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Abstract

In industrial practice, design and maintenance phases mainly rely on similitudes and
past experience to characterize the current integrity state and to take into account
its effect on performance. However, this approach can easily lead to unjustified
heavy structures or not ideal inspection procedures and intervals. This thesis aims
to provide high-fidelity numerical models that can be integrated with data from
experience to support design and maintenance procedures. The framework relies on
higher-order structural theories based on the well-established Carrera Unified For-
mulation (CUF). CUF is a generalized hierarchical formulation that generates a class
of refined structural theories through variable kinematic description. CUF-based
models can provide accurate 3D-like stress fields at a reduced computational cost,
e.g., approximately one to two orders of magnitude of degrees of freedom less than
standard 3D brick elements.
CUF-based finite element models are combined with a Hashin-based orthotropic
damage model for dealing with damage in fibre-reinforced composite materials. This
method belongs to the family of computational models based on the so-called Contin-
uum Damage Mechanics (CDM). Hence, cracks are smeared out within the volume
of the finite element, degrading the stiffness of the involved material points. The pro-
posed method’s main novelty lies in its capability to consider a full three-dimensional
stress state to describe the damage propagation. Furthermore, this approach can also
view three independent failure modes: fibre, matrix and interlaminar.
In order to deal with progressive failure analysis, CUF-based Finite Elements (FE)
are also coupled with Peridynamics (PD). PD is a non-local formulation capable
of coping with discontinuities, such as cracks. The PD theory does not suffer from
the inapplicability of the classical continuum mechanics theory when cracks or
interfaces happen due to the integro-differential nature of the governing equations.
Thus, PD presents a unique capability of analyzing damage and progressive failure
of materials and structures by directly predicting the displacements, crack nucleation



vi

and propagation with arbitrary paths without any special numerical techniques or
criteria.
Furthermore, a global-local approach has been extended to deal with the refined
local analysis of larger regions. This new feature will allow us to perform, among
others, optimization analysis on areas of higher interest, such as an aircraft wing
patch. This approach has then been combined with the previously mentioned coupled
FEM-PD models for dealing with progressive failure analysis in specific regions of
large structures, for example, in regions where a crack is more likely to develop or
has been detected in previous inspections.
Finally, CUF-based finite element models have also been employed as a data gener-
ator for the training of data-driven deep learning approaches, to create a complete
mapping of damages in aeronautical structures, even considering those occurring in
localized components.
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Chapter 1

Introduction

1.1 Characterization of failure in isotropic and com-
posite structures

Continuum damage mechanics

Progressive damage analysis presents significant challenges, particularly in com-
posite laminates, owing to the diverse failure modes that manifest under specific
loading conditions and the interactions between these modes. The failure modes in
composites are inherently complex. Their accurate representation in a numerical
material model while preserving the physical aspects of damage progression and its
impact on structural integrity is a non-trivial endeavor. A family of computational
models to simulate progressive damage is based on the so-called Continuum Damage
Mechanics (CDM). They are quite widespread in recent literature due to their relative
simplicity in terms of implementation and lower computational costs when compared
to different approaches. Due to these challenges, composite material models based
on continuum damage mechanics are currently very spread in the literature. In these
continuum-based approaches, the cracks within the composite matrix are smeared
out throughout the finite element volume, and their effects are characterized by
damage parameters that influence the material point’s stiffness within the overall
structure. The process of smearing out the crack ensures mesh continuity, avoid-
ing the need for computationally intensive discontinuity handling techniques and
enhancing the efficiency of continuum models. However, a notable drawback of
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this approach is its strong dependence on mesh refinement, as the crack width is
influenced by the finite element size. To mitigate this issue, mesh dependency is
commonly addressed through the adoption of crack-band theory [1], which scales the
constituent fracture energy using an appropriate length parameter typically derived
from the finite element dimensions. The concept of CDM was first introduced by
Kachanov [2] to describe creep damage in metallic materials, where damage was
characterized by a scalar internal state variable. After this, Lemaitre and Chaboche
[3] applied applied Kachanov’s work to analyze materials with distributed cavities
and cracks. Further progress in CDM theory was made by Krajcinovic [4], who not
only linked CDM theory with concepts from fracture mechanics and plasticity but
also explored its thermodynamic implications. Regarding the application of CDM to
composites, one of the earliest endeavors was by Talreja [5], who later expanded the
theory to predict damage evolution in cross-ply laminates [6]. Other notable CDM
theories for laminate analysis include those proposed by Matzenmiller et al. [7] and
Ladeveze et al. [8, 9]. In this research, an orthotropic damage model that considers a
full 3D stress state for the evaluation of the failure onset and damage propagation is
considered.

Peridynamics and coupled models

The CDM category has the advantage of relatively low computational costs. Nev-
ertheless, CDM is not able to involve the explicit geometrical representation of
cracks within the structure. For doing so, Discrete Damage Models (DDM) can be
employed. This method offers a physically realistic representation of damage mech-
anisms and their interactions, albeit requiring significant computational resources.
In discrete modeling, interface elements are commonly employed, utilizing cohesive
zone modeling to replicate matrix cracks within plies and delamination between
plies [10–13]. Alternatively, discrete modeling techniques may involve the eXtended
Finite Element Method (XFEM), which employs enriched kinematics to depict the
displacement discontinuity across cracks [14]. However, the use of DDM does not
solve the issue related to the spatial partial derivatives, which are used to define stress
and strain in a body. In fact, even adopting these methods will lead to undefined
or ill-suited derivatives when dealing with discontinuities. Thus, these numerical
methods still suffer from a lack of simulation accuracy and low efficiency when
handling complex problems. For example, neither CDM nor DDM can take into
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account the spontaneous nucleation and propagation of multiple interacting cracks
when the structure is subjected to complex three-dimensional loading conditions.
Acknowledging that the inherent limitations of conventional methods for approxi-
mating the mathematical expressions of classical continuum mechanics cannot be
fully addressed solely by integrating specialized techniques into standard numerical
methods (e.g., FEM), Silling [15] introduced a peridynamic formulation of elasticity
theory to handle discontinuities and long-range forces.

The peridynamics theory overcomes the limitations of classical continuum me-
chanics theory in cases involving cracks or interfaces. It offers a distinct ability to
analyze material and structural damage, as well as progressive failure, by directly
predicting displacements, crack initiation, and propagation along arbitrary paths
without relying on specialized numerical techniques or criteria. Xu et al. [16] applied
peridynamics to analyze damage and failure in composite structures. Silling and
Askari [17] developed a peridynamics-based damage model to investigate crack
initiation and propagation under cyclic loading. Ha and Bobaru [18, 19] explored
dynamic brittle fractures using peridynamics. Madenci et al. [20] developed a
methodology for examining crack propagation in structures subjected to complex
loading conditions. The non-locality feature of PD and its capability to deal with
discontinuities are key factors that make PD a powerful tool for crack propagation
analysis. However, these aspects would represent a significant drawback when used
to analyse large structures, due to the exponential increase of the computational costs.
In fact, since every point of a PD grid interacts with all points within its neighbour-
hood, PD-based numerical methods are computationally more expensive than those
based on classical mechanics, such as FEM, where the interaction is limited to the
nodes of adjacent elements. This issue is amplified when implicit numerical schemes
are adopted, and the tangent stiffness matrix has to be computed because the number
of non-zero elements produces a not negligible bandwidth in the matrix [21]. Finally,
applying boundary conditions on a PD domain introduces some difficulties due to
the problem of boundary condition definitions in non-local theories. Several studies
have been conducted to overcome this limitation in imposing boundary conditions
[22–24]. Concerning the demanding computational cost, a promising strategy is the
coupling of PD with a numerical method based on classical continuum mechanics,
such as FEM. In this way, the advantages of both methods can be exploited, for
example, by introducing a PD grid in small regions where the crack is likely to
develop and modelling the remaining domain with FEM discretization. Several
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methods have been proposed in past years for the coupling of PD grids with FEM
subdomains, i.e., [25–32]. It should be noted that most of the methods presented
in literature couple dimensionally consistent domains, such as 1D FEs with 1D PD
grids, 2D FEs and 2D PD grids. Nevertheless, when cases of practical interest are
investigated, an accurate 3D description of the problem is required, making using 3D
FEs and 3D PD grids unavoidable, leading to potentially prohibitive computational
costs.

From classical to high order structural theories

The necessity of accurate numerical models for high-fidelity design and analysis of
structures is one of the main issue in structural mechanics. This applies especially
when complex assemblies, i.e. aeronautical structural components, are considered. In
fact, a typical composite laminate can reach a scale ratio between the main dimension
and the single-ply thickness of 104. Generally, the finite element method is used
to predict the structural behavior of composite laminates. However, the large-scale
ratio value leads to highly time-consuming mathematical models, especially if 3D
elements are adopted.

One approach to address this challenge involves employing advanced reduced-
dimensional numerical models. One-dimensional (beam) classical theories, as Timo-
shenko Beam Theory (TBT) [33], and Euler-Bernoulli Beam Theory (EBBT) [34],
as well as two-dimensional (plate/shell) theories, such as Reissner-Mindlin plate
theory [35] and Kirchhoff theory [36], often encounter significant limitations be-
cause of the simplifying kinematic assumptions inherent in their formulation. These
limitations result in inadequate resolution of kinematic fields in the cross-section of
one-dimensional models and throughout the thickness of two-dimensional models,
making them ill-suited for many problems that necessitate accurate three-dimensional
resolution.

A generalized framework to generate higher-order structural theories with a
variable kinematic description was introduced by Carrera, and is known as the Carrera
Unified Formulation (CUF). Originally developed as a method to obtain 2D structural
theories [37, 38],CUF has evolved into a computational framework for deriving
classical and higher-order 1D (beam) and 2D (plate/shell) structural theories in a
fully generalised manner, eliminating the necessity for ad-hoc modifications of the



1.1 Characterization of failure in isotropic and composite structures 5

framework [39]. This formulation utilizes two-dimensional expansion functions and
one-dimensional thickness functions to characterize the cross-sectional and thickness
kinematics of 1D and 2D models, respectively, resulting in a three-dimensional
representation of field variables and outcomes that rival the accuracy of full 3D
models but with significantly reduced computational costs. For comprehensive
coverage, readers are directed to [40–48] for various engineering applications of the
CUF.

