∂F
∂E

∫ t

−∞

L (1)(τ)dτ (2.52)

where the lower limit of integration is set according to the causality prescription
and L (1)(τ) = L̂ (1)(ψ(τ),θ(τ))exp(−iωτ − inϕ(τ)). The particle position in
(ψ,θ ,ϕ) coordinates depends on τ through the guiding center equations:

ψ̇ = Ṙ ·∇ψ, θ̇ = Ṙ ·∇θ , ϕ̇ = Ṙ ·∇ϕ (2.53)

with Ṙ given in Eq. (2.28). It is possible to decompose ϕ(τ) into its secular and
oscillating components:

ϕ(τ) = ⟨ϕ̇⟩τ + ϕ̃(τ) (2.54)

Here, the brackets ⟨·⟩ denote the average over a complete orbit in the poloidal
cross section, which can be either mirror-trapped or passing for energetic particles.
Bounce and transit times are defined in Sec. 2.1.3, together with the bounce average
procedure used for orbit averaged quantities:

⟨A⟩= 1
τb/t

∮
Adτ (2.55)

The quantity L̃ (1)= L̂ (1)exp(−inϕ̃) is a periodic function of τ that can be expanded
in Fourier series:

L̃ (1)(τ) =
∞

∑
−∞

pϒp(E,µ,Pϕ ;σ)exp(−ipωb,tτ). (2.56)

The Fourier coefficients are defined as

ϒp(E,µ,Pϕ ;σ) =
∮ dτ

τb/t
L̃ (1)exp(ipωb,tτ) (2.57)

The "nonadiabatic" part of the distribution function of Eq. (2.52) can be rewritten
considering the Fourier expansion of the perturbed Lagrangian over the particle
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periodicity:

h(1) =−i(ω −nω∗)
∂F
∂E

∞

∑
−∞

pϒp

∫ t

−∞

exp[−i(ω +n⟨ϕ̇⟩+ pωb,t)τ] = (2.58)

= (ω −nω∗)
∂F
∂E

∞

∑
−∞

pϒp
exp[−i(ω +n⟨ϕ̇⟩+ pωb,t)τ]

ω +n⟨ϕ̇⟩+ pωb,t
(2.59)

The significant impact of the "nonadiabatic" component, h(1), in the perturbed distri-
bution function f (1) is evident in the explicit appearance of the resonant denominator
in Eq. (2.59), leading to the mode-particle resonance condition. This denominator
vanishes for different p harmonics satisfying the condition:

ω +n⟨ϕ̇⟩+ pωb,t = 0, p = 0,±1,±2, ... (2.60)

The perturbation under consideration for this study is axisymmetric, meaning it
has a toroidal mode number n = 0. In this specific scenario, the resonant condition
becomes even simpler and reduces to:

ω + pωb,t = 0, p = 0,±1,±2, ... (2.61)

Hence, the periodic motion of energetic particles in the poloidal cross-section,
whether in a passing orbit or a trapped orbit, is the crucial motion that can be
resonant with n = 0 axisymmetric modes.

2.3 Concluding remarks

This chapter has provided a detailed account of particle trajectories within the
tokamak configuration. The characterization of the guiding center motion of particles
has been considered to derive the collisionless drift-kinetic equation through a
Lagrangian formalism. This comprehensive kinetic description of the plasma will
serve as a crucial foundation for subsequent chapters.



Chapter 3

Ideal and hybrid kinetic MHD models

A plasma, a complex system comprised of a vast number of ionized particles, exhibits
long-range electromagnetic interactions. Unlike systems dominated by nearest-
neighbor collisions, the behavior of a plasma is characterized by the influence of
macroscopic electric and magnetic fields. In tokamak plasmas, these collective
phenomena have the potential to perturb the equilibrium magnetic configuration,
giving rise to large-scale instabilities that impact significant portions of the plasma
column. To describe these instabilities, it is not necessary to delve into the detailed
description of the local single-particle motion outlined in Ch. 2. Instead, the plasma
behaviour can be effectively characterized by a fluid formalism known as Magneto-
Hydro-Dynamics (MHD). Analogous to a fluid description using the Navier-Stokes
equations, MHD theory treats the plasma as a fluid composed of charged particles.
This fluid can interact with external electromagnetic fields and, in turn, generate
electromagnetic perturbations through the motion of charged particles. However,
the fluid formalism is not suitable for studying plasma behavior in the presence of
superthermal particles. A detailed kinetic treatment is required in order to describe
the effect of fast ions in the plasma. In this chapter, we will introduce the hybrid
kinetic MHD model that will be employed in the subsequent chapters. The derivation
and study of MHD theory
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3.1 Magneto-Hydro-Dynamics

The MHD model represents the plasma as a continuous fluid rather than a collection
of individual particles. While this model is simple enough to be exactly solved in
certain cases of interest, it lacks the level of detail needed to describe some physical
phenomena accurately. The Ideal MHD model, in particular, is the simplest fluid
model for a plasma. Despite its simplicity, it allows for the study of the impact
of the magnetic configuration on the plasma’s equilibrium and stability. However,
limitations arise when attempting to explore a wide range of physical phenomena
with this model, as for example superthermal particles effects. The starting point
of the Ideal MHD model derivation is the complete mathematical description of
a plasma in terms of the kinetic Boltzmann equation coupled with Maxewell’s
equations:

∂ f j

∂ t
+v ·∇ f j +

q j

m j
(E+

1
c

v×B) ·
∂ f j

∂v
=

(
∂ f j

∂ t

)
coll

(3.1)

where f j(r,v, t) is the distribution function of the j species (j = electrons, ions, ...)
and (∂ f j/∂ t)coll is the collisions term. To derive the fluid description of the plasma,
we consider the moments of the Boltzmann equation ({B.e.} j) to transition from a
microscopic to a macroscopic description:

0th moment → ∑
j

m j

∫
d3v{B.e.} j →

∂ρm

∂ t
+∇ · (ρmu) (3.2)

1st moment → ∑
j

m j

∫
d3vv{B.e.} j → ρm

du
dt

=−∇ ·P+
1
c

J×B (3.3)

2nd moment → ∑
j

1
2

m j

∫
d3vv2{B.e.} j →

d
dt

(
p

ρΓ
m

)
= heat flux/pressure tensor

(3.4)

These equations now depend on the fluid variables: mass density ρ , fluid velocity u
and pressure tensor P, along with the plasma current density J. As is standard for
fluid models, the equations derived from the moments of the distribution function
will always depend on a higher-order moment term. Combining these moment
equations with Maxwell’s equations for the electromagnetic fields still results in an
incomplete set of equations. A fluid closure is needed.
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3.1.1 Fluid closure

A fluid closure is a local relation, connecting moments of the distribution such as
ρm, u, and P. The validity of a fluid closure relies on certain conditions: firstly,
the dimension l of fluid elements must be small compared to other relevant length
scales, i.e., l ≪ L (where L is the macroscopic length of the system) and l ≪ λ

(where λ is a generic wavelength of the system). Additionally, fluid elements must
maintain their coherence for times much longer than relevant time scales. In a
neutral gas described by fluid dynamics, collisions play a crucial role in ensuring
the coherence of fluid elements. Gas particles tend to stick together due to collisions
with neighbors, and their motion can be represented as the superposition of local
mass motion along with an isotropic distribution of velocities. By connecting u
with the physical interpretation of fluid element velocity and reducing P to a scalar
pressure p, the continuity equation and the momentum equation for a simple gas
involve the unknowns ρm,u, and p. To close the fluid model and make the system
solvable, a third equation of state is needed to establish the connection between
ρm,u, and p. The description of collisions in terms of the collisional mean-free-path
λm f p and the collisional time τcoll allows for a collisional fluid closure. It becomes
feasible by choosing the size of the fluid element l such that λm f p ≪ l ≪ L, while
satisfying conditions kλm f p ≪ 1 and ωτcoll ≫ 1.

In fusion plasmas, collisions are infrequent. The relevant time scale for ideal
MHD phenomena is the Alfvén time τA, typically in the order of microseconds,
and the typical value of τcoll is around 10−4 seconds. The mean free path is of the
order of 102/103m while phenomena that can be studied with MHD have much
smaller characteristic wavelengths of the order of 10m. This implies that collisions
cannot ensure the coherence of the fluid element, as ideal MHD effects happen on
much faster time scales and on much smaller length scales. Therefore, alternative
mechanisms must be considered and the concept of fluid elements becomes weaker
in this context. The definition of fluid elements in the plane perpendicular to the
magnetic field can be ensured when the Larmor radius ρL is sufficiently small. In
this scenario, Larmor orbits serve as fundamental "quasi-particles" in the system.
In the direction parallel to the field lines, however, there is no general argument to
define a fluid element. In general, the MHD validity is considered as a low-frequency,
long-wavelenght limit of the Vlasov description of a plasma, obtained through the
moments of the Boltzmann equation [1].
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In axisymmetric systems like tokamaks, on the other hand, the periodicity in the
toroidal direction can be used as an argument for the fluid closure of the system.
Considering the moments of the Boltzmann equation in the perpendicular and par-
allel directions, one obtains evolution equations for the perpendicular and parallel
pressures. Two equations of state are required. Neglecting both heat fluxes, the
so-called CGL, or double-adiabatic, closure for a magnetized plasma is obtained
[28]. Assuming a diagonal pressure tensor:

P = p⊥I+(p∥− p⊥)ê∥ê∥ (3.5)

and equation of state:

d
dt

(
p⊥

ρmB

)
= 0,

d
dt

(
p∥B2

ρ3
m

)
= 0 (3.6)

The Ideal MHD closure is a particular case of CGL closure with p⊥ = p∥ = p,
reducing thus the pressure to a scalar quantity:

P = pI → ρm
du
dt

=−∇p+
1
c

J×B (3.7)

The heat fluxes in the second moment equation are neglected, truncating the depen-
dence on higher-order moments, assuming an adiabatic equation of state:

d
dt

(
p

ρΓ
m

)
= 0, Γ = 5/3 (3.8)

that can be recovered from Eqs. (3.6)

Maxwell’s equations are considered for the description of magnetic field B,
electric field E, and current density J. The Ideal MHD approximation involves
neglecting the displacement current in Faraday’s law and assuming ideal Ohm’s
law. This treatment characterizes the plasma as a perfect conductor, justifying the
term "ideal". In tokamak plasmas, where the ideal MHD time scale dominates
resistive diffusive time, this assumption is generally valid. However, the model can
be extended to account for resistivity in Ohm’s law, leading to the resistive MHD
model, in scenarios where resistivity becomes significant. The following set of
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equations represents the Ideal MHD model (in c.g.s. units):

∂ρ

∂ t
+∇ · (ρu) = 0 (3.9)

ρ
du
dt

=
1
c

J×B−∇p (3.10)

d
dt

(
p

ρΓ

)
= 0 (3.11)

∇×E =−1
c

∂B
∂ t

(3.12)

∇×B =
4π

c
J (3.13)

E+
1
c

u×B = 0 (3.14)

where d/dt = ∂/∂ t +u ·∇ is the convective (or material) derivative following the
fluid elements. The mass equation in the MHD framework represents the conserva-
tion of mass in the plasma, neglecting phenomena such as mass injection via gas
puffing, pellets or neutral beams or fuel depletion due to nuclear reactions. The mo-
mentum equation accounts for the interaction of three forces: the pressure gradient
∇p, the Lorentz force J×B and the inertial force ρdv/dt. In static equilibrium, it
describes the balance between the ∇p force and the magnetic force J×B, maintain-
ing plasma confinement. The energy equation serves as the equation of state for
closing the fluid model. The complete derivation of the MHD model is reported, for
example, in Ref.[1].

3.1.2 Normal modes and Energy principle

The MHD model allows us to investigate how a plasma behaves within a specific
magnetic configuration. The plasma equilibrium is characterized by setting the time
derivatives in Eqs. (3.9-3.14) to zero, ∂/∂ t = 0. Additionally, it is assumed that
there is no fluid flow in equilibrium, setting u = 0. From Eq. (3.10), it is evident that
at equilibrium, a balance must be maintained between the magnetic force and the
pressure gradient:

1
c

J×B = ∇p (3.15)

In a tokamak’s equilibrium state, the pressure gradient is thus constrained by the
confining effects of the magnetic field. However, solving this equation for arbitrary
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poloidal shaping is complex. The magnetic field’s poloidal component is influenced
not only by external factors like poloidal coils but also by the poloidal magnetic flux,
associated with the plasma current. This flux, in turn, affects the pressure profile.

Once this delicate equilibrium force balance is established, the next step is to
examine its response to small perturbations, studying its stability properties. The
ideal MHD model can be linearized, expanding all quantities in their equilibrium
and perturbed parts Q(r, t) = Q0(r)+Q1(r, t), with small perturbation satisfying
|Q1/Q0| ≪ 1. This approach allows for the investigation of the linear stability of the
system. The perturbed part of a quantity can be related to the displacement vector
ξ̃ (r, t), which characterizes the shift of the plasma from its equilibrium position:

u1 =
∂ ξ̃

∂ t
(3.16)

Substituting the linearized mass and energy equations (3.9) and (3.11), along
with Faraday’s law (3.13), into the momentum equation (3.10) in terms of the
displacement vector, in absence of equilibrium flows, we can derive:

ρ
∂ 2ξ̃

∂ t2 = F(ξ̃ ) =
1
c

J×B1 +
1
c

J1 ×B−∇p1 (3.17)

where the subscript 0 for equilibrium quantities has been dropped. F is called the
force operator. The linear stability can be investigated through a normal modes
analysis. By considering solutions of the form ξ̃ (r, t) = ∑q aqξ q(r)exp(−iωqt), we
obtain the eigenvalue problem formalism for each decoupled q component:

−ω
2
q ρξ q = F(ξ q) (3.18)

where the eigenvalue ω2
q can be determined by solving the problem with appropriate

boundary conditions for ξ . The force operator can be written explicitly in terms of
ξ :

F(ξ ) =
1

4π
(∇×B)×B1 +

1
4π

(∇×B1)×B+∇(ξ ·∇p+ γ p∇ξ ) (3.19)

This approach reveals that the force operator F(ξ ) is self-adjoint if appropriate
boundary conditions are considered. This property has significant implications for
the study of plasma stability. Firstly,the eigenvalues ω2

q are real, implying that
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instability (i.e., I m(ωq)> 0) can only occur if ω2
q < 0. Moreover, the eigenvectors

ξ q form a complete orthogonal set. This orthogonality ensures that an arbitrary
initial perturbation will be dominated by the fastest growing mode, as opposed to a
combination of different modes in a non-orthogonal case. The displacement vector of
a normal mode, denoted as ξ (r) (with the subscript q dropped), is solely a function
of the spatial variable r. In the context of a tokamak equilibrium featuring a circular
poloidal cross section, symmetries regarding the poloidal and toroidal angles, θ and
ϕ , allow for the Fourier analysis of the perturbation:

ξ (r) = ξ (r)exp [i(mθ +nϕ)] (3.20)

Here, m and n represent the poloidal and toroidal mode numbers, respectively.
Geometric factors, such as toroidicity and cross-sectional elongation, as well as
non-linear effects, may introduce interactions among perturbations characterized by
different m and n, with important implications for plasma stability [9, 10].

In the context of Ideal MHD, thanks to the self adjointness of the force operator
F(ξ ), the stability analyses commonly make use of an Energy Principle [29]. Ac-
cording to this principle, an equilibrium is stable if and only if the variation of the
potential energy integral, given by

δW =−1
2

∫
ξ
∗ ·F(ξ )d3x, (3.21)

is positive for any physically acceptable displacement ξ that satisfies appropriate
boundary conditions. The energy principle offers two key advantages over a full
normal-mode analysis in determining the stability of an equilibrium. Firstly, one can
hypothesize the form of an unstable perturbation, using it as a trial function ξ trial to
evaluate δW . If δW (ξ

∗
trial,ξ trial)< 0, the Energy principle ensures the equilibrium’s

instability, as there exists a physically acceptable displacement (ξ trial) for which
δW is negative. The second advantage lies in the ability to search for the stationary
points of δW by setting its variation with respect to ξ equal to zero. While this
variational procedure is somewhat more challenging than the trial function approach,
it is significantly less complex than a full normal-mode analysis. The energy principle
has been extended in order to take into account equilibrium flows [30], derived in a
more rigorous hamiltonian formalism in Refs. [31, 32] and, as discussed extensively
in Sec. 3.2.1, extended to take into account the effect of energetic ions.
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3.2 Hybrid kinetic MHD model

The presence of energetic particle populations introduces a unique set of instabilities
associated with the resonance interaction between the periodic motions of these
particles and the macroscopic modes of the thermal plasma. Examples of such
instabilities include fishbone oscillations ([7],[8]) and Alfvén Eigenmodes ([9, 10,
33]). The ideal MHD model, due to its simplifications, falls short in addressing
effects related to the presence of energetic particles. To investigate resonance
interactions between macroscopic plasma modes and energetic particle populations,
a different model, known as the Hybrid Kinetic MHD, must be considered. This
hybrid kinetic MHD model utilizes the ideal MHD equations to handle the thermal
plasma while a kinetic plasma description account for contributions from energetic
particles. The limitations of the ideal MHD model in addressing the effects of
superthermal particles stem from its fluid nature. The wave-particle resonance, which
acts as a free energy source for fast ion-driven instability, is inherently a kinetic
effect that necessitates a kinetic description of the plasma for accurate representation.
Furthermore, the fluid closure utilized in the ideal MHD model loses validity in the
presence of energetic particles. Even in the absence of wave-particle resonances,
the conservation of the third adiabatic invariant, as described in Sec.2.1, introduces
a non-local correction to the motion of fast particles. Consequently, defining fluid
elements is no longer possible. Overall, when these particles exert a significant
influence on the plasma, a fluid closure is no longer tenable.

The Hybrid Kinetic-MHD model equations are:

∂ρ

∂ t
+∇(ρu) = 0 (3.22)

ρ
du
dt

=
1
c

J×B−∇pc −∇ ·Ph (3.23)

d
dt

(
pc

ρΓ

)
= 0 (3.24)

∇×B =
4π

c
J (3.25)

∂B
∂ t

= ∇× (u×B) (3.26)

For the thermal plasma, we consider the same ideal MHD equations (Eqs. 3.9-
3.14). The scalar pressure of the core plasma is denoted as pc. The effects of
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superthermal particles are incorporated in Eq. (3.23) through the "hot" particles
pressure tensor, Ph, and are described using the kinetic model. Analogous to the
CGL model assumption for pressure, the conservation of the magnetic moment
applies to fast ions, and the pressure tensor is given by:

Ph = p⊥hI+(p∥− p⊥)hê∥ê∥ (3.27)

p⊥h = mh

∫
d3v

v2
⊥
2

fh; p∥h = mh

∫
d3vv2

∥ fh (3.28)

where fh(r,v, t) is the distribution function of the energetic particles described by
the Vlasov equation:

∂ fh

∂ t
+v ·∇ fh +

qh

mh

(
E+

1
c

v×B
)
· ∂ fh

∂v
= 0 (3.29)

that following the procedure outlined in Ch. 2, reduces to the collisionless drift-
kinetic equation of Eq. (2.39). The model outlined in Eqs. (3.22-3.26) couples the
bulk plasma and the superthermal particle component via the "hot" pressure tensor,
leading to the so-called Pressure Coupling Scheme (PCS). Alternative couplings
make use of the "hot" particle current Jh, defining Current Coupling Schemes (CCS)
[34]. The PCS considered here is not optimal under certain conditions, being non-
hamiltonian [35]. However, it is the more convenient to use and its validity is ensured
for the situations of interest for this work.

3.2.1 Fast ions δW

The linear stability of the plasma can be analyzed using a similar approach as
described in Section 3.1.2 for the ideal MHD model. In the hybrid kinetic MHD
model, an extended energy principle is formulated, taking into account the work
done by the perturbation against the pressure from superthermal particles. The total
δW will be the combination of the core plasma and the fast ions contributions:

δW =−1
2

∫
ξ
∗
[·Fc(ξ )+Fhot(ξ )]d3x, (3.30)

The inclusion of the nonadiabatic term in the perturbed pressure tensor of energetic
particles, as given by Eq (2.59), in the term Fhot , disrupts the self-adjoint nature of
the full force operator F = Fc +Fhot . Consequently, an energy principle analogous
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to that of ideal MHD cannot be straightforwardly derived, and normal mode analysis
is required. Despite this complication, the stability in the presence of energetic
particles can still be examined in the δW formalism. This is achieved by deriving
the dispersion relation of the mode in terms of the following quadratic forms with a
perturbative approach.