Global/local approach

A different solution to the problem of huge computational cost required for accurate
numerical models is represented by the adoption of a global/local approach. This
technique can provide a reduction in terms of simulation time, keeping a high
level of accuracy. Early research works developed in the past decades with limited
computing power were successfully applied to linear [49–52] and non-linear [53, 54]
analysis. A distinction between the different approaches described in the literature
is between two-way [55–60] and one-way couplings [61–64]. The first approach
involves exchanging information between global and local models in both directions,
whereas one-way couplings involve information transferring from the global model
to the refined local model just once. The global/local approaches can be applied for a
more reliable stress analysis of a composite laminate. More specifically, phenomena
that may occur within a composite structure; i.e., free-edge effects and failure,
demand a 3D description of the stress distribution. Thus, 3D solid elements can be
used at the local level [65]. If a typical aeronautical lay-up with tens of layers is
considered, even a relatively small region analysis leads to a considerable number
of solid elements. Therefore, aircraft companies and composite designers must
rely on experimental rules, such as Angle Minus Longitudinal (AML) method [66].
Furthermore, classical theories are not able to accurately describe the 3D effects that
arise at the free-edge of a composite laminate due to the mismatch of the mechanical
properties of different ply in a composite laminate. Recently, a global/local approach
with one-way coupling has been proposed, where the global analysis is performed
using the commercial software Nastran. Then, a local region is investigated using
advanced layer-wise models based on CUF. This strategy provides accurate solutions
for stress and strain transverse components, which can be essential when the onset
of failure in laminates has to be predicted. Recent works [67, 68] have shown this
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global/local approach’s capability to recover the 3D stress state at the ply level
accurately. However, in these researches, a so-called element-wise (EW) formulation
is used, meaning that a single global element can be chosen as the local area to be
analyzed through advanced LW theories, leading to some limitations in terms of
accuracy and dimension of the region to locally refined.

Damage detection

A preliminary step for the failure characterization, before the analysis of its prop-
agation, is represented by the identification and quantification of the damage. For
instance, aircraft manufacturers must adhere to a predetermined maintenance sched-
ule to guarantee the success and safety of operations. These schedules rely on Non-
Destructive Testing (NDT) techniques, including visual inspection, eddy current
testing, thermography, and ultrasonic inspection [69]. Nonetheless, NDT methods
encounter certain limitations, such as difficulty in detecting damage in specific areas
of the structure, the requirement to anticipate potential damage locations beforehand,
and considerable operational costs. For this reason, structural health monitoring
techniques (SHM) have emerged as a crucial area of research in recent years. The
goal of SHM is to detect, localize, quantify, and classify damage [70]. Various
techniques are being developed for SHM applications in composite materials, includ-
ing Lamb-waves [71, 72], distributed optical fibre sensors [73, 74] and intelligent
coating monitoring [75]. However, in recent years, researchers have directed their
efforts towards uncovering the unknown relationship that may exist between a mea-
sured quantity and the distribution of damage. This relationship can be discerned by
employing artificial intelligence (AI) techniques, such as Artificial Neural Networks
(ANN). Various types of input can be utilized to train these neural networks, enabling
them to learn the correlation between input data and patterns of damage. Examples of
employed input include dynamic parameters [76, 77] and static parameters [78], fre-
quency response functions (FRFs) [79], and wavelet transform coefficients [80]. The
proposed study initially explores the impact of localized damages on the alterations in
the vibrational characteristics of the structure, such as changes in natural frequencies
or mode shapes. Numerous investigations [81–84] have demonstrated that damage
significantly influences the dynamic parameters of a structure. Consequently, the
inverse problem can be addressed: given the dynamic parameters of a structures,
such as natural frequencies and mode shapes (or a combination of thereof), FRFs
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and modal strain energy, an ANN is employed to obtiain both location and severity
of all damages. Sahin and Shenoi introduced a methodology that integrates both
global (alteration in natural frequencies) and local (curvature mode shapes) dynamic
analysis information as input for the ANN. This method has been implemented in the
analysis of beam-like structures [85] and laminated composites [76]. Das and Pahri
employed the relative discrepancy in the first three natural frequencies and mode
shapes of a cantilever beam to train the ANN [86]. Suresh et al. introduced a modular
method to detect crack location and depth in a beam, employing two different ANNs:
one for guessing the crack location and the other for determining the crack depth
[87]. Jayasehar and Sumangala examined prestressed concrete beams by employing
natural frequency measurements as dynamic data, in conjunction with parameters
such as deflection, crack width, first crack load, and ultimate load [88]. aeed et al.
conducted finite element analysis to compute natural frequencies and FRFs in both
damaged and undamaged curvilinear beams, utilizing the deviation in these parame-
ters (from undamaged to damaged) to train four types of ANNs [89]. Aydin and Kisi
integrated material and geometrical characteristics of the beam into the neural net-
work, introducing mode shape rotation deviations alongside natural frequencies for
the first time [90]. Fathnejat et al. employed the Modal Strain Energy Based Index
(MSEBI) as input for a Cascade Feed Forward Neural Network (CFFNN) to identify
the location of damage [91]. However, when faced with more complex challenges,
ANNs could have some difficulties in terms of overfitting and bad generalization.To
address this, a deep-learning technique known as Convolutional Neural Network
(CNN) [92] has recently gained attention for damage detection applications [93–96].
Additionally, the utilization of dynamic parameters as training input has proven to
be ineffective for monolithic structures [97], such as composite laminates. This is
because computing higher-frequency modes becomes necessary to acquire adequate
information for damage detection. Consequently, static parameter images (strain
or displacement) are employed to establish the unknown correlation with damage
distribution, often in conjunction with CNNs. For instance, in [98], a CNN is trained
using numerically-simulated raw strain measurements for tasks related to detecting
and localizing structural connections. In [99], a novel monitoring technique based
on Digital Image Correlation (DIC) [100] is introduced. Two-dimensional axial
strain images derived from numerical analysis serve as input for training CNNs.
Meanwhile, [101] proposes a damage identification method leveraging strain mode
differences and the inverse Finite Element Method (iFEM). Notably, the advantage
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of this approach lies in its reliance solely on a series of low-order damaged data for
strain mode differences. In current literature, raw data for data-driven training are
typically acquired from conventional Finite Element (FE) models, as seen in [102].
However, these models often fail to capture certain mechanical behaviors, such
as shear or thickness stretching. Such simplifications can result in an incomplete
depiction of the effects coming from localized damages, such as delamination in
composite material structures. Hence, this study aims to underscore the significance
of structural modeling in neural network training.

1.2 Objectives

This thesis aims to build a framework that can address the challenges described
in previous section, thus providing efficient and effective tools for dealing with
progressive failure analysis and damage detection in both isotropic and composite
structures. Concerning the latter, a Hashin-based orthotropic damage model has been
proposed and combined with CUF-based finite elements to solve progressive failure
analyses in composite laminates. An alternative method is represented by coupling
1D and 2D higher-order finite elements with 3D peridynamic grid. Two different
coupling approaches are proposed in order to carry out static and progressive failure
analysis. Nevertheless, the computational cost of these simulations can still be
prohibitive for large or complex structures. Thus, the existent global/local tool has
been first extended to a patch-wise (PW) formulation. In this case, the local region
to be refined can be chosen as large as required. This extension allows us to analyze
more significant areas of a complex structure and evaluate 3D stress states and failure
onset while reducing the computational demand of the analysis. Furthermore, the
possibility of arbitrarily choosing large regions permits to embed coupled FEM/PD
model within the global/local tool for progressive failure analysis in localized zones
of the structure. Regarding the damage detection challenge, the capabilities of CUF
are exploited in this research to create a more extensive simulation-based database
for training an ANN or CNN. Static or dynamic parameters are employed to feed
the neural networks, whose output is represented by quantifying and localising all
damages in a multi-component structure.
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1.3 Thesis outline

The thesis is organized in two parts, each addressing one of the previously mentioned
objectives. The content of the thesis is described in the following.

1.3.1 Part I

• Chapter 2 introduces a novel Hashin-based orthotropic damage model for
fibre-reinforced composite materials. The proposed method’s main novelty
lies in its capability to consider a full three-dimensional stress state to describe
the damage propagation in composite laminates.

• Chapter 3 presents the governing equation of peridynamics. First, a continuum
formulation is proposed for the general state-based theory. Then, a meshfree
method with uniform grid is employed to discretize the peridynamic body. The
capability of peridynamics when dealing with crack propagation analysis is
also made clear by introducing the algorithm implemented in this thesis.

• Chapter 4 introduces the higher-order one-dimensional (1D) and two-dimensional
(2D) models used in this work, developed within the CUF framework. The
kinematics of beams and plates are expressed through a generic expansion of
generalized displacements, incorporating arbitrary cross-sectional and thick-
ness functions. By selecting different types and orders of functions, diverse
beam, plate, and shell theories can be derived. In this research, both Lagrange-
like (LE) and Taylor-like (TE) polynomials are considered. Following the CUF
framework and incorporating Finite Element Method (FEM), the governing
equations are expressed in a general yet unified and concise manner using
Fundamental Nuclei (FNs). These FNs act as the fundamental elements of the
proposed theory, using the Principle of Virtual Displacements (PVD).

• Chapter 5 is devoted to the introduction of the coupling of higher-order 1D
and 2D CUF-based finite elements with 3D PD sub-regions are presented.
Two different procedures have been implemented. The first approach is based
on the use of Lagrange multipliers at the interface between the FEM and PD
domains, whereas the second method relies on the imposition of displacement
continuity between the two regions.
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• Chapter 6 proposes a global/local approach adopted for the analysis of three-
dimensional stress states of composite laminated structures. This two-step
procedure, as a first step, makes use of finite element modelling based on clas-
sical 2D plate elements by using commercial FE software, whereas a refined
layer-wise model based on CUF is employed to extract the 3D stress and strain
fields in some critical regions that may have arbitrary dimensions. Moreover,
the proposed method is extended to deal with localized progressive failure
analysis using coupled FEM-PD models within the local refined domain.

• Chapter 7 proposes a selection of numerical examples obtained by adopting
the formulations and techniques presented in previous chapters. First, pro-
gressive failure analyses are performed using the continuum Hashin-based
orthotropic model in fibre-reinforced composite laminates. Then, outcomes
from static and progressive failure analyses performed using coupled FEM-
PD models are presented. Finally, numerical examples that make use of the
global/local approach are proposed for stress evaluation in composite struc-
tures, with a supplementary model where a global/local method is adopted for
localized progressive failure analysis through coupled FEM-PD models.

1.3.2 Part II

• Chapter 8 presents the numerical strategies and techniques employed in this
work for damage detection purposes. First, the component-wise formulation
within the CUF framework is illustrated, and its advantages when dealing with
damage modelling are explained. Finally, the necessity of using higher-order
theories to build high-fidelity models to be adopted for damage mapping is
made clear by presenting the results from two different cases.

• Chapter 9 is devoted to introducing two different AI techniques for damage
detection. A vibration-based method is first introduced, where a structure’s
vibrational characteristics (e.g., natural frequencies and Modal Assurance
Criterion (MAC) scalars) are employed as input. The influence of damage
in aeronautical structures is first demonstrated in this chapter. Then, the
procedure adopted to solve the inverse problem using ANN is illustrated.
The second proposed technique uses displacement and strain field images to
completely map damages in composite laminates. A Convolutional Neural
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Network (CNN) architecture is employed here. The common feature between
the two methods is the creation of a training database using CUF-based models,
allowing a component-wise modelling of the structures and thus the capability
of introducing a different damage in each component of the structure.

• Chapter 10 proposes a selection of numerical examples obtained adopting
the formulations and damage detection techniques presented in Chapters 8
and 9. First, the vibration-based method is applied to aeronautical thin-walled
structures, considering an isotropic damage model. Then, convolutional neural
networks are employed to predict damage location and intensity using dis-
placement and strain field images as training database in composite laminates.

• Chapter 11 provides an overview of the current study and offers concluding
observations to underscore the noteworthy results of this thesis. Additionally,
it suggests potential research avenues as subjects for future inquiries, building
upon the advancements made during the duration of the ongoing PhD program.



Part I

Progressive failure analysis via
coupled high order local-non-local

models





Chapter 2

Continuum damage modelling

This chapter is devoted to a detailed description of a Hashin-based orthotropic
damage model. It is here used for dealing with damage in fibre-reinforced composite
materials. This method belongs to the family of computational models based on the
so-called Continuum Damage Mechanics (CDM). Hence, cracks are smeared out
within the volume of the finite element, degrading the stiffness of the involved material
points. The proposed method’s main novelty lies in its capability to consider a full
three-dimensional stress state to describe the damage propagation. Furthermore,
this approach can also consider three independent failure modes: fibre, matrix and
interlaminar. The stiffness formulation is first presented, and then the failure onset
and evolution mechanism are presented.

2.1 Hashin-based orthotropic model

This section offers an outline of the orthotropic damage model utilized in the current
investigation. Initially, it presents the constitutive relation for a damaged material,
encompassing the characterization of the damage variables. Subsequently, the
initiation of failures is introduced in relation to failure criteria. Finally, it illustrates
the linear damage evolution law that describes the progression of failure for the
independent crack modes.
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x

y

z
3

Fig. 2.1 Global (in black) and material (in red) reference frames. Direction 1 for the material
frame represents the fiber direction, whereas 2 and 3 are the transversal directions.

2.1.1 Stiffness formulation

The current orthotropic model addresses the construction of the secant stiffness
matrix in the damaged state, denoted as CCCd, which is employed for calculating the
constitutive elastic stress-strain relationship. This is accomplished by computing the
stiffness matrix CCCd through the inversion of the compliance matrix SSSd (Eq. 2.1).

SSSd =



S11
1−d f

S12 S13 0 0 0

S21
S22

1−dm
S23 0 0 0

S31 S32
S33

1−di
0 0 0

0 0 0 S44
1−ds12

0 0
0 0 0 0 S55

1−ds13
0

0 0 0 0 0 S66
1−ds23


(2.1)

With
S j j =

1
E j j

, S jk = Sk j =
ν jk
E j j

=
νk j
Ekk

, j,k = 1,2,3, j ̸= k

S44 = G12, S55 = G13, S66 = G23
(2.2)

Subscript 1 in Eq. (2.1) refers to the fiber direction in the material reference system
(in red), whereas subscripts 2 and 3 represent the transversal directions. Constructing
the compliance matrix involves incorporating damage terms along the main diagonal
to ensure model consistency and thermodynamic admissibility [7, 103, 104]. The
damage variables d f , dm, and di correspond to fiber, matrix, and interlaminar failure
modes, respectively, with both tensile and compressive behaviors activated using the
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relative effective stress σ̂ j [105]::

σ̂ j =
σ j

1−d j
, j = 1,2, ...,6 (2.3)

With

d f = d1 =

d f t if σ̂1 ≥ 0

d f c if σ̂1 ≤ 0

dm = d2 =

dmt if σ̂2 ≥ 0

dmc if σ̂2 ≤ 0

di = d3 =

dit if σ̂3 ≥ 0

dic if σ̂3 ≤ 0

(2.4)

The terms ds12, ds13 and ds23 regulate the shear damage evolution, that is affected
by the fiber, matrix, and interlaminar damages, as stated in the following equation:

ds12 = d4 = 1−
(
1−d f t

)(
1−d f c

)
(1−dmt)(1−dmc)

ds13 = d5 = 1−
(
1−d f t

)(
1−d f c

)
(1−dit)(1−dic)

ds23 = d6 = 1− (1−dmt)(1−dmc)(1−dit)(1−dic)

(2.5)

The comprehensive formulation of stiffness and the validation of thermodynamic
consistency are provided [106, 107].

2.1.2 Failure onset and damage evolution

The onset of damage relies on the current stress field throughout the material. The
damage mechanisms considered in this framework include both tensile and compres-
sive failure modes. The simplifications applied in the proposed model are outlined in
[108] and [107]. The fiber damage initiation in the longitudinal direction takes place
when the failure criterion Ff = 1, where:

Ff =


Ff t =

(
σ̂1
Xt

)2
+

τ̂2
12+τ̂2

13
S2

L
, if σ̂1 ≥ 0

Ff c =
(

σ̂1
Xc

)2
, if σ̂1 < 0

(2.6)
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Xt and Xc represent the fiber tensile and compressive strengths, whereas SL is the
longitudinal shear strength. In the same manner, matrix Fm and interlaminar Fi failure
criteria are defined as:

Fm =


Fmt =

(
σ̂2+σ̂3

Yt

)2
+

τ̂2
23−σ̂2σ̂3

S2
I

+
τ̂2

21+τ̂2
31

S2
L

, if σ̂2 + σ̂3 ≥ 0

Fmc =

[(
Yc

2ST

)2
−1
](

σ̂2+σ̂3
Yc

)
+
(

σ̂2+σ̂3
2ST

)2
+

τ̂2
23−σ̂2σ̂3

S2
I

+
τ̂2

21+τ̂2
31

S2
L

, if σ̂2 + σ̂3 < 0

(2.7)

Fi =

Fit =
(

σ̂3
Zt

)2
+
(

τ̂31
SL

)2
+
(

τ̂31
SI

)2
, if σ̂3 ≥ 0

Fic =
(

σ̂3
Zc

)2
, if σ̂3 < 0

(2.8)

Yt and Yc are the matrix tensile and compressive strengths, Zt and Zc are the interlam-
inar tensile and compressive strengths, whereas ST and SI indicate the transversal
and interlaminar shear strengths. According to [107], the computation of equivalent
stress and strain can be obtained as:

σeqεeq = ∑σi jεi j, with εeq =
√

∑ε2
i j, i, j = 1,2, ..,6 (2.9)

εeq and σeq are the equivalent strain and stress consistent with [109],

εeq, f t =
√
⟨ε1⟩2 + γ2

12 + γ2
13

εeq, f c = ⟨−ε1⟩
εeq,mt =

√
⟨ε2⟩2 + ⟨ε3⟩2 + γ2

21 + γ2
23 + γ2

31

εeq,mc =
√
⟨−ε2⟩2 + ⟨−ε3⟩2 + γ2

21 + γ2
23 + γ2

31

εeq,it =
√

⟨ε3⟩2 + γ2
31 + γ2

32

εeq,ic = ⟨−ε3⟩

(2.10)
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σeq, f t =
⟨σ1⟩⟨ε1⟩+τ12γ12+τ13γ13√

⟨ε1⟩2+γ2
12+γ2

13

σeq, f c = ⟨−σ1⟩
σeq,mt =

⟨σ2⟩⟨ε2⟩+⟨σ3⟩⟨ε3⟩+τ21γ21+τ23γ23+τ31γ31√
⟨ε2⟩2+⟨ε3⟩2+γ2

21+γ2
23+γ2

31

σeq,mc =
⟨−σ2⟩⟨−ε2⟩+⟨−σ3⟩⟨−ε3⟩+τ21γ21+τ23γ23+τ31γ31√

⟨−ε2⟩2+⟨−ε3⟩2+γ2
21+γ2

23+γ2
31

σeq,it =
⟨σ3⟩⟨ε3⟩+τ31γ31+τ32γ32√

⟨ε3⟩2+γ2
31+γ2

32

σeq,ic = ⟨−σ3⟩

(2.11)

where ⟨·⟩ denotes the Macaulay bracket. Upon solving the failure criteria expressed
in Equations 2.6, 2.7, and 2.8, the initial values of equivalent stress (σ0

eq) and strain
(ε0

eq) are determined. The computation of equivalent stress and strain at the onset
of damage is necessary to establish the constitutive evolution law. In this study,
the damage progression follows a linear softening path, and the following equation
defines the damage (d) in the post-peak region:

d =


δ u

eq(δeq−δ 0
eq)

δeq(δ u
eq−δ 0

eq)
, if δ 0

eq ≤ δeq ≤ δ u
eq

1, if δeq > δ u
eq

(2.12)

where δeq is the equivalent displacement, and δ u
eq is considered as the equivalent

displacement when the damage d = 1.