δ I =−δW =−δWc −δWhot (3.31)

δ I =
1
2

∫
d3xρmξ

∗ · ∂ 2ξ

∂ t2 (3.32)

δWc =−1
2

∫
d3xξ

∗ ·Fcore(ξ ) (3.33)

δWhot =
1
2

∫
d3xξ

∗ · (∇ ·P(1)
h ) (3.34)

The perturbative approach for the derivation of the dispersion relation is based on the
use of the displacement vector obtained by the ideal-MHD normal mode analysis.
The dispersion relation obtained from the quadratic forms must coincide at its lowest
order with the ideal-MHD dispersion relation, obtained in the absence of energetic
particles. In other words, this means that the zeroth-order terms of F represent a
self-adjoint form related to a potential energy integral, whose minimization leads
to the derivation of the ideal-MHD displacement vector. This can be obtained
only considering |δWhot | ≪ |δWc|. The nonadiabatic term in the perturbed pressure
tensor of energetic particles introduces the mode-particle resonance contribution,
resulting in a frequency-dependent imaginary part of δW . Given the condition
|δWhot | ≪ |δWc|, only this imaginary part significantly influences the stability in
our analysis. In the following, our attention will be dedicated to the derivation of
the imaginary component of δWhot . This formulation of δWhot follows a standard
procedure, as outlined, for instance, in Ref. [36].

Since the general case of an anisotropic equilibrium pressure tensor introduces
more real terms to δWhot but does not affect its imaginary part, we will consider
the simpler case of isotropic fast particle equilibrium pressure Ph,eq = ph,eqI. The
modification of fast ions to the equilibrium only accounts for a modification of the
total scalar pressure as ptot = pc + ph,eq. The perturbed fast particle pressure tensor
instead is anisotropic and can be expressed as:

P(1)
h = p(1)⊥ I+(p(1)∥ − p(1)⊥ )ê∥ê∥ (3.35)
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with (
p(1)⊥
p(1)∥

)
=
∫

d3v

(
µB
mv2

∥

)
f (1) (3.36)

where f (1) is the perturbed distribution function described by the linearized drift-
kinetic equation in Eq. (2.48). Following the steps outlined in Ref. [36], it is possible
to express δWhot in terms of the perturbed Lagrangian of the particle motion:

δWhot =−1
2

∫
d3xd3vL (1)∗ f (1) (3.37)

Exploiting the fact that f (1) in Eq. (2.48) has an adiabatic and a nonadiabatic part,
we can split δWhot into the same two terms:

δWhot = δW1 +δW2(ω) (3.38)

We are particularly interested in the frequency-dependent nonadiabatic part δW2(ω),
which incorporates the mode-particle resonance contribution. Expressing the nonadi-
abatic term of δWhot using Eq. (2.52), we obtain:

δW2(ω) =
1
2

i
∫

d3xd3v(ω −nω∗)
∂F
∂E

L (1)∗
∫ t

−∞

L (1)(τ)dτ (3.39)

The perturbed Lagrangian L (1) can be expanded in harmonics of the bounce/passing
periodicity, as shown in Eq. (2.56). The time integration of the Lagrangian reveals
the resonant condition:

δW2 =−1
2

∫
d3xd3v(ω −nω∗)

∂F
∂E

+∞

∑
−∞

lϒ
∗
l eilωb,tτ

+∞

∑
−∞

p
ϒpe−ipωb,tτ

ω + pωb,t +n⟨ϕ⟩
(3.40)

To proceed with the calculation, it is convenient to change the variables of inte-
gration using the transformation (x,v)→ (Pϕ ,ϕ,E,τ,µ,α). The Jacobian of this
transformation is a constant:

d3xd3v = (
c

Zem2 )∑
σ

dPϕdϕdEdτdµdα (3.41)
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After this change of variables, δW2 can be expressed as:

δW2 =−1
2
(

c
Zem2 )∑

σ

∫
dPϕdϕdEdτdµdα(ω −nω∗)

∂F
∂E

+∞

∑
−∞

lϒ
∗
l eilωb,tτ

+∞

∑
−∞

p
ϒpe−ipωb,tτ

ω + pωb,t +n⟨ϕ⟩
(3.42)

Carrying out the integration in τ,α and ϕ:∫
dα = 2π (3.43)∫
dϕ = 2π (3.44)∫
dτei(l−p)ωb,tτ =

2π

ωb,t
δ (l − p) (3.45)

obtaining the following expression for δW2:

δW2 =− 2π2c
Zem2 ∑

σ

∫
dPϕdEdµτt(ω −nω∗)

∂F
∂E

+∞

∑
−∞

p

∣∣ϒp
∣∣2

ω + pωb,t +n⟨ϕ⟩
(3.46)

In this study, our focus is on axisymmetric modes characterized by the toroidal
mode number n = 0. In this particular case, the expression for δW2 can be simplified,
highlighting two peculiar characteristics of the fast ion resonance with n = 0 modes.

δW2 =− 2π2c
Zem2 ∑

σ

∫
dPϕdEdµτtω

∂F
∂E

+∞

∑
−∞

p

∣∣ϒp
∣∣2

ω + pωb,t
(3.47)

Firstly, as briefly mentioned in Chapter 2, the resonant condition reduces to ω+ pωb,t .
This implies that the mode must resonate with the passing or bounce orbits of the fast
ions in the poloidal plane. It also means that the p = 0 harmonic, usually associated
with the largest Fourier coefficient ϒ0, cannot contribute to the wave-particle resonant
interaction. A second consequence of the n = 0 perturbation is that the ω∗ term
vanishes. This term is associated with the ∂F/∂Pϕ derivative of the equilibrium
distribution function and is the one providing the main drive for the destabilization
of other types of fast ion modes, like Toroidal Alfvén Eigenmodes (TAEs). For
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axisymmetric modes, the resonant interaction depend only on the velocity space
derivative of the distribution function ∂F/∂E.

3.2.2 Particle distribution function and Fokker-Plank equation

As discussed above, for the resonance with n = 0 modes, a crucial characteristic of
the superthermal particles is the slope of their equilibrium distribution function in
velocity space ∂F/∂E. It is important to note that in Eq. (3.47), the derivative is
taken at constant µ . Therefore, two contributions arise:

∂F
∂E

∣∣∣∣
µ

=
∂F
∂E

∣∣∣∣
Λ

− Λ

E
∂F
∂Λ

∣∣∣∣
E

(3.48)

Recalling the pitch angle defined as Λ = µB/E. The sign of ∂F/∂E|µ determines
the sign of δW2 and, as discussed in more detail later, the sign of the wave-particle
resonant interaction, leading to either driving or damping of the mode.

Given that fast ions possess a superthermal energy, their equilibrium distribution
function can vary significantly from a Maxwellian distribution. The equilibrium
distribution function depends on the thermalization process of fast ions through
collisions with the bulk plasma. This process is described by the Fokker-Planck
equation:

∂ f
∂ t

+vgc ·∇ f =C( f )+S−L (3.49)

Here, vgc = vD + v∥ê∥ represents the guiding center velocity, and C( f ), S, and L
denote the collision, source, and loss terms.

In tokamak plasmas, energetic ions primarily collide with electrons until they
reach a critical energy Ec ≈ 41Te, beyond which ion collisions become dominant,
leading to rapid particle thermalization. For particles with energies greater than Ec,
the collision operator describing the slowing down due to electron collisions can be
expressed as:

C( f ) =
1

τsdv2
∂v3 f
∂v

(3.50)

Here, v represents the particle velocity, and τs is the slowing down time, which is the
time required for a fast ion to reach the critical energy through electron collisions
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and thermalize. It is defined as:

τsd =
τsp

3
ln

[
1+
(

Eb

Ec

)3/2
]

(3.51)

with Eb = mv2
b/2 birth energy of the energetic ion and the Spitzer time defined as:

τsp ≈ cτ

T 3/2

ne
(3.52)

where cτ = 1.77 ·10−2 if in Eq. (3.52) T is in keV , ne in 1020m−3 and τse in s [37].
The slowing down time is usually much smaller than the bounce/passing time of a
poloidal plane orbit, with τb,t/τsd ≪ 1. We expand the distribution function solution
of Eq. (3.50) in powers of τb,t/τsd as f = f0 + τb,t/τsd f1 + .... To first order the
Fokker-Plank equation reads:

∂ f0

∂ t
+vgc ·∇ f1 =

1
τsdv2

∂v3 f0

∂v
+S−L (3.53)

Taking the average over the bounce angle removes the f1 term, as shown eg. in [38],
and neglecting the underscore 0, the following simplified Fokker-Plank equation is
obtained:

∂ f
∂ t

=
1

τsdv2
∂v3 f
∂v

+S−L (3.54)

3.3 Equilibrium distribution functions

In this section, we analyze different distribution functions by solving the simplified
Fokker-Plank equation, Eq. (3.54). The results discussed in this section are based
on our findings presented in Ref. [14]. Some detail of the calculations carried out in
this section are discussed extensively in App. A. The source term is assumed to be
monochromatic, with birth-velocity vb:

S(v) = Kδ (v− vb) (3.55)

where δ (x) is a Dirac delta function, and the parameter K is related to the total number
of energetic ions born per m3 per second. For a D-T plasma with nD = nT = ne/2,
K can be determined by considering fusion-born alpha particles and integrating the



44 Ideal and hybrid kinetic MHD models

source of Eq. (3.55) over velocity:

K =
n2

e
16π

1
v2

b
⟨σv⟩ (3.56)

The reaction rate ⟨σv⟩ for D-T reactions averaged over Maxwellian distribution can
be expressed as a function of T only [37]:

⟨σv⟩|DT = 3.7 ·10−18 ∗T−2/3 ∗ exp(−20T−1/3)[m3/s]

≈ 8 ·10−23 ∗T 2 (3.57)

with σv|DT in m3/s and T in keV, leading to the following expression for the source
term in Eq. (3.54):

S = c1
n2

e

v2
b

T 2
δ (v− vb) (3.58)

where c1 = 8 ·10−23/16π m3keV−2/s. A very simple loss term is considered, with
velocity independent loss frequency νl:

L = νl f (3.59)

Defining F̂ = v3 f , the simplified Fokker-Plank equation to be solved is:

∂ F̂
∂ t

− v
τsd

∂ F̂
∂v

+νlF̂ = v3S (3.60)

3.3.1 Simple slowing down

The first case we will consider is the standard case of a slowing down distribution
obtained, for example, in Refs.[39], [40] and [41]. The slowing down time is
assumed constant, τsd0, while the source term is considered to be isotropic in velocity
with S = S0δ (v− vb). The differential equation Eq. (A.15) can be solved using
standard techniques. Looking for the steady-state solution, i.e., for our equilibrium
distribution function of fast ions, we set ∂ F̂/∂ t = 0:

F(v) = τsdS0v2−3l0
b

H(vb − v)
v3−3l0

(3.61)
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(a) (b)

Fig. 3.1 Steady state distribution functions as a function of normalized velocity, obtained
for constant τsd0 and source term. The distribution functions are plotted up to the critical
velocity vc, showed with vertical dotted line. In (a) the standard slowing down with no losses
(l0 = 0) is displayed. Figure (b) shows the slowing down solution for l0 = 2.

where l0 = νlτsd0/3. It is important to remark that this solution is valid for velocities
larger than the critical velocity vc, and corrections of the order of (vc/v)3 have
been neglected. Due to the assumption of an isotropic source term, the resulting
distribution is isotropic in velocity space, and therefore ∂F/∂Λ = 0. The derivative
of the distribution function with respect to velocity depends on the loss exponent l0.
When the losses exceed the threshold νl = 3/τs0, or l0 = 1, most particles are lost
before their complete slow down, and ∂F/∂v changes sign, as shown in Fig.3.1.

To introduce anisotropy effects, we can consider a source of particles character-
ized by a single direction in velocity space Λ0, represented as S = Ŝ0δ (v−vb)δ (Λ−
Λ0). The normalization constant Ŝ0 is modified by the anisotropy and depends on
the single pitch Λ0, as detailed in Ch. 5. The resulting distribution function is the
same as the one derived previously, but now includes an additional term to account
for the anisotropy:

F(v,Λ) = τsd Ŝ0v2−3l0
b

H(vb − v)δ (Λ−Λ0)

v3−3l0
(3.62)

The slowing-down distribution with a single pitch angle, denoted as the "single-pitch"
distribution in the following sections, exhibits a non-zero derivative with respect to
the pitch angle, Λ. When taking the full derivative over the energy at constant µ ,
both contributions from the slowing-down part 1/v3−3l0 and the term ∂F/∂Λ must
be considered.
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3.3.2 Sawtooth induced distribution function

The distribution function of energetic particles in velocity space can exhibit a steady-
state solution with a positive slope with respect to energy, due to losses or velocity
space anisotropies. However, achieving such condition transiently in a tokamak
plasma is also possible. If the timescale for changes in the distribution function is
significantly longer than the typical timescales of the phenomena under consideration,
a snapshot of a time-dependent distribution function can be treated as the equilibrium
distribution function F in Eq. (3.47).

Transient distribution functions with ∂F/∂E|µ > 0 in tokamak plasmas can be
obtained by modulating the power of Neutral Beam Injection (NBI) systems in
plasmas, as discussed theoretically in [42] and experimentally in the DIII-D tokamak
in [43]. Another possibility, explored in the following and suggested in [44], is that
sawtooth oscillations may also influence the distribution function in the same way.

Sawtooth oscillations, a well-known form of MHD activity, result in periodic re-
laxation of pressure in the core region of the plasma, playing a crucial role in various
fusion devices. On one hand, the presence of fast ions can stabilize sawtooth oscilla-
tions, potentially leading to "monster sawteeth" characterized by extended sawtooth
periods and significant crashes [45]. On the other hand, the loss of core plasma con-
finement and the redistribution of pressure towards more peripheral plasma regions
also impacts fast ions. Consequently, the radial redistribution of energetic ions during
sawtooth crashes has been the subject of numerous works [46–48]. Several studies
have demonstrated that fast ions with MeV energies may experience minimal spatial
redistribution during sawtooth crashes, as initially discussed by Kolesnichenko et
al. [49–51] and more recently confirmed by kinetic-MHD simulations conducted by
Bierwage et al. [52]. Here, we make the assumption that fusion alpha particles with
MeV energies experience no radial redistribution during sawtooth dynamics. Instead,
our focus shifts to examining changes in the distribution function in velocity space
for the energetic tail of isotropic fast particle distributions.

Two primary effects associated with the core temperature drop caused by saw-
tooth crashes significantly modify the fast ion population’s velocity distribution
function:
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• The decrease in fusion yield after the core temperature crash for fusion born
alpha particles, effectively modulating their source on the sawtooth period
(τsaw) timescale.

• The slowing down time of fast ions (τsd) grows during the sawtooth ramp,
leading to an accumulation of particles at higher velocities generated in the
later stages of the ramp.

By incorporating these effects into the simplified Fokker-Planck equation of
Eq. (3.54), we obtain a time-dependent distribution function, periodic with a period
of τsaw. Depending on the ratio between the slowing down time and the sawtooth
period (τsd/τsaw), the derivative over velocity of the newly obtained distribution
function may change sign.

Pressure evolution after crashes

Sawtooth oscillations, as observed in tokamak plasma discharges [53], are quasi-
periodic phenomena occurring in the core region near the magnetic axis when the
safety factor, q, drops below unity. This phenomenon involves two distinct stages:
the slower sawtooth ramp, characterized by a gradual temperature rise influenced by
heating and transport, and the much faster sawtooth crash, triggered by the onset of a
kink instability dominated by toroidal and poloidal mode numbers n = 1 and m = 1.
During the crash, core confinement is rapidly lost on a timescale much shorter than
the transport time, resulting in the flattening of profiles up to a radius known as the
"mixing radius" rmix, which surpasses the q = 1 resonant surface radius, rs. Various
theoretical models, such as the ones of Refs. [54, 55], have been proposed to describe
the relaxed profiles after the crash. The Kadomtsev model of Ref.[54] allows for
analytic treatment in some cases. Given the following profile for the inverse of q
before the crash, it is possible to derive the relaxed q and pressure profiles up to the
mixing radius rmix analytically.

q(r2)−1
pre =

1
q0

(
1−∆q

r2

r2
s

)
(3.63)

where ∆q = 1−q0 and q(rs) = 1. Following the Kadomtsev relaxation model, as
detailed in App. A, the mixing radius is rmix =

√
2rs, and the relaxed inverse q profile
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reads:

q(r2)−1
rel = 1− 1

4
∆q
q0

r2

r2
s

(3.64)

In the relaxed state, q is above unity everywhere except on the magnetic axis,
where q0,rel = 1. Figure 5.2 provides an example of precrash and relaxed profiles up
to the mixing radius.

Fig. 3.2 Precrash (Blue) and relaxed (Orange) q profiles up to the mixing radius rmix =
√

2rs.
The q=1 surface of the precrash profile is at rs/a = 0.3 (dashed vertical line) and its value on
axis is q0 = 0.9.

The relaxed pressure can be determined through energy conservation arguments.
The pre-crash pressure profile is assumed to be parabolic following:

ppre(r2) = p0

(
1− r2

r2
p

)
, (3.65)

with p0 on-axis value and rp > rmix =
√

2rs describes up to which radius the parabolic
assumption can be extended. Notice that for rp = rmix the pressure goes to 0 at
r = rmix. For simplicity, a constant density profile unaffected by the sawtooth
dynamics is assumed. As explained in App. A, this profile choice leads to a uniform
relaxed profile up to the mixing radius. The sawtooth ramp phase is considered to be
linear with time, representing triangular sawteeth. The temperature evolution within
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Fig. 3.3 Temperature profile normalized with the relaxed on-axis value T0,rel , at different
times during the sawtooth period. The q = 1 radius at rs/a = 0.3 and the mixing radius at
rmix/a = 0.3

√
2 are shown with dashed vertical lines. The pressure scale length considered

is rp/a = 0.6, while outside the mixing radius the profile is time-independent. The relaxed
temperature profile exhibits a jump at r = rmix that is rapidly smoothed out by temperature
diffusion in the early part of the following sawtooth cycle.

the mixing radius during the first cycle (0 ≤ t ≤ τsaw) then follows:

T (r, t) = T0,rel

[
1+A(r)

t
τsaw

]
(3.66)

where A(r) = (r2
s − r2)/(r2

p − r2
s ). As depicted in Fig.3.3, with the chosen pro-

files for q and pre-crash pressure from Eqs.(3.63, 3.65), the relaxed temperature
profile flattens to T0,rel up to the mixing radius. Just before the next crash, i.e.,
at t = τsaw, the central temperature peaks at T0 = T0,rel

[
r2

p/(r
2
p − r2

s )
]
. In the

region beyond the mixing radius, the profile is assumed to be unchanged with
Tout(r) = T0(1− r2

mix/r2
p)(r−a)2/(rmix −a)2. The Kadomtsev relaxation model in-

troduces discontinuities in the q and T profiles at r = rmix after the crash. These
discontinuities will decay rapidly if current and temperature diffusion are considered
during the early part of the subsequent sawtooth ramp.
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For standard sawtooth oscillations, the crash time τcrash is significantly smaller
than the sawtooth period. For simplicity, we assume an instantaneous crash (τcrash →
0) with respect to the relevant timescales of interest. The temperature evolution
during the sawtooth dynamics can be expressed as:

T (r, t) = T0,rel

[
1+A(r)

(
t

τsaw
−
⌊

t
τsaw

⌋)]
(3.67)

where ⌊t/τsaw⌋ is the integer part of the quantity t/τsaw. It is useful to define a
piece-wise temperature evolution, during each sawtoooth cycle:

Tn(r, t) =T0,rel

[
1+A(r)

(
t

τsaw
−n
)]

×

×H[(n+1)τsaw − t]H[t −nτsaw] (3.68)

where H(x) is the Heaviside step function; the integer n labels the sawtooth cycles
and is associated to the integer part of Eq. (3.67). An alternative expression for the
temperature dynamics during multiple sawtooth cycles is:

Ttot(r, t) =
nmax

∑
n=0

Tn(r, t) (3.69)

where nmax labels the last sawtooth cycle. Notice that the expressions in Eq. (3.67)
and Eq. (3.69) are completely equivalent for positive t, up to t = nmaxτsaw.

In the following we will neglect the temperature dependence of Ec in the loga-
rithm of Eq. (3.51), considering only the Spitzer time, τsp, variation with T . Follow-
ing Eq. (3.66), also the slowing-down time will depend on time due to the sawtooth
dynamic. Considering a density ne = 1 ·1020m−3, and a value of the relaxed tempera-
ture of 8 keV, the on-axis peak temperature is T0 ≈ 10.7 keV (for rp = 0.6,rs = 0.3).
The corresponding slowing-down time will be varying between 0.33 ≲ τs[s]≲ 0.50.