δeq = Lcεeq and δ
u
eq =

2Ga

σeq
(2.13)

Lc denotes the characteristic length [110], utilized to mitigate mesh dependency.
In this study, Lc is defined as (V GP)

1
3 , where V GP represents the Gauss point volume

of the respective element, as previously implemented in [111]. However, various
methods can be employed to define the characteristic length, as demonstrated in [112].
Ga denotes the fracture energy of the individual damage mode a, corresponding to
the area AB̂C ⇒

(
εeq (d = 0)

)
beneath the curve of the linear evolution law (refer to

Fig. 2.2).
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σeq

σeq
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δeq δeq δeq
δeq0 U(d)

(1-d)keq

keq

Fig. 2.2 Constitutive relation for the equivalent stress and displacement.



Chapter 3

Peridynamic theory

The damage model presented in Chapter 2 is based on continuum damage mechanics.
This approach does not permit an explicit geometrical representation of cracks within
the structure. An alternative is given by adopting discrete modelling techniques,
which can describe the crack propagation within the structure. Nevertheless, external
failure criteria are still needed. In this context, recognizing the limitations of the
current methods of approximating the mathematical forms of the classical continuum
mechanics, Silling [15] for the first time proposed a non-local formulation called
Peridynamics (PD). The PD theory does not suffer from the inapplicability of the
classical continuum mechanics theory when cracks or interfaces happen due to the
integro-differential nature of the governing equations. Thus, PD presents a unique
capability of analyzing damage and progressive failure of materials and structures
by directly predicting the displacements, crack nucleation and propagation with
arbitrary paths without any special numerical techniques or criteria. This chapter
presents the continuum formulation and the meshless discretization of the more
general state-based PD formulation. Then, the implementation of a progressive
failure algorithm within the PD framework is described.

3.1 State-based Peridynamics

The initial formulation of the peridynamic theory, named bond-based Peridynam-
ics [15], has been extensively used in recent years. The assumption of this formu-
lation leads to a Poisson’s ratio value constrained to ν = 0.25 in 3D bodies. To
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overcome this limitation, the state-based formulation of the theory was introduced
in [113]. Both formulations have been adopted in this work. The governing equations
of the state-based peridynamics will be shown in the following sections, being the
bond-based formulation a particular case.

3.1.1 Continuum formulation

Two peridynamic points, for instance x and x′ shown in Fig. 3.1, interact through a
bond that is identified by their relative position vector

ξξξ = x′−x . (3.1)

This interaction vanishes when the distance between the interacting points surpasses
a threshold value known as the horizon size, denoted by δ . As a result, within a 3D
peridynamic framework, a point interacts with all other points located within a sphere
centered around it, with a radius equal to δ . This collection of points within the
sphere is referred to as the neighborhood and is represented by H . In the deformed
configuration, the relative displacement vector η is defined as follows:

ηηη = u(x′, t)−u(x, t) , (3.2)

where u represents the displacement field. t’s important to note that at time t,
the relative position vector between points x and x′ is expressed as ξξξ +ηηη . The
peridynamic equation of motion of point x is written as [113]

ρ(x) ü(x, t) =
∫
Hx

(
T[x, t]⟨ξξξ ⟩−T[x′, t]⟨−ξξξ ⟩

)
dVx′ +b(x, t) , (3.3)

where ρ represents the material density, ü the acceleration field, T the force density
vector state (force per unit volume squared), dVx′ the differential volume of a point
x′ within the neighbourhood Hx and b the external body force density field. The
notation T[x, t]⟨ξ ⟩ implies that the force density scalar state T depends on the point
x and instant t, and is applied to the bond vector ξξξ . In quasi-static conditions, the
equilibrium equation for point x can be expressed as:s

−
∫
Hx

(
T[x]⟨ξ ⟩−T[x′]⟨−ξ ⟩

)
dVx′ = b(x) . (3.4)
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x

y

B(t0)

x
δ

Hx

x′

δ

Hx′

ξ

B(t)

u(x, t)

u(x′, t)

ξ + η

T

T′

Fig. 3.1 Reference configuration of the body B at time t0 (on the left) and deformed
configuration at time t (on the right). When the bond ξ between the point x and x′ is
deformed, the force density vector states T = T[x, t]⟨ξ ⟩ and T′ = T[x′, t]⟨−ξ ⟩ are created
within the bond.

It’s important to note that in bond-based Peridynamics, T[x]⟨ξξξ ⟩ and T[x′]⟨−ξ ⟩
must have identical magnitudes, while in state-based Peridynamics, they may have
different magnitudes (see Fig. 3.1). Let us introduce some quantities that will aid in
computing the force density vector state T[x]⟨ξξξ ⟩. The reference position scalar state
x, which signifies the bond length in the initial configuration, and the extension scalar
state e, representing the elongation (or contraction) of the bond in the deformed
configuration, are defined as:

x⟨ξξξ ⟩= ∥ξξξ∥ . (3.5)

e⟨ξξξ ⟩= ∥ξξξ +ηηη∥−∥ξξξ∥ . (3.6)

On the other hand, the weighted volume m and the dilatation θ of a point x are
defined respectively as

m(x) =
∫
Hx

ω x2 dVx′ , (3.7)

θ(x) =
3

m(x)

∫
Hx

ω xedVx′ , (3.8)

where ω is a prescribed spherical influence function. We adopt in this work the
Gaussian influence function:

ω = exp
(
−∥ξξξ∥2

δ 2

)
. (3.9)
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In ordinary state-based peridynamics, the force density vector state is aligned with
the deformed direction vector state (unit vector in the direction of the corresponding
bond):

M⟨ξξξ ⟩= ξξξ +ηηη

∥ξξξ +ηηη∥ . (3.10)

Therefore, adopting the linear peridynamic solid model [113], the force density
vector state is computed as

T[x]⟨ξξξ ⟩= ω⟨ξξξ ⟩
m(x)

[
(3K −5µ)θ(x)x⟨ξξξ ⟩+15µ e⟨ξξξ ⟩

]
M⟨ξξξ ⟩ , (3.11)

where K is the bulk modulus and µ is the shear modulus.

3.1.2 Discretization

The peridynamic body is discretized using the meshfree method with a uniform
grid spacing h, which is widely employed in literature [21, 114, 115]. Each node
represents a cell with a volume V = h3. Consider a node i and its neighborhood Hi,
as depicted in Fig. 3.2. Here, β , referred to as the quadrature coefficient, denotes
the volume cell fraction within Hi. The quadrature coefficient β ranges between
0 (if the cell lies entirely within Hi) and 1 (if the cell is completely outside Hi).
It’s important to note that a node is considered part of the neighborhood only if the
quadrature coefficient of its cell satisfies β > 0. The computation of quadrature
coefficients in 3D Peridynamics can be performed in various ways (refer to, for
instance,[115–117]). For simplicity, we adhere to the method outlined in [118] for
the present study. The relative position vector of the bond i j that connects nodes i
and j can be computed as

ξξξ i j = x j −xi , (3.12)

where xi and x j are the position vectors of the two nodes. Similarly, the relative
displacement vector of the bond is evaluated as

ηηη i j = uPD
j −uPD

i , (3.13)
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i

β = 1

β < 1 β = 0

Fig. 3.2 The neighborhood Hi of a node i omprises nodes with β > 0, where β denotes
the quadrature coefficient calculated as the fraction of the cell volume situated within the
neighborhood.

where uPD
i and uPD

j are the displacement vectors of the peridynamic nodes. The
reference position scalar state and the influence function of the bond are computed as

xi j = ∥ξξξ i j∥ , (3.14)

ω i j = exp

(
−
∥ξξξ i j∥2

δ 2

)
. (3.15)

Under the assumption of small displacements (∥ηηη i j∥≪ ∥ξξξ i j∥), the deformed direc-
tion vector state and the extension scalar state are respectively given as

Mi j =
ξξξ i j +ηηη i j

∥ξξξ i j +ηηη i j∥
≈

ξξξ i j

∥ξξξ i j∥
. (3.16)

ei j = ∥ξξξ i j +ηηη i j∥−∥ξξξ i j∥ ≈ ηηη i j ·Mi j . (3.17)

In the discretized model, the integrals over a neighborhood are numerically
computed as the summation of the integrand evaluated for each node contained in
that neighborhood. Therefore, the weighted volume m and the dilatation θ of a node
i are given as

mi = ∑
j∈Hi

ω i j x2
i j βi jV , (3.18)
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θi =
3
mi

∑
j∈Hi

ω i j xi j ei j βi jV , (3.19)

where βi j is the quadrature coefficient of the bond i j and V is the volume of the cell
of node j. Therefore, the force density vector state is computed as

Ti j =
ω i j

mi

[
(3K −5µ)θi xi j +15µ ei j

]
Mi j . (3.20)

Now, we can write the equilibrium equation of a node i in the discretized form
(multiplying both sides of the equation by the cell volume Vi =V ) as follows:

− ∑
j∈Hi

(
Ti j −T ji

)
βi jV 2 = biV , (3.21)

where bi is the external force density vector applied to node i. Equation 3.21 can be
rewritten in the standard form

KPDUPD = FPD , (3.22)

where KPD is the peridynamic stiffness matrix, UPD is the peridynamic displacement
vector and FPD is the peridynamic force vector.

3.2 Progressive failure analysis

In the framework of peridynamics, material damage can be directly incorporated
into the constitutive model by allowing bonds between particles to break. In this
study, we have adopted a bond-based peridynamic formulation with progressive
failure. As mentioned earlier, the bond-based formulation is a specific instance of
the more general state-based formulation. The former says that the force exerted
through the bond can be uniquely characterized by the relative initial and current
position vectors between the two points defining the bond; no additional information
from their surrounding points or bonds is necessary. However, this assumption gives
rise to certain inherent limitations, such as a fixed value of Poisson’s ratio, which is
ν = 0.25 when dealing with 3D problems. With these assumptions, the equilibrium
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equation for a particle in discretized form (see Eq. 3.21) can be expressed as follows:

− ∑
j∈Hi

Ti j βi jV 2 = biV (3.23)

Various failure criteria have been explored in the literature within the peridynamic
framework (e.g., [119–121]). A concise overview is provided in [122]. In the context
of bond-based peridynamics, the most commonly utilized failure criterion is the bond
stretch criterion, initially proposed by Silling and Askari in [123]. According to this
criterion, a bond is deemed to have failed when it experiences a stretch exceeding
its critical value sc. Upon failure, the pairwise force between the implicated points
is irreversibly eliminated. Consequently, the load is redistributed among all other
bonds, potentially resulting in unguided crack initiation. To nullify the pairwise force
between two points, a history-dependent scalar function µ must be introduced::

µ(ηηη ,ξξξ ) =

1, s < sc

0, s ≥ sc
(3.24)

A distinct scalar µ is assigned to each pair of particles within the horizon radius δ .
Subsequently, this scalar is incorporated into the reformulated version of Eq. (3.20).
Thus, when the critical stretch between two particles is attained, the corresponding
scalar function µ will be set to 0, resulting in the removal of the pairwise force T. The
critical stretch is assumed to be uniform throughout the material. Its determination
has been addressed through energetic considerations in [123]. Specifically, the
critical stretch value is derived by equating the energy required to fracture all the
bonds connecting two halves of a fracture surface with the critical energy release rate
G0. Assuming Linear Elastic Fracture Mechanics (LEFM) for an isotropic material
and a 3D peridynamics grid, the critical stretch value sc is given by:

sc =

√
5G0

6Eδ
(3.25)

The advantage of introducing failure directly at a bond level is the possibility of a
unique identification of local damage, defined by the scalar function ϕx

ϕx = 1−
∫

Hx
µ(ηηη ,ξξξ )dVx′∫

Hx
dVx′

(3.26)
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called damage index. The subscript x denotes that the damage index is associated
with the individual particle x. The function ϕx can range from 0 to 1, representing
the degree of damage experienced by the particle. A value of 0 signifies an intact
bond, whereas a value of 1 indicates that all bonds connected to the source point are
broken, resulting in its detachment from the structure. An illustrative example of ϕx

calculation for a single particle x (depicted in red in the figure) is depicted in Fig. 3.3.
It is assumed that a crack initiates when ϕx ≥ 0.5.

t=t0 t=t1

Crack path

Broken bonds

Initial bonds
�x(t=t0)= = 0

8
= 0

Broken bonds

Initial bonds
�x(t=t1)= = 2

8
= 0.25

Fig. 3.3 An illustration depicting the computation of the damage index ϕ for a single point
(highlighted in red) is provided. Only interactions involving this point are shown for clarity.

In this study, a series of sequentially quasi-static linear analyses are conducted,
where an increasing displacement is applied at each step. Following the solution
of the linear problem, the bond stretch s value is computed for each pair (i,j) of
particles within the horizon radius δ . Subsequently, this stretch is compared with
the critical bond stretch sc, determined using Eq.(3.25). If s(i, j) exceeds sc for
one or more bonds, the pairwise force exchanged between the involved points is
nullified by setting the scalar µ(i, j) value to 0. Furthermore, the damage index ϕx

is computed for each particle x to visualize crack initiation and propagation. Any
broken bonds are subsequently removed in the following iteration. A flowchart
depicting the entire algorithm introduced by Ni et al. in [124] is shown in Fig.3.4.
However, it’s important to note that the algorithm used in this study does not include
a convergence check based on the number of broken bonds per iteration. Therefore,
it necessitates an appropriate choice of applied displacement for each iteration.
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Linear static analysis 

Compute bond stretch s

for each pair of particles

s < sc

Intact bond Broken bond

Compute damage index φ

F < Fend

End of simulation

YES NO

YES

NO

u

Undeformed bond

Stretched bond

F=F+ΔF

Fig. 3.4 Flowchart representing the failure algorithm.



Chapter 4

Derivation of high order 1D and 2D
models

This chapter presents the Carrera Unified Formulation (CUF) and its application
in the straightforward development of 1D (beam) and 2D (plate) higher-order
models within a finite element framework in a hierarchical and automated way.
Essentially, CUF employs an index notation to unify all structural theories into a
single formula and facilitate the formulation of refined models in a simplified manner.
The fundamental concept of this framework involves the incorporation of expansion
functions, alongside standard finite element interpolation functions, to enhance
the kinematic description of beam cross-sections and plate/shell thicknesses. This
approach results in 1D and 2D CUF models that offer solution accuracy comparable
to 3D solid finite element analysis (FEA) but with significantly reduced computational
requirements [39].
The chapter begins by defining the notation, geometry, displacement, stress, and
strain vectors. Subsequently, it presents the geometrical and material relations,
as well as the governing equations, including the explicit form of the associated
matrices. While some details have been omitted for brevity, interested readers can
refer to [125, 126] for further information.
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Fig. 4.1 Representative geometry and reference system for a) beam and b) plate models.

4.1 Preliminaries

Consider beam and plate models described by adopting a Cartesian reference system
(x,y,z), as illustrated in Fig. 4.1. For a beam, the y-direction refers to the beam axis,
whereas for a plate model the x− y directions indicates the two in-plane directions,
with z representing the through-the-thickness direction. The cross-section shape
or thickness does not affect the following formulation, thus allowing an arbitrary
choice.

Let us consider a 3D displacement vector for a generic point within the structural
domain. This quantity may be expressed as follows:

u(x,y,z)k = {uk
x uk

y uk
z}T (4.1)

where the superscript k is the k-th layer if a laminated structure is considered and T
is the transpose operator. Note that the dynamic effects are not taken into account
in this discussion, i.e. the time dependency is neglected. The stress σ and strain ε

vectorial form is expressed as follows:

εεε
k = {ε

k
xx ε

k
yy ε

k
zz ε

k
xz ε

k
yz ε

k
xy}T

σσσ
k = {σ

k
xx σ

k
yy σ

k
zz σ

k
xz σ

k
yz σ

k
xy}T

(4.2)

Assuming small displacements and rotations, the strain-displacement relations
are

εεε = Bu (4.3)



4.1 Preliminaries 31

where B is the linear differential operator matrix that follows:

∂

∂x 0 0
0 ∂

∂y 0

0 0 ∂

∂ z
∂

∂x 0 ∂

∂ z
0 ∂

∂y
∂

∂ z
∂

∂x
∂

∂y 0


(4.4)

The relations between stress and strain are given by the Hooke’s law, which states:

σσσ
k = Ck

ε
k (4.5)

in which Ck is the 6×6 stiffness matrix of the material. In case of material nonlin-
earities, the material model provides the matrix Ck based on the system current state.
Let us consider an orthotropic material, which has two planes of symmetry where
the properties do not vary. In this case, the stiffness material matrix is written as:

Ck =



Ck
11 Ck

12 Ck
13 0 0

Ck
22 Ck

23 0 0

Ck
33 0 0

Ck
44 Ck

45 0

Ck
55 0

sym Ck
66



(4.6)

The coefficients of the Ck matrix in Eq. 4.6 can be written in terms of 9 independent
constants, given in the form of the engineering moduli: Young’s moduli E1, E2, E3;
shear moduli G12, G13, G23; and Poisson ratios ν12, ν13, ν23. These quantities are
expressed as follows:

Ei =
σi

εi
, Gi j =

σi j

εi j
, νi j =−ε j

εi
(4.7)
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In the material reference system, the stiffness material matrix can be written as
follows:

σσσ
k = C̃k

εεε
k (4.8)

where:
C̃k = TTCkT (4.9)

where T is the rotation matrix [65].

4.2 Carrera Unified Formulation

For decades, the scientific community has shown keen interest in introducing ad-
vanced models capable of addressing various structural challenges, particularly in
the analysis of composite structures. In response to certain limitations of classical
theories, Carrera introduced the Carrera Unified Formulation (CUF) as a means
of generating structural theories for plates [127], subsequently extending it to 1D
formulations [128]. According to CUF, the 3D displacement field of a structure can
be expressed as:

Beam : uk(x,y,z) = Fk
τ (x,z)uk

τ(y), τ = 1, . . . ,M

Plate : uk(x,y,z) = Fk
τ (z)uk

τ(x,y), τ = 1, . . . ,M
(4.10)

which indicates a generic expansion of the displacement unknowns over the cross-
section and through-the-thickness for beam and plate models, respectively. The term
Fτ in Eq. 4.10 indicates the set of expansion functions, uτ represents the generalized
displacement vector, M the order of the expansion and the repeated index τ stands
for summation. The choice of both parameters Fτ and M is arbitrary and provided by
the user as input to define the structural theory to be adopted in the model. In the last
years, different theories have been implemented within the CUF framework. Thanks
to their capabilities, polynomial expression have been mostly used in CUF-based
analyses.
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4.2.1 Taylor expansion

Taylor expansions (TE) consider the Taylor series of the type x− z as cross sectional
or z as thickness expansion function Fτ for beam and plate models, respectively. As
an example, the second-order Taylor expansion (TE2) for 1D and 2D models is here
reported:

1D :
ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

2D :
ux = ux1 + zux2 + z2ux2

uy = uy1 + zuy2 + z2uy2

uz = uz1 + zuz2 + z2uz2

(4.11)

Note that the TE kinematics is hierarchial, meaning that the polynomial order of
the transverse approximations is refined just by addition of higher-order functions.
Thus, Eq. 4.11 takes into account constant, linear and quadratic terms. Moreover, it
should be highlighted that classical theory can be retrieved just by truncation of the
TE kinematic field. For instance, by consider only the expansion of five unknowns
(ux1,uy1 ,uz1,uy2 ,uy3) in the case of 1D model, one will directly obtain from Eq.4.11
the Timoshenko Beam Theory (TBT) [129]. Further information about TE models
can be found in [130, 131].