3.3.3 Source temperature modulation with average τsd

In this subsection, we explore the solution of Eq.(A.15) for a constant τsd0 but a
varying source term, following the temperature evolution given by Eq.(3.69). The
assumption of instantaneous crashes allows us to analyze the solution within a single
cycle, corresponding to a fixed n. The time-dependent source term during a cycle
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Fig. 3.4 Distribution function for particles born during the n-th cycle with time dependent
source and constant τsd , plotted for different times as a function of normalized velocity
for r = 0. The critical velocity vc is showed with vertical dotted line. The minimum and
maximum velocities reached by the n-th cycle particles at different times are highlighted. The
loss term is lα = 0 and the ratio between slowing down and sawtooth period is τsd0/τsaw = 3.

can be expressed as:

Sα,n(r, t,v) = Srel

[
1+A(r)

(
t

τsaw
−n
)]2

×

H[(n+1)τsaw − t]H[t −nτsaw]δ (v− vb) (3.70)

where Srel = cSn2
eT 2

0,rel/v2
b is the source term associated with the relaxed (flat profile)

temperature. As detailed in App. A, the time dependent solution of Eq. ( 3.54) for
particles born during the n− th sawtooth cycle is:

fα,n(r, t,v) = τsd0v2−3lα
b v−3+3lα H [vb − v]×

Srel

{
1+A(r)

[
t

τsaw
+

τsd0

τsaw
log
(

v
vb

)
−n
]}2

×

H
[
v− vbe(nτsaw−t)/τsd0

]
H
[
vbe((n+1)τsaw−t)/τsd0 − v

]
(3.71)

Figure 3.4 shows the distribution function of Eq. (3.71) at different times.
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(a) (b)

Fig. 3.5 Time dependent distribution functions as a function of normalized velocity at time
t∗ = 5.5τsaw, obtained for constant τsd and varying source term. Distribution function plotted
up to the critical velocity vc, showed with vertical dotted line. In (a) the new time dependent
distribution function (solid blue) and the slowing-down considering a constant source Srel
(dashed black) are plotted for lα = 0. Figure (b) shows the same two distributions for lα = 0.5.
The ratio τsd0/τsaw = 3.

The full solution over different cycles can be obtained by summing all the
contributions coming from each n:

fα(r, t,v) =
nmax

∑
n=0

fα,n(r, t,v). (3.72)

After a slowing-down time, which is the duration for particles born during the first
(n = 0) cycle to reach the critical velocity, the solution of Eq.(3.72) becomes periodic
with a period of τsaw. In Fig.3.5, a snapshot at t = t∗ = 5.5τsaw of the solution with
τsd0/τsaw = 3 is presented. At this time, all particles born during the first sawtooth
period (n = 0) have already reached vc, and only 4 steps are visible, associated with
particles born during later sawtooth periods (n = 1− 4). For a realistic choice of
τsd0/τsaw = 3, a positive slope is obtained only if the loss term is taken into account.
In comparison with the simple slowing-down case, a positive slope can be obtained
for values of lα < 1. Neglecting losses, ∂ fα/∂v > 0 can be obtained with source
modulation only if τsd0/τsaw ∼ 10. The time dependence of the distribution function
is depicted in Fig.3.6, where the same distribution function plotted in Fig.3.5b is
displayed for t∗ = 5.1τsaw, 5.5τsaw, and 5.9τsaw.

The source modulation occurring on the τsaw timescale has a significant impact on
the slope of the distribution function in velocity space. This effect strongly depends
on the ratio between the slowing-down time and the modulation timescale τsd0/τsaw.
If the source modulation occurs on timescales longer than the slowing-down time
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(a) (b) (c)

Fig. 3.6 Distribution function plotted for different times during the sawtooth ramp. The
critical velocity vc is showed with vertical dotted line. The loss exponent considered is
lα = 0.5 and τsd0/τsaw = 3. Solid blue line: time dependent distribution function; Dashed
black line: slowing-down with constant source Srel . The times displayed are t∗ = 5.1τsaw (a),
t∗ = 5.5τsaw (b) and t∗ = 5.9τsaw (c)

(τsd0 < τsaw), the effect becomes negligible. The situation described in this section
can be considered analogous to the case of modulated Neutral Beam Injection (NBI)
sources with a constant temperature background plasma. Within this analogy, the
distribution function described by Eq. (3.71) is a pitch-angle averaged distribution
function of NBI fast ions when their source follows a sawtooth-like waveform signal.
A similar result was obtained for a pulsed source theoretically in [42] and verified
experimentally in DIII-D [43].

3.3.4 Temperature modulation for τsd and constant source

In this sub-section, the effect of a non-constant slowing-down time is analyzed. A
time independent source is assumed, Sα = S0δ (v−vb), while the slowing-down time
follows:

τsd(r, t) = τsd,rel

[
1+A(r)

(
t

τsaw
−
⌊

t
τsaw

⌋)]3/2

(3.73)

where τsd,rel is the slowing-down time in the relaxed, post-crash phase, where the
on-axis temperature is lowest and the slowing-down time is shortest. Also in this
scenario, we can track fast particles generated during different sawtooth cycles and
eventually combine their contributions. However, due to the discontinuities in τsd

associated with the temperature variation at the crashes, particular care is required,
as discussed extensively in App. A. For the sake of simplicity, losses are neglected,
i.e., νl = 0.
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The distribution function for particles born during the n-th sawtooth cycle is:

fα,n(r, t,v) = S0
v2

b
v3 H [vb − v]×

τsd,rel

{
1+A(r)

[
t̂n(r, t,v)

τsaw
−n
]}3/2

×

H [v− v̂n,min(r, t)]H [v̂n,max(r, t)− v] (3.74)

Here, t̂n(r, t,v) is a rather complicated function proportional to τsaw, as defined
in Eq.(A.47) of App.A. As illustrated for the source modulation case in Fig.3.4,
particles born in each sawtooth cycle are associated with time-dependent minimum
and maximum velocities. The same is true for varying τsd , and these velocities are
v̂n,min and v̂n,max, defined in Eqs.A.48 and A.49. Similar to the case with constant
τsd , the full solution can be obtained by summing the contributions of each cycle:

fα(r, t,v) =
nmax

∑
n=0

fα,n(r, t,v) (3.75)

A snapshot of the full solution at time t = t∗ = 5.5τsaw is depicted in Fig. 3.7 for
τsd,rel/τsaw = 3. The distribution function becomes periodic, with period τsaw, after
the particles born during the first (n = 0) cycle have reached the critical velocity.

During each sawtooth ramp, the temperature increases linearly within the q = 1
radius. Particles born early in this process experience more pronounced slowing
down due to collisions with the colder plasma, in contrast to those born later, who
are less affected by collisions. This leads to an accumulation of particles at high
energy born in the later stages of the ramp. Depending on the parameter τsd,rel/τsaw,
this effect can induce a change in the derivative ∂ fα(r, t,v)/∂v. However, similar to
the source modulation case, this effect alone is insufficient to reverse the slope of the
distribution function for values of τsd,rel/τsaw ≲ 10.

This effect is not limited to the case of fusion-born alphas. Indeed, the solution
of Eq.(3.74) can be considered as a pitch-angle averaged distribution for a fast ion
population injected with any constant source into a sawtoothing plasma.
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Fig. 3.7 Time dependent distribution function as a function of normalized velocity at time
t∗ = 5.5τsaw, obtained for varying τsd and constant source term. The distribution function
is plotted up to the critical velocity showed with vertical dotted line. The time dependent
distribution function (solid blue) is plotted for ratio τsd,rel/τsaw = 3, together with the slowing-
down obtained for a constant slowing-down time τsd,rel (dashed black).
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3.3.5 Temperature modulation for both τsd and source

The combination of the effects discussed in subsecs.3.3.3 and 3.3.4 is considered here,
representing the relevant scenario for alpha particles generated by fusion reactions in
a sawtoothing plasma. The influence of the constant loss term is neglected, assuming
νl = 0. The particle source follows Eq.(3.70), and the slowing-down time varies
according to Eq.(3.73). Similar to the previous situations, we initially focus on the
solution for a single n-th cycle. Following the detailed procedure in App.A, the
resulting distribution function is:

fα,n(r, t,v) = Srel
v2

b
v3 H [vb − v]×

τsd,rel

{
1+A(r)

[
t̂n(r, t,v)

τsaw
−n
]}7/2

×

H [v− v̂n,min(r, t)]H [v̂n,max(r, t)− v] (3.76)

The full solution is obtained again as the combination of the solutions associated to
different ns, i.e. the summation of particles born during each n-th cycle:

fα(r, t,v) =
nmax

∑
n=0

fα,n(r, t,v). (3.77)

Figure 3.8 illustrates how the combination of the two effects enhances the slope
change of the distribution function in velocity space, resulting from the periodic tem-
perature evolution. A scenario with a piece-wise positive slope can be achieved with
values of τsd,rel/τsaw ∼ 3, which is relevant for present-day tokamak experiments. In
the limit of τsaw → ∞, corresponding to a constant temperature, the slowing-down
solution of Eq. (3.61) is recovered.

3.4 Concluding remarks

In this chapter, we have outlined the Magneto-Hydro-Dynamic models that will be
employed in the subsequent chapters. A particular focus has been placed on the
significant impact of superthermal ions and the necessity for a kinetic closure of
the model. This discussion led to the formulation of the extended energy principle,
which will be used to explore plasma stability in the presence of energetic ions.
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Fig. 3.8 Time dependent distribution function as a function of normalized velocity at time t∗ =
5.5τsaw, obtained varying both τsd and source term. The distribution function is plotted up to
the critical velocity showed with vertical dotted line. The new time dependent distribution
function (solid blue) is shown for ratio τsd0/τsaw = 3, together with the slowing down
obtained for a constant slowing-down time τsd,rel (dashed black). The combination of the
two effects lead to a distribution function with piecewise ∂ f/∂v > 0.
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Additionally, we highlighted the crucial role played by the equilibrium distribution
function in velocity space for n = 0 modes.

The chapter concluded with the derivation, using the simplified Fokker-Plank
equation, of various distribution functions that could serve as a source of free energy
for n = 0 modes resonating with energetic ions.

Fast-ion distribution function with positive slope in velocity space can be obtained
through losses, velocity space anisotropy and due to two effects associated with
temperature oscillations during the sawtooth dynamics, discussed in our work for
the first time [14].



Chapter 4

Vertical modes

As previously mentioned, the primary focus of this work is to investigate the stability
of axisymmetric toroidal modes characterized by the toroidal mode number n = 0.
Specifically, our analysis aims to describe the interaction between n = 0 vertical dis-
placement oscillations resulting from the stabilization of the ideal vertical instability
and the presence of fast ions.

To achieve this goal, it is imperative to first establish a rigorous and comprehen-
sive description of vertical stability within the ideal MHD model. This represents the
basis for studying how the plasma stability is influenced by superthermal particles,
following the procedure of Sec. 3.2.1. Therefore, this chapter is dedicated to the
ideal MHD examination of vertical stability in tokamak plasmas, with the objective
of deriving a dispersion relation that characterizes the oscillatory modes induced by
the stabilization of the ideal vertical instability.

The content of this chapter is based on the results published in Ref. [15].

4.1 Plasma vertical stability - Heuristic

A simple heuristic model, which features currents flowing in three parallel rectilinear
wires, helps us to understand the mechanism and timescales of the vertical instability.
This well-known toy model has been discussed in the literature, and a straightforward
derivation of the dispersion relation for the ideal wall scenario can be found in
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references such as [56–58]. For the reader’s convenience, this calculation is reported
here, along with its extension to the case of a resistive wall.

Referring to Fig. 4.1, consider the vertical direction denoted by y. The currents
flow along the z direction, mimicking the toroidal direction of a tokamak plasma.
The two "external" currents, IExt , are equal and positive, fixed at y =±l, while the
"plasma" current, Ip, can drift along the vertical direction. Vacuum surrounds the
three wires. It’s evident that y = 0 is an unstable equilibrium point for the plasma
wire. Also depicted in Fig. 1 are magnetic X-points located at y =±ly < l.

The equation of motion for the plasma wire is

µm ÿ =
4 IP IExt

c2
y

l 2 − y2 , (4.1)

with µm the linear mass density, c the speed of light, and an over-dot denotes time
derivative (c.g.s. units have been adopted). Neglecting self and mutual induction
currents, IP and IExt remain constant as the plasma wire is displaced. For small
y ≪ l, the solution of Eq. (4.1) is y = y0 eγH t , where y0 is an initial displacement,
and γH = (1/l)(4IPIExt/µmc2)1/2.

Instead of a plasma wire, consider a vertically elongated plasma with uniform
current density extending up to an elliptical magnetic surface with a minor semi-axis
a and a major semi-axis b. According to the analysis in Ref. [59], a relationship
is established involving the currents IP and IExt and the distance l: IExt/IP = [(b−
a)/(b+ a)][l2/(a2 + b2)]. With this expression, γH depends solely on the plasma
current IP and the semi-axes a and b, being independent of IExt and l. Additionally,
µm can be replaced by µm → πabρm, where ρm is the volume mass density. After
straightforward algebra, and considering the limit of small ellipticity, e0 ≪ 1, where

e0 =
b2 −a2

b2 +a2 , (4.2)

the growth rate can be written as:

γH = e0
1/2

τA
−1, (4.3)

where τA
−1 = BP

′
/(4π ρm)

1/2 is the inverse Alfvén time, and BP
′
is the radial deriva-

tive of the poloidal magnetic field on the magnetic axis. Note that, for a circular
plasma cross-section, e0 = 0 and the growth rate γH vanish. Considering typical
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Fig. 4.1 Schematic diagram of the heuristic model for vertical instability.

values of present-day tokamak experiments, γ
−1
H is indeed a fast growth time of the

order of a few microseconds.

A perfectly conducting wall can offer passive feedback stabilization of the vertical
instability. The stabilization mechanism is described as follows: when the plasma
undergoes displacement from its equilibrium position, image currents are induced at
the wall. The direction of these currents is such that the resulting net force opposes
the motion of the plasma wire. In the heuristic model, this effect can be modeled by
assuming two currents of opposite sign, ±δ I, proportional to the displacement of
the plasma column and localized at y =±l. Then,

Lδ İ = LDIExt ẏ/l, (4.4)

where L is an effective inductance and D is a dimensionless proportionality constant,
which, in the case of a tokamak plasma, can be determined in terms of the wall
geometry. Taking the limit y ≪ l, the equation of motion modified by the feedback
currents becomes:

µm c2 ÿ ≈ 4 IP IExt (1−D)y/l 2 (4.5)

The vertical instability is thus suppressed for D > 1. In the actual tokamak case,
this corresponds to a criterion related to the plasma boundary-wall distance. When
the feedback currents succesfully stabilize the plasma wire, Eq. (4.5) implies that it
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oscillates vertically with frequency

ω =±ωH =±
√

D−1γH . (4.6)

These two solutions with frequency ω =±ωH are a first indication of what we dub
"vertical displacement oscillatory modes", or VDOM.

For the more realistic case of a resistive wall, equation (4.4) is modified into

Rδ I +Lδ İ = LDIExt ẏ/l. (4.7)

After straightforward algebra, and again in the limit y ≪ l, we find

µmc2 ...y = 4IPIExt ẏ/l2 −4IPδ̇ I/l. (4.8)

Eliminating δ̇ I, we obtain the third-order differential equation for y:

...y +
1
τR

ÿ+ω
2
H ẏ− 1

τR

ω2
H

D−1
y = 0 (4.9)

where τR = L/R is the resistive wall penetration time.

We consider the limit D > 1, where the ideal vertical instability is suppressed.
Looking for solutions of the type y(t)∼ y0eγt , a cubic dispersion relation for complex
γ is obtained:

γ
3 +

1
τR

γ
2 +ω

2
Hγ − 1

τR

ω2
H

D−1
= 0, (4.10)

where ωH is defined in Eq. (4.6). In the regime of low wall resistivity, where
ωHτR ≫ 1, the two VDOM oscillatory roots observed in the ideal wall scenario are
damped. If we set γ =−iω , these damped modes exhibit a complex frequency:

ω =±ωH − iD
2(D−1)τR

. (4.11)

A third root is obtained, corresponding to a resistive instability with growth rate

γ =
1

(D−1)τR
≡ γR. (4.12)

For this non-rotating, unstable mode, the inverse growth rate scales with τR. Given
typical tokamak parameters, the growth time is of the order of a few milliseconds.
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To mitigate the growth of the resistive wall instability, active feedback control
involving currents external to the tokamak vacuum chamber can be used [60–63]. It
is important to note that as long as the VDOM remains damped, it is not expected to
impact the active stabilization system applied to this n = 0 resistive wall mode.

In the following the study of the ideal-MHD normal mode problem applied to
n = 0 perturbations results in a more general dispersion relation. In the limit of small
ellipticity, this general dispersion relation reduces to the heuristic model result of
(4.10), confirming its validity.

4.2 Vertical modes

The analysis in this section is reported in our publications, as referenced in Refs.
[15, 64, 57, 65]. The vertical instability is appropriately modeled using the reduced
ideal-MHD model [66] derived from the Eqs. (3.9-3.14), which is well-established
for normal-mode analysis. For axisymmetric modes, the influence of toroidal effects
is negligible, and thus, the analysis adopts the "straight tokamak" approximation.
The magnetic field is B = ez ×∇ψ +Bz ez, where ez is the unit vector along the
ignorable z-direction, which mimics the toroidal coordinate, and Bz is constant. The
plasma flow is v = ez×∇ϕ +vz ez. In the standard low-β limit for a tokamak plasma,
the fields Bz and vz decouple from the fields ψ and ϕ . Therefore, the magnetic flux
function, ψ , and the stream function, ϕ , obey the model equations [66]:

∂ψ

∂ t
+[ϕ,ψ] = 0, (4.13)

∂

∂ t
∇ · (ρ ∇ϕ)+ [ρ,(∇ϕ)2]+ [ϕ,ρ]U +[ϕ,U ] = [ψ,J] . (4.14)

In these equations, all quantities are dimensionless, brackets are defined as [χ,η ] =

ez ·∇χ ×∇η , J = ∇2ψ is the normalized current density, and U = ∇2ϕ is the
normalized flow vorticity. Space and time are normalized as r̂ = r/r0, where r0 =

ab/[
(
a2 +b2)/2]1/2 is a convenient equilibrium scale length, and t̂ = t/τA, where

τA is the poloidal Alfvén time defined below Eq. (4.3). The dimensionless fields are
normalized as ψ̂ = ψ/(Bp

′
r2

0), ϕ̂ = (τA/r0
2)ϕ; the plasma density is normalized to

its on-axis value, ρ̂ = ρm/ρm0, and the current density is Ĵ = (4π/cBp
′
)Jz. In order
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to simplify the notation, over-hats are actually dropped in Eqs. (4.13) and (4.14),
and in the following.

At equilibrium, fields are stationary, and, by assumption, the equilibrium plasma
velocity is neglected. The current density, Jeq, is assumed to be uniform up to an
elliptical boundary with minor semi-axis a and major semi-axis b. Beyond this
boundary, in the vacuum region, the current density drops to zero. It is important to
note that the elliptical boundary must correspond to a magnetic flux surface, located
within the region delimited by the magnetic separatrix. In elliptical coordinates
(µ,θ), where x = Asinh(µ)cos(θ) and y = Acosh(µ)sin(θ), with A =

√
b2 −a2,

the elliptical boundary corresponds to µ = µb, such that a = Asinh µb and b =

Acosh µb. The equilibrium current density is Jeq(µ) = 2H(µb −µ), where H(x) is
the Heaviside unit step function.

Inside the elliptical boundary, where µ < µb and ψ = ψ−
eq, the solution of

∇2ψ−
eq = 2 can be easily written in terms of Cartesian components, following the

analysis of Ref.[59]:

ψ
−
eq(x,y) =

1
2

(
x2

b2 +
y2

a2

)
. (4.15)

In the vacuum region outside the elliptical boundary, where µ > µb, the equilibrium
flux ψeq = ψ+

eq satisfies ∇2ψ+
eq = 0. The superscripts ”− ” and ”+ ” indicate the

plasma and vacuum regions, respectively. Assuming no equilibrium current sheets,
the continuity of ψeq and its derivative along the normal to the boundary must be
maintained across the boundary. The relevant analytic solution is

ψ
+
eq(µ,θ) =

1
2
+α

2
{

µ −µb +
e0

2
sinh [2(µ −µb)]cos(2θ)

}
(4.16)

with α2 = ab/r2
0 and e0 the ellipticity parameter defined in Eq. (4.2). Magnetic flux

surfaces ψeq(µ,θ) = const exhibit a magnetic separatrix at ψeq(µ,θ) = ψX = µb α2,
with X-points located at µ = µX = 2µb and θ = θX = π/2±nπ .

Also the equilibrium plasma density profile is assumed to be uniform up to the
elliptical boundary µ = µb, with ρeq = H(µb−µ). This model equilibrium describes
a plasma that terminates well before the magnetic separatrix. The equilibrium
magnetic X-points lie either outside the plasma containment chamber, or in the
vacuum region.
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The choice of this specific equilibrium is justified by two main reasons. Firstly,
we aim to conduct a fully analytic treatment of the normal-mode problem, which
is more convenient with a relatively simple equilibrium. Secondly, based on prior
investigations of the vertical stability problem, the effects associated with gradients
of the equilibrium plasma current density are expected to play a minor role. It’s
worth noting that the equilibrium used in this article aligns with that employed in
Ref. [67].