4.2.2 Lagrange expansion

Lagrange expansion (LE) class adopts Lagrange polynomials to generate 1D and
2D higher-order models. The isoparametric formulation is exploited in order to
deal with any arbitrary shaped geometry. LE are used as Fτ functions over the
cross-section for 1D model and thickness direction for 2D models. For the activities
carried out in this research, three types of polynomials have been adopted for both
1D and 2D models, see Fig. 4.2. More specifically, four-point polynomials (L4),
nine-point polynomials (L9), and sixteen-point polynomials (L16) were employed to
build linear to cubic kinematics beam models. Conversely, the abbreviation LDN
(Lagrange expansion, Displacement-based theory with order N) will be employed
to denote particular refined plates. For instance, LD1, LD2, and LD3 represent
linear (two-node), quadratic (three-node), and cubic (four-node) Lagrange expansion
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Fig. 4.2 Lagrange expansion function for a) 1D and b) 2D models.

functions, respectively. These functions are utilized in the z-direction to construct
linear to higher-order kinematics CUF 2D models. To elucidate, an illustration of
interpolation functions is provided below for an L9 beam model:

Fτ =
1
4(r

2 + rrτ)(s2 + ssτ) τ = 1,3,5,7

Fτ =
1
2s2

τ(s
2 − ssτ)(1− r2)+ 1

2r2
τ(r

2 − rrτ)(1− s2) τ = 2,4,6,8

Fτ = (1− r2)(1− s2) τ = 9

(4.12)

in which r and s vary from -1 to +1, while rτ and sτ are the coordinates of the 9
points whose numbering and location in the natural coordinate frame are depicted in
Fig. 4.2. Consequently, the displacement field of an L9 beam theory will be:

ux = F1 ux1 +F2 ux2 + ...+F9 ux9

uy = F1 uy1 +F2 uy2 + ...+F9 uy9

uz = F1 uz1 +F2 uz2 + ...+F9 uz9

(4.13)

where ux1, ...,uz9 are the displacement variables of the problem and they represent the
translational displacement components of each of the nine centres of the L9 polyno-
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Layer 3 Layer 3

LD1 LD2N=1 N=2 N=3

ESL(a) LW(b)

Fig. 4.3 (a) ESL and (b) LW behaviours of the primary variables through-the-thickness of a
2D model.

mial. TE models made use of degrees of freedom which include both displacements
and N-order derivative of displacements. In contrast, LE models use only displace-
ment unknowns; i.e., the only kind of degree of freedom is the displacement. This
allows the imposition of displacement continuity among components of the same
structure in a natural manner, without adopting any mathematical artifice. Further-
more, the LE formulation has been exploited to build a so-called Component-Wise
(CW) method [132, 133]. More details about this approach will be given in Part II.

The selection of the polynomial class dictates various approaches for analyzing
laminated composite structures. Opting for Taylor-like (TE) class polynomials yields
an Equivalent-Single-Layer (ESL) approach. In this approach, the cross-section
is treated as a unified domain where cross-sectional functions Fτ are defined, and
stresses are computed based on the resulting strains in each layer. Consequently,
the stiffness matrix is obtained through homogenization techniques, aggregating the
contributions from each layer. Due to the heterogeneous nature of multi-layered
structures, ESL models exhibit continuous transverse deformations throughout the
thickness and discontinuous transverse stresses at layer interfaces. Consequently,
while ESL theories offer reliable results for global responses such as fundamental
vibration frequencies and transverse deflections, they often fall short in accurately
evaluating 3D stress distributions. For visual clarity, Fig. 4.3a illustrates the typical
behavior of primary variables in the z-direction of a plate structure. In contrast, the
use of LE class leads to Layer-Wise (LW) theories. According to LW approach, the
displacement field within each material layer is separated and then expanded. Thus,
ensuring the continuity of displacements at the interface level is crucial for accurately
assessing deformation and stress distributions. Homogenization is consequently con-
ducted at the interface layer. Through the utilization of LE, the displacements on
each interpolation are treated as unknowns, with the displacements at each interface
adhering to compatibility conditions, as depicted in Fig. 4.3b [65]. For a compre-
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LW

Assembled matrix

Fig. 4.4 The method of assembling the stiffness matrix for the 2D model using ESL and LW
techniques is illustrated. Here, τ and s represent the two indices utilized for assembling the
matrices.

hensive understanding, distinctions in the assembly procedure when employing ESL
and LW for a 2D structure are depicted in Fig. 4.4.

4.3 The finite element method

Different methods have been employed to solve structural problems within the CUF
framework, such as close-form Navier solutions [134] and dynamic stiffness method
[135], among others. These models have the advantages of relatively low computa-
tional costs and the absence of convergence issues. However, analytical solution can
generally deal with a certain range of boundary conditions and geometries, making
them not suitable for a large number of structural problems. In recent years, a finite
element formulation [125] has been adopted within the CUF framework to overcome
these issues. The coupling of the CUF formulation with FEM allows to deal with
arbitrary geometry, loadings and boundary conditions. Independently of the adopted
beam and plate model kinematics, the FEM is used to discretize the generalized
displacements vector uτ along the y-axis for the beam or in the x− y plane for plate
models as reported below:

Beam : uk
τ(y) = Ni(y)qk

τi, i = 1, . . . ,Nn

Plate : uk
τ(x,y) = Ni(x,y)qk

τi, i = 1, . . . ,Nn

(4.14)
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Fig. 4.5 CUF and FEM (a) 1D and (b) 2D model approximations.

where Ni are the shape functions, qτi denotes the unknown nodal variables, Nn stands
for the number of nodes per element and the i indicates summation. In this work,
1D beam elements with linear, quadratic and cubic approximation along the beam
axis, i.e., two-node (B2), three-node (B3) and four-node (B4) are used. In contrast,
classical 2D FEs with four-node bilinear (Q4), nine-node (Q9) and sixteen-node
(Q16) are employed as shape functions in the x−y plane. A graphical representation
of CUF and FEM model approximation for both 1D and 2D models is illustrated in
Fig. 4.5. Combining the FE approximation in Eq. 4.14 and CUF in Eq. 4.10, the 3D
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displacement field becomes:

Beam : uk(x,y,z) = Fk
τ (x,z)Ni(y)qk

τ , τ = 1, . . . ,M i = 1, . . . ,Nn

Plate : uk(x,y,z) = Fk
τ (z)Ni(x,y)qk

τ , τ = 1, . . . ,M i = 1, . . . ,Nn
(4.15)

The choice of the axial (1D model) or cross-sectional (2D model) shape functions
Ni does not depend on the choice of the cross-sectional or thickness expansion
function Fτ , respectively, thus allowing a significant flexibility in terms of structural
modelling.

4.4 Derivation of the governing equations

The governing equations for the elasticity problem are derived using the Principle
of Virtual Displacements (PVD). As per PVD, a body is in equilibrium if, for all
kinematically admissible virtual displacements, the virtual work done by internal
stresses and inertial loads equals the work done by external loads:

δLint = δLext −δLine (4.16)

where δLint , δLext and δLine represent the virtual variation of the strain energy, the
virtual variation of the work of external loads and the virtual variation of the inertia
loads. The term related to the internal strain energy can be written as follows:

δLint =
∫

V
δεεε

kT
σσσ

k dV =
∫

V
δε

kTC̃k
εεε

k dV (4.17)

where V is the volume of the body. The strain-displacement relation (Eq. 4.3) can be
reformulated using Eq. 4.15, resulting in:

εεε = Bτiqτi (4.18)
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with

Bτi =



NiFτ,x 0 0
0 Ni,yFτ 0
0 0 NiFτ,z

NiFτ,z 0 NiFτ,x

0 NiFτ,z Ni,yFτ

Ni,yFτ NiFτ,x 0


(4.19)

The virtual variation of the strain tensor can then be expressed as:

δεεε = Bs jδqs j (4.20)

Thus, the virtual variation of the internal strain energy reads:

δLint = δqT
s j

∫
V

Bs jT C̃BτidV qτi = δqT
s jk

i jτsqτi (4.21)

where ki jτs is a 3× 3 matrix called Fundamental Nucleus (FN) of the structural
stiffness matrix. For the sake of clarity, the kxx

i jτs component is reported below:

ki jτs
xx =

∫
V

C̃11
∂

∂x
(N jFs)

∂

∂x
(NiFτ)dV +

∫
V

C̃16
∂

∂x
(N jFs)

∂

∂y
(NiFτ)dV

+
∫

V
C̃44

∂

∂ z
(N jFs)

∂

∂ z
(NiFτ)dV +

∫
V

C̃16
∂

∂y
(N jFs)

∂

∂x
(NiFτ)dV

+
∫

V
C̃66

∂

∂y
(N jFs)

∂

∂y
(NiFτ)dV

(4.22)

The remaining components of the FN can be retrieved in the same manner (see
[136]). It should be noted that the formal expression of the FN remains invariable
with respect to the structural theory or FE scheme chosen. Therefore, by simply
looping on the indexes τ, i, j,s, any structural model can be created.

A similar procedure to the one used for the derivation of the virtual internal strain
energy can be followed for the virtual variation of the internal loads, that is written
as:

δLine = δqT
s j

∫
V

N jFsρINiFτdV q̈τi = δqT
s jm

i jτsq̈τi (4.23)

where mi jτs is the fundamental nucleus of the mass matrix, whose components can
be evaluated as those of the structural stiffness matrix.
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The virtual variation of the work due to external loads is defined as:

δLext =
∫

V δuTg dV +
∫

S δuTb dS+
∫

l δuTr dl +δuTPm =

= δqT
s j (
∫

V NiFτg dV +
∫

S NiFτb dS+
∫

l NiFτr dl +NiFτPm) =

= δqT
s jps j

(4.24)

Here, g represents the body force acting within the volume V , b signifies the
surface force acting upon the surface S, r indicates the line force acting along a line
l, and Pm denotes a point force exerted at point m. ps j denotes the FN of the external
equivalent nodal force vector. Following the assembly process, the global external
nodal force vector F is acquired.

Upon substituting Eqs. 4.21, 4.23, and 4.24 into Eq. 4.16 and conducting
straightforward mathematical manipulations, assuming undamped problems and
a constant mass matrix, the governing equations for the elasticity problem are as
follows:

Mq̈+Kq = F (4.25)

4.5 Physical nonlinear analysis and fracture

This work considers material non-linearities due to the presence of damage. The
accurate numerical simulation of such behavior needs iterative resolution schemes.
Approaches for the solution of nonlinear problems can be classified under two
categories, namely implicit and explicit methods. This section provide a description
of the implicit solution technique adopted within the CUF framework.