For stability considerations, set ψ(µ,θ , t)=ψeq(µ,θ)+ψ̃(µ,θ)eγ t and ϕ(µ,θ , t)=
ϕ̃(µ,θ)eγ t , where the over-tilde denotes small perturbed quantities and γ =−iω .
The linearized version of Eqs. (4.13) and (4.14) is

γ ψ̃ +
[
ϕ̃,ψeq

]
= 0, (4.17)

γ ∇ · (ρeq∇ϕ̃) =
[
ψ̃,Jeq

]
+
[
ψeq, J̃

]
. (4.18)

In the region µ < µb, the stream function corresponding to a rigid vertical shift is
represented in elliptical coordinates by

ϕ̃(µ,θ) = γ ξ a
sinh µ

sinh µb
cosθ . (4.19)

where ξ is the vertical displacement of the plasma column. From the flux freezing
condition (5.4) we obtain the corresponding perturbed magnetic flux:

ψ̃
−(µ,θ) =−ξ

b
cosh µ

cosh µb
sinθ (4.20)

Since Ũ , J̃, ∇ρeq and ∇Jeq all vanish inside the elliptical boundary, Eq. (4.18)
is trivially satisfied. Note that in elliptical coordinates, ∇2χ = h−2(∂ 2χ/∂ µ2 +

∂ 2χ/∂θ 2), where h = 1/|∇µ| = 1/|∇θ | is a scale factor, with h2 = A2(cosh2µ +

cos2θ)/2.

When an ideal or resistive wall is present, the rigid-shift solutions (4.19) and
(4.20) for the stream function and the perturbed flux in the plasma region remain
valid. In the vacuum region, the perturbed flux satisfies ∇2ψ̃+ = 0, and its solution
can be represented as

ψ̃
+(µ,θ) =−ξ∞

b
exp [−(µ −µb)]sinθ +

ξext

b
cosh µ

cosh µb
sinθ . (4.21)
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In this expression, ξ∞ represents the amplitude of the rigid vertical displacement
in the scenario where the wall is moved to infinity. The term proportional to ξext

accounts for the contribution to the perturbed flux arising from image currents
generated on the wall when it is at a finite distance from the plasma boundary.
Flux continuity at the plasma boundary implies that ξ = ξ∞ −ξext , resulting in the
reduction of the actual vertical displacement ξ compared to the no-wall case by the
amount ξext . Consequently, a perturbed current sheet forms at the plasma boundary:

J̃(µ,θ) = j̃b(θ)δ (µ −µb) =
1
h2

(
∂ψ̃+

∂ µ
− ∂ψ̃−

∂ µ

)∣∣∣∣
µb

δ (µ −µb), (4.22)

where δ (x) is the Dirac delta function. A staightforward calculation yields the
ellipitical-angle modulation of the current sheet:

j̃b(θ) =
2(a+b)

b2(a2 +b2)

ξ∞ sinθ

1+ e0 cos2θ
. (4.23)

Note that j̃b(θ) depends only on ξ∞ and not on ξext : the current sheet at the plasma
boundary does not depend on the wall.

4.2.1 Dispersion relation

In this subsection, utilizing quadratic forms, we derive a dispersion relation for
n = 0 vertical modes, dependent on geometric parameters, a and b, and a function,
Dw(γ), determined by the wall’s geometry and resistivity. This function becomes
independent of γ in the ideal wall limit.

To accomplish this, we introduce the auxiliary stream function ϕ̃†, which matches
the complex-conjugate stream function within the plasma volume (up to µ = µb + ε ,
including the perturbed current sheet at the plasma boundary). Beyond this region, in
the vacuum, ϕ̃† is set to zero. Multiplying the perturbed plasma equation of motion
(4.18) by ϕ̃†/2γ∗ and integrating over the entire volume up to infinity, we obtain
through standard manipulations:

−γ
2 1

2

∫
Ω

d3xρeqξ ·ξ ∗ =−1
2

∫
Ω

d3xξ
∗ ·
[
(J̃×Beq)+(Jeq × B̃)

]
(4.24)
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where ξ = ez ×∇ϕ̃/γ is the displacement vector and Ω denotes the plasma volume.
Thus, the dispersion relation can be written as

−γ
2 = δW/δ I, (4.25)

where
δ I =

1
2

∫
Ω

ρeqξ ·ξ ∗d3x (4.26)

and
δW =−1

2

∫
Ω

ξ
∗ ·F(ξ )d3x, (4.27)

with F(ξ ) =
[
(J̃×Beq)+(Jeq × B̃)

]
the force density operator in the low β limit.

Straightforward algebra, using d3x = h2dθdµdz, leads to

δ I =
1
2

∫
Ω

d3xρeq
∇ϕ̃ ·∇ϕ̃∗

|γ|2
=

π

2
abLzξ

2, (4.28)

where Lz is the length of the straight tokamak. Without loss of generality, we can
assume ξ to be real, representing the amplitude of the vertical displacement discussed
in the previous section. The perturbed energy integral is then given by:

δW =
1
2

∫
Ω

d3x
(

ez ×
∇ϕ̃∗

γ∗

)
· (J̃∇ψeq + Jeq∇ψ̃). (4.29)

The last term can be further manipulated, utilizing the results for the perturbed
stream function and the perturbed magnetic flux obtained above. The potential
energy integral δW can be expressed as the sum of two terms. The first term is:

1
2

∫
Ω

d3xJ̃∇ψeq · (ez ×
∇ϕ∗

γ∗
) =

Lz

2

∫ 2π

0
dθ

∫
µb+ε

0
dµh2 j̃b(θ)δ (µ −µb)∇ψeq · (ez ×

∇ϕ†

γ∗
) =

π

2
a+b

b3 Lzξ∞ξ .

(4.30)

The second term can be expressed as

1
2

∫
Ω

d3xJeq∇ψ̃ · (ez ×
∇ϕ∗

γ∗
) =

Lz

2

∫ 2π

0
dθ

∫
µb+ε

0
dµh2Jeq∇ψ̃

− · (ez ×
∇ϕ∗

γ∗
) =−π

2
a2 +b2

ab3 Lzξ
2.

(4.31)
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It is convenient to introduce the quantity

Dw =
ξext

ê0ξ∞

, (4.32)

where ê0 = e0b/(a+b). Then, combining Eqs. (4.30), (4.31) and (4.32), remember-
ing that ξ = ξ∞ −ξext , we obtain

δW =−π

2
Lz

1−a/b
ab

1−Dw

1− ê0Dw
ξ

2. (4.33)

Thus, Eq. (4.25) yields the dispersion relation:

γ
2 =

1−a/b
a2b2

1−Dw

1− ê0Dw
. (4.34)

This dispersion relation is "general," meaning that it is applicable to the three cases
of interest: the no-wall limit, the ideal wall case, and the resistive wall case. Wall
effects are incorporated in Eq. (4.34) through the single stability parameter, Dw. In
Eq. (4.34), parameters a and b are normalized to the scale length r0 defined below
Eq.(4.14). Reintroducing dimensions, the dispersion relation(4.34) takes the form:

(γτA)
2 =

r4
0

a2b2

(
1− a

b

) 1−Dw

1− ê0Dw
(4.35)

Thus, the stability of the mode is described by the quantity Dw, determined
once the location and nature (ideal or resistive) of the wall are established. As
demonstrated in the following subsections, for a perfectly conducting wall, Dw is
a real, γ-independent quantity that reduces to the parameter D introduced in the
heuristic model of Sec. 4.1. In this scenario, the relevant dispersion relation is
quadratic in γ , and the sign of γ2, dependent on the sign of 1−Dw, dictates the
stability of vertical displacements in the ideal-MHD limit. However, if a resistive
wall is considered, then Dw = Dw(γ), and the dispersion relation becomes cubic in γ ,
as discussed in Subsec. 4.2.4.

4.2.2 Wall at infinity

The initial case under investigation is the no-wall limit, or equivalently, the scenario
where the wall is positioned at infinity. In this situation, ξext = 0, resulting in Dw = 0.
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The vertical mode is unstable, featuring γ2 as a positive real value (for b > a), which
diminishes to zero in the circular limit, a = b. The growth rate of the mode is given
by:

γ =
r2

0
ab

(
1− a

b

)1/2
τ
−1
A ≡ γ∞ (4.36)

γ2 can also be written in terms of the ellipticity parameter,

γ
2 = (1− e0)(1+ e0 −

√
1− e2

0 )τ
−2
A ≡ γ

2
∞. (4.37)

It’s noteworthy that this result holds for arbitrary values of e0 within the interval
0 ≤ e0 ≤ 1. In the small ellipticity limit, γ∞ converges to γH in Eq. (4.3), and the
mode growth rate coincides with the heuristic result from Sec. 4.1.

4.2.3 Passive feedback stabilization: Ideal wall

Consider the scenario where the wall is described by an elliptical coordinate surface,
given by µ = µw, and is confocal to the elliptical plasma boundary located at µ = µb,
where µw ≥ µb. If the wall is ideal, the perturbed flux in Eq. (4.21) must vanish at
µ = µw, leading to the condition:

ξext

ξ∞

=
e−(µw−µb) cosh µb

cosh µw
=

1+ exp(2µb)

1+ exp(2µw)
. (4.38)

Now, let us use

aw = Asinh µw, bw = Acosh µw, (4.39)

a = Asinh µb, b = Acosh µb, (4.40)

where A =
√

b2
w −a2

w =
√

b2 −a2, with bw and aw the major and minor semi-axes
of the elliptical wall, respectively. It follows that

e2µb =
b+a
b−a

, (4.41)

e2µw =
bw +aw

bw −aw
, (4.42)
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Using Eqs. (4.38)-(4.42) and the definition of Dw in Eq. (4.32), we obtain

Dw =
b2 +a2

(b−a)2
bw −aw

bw
≡ D. (4.43)

It’s worth noting that as the wall is moved further away from the plasma boundary,
it tends to become more "circular" due to the assumption of confocality with the
elliptical plasma boundary. Consequently, as bw/b → ∞, we have bw → aw and
D → 0. If not for an extra term in the denominator of Eq. (4.34) proportional to ê0,
which becomes negligible for small ellipticity, the dispersion relation (4.34) with
Dw =D closely aligns with the heuristic dispersion relation obtained in Sec. 2. When
D > 1, γ2 is negative, and the vertical mode oscillates with a real frequency:

ω =±ω0 =±
[

D−1
1− ê0D

]1/2

γ∞, (4.44)

which reduces to ωH defined in Eq. (4.6) in the limit of small ellipticity. The
quadratic nature of the dispersion relation indicates that, in the limit of D > 1, only
the Vertical Displacement Oscillatory Modes (VDOM) solutions can be identified.
Consequently, an ideal elliptical wall, confocal with the elliptical plasma boundary,
can passively stabilize the vertical instability when Dw =D> 1. The maximum value
of D occurs when the wall and the plasma boundary coincide, µw = µb, yielding
D = Dmax = (a+b)/(e0b). As an example, consider aw = a, bw = b, and b/a = 1.8,
leading to Dmax ≈ 2.9. It’s noteworthy that as µw → µb, the vertical oscillatory modes
has a frequency approximately given by ω ≈±[(Dmax −1)/1− ê0Dmax]

−1/2γ∞. At
the same time, the amplitude of the displacement, ξ = ξ∞ − ξext, tends to zero as
ξext → ξ∞. As the wall is moved farther from the plasma boundary, the value of
D monotonically decreases, and a purely oscillatory solution persists as long as D
remains greater than unity.

It can be verified through Eqs.(4.38)-(4.42) that the critical stability threshold,
D = 1, is reached when µw = 2µb, signifying that the elliptical wall intersects the
X-points. Consequently, our model suggests that values of D < 1, where passive
feedback stabilization is not feasible, occur when the X-points are situated within
the volume bounded by the wall. This outcome aligns with the findings of Laval
et al.[67], derived from the ideal-MHD energy principle. However, this conclusion
is specific to the case of confocal wall and plasma boundaries. For different wall
shapes that closely match the plasma boundary, passive feedback stabilization due
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to the ideal wall may not demand the X-points to be positioned beyond the wall.
Moreover, in actual tokamak plasmas, additional coils and/or short-circuited plates
within the vacuum chamber can contribute to passive feedback stabilization [63, 62].
Lastly, as demonstrated in Refs. [57, 65], if the plasma extends to the magnetic
separatrix, typical for a divertor tokamak plasma, axisymmetric plasma currents
linked to vertical displacement perturbations are induced near the magnetic X-points.
Consequently, these currents can also play a role in the passive feedback stabilization
of the vertical instability.

4.2.4 Passive feedback stabilization: Resistive wall

Finally, we consider the more realistic scenario of a resistive wall. In this case, the
perturbed magnetic flux is not constrained to be zero at the wall and can diffuse
across the resistive wall on the timescale of wall resistivity. We can distinguish
three different regions: inside the elliptical boundary, µ ≤ µb, where the perturbed
flux ψ̃ is given by ψ̃− as defined in Eq. (4.20). In the vacuum region between the
plasma boundary and the wall, µb ≤ µ ≤ µw, where ψ̃ is given by ψ̃+ as defined
in Eq. (4.21). In the vacuum outside the wall, where ψ̃ = ψ̃out is the solution of
∇2ψ̃out = 0 that decays to zero at infinity. Focusing on vertical displacements with
elliptical mode number m = 1, the relevant solution for the third region is given by:

ψ̃out(µ,θ) = ψ0e−(µ−µw) sinθ for µ ≥ µw +δw, (4.45)

where δw is a small parameter representing the average width of the thin wall.

Two conditions at the wall determine the parameters ψ0 and Dw. The first
condition is the continuity of flux at the wall, expressed as ψ̃+(µw,θ) = ψ̃out(µw,θ),
which yields:

ψ0 =−ξ∞

b
e−(µw−µb)+

ξext

b
cosh µw

cosh µb
. (4.46)

The second condition is related to the current flowing along the wall. Considering
the resistive Ohm’s law for the perturbed magnetic flux within the wall, expressed as
∂ψw/∂ t = (ηc2/4π)∇2ψw, where η is the wall resistivity, after proper normaliza-
tion, we get:

∇
2
ψ̃w =

γ

εη

ψ̃w (4.47)
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where εη = (ητAc2)/(4πr2
0) is the inverse of the relevant dimensionless Lundquist

number. If the wall is relatively thin, we can neglect the dependence on µ of the
perturbed flux at the right-hand side of Eq.(4.47). This approximation is similar to
the standard constant-ψ approximation used in magnetic reconnection theory. Let
ψ̃ = ψ̂(µ)sinθ . We assume the ordering ∂ 2

µ ψ̂ ∼ ψ̂/(µwδw)≫ ψ̂ . Then, Eq.(4.47)
can be approximated as:

d2ψ̂

dµ2 = h2 γ

εη

ψ0. (4.48)

Integrating across the thin wall,

∫
µw+δw

µw

d2ψ̂

dµ2 dµ =
∫

µw+δw

µw

h2 γ

εη

ψ0dµ. (4.49)

The scale factor h is defined below Eq. (4.20). In a more precise sense, h has
dependencies on both µ and θ . However, under the assumption of small wall
ellipticity, which is considered in the subsequent analysis, the modulation of h along
the wall in the θ direction is negligible. Therefore, we can make the approximation
h(µw,θ)≈ bw. Performing the integration, the result is:(

dψ̂out

dµ
− dψ̂+

dµ

)∣∣∣∣
µw

=
γδwb2

w
εη

ψ0, (4.50)

or equivalently

−ξ∞

b
e−(µw−µb)− ξext

b
sinh µw

cosh µb
=

(
1+

γδwb2
w

εη

)
ψ0. (4.51)

Eqs. (4.46 ) and (4.51) are two equations that can be used to determine the two
parameters, ψ0 ∝ ξ∞, and ξext/ξ∞ ∝ Dw, cf. (4.32). After straightforward algebra,
we obtain

Dw(γ) = D
γτη

1+ γτη

, (4.52)

and
ψ0 =−ξ∞

b
bw

(a+b)
e0D

(1+ γτη)
. (4.53)

In these equations D is the one defined in Eq. (4.38). The term τη = [b3
w/(aw +

bw)]δw/εη represents the resistive wall time, normalized by the relevant Alfvén time.
Notably, the stability parameter Dw exhibits dependence on γ due to the finite wall
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resistivity. As τη tends to infinity in the ideal wall limit, Dw(γ) reduces to D, the
parameter discussed in subsection 4.2.3. Additionally, Eq.(4.53) indicates that the
perturbed flux at the wall tends to zero in the ideal wall limit, as expected.

Substituting Dw(γ) in Eq. (4.34), one obtains the dispersion relation for vertical
displacements in the case of feedback stabilization via a resistive wall:

γ
3 + γ

2 1
τη

1
1− ê0D

+ γω
2
0 +ω

2
0

1
τη

1
1−D

= 0 (4.54)

with ω0 defined in Eq. (4.44). The agreement between Eq.(4.54) and the heuristic
dispersion relation from Sec. 4.1, specifically Eq.(4.10), is notable. This agreement
holds particularly well in the limit of small ellipticity, where the term ê0D becomes
negligible, and ω0 reduces to ωH as shown in Eq. (4.6).

In the realistic limit where ω0τη ≫ 1, the three roots of this cubic dispersion
relation can be easily determined. For D> 1, the solutions are two damped oscillatory
roots and an unstable growing solution, given by:

ω =±ω0 − i
1

2τη

D(1− ê0)

(D−1)(1− ê0D)
(4.55)

γ =
1

(D−1)τη

(4.56)

The two weakly damped oscillatory roots found in Eq.(4.55) correspond to the two
VDOM, oscillating with a frequency slightly below the poloidal Alfvén frequency.
The presence of a resistive wall introduces a small damping rate on the order of
the inverse resistive wall time. The third root, as given by Eq.(4.56), represents
an unstable mode that grows on the resistive wall time-scale. Typical values for
the resistive wall time in tokamak devices are on the order of a few milliseconds.
As previously mentioned in Section 4.1, due to its slow growth, this non-rotating,
unstable mode is typically suppressed using active feedback control systems [63].

4.2.5 Dispersion relation close to marginal stability

In this subsection we focus on the result of Eq.4.56, which presents the linear growth
rate for the standard n = 0 resistive wall mode. The results discussed in the following
have been published in Ref. [16]. During the linear instability phase, away from
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the marginal stability boundary, the vertical displacement grows on the resistive
wall time, τηw. However, for the derivation of the parameter Dw, we assume that
the current induced on the wall can diffuse and become nearly uniform across the
wall within the mode growth time. The time it takes for the induced current to
diffuse across the wall of thickness δw can be estimated as τdiff ∼ δ 2

w/Dm, where
Dm = ηc2/4π represents the resistive diffusion coefficient. The induced current
achieves near uniformity across the wall if τdiff ≪ γ−1 ∼ τηw. This condition is
automatically fulfilled in the relevant limit δw ≪ aw.

At ideal-MHD marginal stability, when D = 1 and the third term of the dispersion
relation (4.54) vanishes, a dominant balance for the unstable root emerges involving
the first and last terms of Eq. (4.54). This balance yields:

γ ≈ γ∞

(1− ê0)1/3(γ∞τηw)1/3 =
(aw/δw)

1/3γ∞

(1− ê0)1/3(γ∞τη)1/3 (4.57)

The growth rate in this regime scales as the one-third power of the wall resistivity.
It is considerably larger than the growth rate (4.56) of the standard n = 0 resistive
wall mode (in the limit where D is positive and D− 1 = O(1)). The perturbed
current density achieves uniformity across the wall if δw ≤ δdi f f ∼ (Dm/γ)1/2 ∼
[(δw/aw)

1/6/(γ∞τη)
1/3]aw. This leads to the following inequality for the wall thick-

ness:
δw/aw ≤ (γ∞τη)

−2/5. (4.58)

In these estimates, we have assumed aw ∼ bw. If the inequality (4.58) is not satisfied,
the induced perturbed current on the wall by the vertical plasma motion does not
achieve uniformity across the wall. Instead, a skin current forms, characterized by a
width δs that is smaller than the wall width δw. In such a scenario, our derivation of
the cubic dispersion relation (4.54) needs to be reconsidered.

We can proceed similarly to the previous subsection, but now the integral in Eq.
(4.49) extends to the interval between µw and µw +(δ µ)s, where (δ µ)s = δ s/aw,
denoted by the subscript "s" for "skin". The derivation of the parameter Dw follows
the same procedure, resulting in a form similar to Eq. (4.52), but with the crucial
difference that τηw should be replaced by

τηs = (δs/aw)τη . (4.59)



4.2 Vertical modes 75

While δw represents the physical width of the wall and is a given parameter, δs

depends on the mode growth rate, hence its value can only be determined af-
ter solving the dispersion relation. A reasonable estimate for the skin depth is
δs = (Dm/γ)1/2. Thus, we obtain the dispersion relation (4.54), with τηw replaced
by τηs = α0(τη/γ)1/2, where α2

0 = [(1+κ2
w)κw]/[2(1+κw)] represents a wall geo-

metrical factor, and κw = bw/aw:

γ
3 +

γ2

α0(1− ê0D)(τη/γ)1/2 + γγ
2
∞

D−1
1− ê0D

− − γ2
∞

α0(1− ê0D)(τη/γ)1/2 = 0.

The relevant dispersion relation is no longer cubic in γ . However, the relevant
unstable root in the limit D = 1 and γ∞τηs ≫ 1 can be obtained by balancing the first
and the last term of Eq. (??):

γ ≈ γ∞

[α0(1− ê0)]2/5(γ∞τη)1/5 . (4.60)

Thus, a growth rate that scales with the one-fifth power of the wall resistivity and
independent of the wall thickness δw is obtained when inequality (4.58) is not
satisfied. The growth rate (4.60) exceeds the growth rate (4.57). The two growth
rates match, as expected, when δw/aw ∼ (γ∞τη)

−2/5. In these asymptotic relations,
we have assumed α0 and (1− ê0) to be of the order of unity.

In regimes away from marginal stability, the resistive wall vertical displacement
grows with a characteristic time of approximately τηw = (δw/aw)τη (cf. Eq. (4.56)).
For typical parameter values such as τη ∼ 0.1s and δw/aw ∼ 10−2, the resistive
growth time is on the order of τηw ∼ 1 ms. This duration is significantly longer
compared to the ideal-MHD growth time. Near ideal-MHD marginal stability, D ≈ 1,
the resistive wall vertical displacement can grow much faster. Let us first estimate
the growth rate in the thin wall limit. With the parameter values declared above,
γ∞τηw ∼ 103 and, using the growth rate in Eq. (4.57), γ−1 ∼ 10µs. The thin wall
limit, Eq. (4.58), is marginally satisfied for the value of δw/aw ∼ 10−2 declared
above, since (γ∞τη)

−2/5 ∼ 10−2. The inverse growth rate in the regime where skin
currents are induced on the wall, i.e., using the growth rate in Eq. (4.60), also
gives γ−1 ∼ 10µs. In Fig. 4.2, we present a numerical solution of the dispersion
relation (4.54) focusing on the unstable root. The plot ranges from D = 0.9 to 1.1.
Whether the thin wall limit, or the induced skin current regime, apply in real tokamak
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experiments depends on a more accurate evaluation of the parameters δw/aw and
γ∞τη .

Fig. 4.2 Growth rate γn, normalized to the thin wall limit growth rate in Eq. (4.57), as function
of the ideal wall parameter D close to ideal marginal stability. The blue curve shows the
numerical solution of the full cubic dispersion relation (Eq. 4.54), while the dashed red line
represents the ideal wall solution.

4.3 Oscillatory modes: VDOM

In this section, we aim to underscore the key characteristics of the oscillatory Vertical
Displacement Oscillatory Modes (VDOM), which represent the primary focus of
this study and have received relatively little attention in the context of the vertical
stability dispersion relation in the past.

VDOM manifest as axisymmetric modes in a toroidal tokamak plasma, charac-
terized by a toroidal mode number n = 0. These modes induce an up–down motion
of the entire plasma column and are predominantly composed of Fourier components
with an elliptical mode number m = 1. Due to the symmetry of the up–down motion,
the perturbed streamfunction exhibits even symmetry with respect to the elliptical
angle θ (with θ = 0 corresponding to the horizontal direction), while the perturbed
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magnetic flux displays odd symmetry with respect to θ . Our derivation is obtained
in the reduced ideal-MHD model and made use of a ’straight-tokamak’ equilibrium
assumption, which considers a simplified elliptical plasma boundary and a uniform
current density profile.

The method of quadratic forms, coupled with the normal-mode solution describ-
ing the mode structure, proves to be a convenient approach for deriving the relevant
dispersion relation. The obtained dispersion relation involves a parameter denoted
as Dw(γ), which is a function of the complex mode eigenvalue γ = −iω in the
case of plasma confined by a resistive wall, as indicated in Eq.(4.52). Notably, Dw

reduces to a constant parameter D in the ideal wall limit, as evident from Eq.(4.43).
Moreover, in the scenario where the wall is moved to infinity (no-wall case), D tends
to 0. Consequently, the relevant dispersion relation assumes a quadratic form in γ

for the ideal wall case, including the no-wall limit. In contrast, for the case of a
resistive wall, the dispersion relation becomes cubic in γ , introducing an additional
root compared to the ideal wall scenario.

Two roots are present both for the ideal and resistive wall cases. They are
associated to vertical plasma modes, referred to as VDOM, that exhibit purely
oscillatory behavior in the presence of an ideal wall, provided the parameter D > 1.
This condition gives a limit on the distance of the ideal wall from the plasma for
a given ellipticity. Additionally, these oscillatory modes are weakly damped when
wall resistivity is considered, as described in Eq. (4.55). Figure 4.3 illustrates the
dispersion relation for the case of an ideal wall surrounding the plasma, showing the
growth rate (or frequency) as a function of plasma elongation κ = b/a for various
wall positions. The regions with positive (ωτA)

2 correspond to stable VDOM, where
D > 1 is satisfied.

4.4 Concluding remarks

In this chapter, a new theoretical description of plasma stability against vertical
displacements in the Ideal MHD limit has been presented. The focus is on the stable
branch of the cubic dispersion relation obtained when considering a resistive wall that
provides passive feedback stabilization for the vertical instability. While previous
works primarily addressed the purely growing n = 0 resistive wall mode, which
requires active feedback systems for stabilization, relatively little attention has been
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Fig. 4.3 Normalized frequency as a function of the plasma elongation κ = b/a for different
positions of a confocal ideal wall surrounding the plasma.

given to the stable branch resulting from the ideal vertical instability stabilization.
This branch describes stable oscillatory roots, but the investigation in the following
will explore the potential destabilization of these stable plasma modes in the presence
of energetic ions, suggesting the emergence of a new, interesting, fast ion-driven
mode.



Chapter 5

Fast ion drive of n=0 VDOM

The analysis of Ch. 4 showed that Vertical Displacement Oscillatory Modes (VDOM)
are natural oscillations of a tokamak plasma in the vertical direction. We established
that in the ideal MHD limit, these oscillatory modes exhibit an Alfvénic frequency
of oscillation and are damped on the resistive wall timescale, as indicated in Eq. 4.55.
In this chapter, our focus shifts to the impact of superthermal particles on the stability
of these modes, specifically energetic ions with energies in the MeV range. These
ions have bounce or transit frequencies of their orbit in the poloidal plane that are
comparable to the VDOM frequency, ω0 ∼ ωb,t . Wave-particle resonance between
these n = 0 modes and the superthermal particles can take place.

This chapter, based on the published results of Ref. [17], provides an analytical
description of the destabilization of n = 0 VDOM due to resonant interactions with
fast ions.

5.1 Hybrid kinetic MHD model for vertical modes

The study of the resonant interaction is based on the hybrid kinetic MHD framework
described in Sec. 3.2. The effect of superthermal ions on the stability of the VDOM
can be studied with the extended energy principle outlined in Sec. 3.2.1. We proceed
considering the same model and equilibrium of the previous chapter with the addic-
tion of the fast ion pressure tensor in order to build the quadratic forms constituting
δW . The model equations are reported here for convenience.
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The two field reduced model in straight tokamak approximation used in the
previous chapter is considered. The magnetic field is B= ez×∇ψ+Bz ez, where ez is
the unit vector along the ignorable z-direction, which mimics the toroidal coordinate,
and Bz is constant. The plasma flow is v = ez ×∇ϕ + vz ez. Equations (4.13,4.14)
can be modified with the additional pressure term describing fast ion contributions.

∂ψ

∂ t
+[ϕ,ψ] = 0, (5.1)

∂

∂ t
∇ · (ρ ∇ϕ)+ [ρ,(∇ϕ)2]+ [ϕ,ρ]U +[ϕ,U ] = [ψ,J]− ez ·∇×∇ ·Ph. (5.2)

where [χ,η ] = ez ·∇χ ×∇η , J = ∇2ψ is the current density, and U = ∇2ϕ is the
flow vorticity. The fast particles pressure tensor is defined as

Ph = p⊥hI+(p∥− p⊥)hê∥ê∥ (5.3)

where e∥ = B/B, p⊥h and p∥h are moments of the fast ions distribution function,
which obeys the collisionless drift-kinetic equation of Eq. (2.39). The same normal-
ization of Ch. 4 is adopted.

An isotropic fast ions pressure is assumed at equilibrium (p∥h,eq = p⊥h,eq →
Ph,eq = ph,eqI. The superthermal ions only affect the equilibrium modifying the total
scalar pressure as ptot = pc + ph,eq.

To first order in perturbed quantities,

γ ψ̃ +
[
ϕ̃,ψeq

]
= 0, (5.4)

γ∇ · (ρeq∇ϕ̃) = [ψ̃,Jeq]+ [ψeq, J̃]− ez ·∇×∇ · P̃h (5.5)

The quadratic forms can be built multiplying the perturbed plasma equation of motion
of Eq. (5.5) by ϕ̃†/2γ∗ and integrate it over the whole volume extending to infinity.
The expression for the dispersion relation is:

−γ
2
δ I = δWMHD +δWf ast , (5.6)
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where δ I and δWMHD are respectively defined in Eqs. (4.26) and (4.27). The
quadratic form associated with the fast ions is

δWf ast =
∫
V

d3xξ
∗ ·∇ · P̃h/2 (5.7)

. The integral extends over the plasma volume V and the displacement vector is
ξ = ez ×∇ϕ̃/γ .

The perturbative approach allows us to consider the extended energy principle.
We introduce the small expansion parameter, εh = nh/nc ≪ 1, i.e., the ratio between
energetic particle and core plasma densities. Notice that this allows for the fast ion
pressure to be of the same order of the core plasma pressure, βh/βc ∼ 1. In this
limit, |δWMHD| ≫ |δWf ast |. The cubic dispersion relation, Eq. (4.54), is recovered
to zeroth order in εh. Following the procedure described in Ch.3, we are interested
only in the imaginary part of δWf ast . The real part of δWf ast gives rise to O(εh)

corrections to the VDOM oscillation frequency that can be neglected. The imaginary
part of δWf ast contributes to the mode growth rate, competing with the damping
term γη . The imaginary part of δWf ast for resonances with n = 0 VDOM is derived
in Eq. (3.47), and reported here for convenience:

δW2 =− 2π2c
Zem2 ∑

σ

∫
dPϕdEdµτtω

∂F
∂E

+∞

∑
−∞

p

∣∣ϒp
∣∣2

ω + pωb,t
(5.8)

The following dispersion relation for the oscillatory modes modified by fast ions
can be considered:

ω
2 = ω

2
0 −2iω0γη + iω2

0 λh +O(γ2/ω
2
0 ), (5.9)

where λh = I m(δŴh,nad) is the properly normalized imaginary part of the fast ion
quadratic form. Leading order solutions for the real and imaginary parts of the
mode frequency are ω = ±ω0 + iγtot , where γtot = ω0λh/2− γη , highlighting the
competition between fast ion drive and resistive wall damping. The wave-particle
resonant interaction effect on the stability of the n = 0 VDOM is described through
the parameter λh. A positive λh describes a resonant interaction in which the energy
exchange is from the particles to the wave. A stabilty threshold can thus be derived,
describing the parameters required for the mode to be destabilized by the fast ion
contribution. Clearly, a detailed analysis of λh, and thus of δW2 is necessary.
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The resonant condition highlighted in the denominator of Eq. (5.8) is ω+ pωb,t =

0. Note that the p = 0 harmonic is non resonant. Bounce and passing frequencies are
derived in Sec.2.1.3 and are both proportional to the particle velocity v. We can write
ωΩ = vhΩ(r,Λ)/(R0q), where the safety factor q = rBφ/(R0Bp) is approximately
constant and the dimensionless function hΩ is a combinations of elliptic integrals,
different for bounce and trapped orbits (Ω = b, t). The imaginary part of δWf ast arise
from the integration in velocity around this pole, following the so-called Landau
contour. The Cauchy principal part of the integral, yielding a real contribution can
be neglected. We consider the "thin-orbit" approximation, where the radial excursion
of both passing and trapped orbits from a reference magnetic surface is negligibly
small allowing us to approximate:

Pϕ ≃ Ze
c

B0

2q
r2 (5.10)

→ dPϕ =
Ze
c

B0

q
rdr (5.11)

The resulting expression for λh is:

λh = ζ2

+∞

∑
p=1

∫
rdrdΛ

(v∗p)
3

hΩ

∂F
∂E

∣∣∣∣
v=v∗p

∣∣ϒp
∣∣2 ∣∣∣∣

v=v∗p

(5.12)

where ζ =(8R0π4)/(V ρcξ 2ω2
0 ), ρc is the core mass density and v∗p =ω0R0q/ [phΩ(r,Λ)]

is the resonant velocity. The pitch angle variable Λ = B0µ⊥/E ranges from 0 ≤
Λ ≤ 1− ε for passing orbits, to 1− ε ≤ Λ ≤ 1+ ε for trapped orbits. From this
expression becomes evident that the sign of λh depends only on the derivative of the
fast particles equilibrium distribution function with respect to energy. A resonant
interaction providing a free energy to the modes requires ∂F/∂E > 0, giving rise to
a positive λh.

5.1.1 Fourier coefficients

Here we now focus our attention on the Fourier coefficients ϒp, describing the
contribution of the different harmonics of the orbit periodicity to the resonance.
Under specific conditions, as outlined, for instance, in [68], the full summation over
p can be evaluated, enabling a comprehensive analysis of the complete non-adiabatic
response of the particles. In this discussion, we focus on examining the contribution



5.1 Hybrid kinetic MHD model for vertical modes 83

from dominant harmonics related to the most important Fourier coefficients ϒp to
describe the particles’ non-adiabatic response. The Fourier coefficients have been
defined in Eq. (2.57) as:

ϒp(E,µ,Pϕ ;σ) =
∮ dτ

τb/t
L̃ (1)exp(ipωb,tτ) (5.13)

where the loop integral is over a closed banana/transit orbit. Following the proce-
dure of Ref.[36], the perturbed Lagrangian can be rewritten for MHD perturbations
as L̃ ≈ E(2−Λ)ξ ·κ , with r the radial variable and κ the curvature vector.

To leading order in the parameter εh, the displacement vector ξ corresponds to
the rigid-shift vertical displacement, which is orthogonal to the main direction of
toroidal curvature. The perturbed Lagrangian is proportional to the scalar product
ξ ·κ , thus toroidal curvature contributions to λh are negligibly small. The perturbed
Lagrangian can be expressed as L̃ ≈ ε2E(2−Λ)ξ sin(θ)/r with ε = r/R0, where
R0 is the tokamak major radius, and θ is the standard poloidal angle.

We will demonstrate that passing particles primary contribution comes from the
p = 1 harmonic, while for trapped particles both the p = 1 and p = 2 harmonics
contribute significantly to the resonance. Other harmonics can instead be considered
negligible. This outcome is derived in the thin-orbit limit, where r remains approxi-
mately constant along the particle orbit. The perturbed Lagrangian then becomes
time-dependent only through the poloidal angle θ . Consequently, we can express ϒp

as
ϒp = ε

2E(2−Λ)(ξ/r)Xp, (5.14)

where Xp = ⟨sin(θ)exp(ipωΩτ)⟩, with ⟨⟩ denoting orbit averaging.

Consider the transit frequency of passing particles,

ωt =
[
πvκ

√
ε/2
]
/
[
R0qK (1/κ

2)
]
,

where K (x) is the complete elliptic integral of the first kind, and κ2 = 1/2 +

(1−Λ)/(2ε) (for passing orbits, κ ≥ 1). We observe that

ωtτ =
[
πF (θ/2|1/κ

2)
]
/
[
K (1/κ

2)
]
≈ θ ,
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with F (φ |x2) denoting the incomplete elliptic integral of the first kind. The last
equality holds for the majority of κ values, except for cases where κ is very close
to unity, corresponding to the barely passing limit. This limit, and particularly the
particle response near the passing-trapped boundary, demands careful consideration,
as outlined in [68]. Nevertheless, given that this limit corresponds to ωt → 0,
these particles are non-resonant when focusing on the dominant ϒp coefficients.
Consequently, their contribution to λh can be safely neglected. In this way, Xp

reduces to: i(1/4K (1/κ2))
∫ 2π

0 dθ [sin(θ)sin(pθ)]/
√

1− sin2(θ/2)/κ2, and, in

the asymptotic limit κ ≫ 1, Xp ≈ i(1/2π)
∫ 2π

0 dθ sin(θ)sin(pθ). It is evident that
the only harmonic contributing in this limit is p = 1, while the average is zero for all
other p values. Figure 5.1 depicts |Xp|2 for the first two harmonics as functions of κ ,
showing that even considering other κ values, the contribution of passing particles
for harmonics with p > 1 is indeed negligible.

For trapped particles, 0 ≤ κ ≤ 1, the bounce frequency is

ωb = πv
√

ε/2/
[
2R0qK (κ2)

]
.

Then,
ωbτ = (π/2)F (ζ |κ2)/K (κ2),

where sin(θ/2) = κ sin(ζ ). As for the case of passing particles, we consider κ

values far from the passing-trapped limit κ = 1, where the bounce frequency drops
to 0. It is then possible to approximate ωbτ ≈ ζ . Therefore, one obtains Xp =

κ/K (κ2)
∫ π/2
−π/2 dζ sin(ζ )sin(pζ ). This quantity is zero for both barely trapped

(κ = 1) and deeply trapped (κ = 0) limits, as shown also in Fig. 5.1. All even-p
harmonics yield a non-zero Xp; however, values of Xp with p ≥ 4 are negligibly
small. For odd-p values, Xp averages exactly to 0, with the only exception of p = 1.
Therefore, we focus only on the p = 1 and p = 2 harmonics. In Fig. 5.1, values of
|Xp|2 for the p = 1 and p = 2 harmonics are plotted as functions of κ .

The reason why deeply trapped particles (κ = 0) and barely trapped/passing
particles (κ = 1) do not contribute to ϒp and, consequently, to λh is straightforward.
For n = 0 vertical displacements, ξ ·κ ∼ sinθ . Deeply trapped particles are concen-
trated near θ = 0, while barely trapped particles spend most of their time near θ = π .
Therefore, the orbit-averaged value of the scalar product ξ ·κ becomes zero in both
these limits. Both trapped and passing particles have their orbit frequencies described
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(a) First harmonic p=1 (b) Second harmonic p=2

Fig. 5.1 Plots of |Xp|2 = |⟨sin(θ)exp(ipωΩτ)⟩|2 as a function of κ for p = 1 and p = 2
harmonics.

analytically in the small aspect ratio limit, considering circular magnetic flux surfaces
as discussed in Chapter 2. The bounce and transit orbits can be described taking into
account higher order corrections in ε , as detailed in Ref.[22], and/or plasma shaping,
such as elongation and triangularity, as reported in Ref.[69]. While these corrections
could provide a more comprehensive description of the Fourier coefficients ϒp, they
are omitted in the present analysis for consistency with other approximations made
and the proof-of-principle nature of the study.

5.2 Fast ion distribution function

The choice of the equilibrium distribution function allows us to determine the effect
of superthermal particles on the n = 0 VDOM stability. The particular condition of
∂F/∂E|µ > 0 is required for the mode destabilization. As discussed in Sec. 3.3, this
situation can be achieved under different conditions, that will be studied separately
in the following.

5.2.1 Slowing-down with losses

We consider the first simplified model with a monochromatic source term at velocity
vb, and a velocity-independent loss frequency, νl obtained in Eq. (3.61). Assuming a
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uniform radial distribution of fast ions up to r = rh, the distribution function is:

F(r,v) = τs0S0v2−3l0
b

H(vb − v)
v3−3l0

H(rh − r) (5.15)

The normalization constant τs0S0 can be generally rewritten for any kind of fast ions
in terms of the fast particle density nh with

∫
d3vF = nh. The derivative over the

energy is trivially rewritten as ∂F/∂E = 1/(mhv)∂F/∂v, with energetic ions mass
mh. After straightforward algebra, substituting the distribution function derivative
and Eq. (5.14) in Eq. (5.12), we obtain

λh =
9πl0(l0 −1)q2

a2R2
0

nhmh

ncmc
∑

p=1,2

(v∗p0

vb

)3l0 1
p2×∫

drdΛ
r3(2−Λ)2|Xp|2

hΩ(r,Λ)3l0+3 H(rh − r)H(vb − v∗p) (5.16)

where nc is the core plasma density, mc is the core ion mass, and v∗p0 = ω0R0q/p
is the resonant velocity of passing particles with Λ = 0. We can write λh =

(nh/nc)(mh/mc)(q2a2/R2
0)λ , where λ (l0,rh/a,v∗p0/vb) is a dimensionless factor

that depends on three parameters. Inserting this expression for λh in Eq. (5.9),
the instability threshold can be cast in the form

nh

nc
≥
(

nh

nc

)
crit

=
mc

mh

R2
0

q2a2
2γη

λω0
. (5.17)

To gain further insight into realistic numerical values for the critical density
threshold, we consider the parameters of the JET experiments discussed in Ref.[3],
where saturated n = 0 oscillations were observed, and MeV fast ions were produced
by a combination of ICRH and NBI. Some parameters are experimentally well-
known, e.g., R0 = 3m, a = 0.9m, elongation b/a ≈ 1.3, which corresponds to
e0 ≈ 0.3, toroidal magnetic field BT = 2.2T , q ≈ 1, and Deuterium main ion species,
yielding an inverse poloidal Alfvén time τ

−1
A ≈ 2×10−6s−1. The experimentally

observed n = 0 oscillation frequency is in the range f0 = ω0/2π ≈ 300kHz, which
compares well with the theoretically predicted value of the frequency ω0, defined
below Eq.(4.54), if we assume realistic values for the geometrical factor, D ≈ 3.
Fast ions in the mentioned JET experiments are also mostly Deuterium, thus we
take mh/mc = 1. We assume rh/a = 0.5 and l0 ≈ 2. The remaining parameter to be
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Fig. 5.2 Coefficients λp=1,pass and λp=2,trap as function of fast ion birth energy Eb.

evaluated, v∗p0/vb =ω0R0q/(pvb), depends on the fast ion birth energy, Eb =mhv2
b/2.