Using the notation introduced in previous sections, the compact form of Eq.
(4.25) using CUF fundamental nuclei can be expressed as:

ks
i jτsuτi −ps j = 0 (4.26)

where ks
i jτs denotes the fundamental nuclei of secant stiffness matrix obtained using

secant material matrix in (4.21). Therefore, the equilibrium equation, neglecting
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dynamic forces, is given as
Fint (u)−Fext (4.27)

where Fint (u) is the internal force vector that depends on the displacement vector,
and Fext is the external force vector. The current work makes use of Newton-
Raphson scheme for the implicit analysis of nonlinear problems. It involves the
parametrization of the external load by a factor λn at a pseudo-time instant tn.
Consequently, Eq. 4.27 holds as follows:

Fint (u)−λnFext = 0 (4.28)

The implicit integration scheme uses an iterative process to find the converged
solution uuun+1, starting from the known solution uuun. Considering the Taylor series
expansion truncated at the linear term [125], the internal force Fint (un+1) states:

Fint

(
uk+1

n+1

)
= Fint

(
uk

n+1

)
+

∂Fint
(
uk

n+1
)

∂uk
n+1

∆u, ∆u =
(

uk+1
n+1 −uk

n+1

)
(4.29)

where k is the iteration index for the load increment [n,n+1], and ∆u is the incre-
mental displacement. Consequently, the tangent stiffness matrix KT can be defined
as follows:

KT =
∂Fint

(
uuuk

n+1
)

∂uuuk
n+1

(4.30)

The tangent stiffness matrix KT is obtained by taking partial derivative of current
internal forces with respect to current solution. The compact form of Eq. (4.29) in
CUF notation can be written as:

kτsi j
T ∆uτi = φφφ s j (4.31)

with kτsi j
T as FN of the tangent stiffness matrix and φφφ s j residual nodal vector of

unbalanced forces. A new tangent matrix has to be computed at each iteration.
Since current work is limited to physically nonlinear problems, formulation of
tangent stiffness nucleus is reduced to obtaining material tangent matrix. The tangent
fundamental nucleus for CUF are thus obtained as follows:

ki jτs
T =

∫
V

BT
s jC

dBτidV (4.32)
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where Cd is the damaged material matrix introduced in Section 2.1.

The effectiveness of an incremental solution methods relies on robust and re-
alistic termination criteria. A loose convergence criteria can lead to inaccurate
results whereas tight convergence criteria can yield very high computational cost
due to increased number of additional iterations. The following displacement-based
convergence criteria is employed:

||∆uk
n+1||

||un+1||
≤ tolerance (4.33)



Chapter 5

Coupling of PD sub-domains with
CUF-based finite elements

This chapter presents two procedures implemented for coupling higher-order 1D
and 2D CUF-based finite elements with 3D PD sub-regions. In fact, the non-local
nature of PD has made the latter a powerful tool for dealing with discontinuities
and, consequently, crack propagation analysis. Nevertheless, this non-local nature
can represent a major shortcoming when dealing with large and complex structures
since the fact that every point of a PD grid interacts with all points within its
neighbourhood leads to an exponential increase in computational costs. Thus,
researchers are pushing towards the coupling of PD with a numerical method based
on classical continuum mechanics, such as FEM. In this way, the advantages of
both methods can be exploited, for example, by introducing a PD grid in small
regions where the crack is likely to develop and modelling the remaining domain
with FEM discretization. Two methods are here presented. The first one is based on
the adoption of Lagrange multipliers at the interface surface between PD and FEM
domains. Furthermore, a second method, based on the continuity of the displacement
field at the interface, is hereinafter described.

5.1 Lagrange multipliers method

In this section, the coupling approach based on the use of Lagrange multipliers
is presented. This method has already been tested within the CUF framework for
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Fig. 5.1 Refined 1D finite elements based on classical elasticity are integrated with a 3D peri-
dynamic region through Lagrange multipliers. Within the interface zone I , the Lagrangian
Πk for each particle k ∈ I is included in the coupled (singular) FE-PD system to ensure
displacement continuity.

coupling of combining variable kinematic models, whereas here is adopted to couple
FEM and PD domains. Figure 5.1 illustrates a rectangular cross-section solid beam
within a Cartesian reference system. A segment of the solid body is represented
using 3D peridynamics (peridynamic particles are depicted as red dots), while the
remaining portion of the domain is discretized using high-order 1D elements. In the
absence of any interface relationship, the peridynamic region and the finite elements
can be treated independently. Equations (4.25) and (3.22) are combined in a weak
sense to form the following system of linear algebraic equations:

KUUU = F, i.e.

[
KPD 0

0 KFE

]{
UPD

UFE

}
=

{
FPD

FFE

}
(5.1)

It should be observed that the global stiffness matrix K as described in Eq. (5.1)
is singular, having a quantity of zero eigenvalues equivalent to 6 times the number
of independent solid domains (for instance, 6× 3 as depicted in Fig. 5.1). In the
presence of an interface (contact) region, indicated by I , between the peridynamic
domain and the high order FEs, Lagrange multipliers are employed to fulfill the
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congruence conditions on I and resolve the singularity of K. To achieve this, let’s
focus on a single peridynamic particle k among the NI particles situated on I . The
functional (Lagrangian) to be incorporated into the original problem described in Eq.
(5.1) is as follows:

Πk = λλλ
T
k
(
uPD

k −uFE(xk,yk,zk)
)

(5.2)

where uPD
k is the displacement vector of PD particle k and uFE(xk,yk,zk) is the

displacement field of the FE counterpart. λλλ k is the three-component vector containing
the Lagrange multipliers; they represent the forces to be applied to the system in order
to satisfy continuity between the peridynamic particle and the FE approximation at k.
After subtituting Eq. (4.15) into Eq. (5.2), one has

Πk = λλλ
T
k
(
uPD

k −uFE
τi Fτ(xk,zk)Ni(yk)

)
, τ = 1, ...,M, i = 1, ..., p+1 (5.3)

Equation (5.3) is, thus, expanded over τ and i to obtain, in a matrix form, the
following expression:

Πk = λλλ
T
k BkU (5.4)

where Bk is the coupling matrix of particle k and its fundamental kernel is written as:

Bτ i
k = (δk −Fτ(xk,zk)Ni(yk))I (5.5)

where I is the 3×3 identity matrix and δk is 1 for PD particle k and null otherwise.

Once the Lagrangian for each particle k ∈ I is determined and the total func-
tional Π = ∑

NI
k=1 Πk is computed, the solution to the coupled problem involves

finding U and λλλ (a vector of Lagrange multipliers with 3×NI components) from
the following linear system: 

KU+
∂Π

∂U
= F

∂Π

∂λλλ
= 0

(5.6)

or, equivalently, [
K BT

B 0

]{
U
λλλ

}
=

{
F
0

}
(5.7)
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where B is the final coupling matrix obtained through the assembly of Bk matrices.
Equation (5.7) can be resolved once geometrical and boundary conditions are applied,
for instance, through the utilization of a penalty method.

5.2 Smeared coupling method

The main advantage of the method based on the use of Lagrange multipliers lies in the
possibility of having a straightforward implementation and in its practical meaning
because multipliers represent the forces to be applied to satisfy continuity. However,
this coupling approach may lead to minor errors at domains interface, because PD
and local FEM converge to two different soluitions in the case of non-null horizon.
For this reason, a second coupling method has been proposed in this work, which
is based on the continuity of the displacement field at the interface [31, 137]. From
now on, we will refer to this approach as the smeared coupling method since, in this
case, there is no surface representing the interface domain but a region whose length
depends on the horizon radius.

5.2.1 1D coupling of FEs and PD nodes

Let us consider a 1D body that has been discretized into two regions: one using 1D
Finite Elements (FEs) and the other using equispaced PD nodes. This configuration
is illustrated in Fig. 5.2. Each PD node represents a portion of the 1D body of length
∆x and is positioned at the center of this portion. Consequently, the PD node closest
to the interface is located at a distance of ∆x/2 from the interface itself, as depicted
in Figure 5.2a. On the contrary, the closest FEM node is precisely situated at the
interface. For simplicity, we assume that the length ∆ℓ of the FEs remains constant.
It is important to note that the length ∆ℓ of the FEs and the PD spacing ∆x are not
necessarily equal to each other.

To account for the forces at the interface, fictitious nodes are introduced beyond
the interface itself. This includes adding a fictitious FEM node in the PD region
and introducing fictitious PD nodes in the FEM region. The fictitious FEM node
is positioned at a distance of ∆ℓ from the interface, as depicted in Figure 5.2b. Its
displacement is determined by interpolating the displacements of the real PD nodes
surrounding it. Since the fictitious FEM node is located in the PD region and does
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∆` ∆x
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∆x

(a) The initial geometry consists of real FEs represented by blue lines, each with a length of ∆ℓ,
and real PD nodes depicted as red squares, uniformly spaced with a spacing of ∆x. The bonds
between the FEs and PD nodes are represented by a red line, indicating a distance of δ = 2∆x, and
the interface between the FEM and PD regions is depicted as a yellow dashed line.

(b) To address the force interaction between the FEM and PD regions at the interface, a fictitious
FE is introduced within the PD region. This fictitious FE is responsible for providing the force
acting on the real FEM node located at the interface. The displacement of the fictitious FEM node is
determined by interpolating the displacements of the real PD nodes surrounding it. The fictitious
FEM node is represented by an empty circle in the diagram.

(c) Fictitious PD nodes are introduced in the FEM region to provide forces to the real PD nodes
near the interface. The forces are transmitted through fictitious bonds (red dashed lines). The
displacements of the fictitious PD nodes are determined by interpolating the displacements of the
real FEM nodes.

Fig. 5.2 Coupling between 1D FEs and peridynamic nodes: the described interpolations
ensure the continuity of the displacement field at the interface.
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Fig. 5.3 Coupling of high order 1D FEs (blue region) with 3D peridynamic nodes (red
squares). The yellow surfaces are the interfaces between FEM and peridynamic regions.

not experience any FEM forces, it is not influenced by the force of the fictitious FE.
However, this force is applied to the real FEM node at the interface. It is important
to note that the force of the fictitious FE depends on the displacements of the real
PD nodes due to the displacement interpolation. Additionally, in order to complete
the neighborhoods of the real PD nodes near the interface, fictitious PD nodes are
introduced in the FEM region, as shown in Figure 5.2c. The displacements of the
fictitious PD nodes can be determined through interpolation using the displacements
of the real FEM nodes. The forces exerted by the fictitious bonds, specifically the
bonds crossing the interface, are only applied to the real PD nodes since the fictitious
PD nodes are situated in the FEM region. It is worth noting that the forces of the
fictitious bonds depend on the displacements of the real FEM nodes due to the
displacement interpolation.