Realistic JET estimates indicate values of Eb in the MeV range. Having fixed all
the parameters just mentioned, we plot in Fig. (5.2) the contributions to λh coming
from the different harmonics, as functions of Eb. We can see that the p = 1 harmonic
associated with passing particles is the leading contribution for fast ion energies up
to ∼ 1.5 MeV. At higher energies, the p = 2 harmonic of trapped particles can also
give a significant contribution. On the other hand, for the considered parameters,
the trapped particles p = 1 harmonic gives a non-zero contribution only for a birth
energy Eb ≥ 5MeV . Let us write λ = λp=1,pass +λp=2,trap. The overall value of the
parameter λ is estimated to be of the order of 3×10−1 for the JET experiments of
interest, for Eb = 1.5MeV .

The damping rate resulting from the resistive wall is estimated to be on the order
of γη ∼ 3× 102 s−1. Consequently, the critical instability threshold for the JET
experiments can be approximated as (nh/nc)crit ∼ 1×10−2.

5.2.2 Anisotropic slowing-down

The single pitch angle slowing down distribution function of Eq. (5.18) is now
considered in order to study the drive due to velocity space anisotropy. The anisotropy
in velocity space introduces a competition between the derivative of the slowing
down part of the distribution function, which is always negative, and the one from
the anisotropy. To highlight this competition, we neglect the losses, taking l0 = 0.
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As for the previous isotropic case, a uniform radial distribution of fast ions up to
r = rh is assumed:

F(r,v,Λ) = τsd Ŝ0(Λ0)v2
b

H(vb − v)δ (Λ−Λ0)

v3 H(rh − r) (5.18)

The normalization coefficient Ŝ0 in this case is dependent on the single pinch Λ0 and
can be derived considering the orbit averaged fast ion density defined as:

nh =
∮ dθ

2π

∫
d3vF(r,v,Λ) (5.19)

where the velocity volume element can be written in the formalism of Ch. 2 as:

d3v = v⊥dv⊥dαdv∥ = π ∑
σ

v2

(1−Λ/h)1/2 dvdΛ/h (5.20)

The integration can be performed following similar steps as the one described in
Sec. 2.1 for passing and trapped ions, i.e. for Λ0 ≤ 1− ε and 1− ε ≤ Λ0 ≤ 1+ ε .
The resulting normalization coefficients then are:

Ŝ0,Ω(r,Λ0) = nh
√

ε
1

2
√

2log(vb/vc)
sΩ(r) (5.21)

st(r) = κ0/K (1/κ
2
0 ) sb(r) = 1/K (κ2

0 ) (5.22)

where K (x) is the complete elliptic integral of the first kind, the parameter κ0 =

1/2+(Λ0 −1)/(2ε) and vc is the critical velocity at which the fast-ions thermalize
with the core plasma. The full derivative of the distribution function over energy
reads:

∂F
∂E

∣∣∣∣
µ

=− 3
mh

F(r,v,Λ)
v2 − τsd Ŝ0,Ω(r,Λ0)v2

b
2Λ

mh

H(vb − v)
v5

∂

∂Λ
δ (Λ−Λ0) (5.23)

The first term is always negative coming from the slowing-down part of the distribu-
tion function. Its contribution to λh can be obtained from Eq. (5.12) integrating over
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Λ using the delta function properties:

λh,sl =− 3π2q2

2
√

2a2R2
0log(vb/vc)

mhnh

mcnc
∑
p

1
p2×∫

dr
r3√ε(2−Λ0)

2|Xp|2

hΩ(r,Λ0)3 sΩ(r)H(rh − r)H(vb − v∗p) (5.24)

Being always negative, it has always a stabilizing effect on the mode. The second
term of Eq. (5.23) is associated with the velocity space anisotropy. Its contribution
to λh can be expressed starting again from the integral expression of Eq. (5.12). The
delta function property∫

dx f (x)
∂

∂x
δ (x− x0) =−

∫
dxδ (x− x0)

∂

∂x
f (x) (5.25)

can be used to integrate in Λ.

λh,ani =
π2q2

√
2a2R2

0log(vb/vc)

mhnh

mcnc
∑
p

1
p2×∫

drr3√
εGΩ(r,Λ0)sΩ(r)H(rh − r)H(vb − v∗p) (5.26)

where the functions GΩ = ∂
[
Λ(2−Λ)2|Xp|2/hΩ(r,Λ0)

3)
]
/∂Λ are different for tran-

sit and bounce orbits, and can be written as:

Gt =
2
√

2
π3

(2−Λ)

ε3/2
K (1/κ2)3

κ3

{
(2−3Λ)|Xp|2 +

Λ(2−Λ)

2εκ
×[

−|Xp|
∂ |Xp|
∂κ

+
3
2

κE (1/κ2)

(κ2)−1K (1/κ2)
|Xp|2

]}
(5.27)

Gb =
16

√
2

π3
(2−Λ)

ε3/2 K (κ2)3
{
(2−3Λ)|Xp|2 +

Λ(2−Λ)

2εκ
×[

−|Xp|
∂ |Xp|
∂κ

+
3
2
(κ2 −1)K (κ2)−E (κ2)

κ(κ2)K (κ2)
|Xp|2

]}
(5.28)

where E (x) is the complete elliptic integral of the second kind. This second con-
tribution to λh can be either positive or negative depending on the value of Λ0 and
on the parameters considered. Therefore the total interaction λh = λh,sl + λh,ani

is the result of the competition between the two terms. Similarly to the previous



90 Fast ion drive of n=0 VDOM

(a) (b)

Fig. 5.3 Dimensionless factor λ ′ as a function of Eb. For passing particles Λ0 = 0 and
Λ0 = 0.5 are plotted (a) up to Eb = 2MeV . Trapped particles are plotted for values of Λ0 = 1
and Λ0 = 1+ ε up to Eb = 6MeV .

subsection, we can write λh = (nh/nc)(mh/mc)(q2a2/R2
0)λ

′, with dimensionless
factor λ ′(Λ0,rh/a,v∗p0/vb) that depends on the model parameters. With the same
parameters related to the JET case discussed in subsection 5.2.1, we can study how
the total λ ′ = λ ′

ani +λ ′
sl behaves as a function of Eb and Λ0. Firstly, in Fig. 5.3 we

show the total λ ′ for different values of Λ0, as a function of the birth energy. One
can see how for Λ0 = 0 λ ′ is always negative, corresponding to a stabilizing resonant
interaction for any birth energy. For trapped particles we can note how for a birth
energy Eb ≲ 1.2MeV there is no resonance for p = 1,2. Then the second harmonic
starts to resonate up to Eb ∼ 5MeV . For larger birth energies also the first harmonic
stars to give a non-zero contribution.

A threshold in Λ0 can be obtained in order to have λ ′ > 0. Figure 5.4, shows
how λ ′ varies as a function of Λ0 for Eb = 1Mev and Eb = 2Mev: the condition
λh > 0 requires Λ0 > 0.4, the same threshold found for EGAMS considering the
same distribution function in [70].

5.3 Concluding remarks

This chapter extends the analytic model introduced in Chapter 4, which describes
Vertical Displacement Oscillatory Modes (VDOM), to incorporate kinetic effects
from superthermal ions. The focus is on investigating how the presence of energetic
ions could potentially destabilize VDOM in tokamak plasmas, considering different
equilibrium distribution functions. The results presented in this section show how a
new kind of fast-ion-driven mode can arise in tokamak plasmas due to the resonant
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(a) (b)

Fig. 5.4 Dimensionless factor λ ′ as a function of the single pitch Λ0. In (a) the birth energy
considered is Eb = 1MeV , while in (b) Eb = 2MeV .

interaction of VDOM with MeV energetic ions. Despite the simplicity of the model,
the results presented in this chapter suggest that VDOM destabilized by fast ions
could be a plausible explanation for the observed n = 0 modes destabilized by MeV
ions in recent JET discharges.



Chapter 6

NIMROD Linear Simulations

The analytic results presented in the previous chapters represent the building blocks
of our theory describing the VDOM and their possible destabilization in presence of
superthermal ions. In order to gain the fundamental understanding of the physical
mechanisms associated with these axisymmetric modes of the plasma, simplifying
assumptions have been considered. In this chapter we will show, thanks to numeri-
cal simulations using the MHD NIMROD code [71], that the main characteristics
obtained with our very simplified model persist considering realistic experimental
situations. The NIMROD code is employed to study the extended MHD stability of
the plasma. However, in this chapter the superthermal ions effects are not present,
since work is in progress to extend the capabilities of the NIMROD code to simulate
the cases described in Ch. 5. Nevertheless, here we aim to describe mode frequency
and mode structure in real tokamak geometry and with experimental plasma profiles.
We will thus focus on the characteristic of the normal modes that may be driven
unstable if a suitable distribution function of fast ion is included in the plasma.

The results reported in this chapter have been published in [18] and [2].

6.1 Extended MHD nimrod code

The simulations described in this chapter advance the linearized single-fluid resistive
MHD equations (6.1)-(6.4) in toroidal geometry using the 3D initial value code
NIMROD [71]:
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∂n
∂ t

+∇ · (nv) = ∇ ·D∇n (6.1)

mn
(

∂

∂ t
+v ·∇

)
v =

1
µ0

(∇×B)×B−

−∇p+∇ ·νρ∇v (6.2)

3
2

(
∂

∂ t
+v ·∇

)
T =−nT ∇ ·v (6.3)

∂B
∂ t

=−∇× [ηe (∇×B)−v×B]+

+κdivb∇∇ ·B. (6.4)

In these equations, n and m are respectively particle density and ion mass. The total
pressure of electrons and ions is p, v is the center-of-mass plasma velocity, T is the
plasma temperature and B is the magnetic field. Explicit diffusive terms are included
in the model: the density diffusivity D , kinetic viscosity ν , electrical diffusivity
coefficient ηe (=resistivity over the vacuum permeability µ0), and κdivb is a diffusivity
coefficient used to control the ∇ ·B error in the induction equation. The code employs
high-order quadrilateral finite elements for modelling the poloidal plane and pseudo-
spectral techniques for the periodic axisymmetric direction. NIMROD can efficiently
advance both linear and nonlinear extended-MHD equations, with implicit or semi-
implicit time-advance methods to address the temporal stiffness associated with
multiple time scales. In this chapter, we restrict ourselves to the case of linear
stability studied throughout the whole thesis.

Here we outline key characteristics of the simulations discussed in the following
sections, emphasizing significant distinctions from the analytic model presented
in Ch. 4. Unlike the analytic model, NIMROD does not support a vacuum model;
instead, it employs a "halo" plasma model to simulate the analytic vacuum. The
"halo" plasma is a cold region with low density and high resistivity (ηhalo), exhibiting
a few orders of magnitude difference from the hot core plasma. The simulation
boundary in NIMROD serves as the representation of the wall and is assumed to be
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an ideal conducting wall. In NIMROD, the ideal conducting wall is implemented
with vanishing normal components of the perturbed magnetic field at the simulation
boundary.

The first results of our numerical analysis are described in Sec. 6.2. Here we
verify the analytic theory reproducing the straight tokamak equilibrium of Ch. 4
in NIMROD. The dispersion relation as a function of plasma-wall distance and
elongation of Eq. 4.54 is recovered numerically. Thanks to this result, in Sec.6.3
a recent JET discharge is analyzed with the NIMROD code in order to study the
VDOM in realistic tokamak conditions. For this investigation, JET shot #102371
was selected. This discharge is part of a series of JET deuterium plasmas produced
during the experimental campaign RT 22-09 on March 2023. The aim of these
discharges was the investigation of n = 0 modes with Alfvén frequencies that have
been succesfully observed.

6.2 Verification of the analytic results with straight
tokamak simulations

In this section, we present the benchmark comparison between the analytic theory
results of Ch. 4 and NIMROD numerical simulations.

In most simulations presented, the grid resolution is (mx,my)=(360,360) with
polynomial degree = 3 and the timestep ∆t = 0.5τA. The different diffusion pa-
rameters used in the model have been minimized in the "hot" plasma region, to
reduce dissipation and mimic an ideal MHD plasma, to allow a comparison with
the analytic treatment of VDOM based on the ideal MHD model. For simplicity of
NIMROD implementation, the analytic straight tokamak is represented by a Carte-
sian rectangular domain in the poloidal plane and a single toroidal n = 0 mode in the
axisymmetric z-direction. This differs from the confocal elliptical wall in the analytic
model. Instead, the four sides of the rectangular simulation domain are constrained
by imposing the confocal condition, b2

w −a2
w = b2 −a2, so that the half-height, bw,

and the half width, aw, of the rectangular boundary match the major and minor axes
of a confocal elliptical boundary. The rectangular simulation domain circumscribes
the analytic confocal ellipse and as such, for equal values of the parameter b/bw, the
simulation domain is larger than the analytic one.
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Figure 6.1 well summarizes the results of this numerical analysis. The simulation
growth rates/frequencies are plotted (Dots) together with the analytic dispersion
relation (green line) of Eq. 4.54 for an ideal wall. Both the stable oscillatory case and
the ideal vertical instability can be resolved in our simulations. The zero crossing
in the analytic theory curve signifies the transition between a mode that is purely
oscillatory and one that is purely growing. This transition occurs when bw equals bX ,
where bX represents the vertical distance of the X-points from the magnetic axis. In
essence, the onset of marginal stability, characterized by ω2 = 0, happens when the
confocal elliptical wall intersects the X-points. For small values of b/bw, the growth
rate (γ =−iω) diminishes as the wall approaches the plasma (with increasing b/bw).
As the wall gets closer to the X-point, the mode reaches marginal stability. Beyond
this point, for b/bw > b/bX , the mode becomes purely oscillatory as the wall moves
inside the X-points, i.e., when the X-points lie outside the simulation domain.

In the simulations, the transition from the unstable growing mode to the stable
oscillatory mode does not precisely coincide with the interception of the rectangular
wall with the X-points, as expected from the analytic results. It is noteworthy that the
numerical points are slightly below the analytic curve, particularly at larger values
of b/bw where the wall is in closer proximity to the plasma boundary. This deviation
is attributed to the rectangular simulation domain, which, at equal values of the
parameter b/bw, has a larger area compared to the equivalent confocal elliptical
boundary in the analytic model. Consequently, the rectangular wall is, on average,
a bit farther away, leading to a slightly weaker stabilizing effect. As a result, the
growth rate found numerically is somewhat larger (i.e., smaller negative ω2) than
the analytic prediction.

Focusing our attention to the simulation results for stable VDOM, we emphasize
the mode structure obtained with the straight tokamak simplified equilibrium. As
the conducting wall is brought closer to the plasma, the mode undergoes a transition
from an unstable state to the stable oscillatory mode described analytically in Ch. 4
and in [15]. We examine in detail one such stable oscillatory case. Figure 6.2a
plots the time history of perturbed fields: velocity (ṽy), magnetic field (B̃x), density
(ñ), temperature (T̃ ), showing the oscillatory behaviour of the perturbations. The
normalized oscillation frequency is ωτA = 0.31. In Fig. 6.2b the mode structure is
represented, plotting midplane profiles (at y = 0) of perturbed vertical momentum
per unit mass, n0ṽy, at several times during a single period, for κ = 1.4 and b/bw =
0.55. The single oscillation period is denoted by the yellow bar in the time history of
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Fig. 6.1 Confocal wall scan (b2
w −a2

w = b2 −a2) plots the square of the normalized frequency
vs. wall parameter b/bw for κ = 1.4 (left panel) and κ scan with wall parameter fixed
at b/bw = 0.25 (right panel), showing agreement between NIMROD and analytic theory.
Positive values (circles) indicate oscillating modes. Negative values (triangles) indicate
growing modes. The zero crossing of the analytic theory curve (green line) occurs for
b/bw = b/bX , where the domain boundary intersects the X-points.

Fig. 6.2a. The perturbed momentum profile on the midplane shows that the n = 0
oscillation is mostly confined within the hot plasma, with a perturbed mass flow that
well approximates the rigid-shift vertical oscillation found in analytic work. Note
that the plasma extends to x/b = a/b ≈ 0.7.

(a) time history of perturbed fields (b) midplane profiles of n0 × ṽy

Fig. 6.2 Time history of perturbed fields: velocity(ṽy), magnetic field(B̃x), density(ñ),
temperature(T̃ ); midplane profiles of vertical momentum per unit mass at several times
during a single oscillation period (denoted by the yellow bar in the time history); κ=1.4 and
b/bw=0.55. The plasma motion is well approximated by a vertical rigid shift.
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6.3 JET simulations

6.3.1 Experimental Observations: GAE and VDOM

Excitation of high frequency n = 0 modes have been reported in JET [3, 44]. Ref-
erence [3] proposed Global Alfvén Eigenmodes (GAE) [13] as explanation for the
observed n = 0 modes. The modes were driven unstable by resonant interaction
with energetic ions with energies in the MeV range, produced by auxiliary heating
(combined NBI and ICRH) or by fusion reactions. While GAE remain a distinct pos-
sibility for the interpretation of the mentioned JET observations, the fast-ion-driven
VDOM described analytically in Chapters 4 and 5 represent a valid alternative. GAE
and VDOM are two different types of normal modes of a magnetically confined
plasma, the former being internal modes, which can exist for different values of
the toroidal mode number n, with frequency close to the minimum of the Alfvén
continuum spectrum, while the latter are n = 0 external modes interacting with
currents induced on the wall of the confining vacuum chamber by the vertical motion
of the plasma. Other differences between the two modes involve their different
spatial structure and their different sensitivity to details of safety factor q profile,
plasma ellipticity, and plasma-wall distance. Given the apparent ease with which
these modes can be destabilized by fusion alpha particles, both VDOM and GAE are
likely to play an important role in future tokamak experiments where burning fusion
plasmas will be produced. The main characteristics for a comparison between GAE
and VDOM are summarized in Table 6.1.

6.3.2 NIMROD simulations of VDOM in JET

In this section we aim to a more realistic assessment of the nature of VDOM with the
help of NIMROD simulations. The results presented in the following report linear
NIMROD simulations using the EFIT [72, 73] reconstructed equilibrium of JET shot
#102371 at time t = 51.00s. The equilibrium pressure and safety factor provided
by EFIT are shown in Figs. 6.3a and 6.3b, respectively. Figure 6.3c shows our best
fit of the equilibrium electron density profile. The on-axis value of the electron
density is n0 = 5.2×1019 m−3. The experimentally measured value of the effective
charge, Ze f f = 1.75, was also used to evaluate the plasma mass density. The plasma
in the open field line region is represented using a "halo" plasma model, with low
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Table 6.1 Comparison between VDOM and GAE.

VDOM GAE

- External mode.
- Global, odd parity with respect to
poloidal angle.
- Nearly rigid shift, up-down vertical
motion, radial structure weakly
dependent on q profile.
- Alfvénic frequency dependent on
plasma elongation and plasma-wall
distance, weakly dependent on q
profile details.

- Internal mode.
- Global, even parity with respect to
poloidal angle.
- Poloidal flow peaking near
minimum of n = 0 Alfvén continuum,
radial structure depends on q profile.
- Alfvénic frequency close to the
minimum of the n = 0 Alfvén
continuum.

(a) (b) (c)

Fig. 6.3 EFIT equilibrium pressure profile (6.3a), and safety factor (6.3b); best fit of the
experimental electron density profile (6.3c), as functions of normalized flux. The separatrix
is at ψ = 1.

density and high resistivity. In particular, the plasma density profile is uniform in the
open field line region with a value of nhalo = 5×1017m−3. The different diffusion
parameters used in the model have been minimized in the "hot" plasma region, to
reduce dissipation and mimic an ideal MHD plasma, to allow a comparison with
the analytic treatment of VDOM based on the ideal MHD model. In the following
simulations, the grid resolution is (mx,my)=(60,90) with polynomial degree = 3 and
the timestep ∆t = 10−7s.

The simulations presented in this Section describe the plasma response to an
initial perturbation in velocity corresponding to a rigid vertical shift of the plasma,
dubbed "vertical push" in the following. The oscillatory behaviour of all relevant
perturbed fields follows the initial vertical push. Figure 6.4 shows the behaviour of
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Fig. 6.4 Oscillatory behaviour of the magnetic energy in response to a "vertical push", in the
time interval between t = 0.3 ms and t = 0.6 ms.

the magnetic energy as a function of time. Weak damping of the oscillatory behaviour
is observed. The careful choice of initial perturbation is necessary, because VDOM
are stable modes, and therefore different initial conditions lead to a mix of different
oscillatory modes. The resulting interference would cause a rapid decay of all
modes, including the VDOM. This problem is overcome in the next Section, where
a different method to drive the perturbation is examined.

Figure 6.5 shows contour plots of tangential and normal components, with respect
to the equilibrium flux surfaces, of the perturbed magnetic field. Fig. 6.6 shows the
contour plots of perturbed pressure. Both plots are taken at time t = 0.5ms in the
simulation, corresponding to a minimum of the magnetic energy oscillation. An
m = 1 mode structure is evident in the perturbed fields; the pressure perturbation
shows the up-down feature characteristic of VDOM.

Fast Fourier Transform (FFT) has been employed to analyze the temporal be-
haviour of the plasma response. The whole linear simulation time of 1ms has been
considered to compute the discrete Fourier Transform (DFT) with the efficient FFT
algorithm [74]. The FFT signal of the magnetic energy time trace is shown in Fig. 6.7.
A dominant peak in the FFT signal can be identified at frequency flow = 184 kHz,
while a secondary peak indicates the presence of a second subdominant mode at
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(a) (b)

Fig. 6.5 Magnetic field perturbation in response to a "vertical push". (a) Tangential, and (b)
normal B-components with respect to the equilibrium flux surfaces. A main m=1 structure,
expected for the VDOM, can be identified.

Fig. 6.6 Pressure perturbation, p̃, in response to a "vertical push", showing the up-down
structure characteristic of the VDOM.
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Fig. 6.7 FFT signal (absolute value) of the oscillating magnetic energy in simulation ("vertical
push"). Two peaks can be identified: a dominant one at 184kHz, and a secondary one at
311kHz.

frequency fhigh = 311 kHz. This indicates the presence of two Alfvén-frequency
normal modes with n = 0 that are both excited in response to the initial vertical push.
The simultaneous presence of the two modes gives rise to interference. The space
and time dependence of the plasma response cannot be separated in this case. As the
two modes are damped in time at different rates, the contour plots of Figs. 6.5 and
6.6 change in time, and the coherent mode structure is lost.

6.3.3 Wall position scan

In the following, scans of the wall position and the density profiles reveal similarities
and different behaviours of the two modes.

As discussed in Ch. 4, the VDOM frequency depends on the distance between the
plasma and the wall. A scan of the wall position highlights the different behaviour
of the two modes. The frequency as a function of the distance between the separatrix
and the wall, δW , is plotted in Fig. 6.8. As the wall is pushed further away from
the plasma boundary to δW ≈ 0.23 m, the frequency of the higher-frequency mode
is almost unaffected, while the frequency of the lower-frequency mode changes by
more than 10%, its oscillation frequency varying from 189kHz to 170kHz. The actual
shape of the JET wall in the simulation yields equivalent results to the simplified wall
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(a) (b)

Fig. 6.8 Frequency of high and low frequency modes as function δW . The dashed green line
in Fig. 6.8a corresponds to the actual JET wall distance and shape. Figure 6.8b plots the two
frequencies normalized to their maximum values, indicating percentage variations.

at a plasma-wall distance δW ≈ 0.11 m, as indicated by the green line, representing
the actual wall results, in Fig. 6.8a.

The wall scan suggests that the lower-frequency mode is a VDOM. The higher-
frequency mode can be identified as a Global Alfvén Eigenmode (GAE). However,
further analysis is needed before this conclusion can be reached.

6.3.4 Density profile scan

The frequency of Alfvén modes scales as the inverse of the square root of the
plasma density. Here, we consider the effect of changing the density profile in
NIMROD simulations, effectively changing the volume-averaged plasma density.
Figure 6.9 illustrates the various density profiles considered in the density scan.
Throughout all profiles, the on-axis and halo region density values are kept constant at
n0 = 5.2×1019 and nhalo = 5.0×1017. The profiles follow n(ψ) = (n0−nhalo)(1−
ψ p1)p2 +nhalo. By adjusting the parameter p1 while keeping p2 = 0.96 constant, we
vary the volume-averaged density.

Figure 6.10 shows that the frequency of the two n = 0 modes follows the same
decreasing trend with increasing density. As represented in Fig. 6.10b, the normalized
frequency is proportional to 1/

√
n, as expected for Alfvénic oscillations.
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Fig. 6.9 Density profiles as functions of normalized flux. Each profile is associated to its
volume averaged value, n, normalized to the one of the experimental best fit (solid black
curve, same as in Fig. 6.3c).

(a) (b)

Fig. 6.10 Frequency of high and low frequency modes as a function of the normalized volume
averaged density, n: (a) plots the two frequencies in kHz; (b) plots the two frequencies
normalized to their values at n = 1; the 1/

√
n dependence is shown by the dashed green line.
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6.4 Driven Oscillator Perturbation

To study the two oscillatory modes found in Sec. 6.3 separately, an alternate pertur-
bation is implemented in the NIMROD code. Instead of an initial "vertical push",
the temperature evolution equation has been modified to include a time-dependent
oscillatory term:

3
2

(
∂

∂ t
+v ·∇

)
T =−nT ∇ ·v+

+Asin(2π f0t)exp
[
(r− r0)

2 +(z− z0)
2

∆2
0

]
(6.5)

where f0 is the driven oscillation frequency for the temperature, and A is the ampli-
tude of the driving term. A Gaussian function with width ∆0 localizes the oscillator
perturbation in space around r0,z0 in the poloidal plane. This forced oscillation for
the temperature mimics the injection of a wave from an external antenna. Scanning
the oscillator frequency, it is then possible to look for resonances in the plasma
response associated with plasma normal modes. All other fields have zero initial
perturbation.

These simulations use r0 = 2.8m, z0 = 1.71m and ∆0 = 0.5m. The oscillator is
localized to the open field line region. The amplitude A determines the amplitude of
the saturated normal modes.

6.4.1 Low frequency mode

With the same simulation parameter of Sec. 6.3, we perform a scan in the oscillator
frequency, f0, in the neighborhood of the low frequency signal identified by FFT.
Figure 6.11 shows the amplitude of the saturated oscillations for the normal com-
ponent of the perturbed magnetic field, normalized to the off-resonance minimum
amplitude value (blue dot at f0 = 190kHz). For values of f0 close to 183 kHz, the
saturated value increases by more than an order of magnitude. The mode frequency
and damping can be evaluated assuming the following resonance condition for a
generic quantity Y :

Y =
C

(ω0 −ω)− iγ
(6.6)
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Fig. 6.11 Normalized amplitude of the normal component of the perturbed magnetic field as
a function of oscillator frequency f0 in the neighbourhood of flow. Blue dots, corresponding
to numerical results, are fitted by the red curve assuming the resonant condition (6.7), with
ω0 = 1153×103, γ =−1.240×103 and C = 58.72.

where C is a constant, ω0 = 2π f0, with ω0 the frequency of the forcing term, ω is
the frequency of the normal mode, and γ is its damping rate. The amplitude can be
fit with a Lorentzian function:

|Y |= C√
(ω0 −ω)2 + γ2

(6.7)

where ω and γ are related to the maximum and the width of the Lorentzian.

Fig. 6.11 shows the resonance peak is found for mode frequency f = 183.5kHz;
the damping rate is γ =−1240s−1. The frequency corresponds to the main peak of
the FFT signal in Fig. 6.7.

Figures 6.12 and 6.13 show the time traces of the magnetic energy for resonant
and off-resonant oscillator frequencies, respectively. When the oscillator resonates
with the mode, a growing oscillatory pattern is obtained. The envelope of the
oscillation initially grows and then saturates in time at t > 4.0 ms. For the off-
resonant cases, we observe a clear beating between the oscillator frequency f0

and the mode frequency f , with beating frequency fb = | f − f0|. For t > 4.0 ms,
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(a) (b)

Fig. 6.12 (a) Magnetic energy time trace for forced oscillator frequency at resonance, f0 =
183.5kHz; (b) same as in the previous panel, zoomed in the time interval between t = 0.4
ms and t = 0.5 ms. In (a) only the envelope of the fast oscillatory behaviour is evident, due
to the time range of the plot.

(a) (b)

Fig. 6.13 Magnetic energy time traces for two off-resonant frequencies of the forced oscillator:
(a) f0 = 180kHz; (b) f0 = 187kHz.

the beating dies away, leaving only a constant amplitude oscillation at the forcing
frequency f0.

The level of dissipation in the system affects the damping of the mode, and
consequently, it determines the width and the amplitude of the resonant peak in the
plasma response, as shown in Fig. 6.14. An increase of the viscosity parameter by 20
times leads to a damping rate γ =−11.8×103s−1. For an increase of the viscosity
parameter by 20 times, the fitting parameters for Eq. 6.7 are: ω0 = 1154× 103,
γ =−11.79×103 and C = 48.20, showing a γ increase of ∼ 10 times.

Selecting carefully the oscillator perturbation frequency f0 it is then possible to
study separately the structure of the two modes found in Sec. 6.3. This requires
the forced oscillator frequency to be resonant with the mode, i.e. close to the peak
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Fig. 6.14 Same as in Fig. 6.11, but for a viscosity value 20 times larger.

described by the fitting Lorentzian of Eq. 6.7, thus maximizing the plasma response.
Under these conditions, choosing f0 = 183.5kHz for the low frequency mode, a m=1
mode structure in the magnetic perturbation develops, and an up-down symmetric
perturbation in pressure is established, as shown in Figs. 6.15 and 6.16, which are
characteristic of the VDOM described in Ch. 4. The mode structure appears to be
more core localized with respect to the theoretical description, because both plasma
density and current density profiles used in the simulations are peaked, while analytic
theory assumed flat profiles for the sake of simplicity.

Finally, the perturbed velocity vector plot of Fig. 6.17 shows a nearly rigid
vertical plasma displacement in the region where the mode is localized.

To analyze the structure of the low frequency mode in more detail, Fig. 6.18 plots
the perturbed momentum in the vertical direction along horizontal and vertical slices;
from the magnetic axis to the plasma edge. The normalized distances along these
slices are denoted by x and y in the figure. Along the horizontal slice, the perturbed
momentum is the poloidal flow multiplied by the plasma density, nṼθ . The perturbed
momentum exhibits a nearly rigid shift structure in the core region, changing sign as
the plasma edge is approached. In analytic theory, as discussed in Ch. 4, the return
flow is a thin layer localized at the plasma boundary, as a consequence of the step-
function profiles for plasma mass and current densities and of the incompressibility of
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(a) (b)

Fig. 6.15 Perturbed magnetic field components at t = 4.4 ms for forced oscillator frequency
at resonance, f0 = 183.5kHz. (a) Tangential, and (b) normal B-components with respect to
the equilibrium flux surfaces.

Fig. 6.16 Perturbed pressure at t = 4.4 ms for forced oscillator frequency at resonance,
f0 = 183.5kHz.
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Fig. 6.17 Vector plot of ṽ at t = 4.4ms for forced oscillator frequency at resonance, f0 =
183.5kHz.



110 NIMROD Linear Simulations

(a) (b)

Fig. 6.18 Vertical component of the perturbed momentum, plotted in (a) along a horizontal
slice, and in (b) along a vertical slice, for different times during one oscillation.

the perturbation ∇ · v = 0. In our simulations, the return flow exhibits a finite spatial
extent inside the plasma. This behavior is consistent with the condition ∇ · v = 0.
The region in which the return flow propagates is affected by the finite gradient of the
density profile in the plasma, deviating from the assumption of a uniform profile of
the theoretical model. A more in-depth analysis of this feature is planned for a future
study. Along the vertical slice, Fig. 6.18b, the vertical component of the perturbed
momentum is the radial flow multiplied by the plasma density, n0Ṽr, which is nearly
constant in the plasma core and decreases monotonically to zero at the plasma edge.

The mode structure obtained for the low frequency mode exhibits the important
characteristics associated with the VDOM, as highlighted later in Table 6.1. The non-
uniform plasma and current density profiles considered in the numerical simulation
have an important impact on the mode structure. However, a global nearly rigid shift
is maintained in the plasma core, while a return flow is localized around the plasma
edge. The lower mode frequency depends on the plasma-wall distance, as shown by
Fig. 6.8, and scales inversely with the square root of the plasma density, as shown by
Fig. 6.10. These results allow us to conclude that the low-frequency mode is indeed
a Vertical Displacement Oscillatory Mode. This is the first time that the VDOM is
identified in a simulation using realistic tokamak parameters.

6.4.2 High frequency mode

The same analysis is now repeated for the higher-frequency mode, scanning the
forced oscillator frequency in the neighbourhood of fhigh. Figure 6.19 shows the
amplitude of the saturated oscillations for the normal component of the perturbed
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Fig. 6.19 Normalized amplitude of the normal component of the perturbed magnetic field as
a function of oscillator frequency f0 in the neighbourhood of fhigh. Blue dots, corresponding
to numerical results, are fitted by the red curve, assuming the resonant condition (6.7).

magnetic field, normalized to the off-resonance minimum amplitude value (blue
dot at f0 = 320kHz). A resonance is found at the frequency obtained by the FFT
analysis of the plasma response following a "vertical push". The fit of the resonance
condition Eq. 6.7 reveals a resonant frequency f = 311.4kHz and a mode damping
rate γ =−1060s−1.

The mode structure near resonance ( f0 = 311.5kHz) is shown in Figs. 6.20
and 6.21. The higher frequency mode presents an orthogonal mode parity with
respect to the lower frequency one. The vector plot of Fig. 6.22 shows a perturbed
flow, oscillating inward and outward along the equatorial midplane, localized in the
plasma core, together with a return poloidal flow in the outer region of the plasma.
In Fig. 6.23, 1D plots of the horizontal component of the perturbed momentum
along horizontal and vertical slices are shown. The mode structure is global with a
strong peak of the poloidal flow, Ṽθ , close to the plasma edge. This peak is located
close to the minimum of the n = 0 Alfvén continuum, and the frequency value at the
minimum of the spectrum compares well with the one obtained for the mode.

These features are characteristic of the n = 0 GAE, as reported in Table 6.1 in
the next section, leading to the identification of the high-frequency mode in our
NIMROD simulation as a GAE.
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(a) (b)

Fig. 6.20 Perturbed magnetic field components at t = 4.5 ms for forced oscillator frequency
at resonance, f0 = 311.5kHz. (a) Tangential, and (b) normal B-components with respect to
the equilibrium flux surfaces.

Fig. 6.21 Perturbed pressure at t = 4.5 ms for forced oscillator frequency at resonance,
f0 = 311.5kHz.
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Fig. 6.22 Vector plot of the perturbed velocity ṽ at t = 4.5 ms for forced oscillator frequency
at resonance, f0 = 311.5kHz.

(a) (b)

Fig. 6.23 Horizontal component of the perturbed momentum, plotted in (a) along a horizontal
slice, and in (b) along a vertical slice, for different times during one oscillation.
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6.5 Concluding remarks

This chapter represents an initial attempt to extend the investigation of n = 0 vertical
displacement oscillatory modes and their interaction with fast ions to more realistic
tokamak conditions. The initial step involved confirming the analytic theory by
validating the simplified model with the NIMROD code, which yielded excellent
agreement between numerical and analytic outcomes.

In the latter part of this chapter, the analysis was expanded to characterize
Vertical Displacement Oscillatory Modes (VDOM) using experimental data from
JET discharges. The goal of these simulations was to offer an first description of how
VDOM manifests in realistic tokamak geometries with experimental profiles. These
simulations aimed to observe stable oscillatory modes, with the free energy for the
modes coming either from an initial perturbation or a forced oscillator. Work is in
progress to implement the distribution functions outlined in Sec.3.3 in the hybrid
kinetic MHD module of the NIMROD code.

An expedient way to investigate damped modes in a numerical simulation of a
tokamak plasma, used here for the first time in NIMROD simulations, has been to
introduce forced oscillations of the perturbed plasma temperature with a prescribed
value of the forcing frequency. When the oscillator frequency matches that of a
plasma normal mode, a resonance occurs, which allows the normal mode to grow to
a finite amplitude and to be fully resolved numerically. In this way, we can study
the normal mode, without relying on carefully selected initial conditions, which
facilitates the identification of its distinctive physical properties.

Our simulations suggest the presence of two distinct Alfvén modes as potential
explanations for the observations in JET: a lower-frequency n = 0 mode, approxi-
mately at 180 kHz, identified as a Vertical Displacement Oscillatory Mode (VDOM),
and a higher-frequency n = 0 mode, around 310 kHz, identified as a Global Alfvén
Eigenmode (GAE). In JET discharge #102371, the n = 0 mode was excited with
a frequency of 320 kHz. If the numerically resolved mode frequency is the sole
criterion for comparison with experimental data, one might be inclined to conclude
that the observed mode in JET shot 102371 is a GAE. However, it’s important to
note that both GAE and VDOM could potentially be excited in future tokamak
experiments, depending on specific plasma conditions.
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A comparison between VDOM and GAE reveals distinctions in their charac-
teristics. GAE predominantly manifest as internal modes, whereas VDOM exhibit
external characteristics. The radial structure of GAE results in the perturbed poloidal
flow peaking near the minimum of the n = 0 continuum spectrum. In contrast, the
radial structure of VDOM shows significant insensitivity to the q profile. Both modes
are global, yet they differ in parity concerning the poloidal angle. The perturbed
flow of GAE follows an even parity, signifying a side-to-side motion of the plasma
core along the equatorial plane of the toroidal configuration. On the other hand, the
perturbed flow of VDOM exhibits an odd parity, corresponding to a nearly rigid-shift,
up-down vertical motion of the plasma core. Both GAE and VDOM frequencies
scale inversely with the Alfvén time, i.e., ω ∝ (B′

p/ρm)
1/2. The GAE frequency

aligns with the minimum of the n = 0 continuum spectrum, influenced by the q
profile, with weak dependence on plasma-wall distance. In contrast, the VDOM
frequency varies with plasma-wall distance while displaying limited sensitivity to
details of the q profile. This comparison between GAE and VDOM is summarized
in Table 6.1.



Chapter 7

Conclusion

7.1 Conclusions

In the next generation of magnetic confinement fusion devices, the focus is on achiev-
ing a burning plasma, where self-heating is provided by alpha particles generated
with an energy of 3.5 MeV through fusion reactions in D-T plasmas. The presence
of alpha particles and other energetic ions, produced via auxiliary heating, has a
significant impact on the magnetohydrodynamic (MHD) stability of the plasma
discharge. Wave-particle resonant interactions can induce various MHD instabili-
ties, ranging from Energetic Particle Modes (EPMs) to the entire class of Alfvén
Eigenmodes (AEs) [7–10, 33]. In this thesis, our focus is on the destabilization of
Vertical Displacement Oscillatory Modes (VDOM) due to wave-particle resonances.
VDOM are natural modes of oscillations in tokamak plasmas and arise due to the
passive feedback stabilization of the well-known ideal vertical instability. Although
the vertical plasma stability has been extensively studied, the stable branch of the
dispersion relation associated with the VDOM solution has not received thorough
attention. These modes are damped by wall resistivity and plasma collisional pro-
cesses such as viscosity, and they are not typically observed in tokamak experiments
under normal operation conditions. However, they may be driven unstable by MeV
fast ions. The theoretical framework developed in this thesis represents an initial
effort to characterize this new type of fast-ion driven instability, providing valuable
insights for experimental investigations. Indeed, this research is partially motivated
by the observation of saturated n = 0 fluctuations with Alfvénic frequency in recent
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JET experiments involving fast ions produced by auxiliary heating, as discussed in
Ref. [3] and [44], and in recent D-T discharges in presence of alpha particles.

The analytical derivation of the dispersion relation for a vertical plasma displace-
ment is presented in Chapter 4 and is based on Ref.[15]. These vertical displacements
are axisymmetric perturbations, with a toroidal mode number of n = 0, in a toroidal
tokamak plasma. They induce an vertical motion of the entire plasma column, pri-
marily characterized by Fourier components with an elliptical mode number of m= 1.
The derivation is based on the reduced ideal-MHD model and assumes a simple
"straight-tokamak" equilibrium with an elliptical plasma boundary and a uniform
current density profile. The equilibrium assumption is motivated by the fact that the
stability and growth rate of vertical displacements depend on plasma shaping and
total plasma current rather than on details of current density profiles. The vertical
stability analysis is conducted using the ideal-MHD energy principle. The method
of quadratic forms, along with the normal-mode solution for the mode structure, is
demonstrated as an efficient approach to derive the dispersion relation. The relevant
dispersion relation is quadratic in γ for the ideal wall case, while it becomes cubic
in γ for the resistive wall case. In the resistive wall scenario, an additional purely
growing mode with zero frequency emerges, with a growth time on the order of
the resistive wall time. Active feedback control systems in tokamak experiments
focus on suppressing this purely growing mode. The growth rate of the non-rotating
n = 0 resistive wall mode has been studied in close to the marginal stability limit,
following Ref.[16]. In this limit we showed that the resistive wall growth rate scales
with a fractional power of the wall resistivity, and can be much faster than the one
obtained in the standard D > 1 case.

The other two roots, referred to as "vertical displacement oscillatory modes"
(VDOM), are purely oscillatory for the ideal wall case, when the ideal vertical
instability is suppressed. These modes exhibit weak damping due to wall resistivity.
However, their oscillation frequency is slightly below the poloidal Alfvén frequency,
rendering them unaffected by Alfvén continuum damping. This modes can resonate
with fast ion populations, generated in a tokamak plasma due to auxiliary heating
and/or as products of fusion reactions.

Under specific conditions discussed in Ch.5, and based on Ref. [17], this resonant
interaction has the potential to destabilize the VDOM. The stable branch of the
dispersion relation linked to the VDOM solution has been expanded to include
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kinetic effects arising in the presence of MeV fast ions. Utilizing the method of
quadratic forms introduced in Ch.4, the contributions of energetic ions have been
naturally integrated through an extended energy principle. The dispersion relation,
considering the impact of wave-particle resonant interaction, can be investigated
perturbatively. This involves focusing solely on the resonance contributions to the
growth rate of the VDOM, while disregarding effects on the mode frequency. The
instability can be driven by a mode-particle resonant interaction involving fast ions
on both trapped and passing orbits. The necessary conditions for instability is a
distribution function of the fast ions with positive slope with respect to energy or
anisotropy in velocity space. Various distribution functions have been explored, such
as a slowing-down inverted by losses and a single-pitch slowing down. Determining
a critical fast ion density threshold for instability involves evaluating the interplay
between the drive from mode-particle resonance and damping introduced by the
resistive wall. A distribution function influenced by sawtooth oscillations may
provide the free energy necessary for the mode destabilization under particular
conditions that are under investigation.

The analytic results discussed so far have relied on our simplified "straight-
tokamak" equilibrium. In Ch. 6, these analytic findings on n = 0 modes have been
successfully replicated using the extended-MHD code NIMROD. The close agree-
ment between analytic theory and numerical results serves as a robust benchmark
and a valuable initial point for further numerical explorations of n = 0 modes in ex-
perimental tokamak configurations with realistic plasma geometries. Discrepancies
observed between analytic and numerical outcomes have been primarily attributed to
differences in the wall shape utilized in the analytic work compared to the NIMROD
simulations, along with the fact that NIMROD adopts a low-density, high-resistivity
halo plasma instead of the vacuum assumed in the analytic calculations. In cases
where ideal-MHD vertical displacements are passively stabilized due to the presence
of the ideal wall, VDOM are identified. In the simulations, VDOM exhibit weak
damping, owing to the low values of plasma and halo resistivity, viscosity, and other
dissipative terms.

In Chapter 6, we then reported the first numerical simulations of VDOM in realis-
tic tokamak geometry, following Ref. [2]. The characteristics of VDOM resolved in
these simulations align qualitatively very well with those obtained through analytic
work based on the idealized straight tokamak equilibrium. This computational evi-
dence conclusively establishes VDOM as natural modes of oscillations in tokamak
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plasmas. For our numerical simulations, we selected the equilibrium profiles from
JET discharge #102371, where n = 0 modes destabilized by energetic ions were ob-
served. Our simulations reveal the presence of two distinct Alfvén modes that could
potentially explain the observed phenomena in JET: a lower-frequency n = 0 mode
at approximately 180 kHz, identified as a VDOM, and a higher-frequency n = 0
mode at around 310 kHz, identified as a Global Alfvén Eigenmode (GAE). We also
outlined key distinctions between GAE and VDOM that could aid in experimental
identification, as both modes are plausible candidates for interpreting the observed
n = 0 modes in JET discharges.

In conclusion, this thesis has introduced a new type of fast-ion-driven instability
in tokamak plasmas, dubbed as fast-ion-driven Vertical Displacement Oscillatory
Modes (VDOM). The results presented are a comprehensive discussion based on the
author’s publications and research carried out during the Ph.D. period. Both analyti-
cal and numerical results consistently depict VDOM as external modes characterized
by a nearly rigid shift mode structure, describing the entire plasma’s oscillation
in the vertical direction with an Alfvénic frequency. Notably, the mode frequency
falls below the minimum of the Alfvén frequency for standard tokamak param-
eters, rendering them immune to strong continuum damping. Consequently, the
resonant interaction with MeV fast ions has the potential to drive them unstable.
The theoretical framework presented here serves as an initial description of these
fast-ion-driven VDOM, aiming to provide a possible interpretation for the observed
n = 0 perturbations in recent JET experiments.

The theory outlined in this thesis marks an initial exploration into understanding
these n = 0 instabilities. However, further theoretical advancements are essential to
achieve a comprehensive understanding of these phenomena, particularly in more
realistic scenarios that account for non-uniform profiles and equilibrium flows. Addi-
tionally, a thorough investigation into the sources of inverted distribution functions,
which drive these modes, is required. Furthermore, experimental validation of
these modes through rigorous modeling remains a crucial aspect under investiga-
tion. Through such validation, the theoretical framework can be refined and its
applicability to real-world plasma systems might be fully assessed.

Despite these considerations, we can highlight the significance of fast-ion-driven
VDOM in tokamak plasmas. Firstly, addressing the challenge of n = 0 Vertical Dis-
placement Events (VDE) is crucial for ensuring the safe operation of fusion machines.
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In this context, fast-ion-driven VDOM may serve as valuable precursor modes. Their
frequency carries essential information about the vertical stability of the plasma,
making them potentially useful for VDE mitigation. Another intriguing aspect of
fast-ion-driven VDOM is their destabilization through wave-particle resonance with
MeV ions. Typically, n = 0 perturbations do not directly induce radial transport of
resonant particles. However, they may facilitate a faster relaxation of the fast ion
distribution function towards a standard slowing down distribution. In the context of
alpha particles generated by fusion reactions, these processes could enhance particle
slowdown, with alphas exchanging energy with plasma waves rather than electrons.
This collisionless extraction of alpha particle energy, known as α-channeling, holds
significant implications for the feasibility of controlled fusion energy.
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Appendix A

Derivation of the time-dependent
temperature profiles and distribution
functions in presence of sawtooth
oscillations

A.1 Kadomtsev reconnection

The well known Kadomtsev reconnection model described in [54] prescribes a
method for the determination of the post-crash pressure profile making use of he-
lical flux and energy conservation arguments. In particular situations, it allows for
analytical work. Starting from the q profile described in Eq. (3.63), it is possible
to determine analytically the mixing radius rmix. Kadomtsev model is based on the
assumption that magnetic surfaces with equal helical flux ψ∗ reconnect, due to a
growing magnetic island with poloidal and toroidal mode numbers m/n = 1, and that
during reconnection the toroidal flux ψT is conserved. In cylindrical approximation
we can express the normalized helical flux up to leading order in r/R as:

ψ̂∗(r2) =
∫ r2

0
dr̂2 [q(r̂2)−1 −1

]
(A.1)

Within the cylindrical approximation, assuming nearly constant toroidal magnetic
field, the toroidal flux conservation constraint can be reconsidered as the conser-
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vation of the cross-sectional area between reconnecting surfaces. The helical flux
corresponding to the q profile of Eq. ( 3.63), reads:

ψ̂∗
pre(r2) =

∆q
q0

r2
s

(
r2

r2
s
− r4

2r4
s

)
(A.2)

The magnetic axis will reconnect with the magnetic surface at r = rmix, ψ̂∗(0) =
ψ̂∗(r2

mix), resulting in r2
mix = 2r2

s . Each magnetic surface inside rs will reconnect with
one outside: labeling an arbitrary radius inside the resonant surface r1, there will
be a radius r2 at which ψ̂∗(r2

1) = ψ̂∗(r2
2). From Eq. (A.2), we obtain r2

2 = 2r2
s − r2

1

and r2
1 = 2r2

s − r2
2. After the reconnection process, each reconnected surface will be

again circular, with radius rk, that can be determined form the toroidal flux (area)
conservation constraint as r2

k = r2
2 − r2

1. Combining the two expressions we can write
r2

1 = r2
s − r2

k/2 and r2
2 = r2

s + r2
k/2. In particular, the magnetic surfaces after the

reconnection will be characterized by ψ̂∗
rel(r2

k) = ψ̂∗
pre(r2

1). Since rk is an arbitrary
radius of the reconnected magnatic surfaces, we can obtain the reconnected helical
flux, and therefore the relaxed q profile:

ψ̂∗
rel(r2) =

1
2

r2
s

∆q
q0

(
1− r4

4r4
s

)
(A.3)

dψ̂∗
rel(r2)

dr2 = q(r2)−1
rel = 1− 1

4
∆q
q0

r2

r2
s

(A.4)

In order to determine the relaxed pressure profile, we consider that, during the
reconnection, the thermal energy of the plasma involved in the process is conserved,
i.e. we impose the conservation of the thermal energy integral within the cross-
sectional area between reconnecting surfaces.

2π

∫ r2

r1

drppre(r2) = 2π

∫ r f

0
drprel(r2) (A.5)

After simple manipulations, we can write

∫ r2
k

0
dr2 prel(r2) =∫ r2

s+r2
k/2

r2
s

ppre(r2)dr2 −
∫ r2

s−r2
k/2

r2
s

ppre(r2)dr2 (A.6)
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and, differentiating with respect to r2
k :

prel(r2) =
1
2
[
ppre(r2

s + r2/2)+ ppre(r2
s − r2/2)

]
(A.7)

If we assume that the pre-crash pressure profile inside the mixing radius rmix =
√

2rs

is parabolic,

ppre(r2) = p0

[
1− r2

r2
p

]
(A.8)

where p0 is the onaxis pressure, and rp > rmix, then the relaxed pressure profile is
constant:

prel(r2) = p0

[
1− r2

s
r2

p

]
= const (A.9)

Note that a different assumption for the pre-crash pressure profile in general leads to
a non-constant relaxed pressure.

The pressure profile is assumed to depend on time during sawtooth ramps ac-
cording to:

p(r, t) = p1(t)
[

1−β (t)
r2

r2
s

]
. (A.10)

Thermal energy conservation determines the value of prel ,

∫ r2
mix

0
dr2 p(r, t) = prelr2

mix, (A.11)

and of the parameter β (t) = 1− prel/p1(t). The time dependent parameter p1(t)
can be determined describing the temperature evolution during the ramp. Here, we
assume that the on-axis temperature increases linearly in time from prel to ppre(0).
In this way one obtains:

p1(t) = p0

[
1− r2

s
r2

p

(
1− t

τsaw

)]
. (A.12)
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With β (t) = 1− prel/p1(t), the pressure profile evolution reads:

p(r, t) = p0

[
1− r2

s
r2

p

(
1− t

τsaw

)
− r2

r2
p

t
τsaw

]

= prel

[
1+

r2
s − r2

r2
p − r2

s

t
τsaw

]
(A.13)

A.2 PDE solution

In this appendix we detail the solution of the differential equation

∂v3 fα

∂ t
− v

τsd

∂v3 fα

∂v
+ναv3 fα = v3Sα (A.14)

under the different assumptions considered in the main body of this article. Defining
Fα = v3 fα , one must solve

∂Fα

∂ t
− v

τsd

∂Fα

∂v
+ναFα = v3Sα (A.15)

It is possible to restrict the analysis to the solution of the differential equation for
particles born during the generic n-th sawtooth cycle (with nτsaw < t < (n+1)τsaw).
Considering a constant slowing-down time and a varying source term, as in Sec. 3.3.3,
we can solve Eq. (A.15) using the method of characteristics. The characteristics
equations are:

v = c1e−t/τsd0 (A.16)

c1 = vet/τsd0. (A.17)

These are used to solve the differential equation:

dFα,n

dt
= v3Sα,n(t,r,v)−νlFα,n. (A.18)
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To solve Eq. (A.18) we consider:

Fα,n(t,r,v) =C(t,r,v)e−tνl (A.19)
dC
dt

= v3Sα,n(t,r,v)etνl (A.20)

and thus the integral equation:

C(t,r,v) =
∫ t ′

−∞

dtv3Sα,n(t,r,v)etνl . (A.21)

The time-dependent source term can be expressed as

Sα,n(r, t,v) = Srel

[
1+A(r)

(
t

τsaw
−n
)]2

×

H[(n+1)τsaw − t]H[t −nτsaw]δ (v− vb) (A.22)

with Srel = cSn2
eT 2

0,rel/v2
b being the source term associated with the relaxed tem-

perature after a sawtooth crash. Applying the characteristic relation of (A.16) and
integrating by exploiting the delta function properties within (A.22), we then consider
the second characteristic relation A.17, leading to the following expression:

C(t,r,v) = v2
bτsd0

(
v
vb

)νlτsd0

etνl Srel×{
1+A(r)

[
t

τsaw
+

τsd0

τsaw
log
(

v
vb

)
−n
]}2

×

H[vb − v]H[(n+1)τsaw − t − τsd0

τsaw
log

v
vb
]×

H[t +
τsd0

τsaw
log

v
vb

−nτsaw] (A.23)

Lastly, from expression (A.19) for Fα,n, and manipulating the argumet of the Heavi-
side function, one obtains the relevant distribution function describing particles born
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during the n-th sawtooth cycle:

fα,n(r, t,v) = τsd0v2−3lα
b v−3+3lα H [vb − v]× (A.24)

Srel

{
1+A(r)

[
t

τsaw
+

τsd0

τsaw
log
(

v
vb

)
−n
]}2

×

H
[
v− vbe(nτsaw−t)/τsd0

]
H
[
vbe((n+1)τsaw−t)/τsd0 − v

]
, (A.25)

where l0 = νlτsd0/3.

The same technique can be considered in order to solve Eq. (A.15) with constant
source term and varying slowing-down time, as in Sec. 3.3.4). However, more care
is required due to the discontinuities in τsd introduced by the sawtooth crashes. For
simplicity, we neglect the loss term, i.e. we set νl = 0. Due to the discontinuities in
τsd , we consider again particles born during the n-th sawtooth cycle, but we solve the
differential equation (A.15) separately for each successive sawtooth cycle. During
the n-th sawtooth cycle, the slowing-down time varies according to:

τsd(r, t) = τsd,relhn(r, t)3/2 (A.26)

defining hn(r, t) = 1+A(r)(t/τsaw −n), while the constant source can be expressed
as Sα = S0δ (v− vb).

We can proceed using the method of characteristics, with characteristic equations:

v = c1 exp
[

2τsaw

τsd,relA(r)
hn(r, t)−1/2

]
(A.27)

c1 = vexp
[
− 2τsaw

τsd,relA(r)
hn(r, t)−1/2

]
(A.28)

in order to solve
dFn−th

α,n

dt
= v3S0δ (v− vb). (A.29)

Integrating in time, Using Eqs. (A.27) and A.28, one obtains the solution valid for
the n-th sawtooth period:

Fn−th
α,n (t,r,v) = v2

bS0τsd,relhn(r, tn−th
n (r, t,v))3/2

H[tn−th
n (r, t,v)]H[t − tn−th

n (r, t,v)]

H[τsaw − tn−th
n (r, t,v)] (A.30)
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where

tn−th
n (r, t,v) =

τsaw

A(r)

{
[A(r)n−1]+

1[
τsd,relA(r)

2τsaw
log
(vb

v

)
+hn(r, t)−1/2

]2

}
(A.31)

We can rewrite the Heaviside function in terms of velocities:

Fn−th
α,n (t,r,v) = v2

bS0τsd,relhn(r, tn−th
n (r, t,v))3/2

H[vb − v]H[vn,max − v]H[v− vn,min] (A.32)

with:

vn−th
n,min(r, t) = vb×

exp
{
− 2τsaw

τsd,relA(r)

[
1−hn(r, t)−1/2

]}
(A.33)

vn−th
n,max(r, t) = vb×

exp

{
− 2τsaw

τsd,relA(r)

[
1√

A(r)+1
−hn(r, t)−1/2

]}
(A.34)

We now look for the solution associated to particles born during the n-th cycle
during the (n+1)-th sawtooth cycle. In this case the source term is zero and we have
to solve the following differential equation:

∂Fα

∂ t
− v

τsd

∂Fα

∂v
= 0. (A.35)

It is still possible to proceed considering the characteristic equation, but during this
cycle the slowing-down time follows

τsd(r, t) = τsd,relhn+1(r, t)3/2. (A.36)
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Accordingly, our characteristic equations read

v = c1 exp
[

2τsaw

τsd,relA(r)
hn+1(r, t)−1/2

]
(A.37)

c1 = vexp
[
− 2τsaw

τsd,relA(r)
hn+1(r, t)−1/2

]
, (A.38)

that we can use to solve:

dFn+1−th
α,n

dt
= 0 → Fn+1−th

α,n = cst (A.39)

and then match its solution with the one from the previous sawtooth period. Con-
sidering the characteristic equation (A.37), we obtain the following relation for the
constant:

cst = Fn−th
α,n (r,(n+1)τsaw,

c1 exp
[

2τsaw

τsd,relA(r)
hn+1(r,(n+1)τsaw)

−1/2
]
) (A.40)

Considering then the expression for tn−th
n (r, t,v) of Eq. (A.31) and the Heaviside

functions of Eq. (A.32), together with the second characteristic Eq. ( A.38), it is
possible to obtain the solution during the (n+1)-th sawtooth period:

Fn+1−th
α,n (t,r,v) = v2

bS0τsd,relhn(r, tn+1−th
n (r, t,v))3/2

H[vb − v]H[vn+1−th
n,max ∆v− v]H[v− vn+1−th

n,min ∆v] (A.41)

where

tn+1−th
n (r, t,v) =

τsaw

A(r)

{
[A(r)n−1]+

1[
τsd,relA(r)

2τsaw
log
(vb

v

)
+hn+1(r, t)−1/2 −

(
1− 1√

A(r)+1

)]2

}
(A.42)

and ∆v is defined as:

∆v = exp

{
−2τsaw

τsd,relA(r)

(
1− 1√

A(r)+1

)}
(A.43)
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while the new maximum and minimum velocities are:

vn+1−th
n,min (r, t) = vb×

exp
{
− 2τsaw

τsd,relA(r)

[
1−hn+1(r, t)−1/2

]}
(A.44)

vn+1−th
n,max (r, t) = vb×

exp

{
− 2τsaw

τsd,relA(r)

[
1√

A(r)+1
−hn+1(r, t)−1/2

]}
. (A.45)

4 The same procedure can be followed in order to derive the solution for later
sawtooth periods (n+2,n+3,...). A recursive expression for the distribution function
can be obtained for the evolution of the particles born during the n-th cycle for all
times:

Fα,n(r, t,v) = S0v2
bH [vb − v]×

τsd,relhn(r, t̂n(r, t,v))3/2×
H [v− v̂n,min(r, t)]H [v̂n,max(r, t)− v] (A.46)

where the generalized functions for the characteristic time, maximum and minimum
velocities are defined as follows:

t̂n(r, t,v) =
τsaw

A(r)

{
[A(r)n−1]+[

τsd,relA(r)
2τsaw

log
(vb

v

)
+ ĥn(r, t)−1/2−

−
⌊

t −nτsaw

τsaw

⌋(
1− 1√

A(r)+1

)]−2}
(A.47)

v̂n,min(r, t) = vb∆v⌊
t−nτsaw

τsaw ⌋×

exp
{
− 2τsaw

τsd,relA(r)

[
1− ĥn(r, t)−1/2

]}
(A.48)



136
Derivation of the time-dependent temperature profiles and distribution functions in

presence of sawtooth oscillations

v̂n,max(r, t) = vb∆v⌊
t−nτsaw

τsaw ⌋×

exp

{
− 2τsaw

τsd,relA(r)

[
1√

A(r)+1
− ĥn(r, t)−1/2

]}
(A.49)

and the generalized function ĥ(t,r) depends on the integer part of (t −nτsaw)/τsaw:

ĥn(t,r) = 1+A(r)
(

t
τsaw

−n−
⌊

t −nτsaw

τsaw

⌋)
. (A.50)

Remembering the definitions of Fα,n and hn(t,r), the distribution function reads:

fα,n(r, t,v) = S0
v2

b
v3 H [vb − v]×

τsd,rel

{
1+A(r)

[
t̂n(r, t,v)

τsaw
−n
]}3/2

×

H [v− v̂n,min(r, t)]H [v̂n,max(r, t)− v] . (A.51)

In the situation with both the source term and slowing-down time depend on time
through the plasma temperature, as in Sec. 3.3.5, the analytic procedure is again
the one just described for the case of non-constant slowing-down time of Sec. 3.3.4.
Since the source term and the slowing-down time vary in the same way, following the
temperature evolution, the only additional effect of the varying source with respect
to the previous case lies in the exponent of the varying temperature function, hn(r, t).
The full distribution function can then be expressed as:

fα,n(r, t,v) = Srel
v2

b
v3 H [vb − v]×

τsd,rel

{
1+A(r)

[
t̂n(r, t,v)

τsaw
−n
]}7/2

×

H [v− v̂n,min(r, t)]H [v̂n,max(r, t)− v] . (A.52)
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