For a linear displacement field, the force exerted on the FEM node at the in-
terface via the fictitious FE (as depicted in Figure 5.2b) is equal to the sum of the
forces applied to the real PD nodes through the fictitious bonds (as shown in Fig-
ure 5.2c) [138]. The principles of this smeared coupling method can be extended to
couple a 3D peridynamic grid with high-order 1D elements. An example of such
coupling is illustrated in Figure 5.3.
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Fig. 5.4 Coupling of FEs (blue region) with 3D peridynamic nodes (red solid squares):
additional fictitious peridynamic nodes (red empty squares) are introduced within the finite
elements up to a distance of 2δ from the interfaces (yellow surfaces).

5.2.2 Interpolation of PD nodal displacements with FEM

In state-based Peridynamics, the interaction range between nodes extends to a
distance of 2δ from each node [139]. To ensure accurate interaction between the FEs
and PD nodes, fictitious PD nodes are incorporated within the FEs up to a distance
of 2δ from the interfaces [140], as depicted in Figure 5.4 The displacements of these
fictitious PD nodes can be determined by interpolating the displacements of the FE
nodes, allowing for accurate force transfer and interaction between the FEs and PD
nodes.

Let us consider, for instance, a fictitious PD node p with a position vector
xp = {xp,yp,zp}⊤. Since its position is known, it is straightforward to determine
within which FE node p lies. Hence, the FE shape functions Ni and the expansion
functions Fτ of that element are used to compute the displacement of node p:

u f -PD(xp,yp,zp) = ∑
i

∑
τ

Ni(yp)Fτ(xp,zp)uFE
τi , (5.8)
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where f -PD stands for fictitious peridynamic nodes. By repeating Equation 5.8 for
each fictitious PD node, we obtain the following system of equations:

U f -PD = I f -PDUFE , (5.9)

where UPD
f is the peridynamic displacement vector of the fictitious peridynamic

nodes, I f -PD is the fictitious PD interpolation matrix and UFE is the vector of the
FE nodal unknowns. Note that the dimensions of I f -PD are 3N f -PD ×3NFE , where
N f -PD is the number of fictitious PD nodes and 3NFE is the number of the FE nodal
unknowns.

5.2.3 Interpolation of FE nodal displacements with PD

To initiate our analysis, let us consider a simplified case where the sections of the
FE nodes are perpendicular to the FEs. As illustrated in Figure 5.5, we introduce
fictitious FE nodes strategically positioned so that their associated sections align with
the plane of the real nodes nearest to the interface. For each real PD node, denoted
as q, residing on the section of a fictitious FE node, the following equation can be
formulated:

uPD(xq,yq,zq) = ∑
i

∑
τ

Ni(yq)Fτ(xq,zq)u
f -FE
τi , (5.10)

where u f -FE
τi contains the generalized degrees of freedom associated to the fictitious

FE node. Equation 5.10 can be written in a matrix form as:

UPD = I f s-PDU f s-FE , (5.11)

where UPD is the peridynamic displacement vector, I f s-PD is the interpolation matrix
and U f s-FE is the vector of the degrees of freedom of the section associated to a
fictitious FE node.

However, we want to express the latter degrees of freedom (U f s-FE) as functions
of the displacements of the real PD nodes (UPD) by inverting the matrix I f s-PD. Note
that, in general, I f s-PD is not a square matrix and therefore is not invertible. Thus,
we use the relationship of each degree of freedom of the fictitious FE node with
the shape function Ni and expansion function Fτ . These functions can be used as
weights to compute, for each FE degree of freedom, the weighted average of the
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Fig. 5.5 In the coupling of FEs within the blue region and 3D peridynamic nodes denoted by
red squares, fictitious FEs are introduced so that their sections, illustrated as empty circles,
align with the plane defined by the nearest real peridynamic nodes to the interfaces, depicted
by yellow surfaces.

displacements of all the real PD nodes lying on the section of the fictitious FE node:

uAV
τi =

∑q |Ni(yq)Fτ(xq,zq)|uPD(xq,yq,zq)

∑q |Ni(yq)Fτ(xq,zq)|
, (5.12)

or
UAV = AUPD , (5.13)

where uAV
τi is the generic averaged displacement of the fictitious section and UAV is

the vector containing them. Note that UAV has the same dimension of U f s-FE , so that[
AI f s-PD] is a square matrix. This allows us to express the degrees of freedom of

the fictitious FE node as functions of the displacements of the real PD nodes:

U f s-FE =
[
AI f s-PD

]−1
UAV

=
[
AI f s-PD

]−1
AUPD .

(5.14)

If this procedure is repeated for all the fictitious FE nodes, then the following
matrix can be assembled:

U f -FE = I f -FEUPD , (5.15)
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Fig. 5.6 Example of a FE node with multiple FE sections where some fictitious FE nodes are
part of more-than-one section and some real PD nodes are located in more-than-one section.

where U f -FE is the vector of the degrees of freedom of the fictitious FE nodes and
I f -FE is the fictitious FE interpolation matrix. Note that the dimensions of I f -FE are
3N f -FE ×3NPD, where 3N f -FE is the number of the FE nodal unknowns and NPD is
the number of real PD nodes.

5.2.4 Interfaces parallel to FEs

Let us consider another scenario where an interface aligns parallel to the y-axis,
corresponding to the bar’s axis, as depicted in Fig. 5.7. Extending this example
to more intricate situations involving interfaces perpendicular to both the x and z
axes is relatively straightforward. Following the approach outlined in Section 5.2.2,
we introduce fictitious PD nodes within the finite elements (FEs) to envelop the
interfaces with a PD layer of thickness 2δ , as illustrated in Fig. 5.8. The equation
5.8 remains applicable and can be utilized to construct the fictitious PD interpolation
matrix I f -PD.

On the contrary, within the PD region, fictitious FE sections are incorporated to
align with the nearest plane of actual PD nodes, as depicted in Fig.5.9. It’s noteworthy
that this geometry gives rise to a novel type of fictitious FEs: in proximity to the
interface edges, certain fictitious FEs possess only one edge aligned with a row of real
PD nodes. The remaining edges of these elements are situated on the external surface
of real FEs. Consequently, there are no corresponding sections for these newly
introduced elements as those utilized in Section5.2.3 to interpolate the displacements
of the fictitious FE nodes.
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Fig. 5.7 Coupling of high order 1D FEs (blue region) with 3D peridynamic nodes (red
squares) when one of the interfaces (yellow surfaces) is parallel to the axis of the bar.

x
y

z 2δ

2δ

2δ

y

z

2δ 2δ x

z

2δ

Fig. 5.8 Coupling of FEs (blue region) with 3D peridynamic nodes (red solid squares): within
the finite elements, fictitious PD nodes (red empty squares) are added up to a distance of 2δ

from all interfaces (yellow surfaces), including those that align parallel to the axis of the bar.
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Fig. 5.9 Coupling of FEs (blue region) with 3D peridynamic nodes (red squares):fictitious
finite elements are introduced such that their sections align with the plane of the nearest real
PD nodes to the interfaces (yellow surfaces). Additionally, a new type of elements arises
near the edges between the interfaces.
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In this instance, the interpolation of displacements for the fictitious FE nodes
positioned along the PD node row is facilitated by the involvement of two fictitious
FE sections, as elaborated in Section 5.2.3. It’s worth noting that the row of PD nodes
contributes to both interpolations of the two fictitious FE sections. Similarly, as the
fictitious FE nodes positioned along that edge are shared between the two fictitious
FE sections, their displacements are determined as the averages of the interpolations
derived from the two sections. As for the remaining fictitious FE nodes situated
along the external surfaces of real FEs, their interpolation is simply achieved through
the FE shape functions Ni and the expansion functions Fτ of those elements:

u f e-FE(xp,yp,zp) = ∑
i

∑
τ

Ni(yp)Fτ(xp,zp)uFE
τi , (5.16)

where u f e-FE is the vector of the degrees of freedom of the fictitious FE nodes on
one of these edges. Equation 5.16 is employed during the assembling of the fictitious
FE interpolation matrix I f -FE .

5.2.5 3D coupling of FEs and PD nodes

This section is dedicated to the assembly of the stiffness matrix of the complete
system of (both FE and PD) equations. We assemble the global FE stiffness ma-
trix Kgl−FE following the methodology outlined in Chapter 4 by considering both
real and fictitious elements. The real FE stiffness matrix KFE is then derived by
removing all rows and columns in Kgl−FE associated with fictitious FE degrees of
freedom. On the other hand, the fictitious FE stiffness matrix K f−FE is generated
by eliminating the rows corresponding to fictitious FE degrees of freedom and the
columns corresponding to real FE degrees of freedom. It’s important to note that the
rows associated with fictitious degrees of freedom are not used as they pertain to
fictitious FE forces. These fictitious FE nodes exist within the peridynamic region
and are not subject to any FE forces, as elucidated in Section 5.2.1.

Similarly, as detailed in Section 3.1, we construct the global PD stiffness matrix
Kgl−PD by considering both real and fictitious PD nodes. Since the fictitious PD
nodes reside within FEs, they are not subject to fictitious PD forces. Consequently,
the corresponding rows of Kgl−PD are eliminated. We then derive the real PD
stiffness matrix KPD and the fictitious PD stiffness matrix K f−PD by eliminating the
columns corresponding to the fictitious and real degrees of freedom, respectively.
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Thus, the system of equations can be written in the following matrix form:[
KFE K f−FE I f−FE

K f−PD I f−PD KPD

][
UFE

UPD

]
=

[
FFE

FPD

]
, (5.17)

or
KU = F , (5.18)

where K is the stiffness matrix of the entire system, which is no more singular and
positive semidefinite, U is the displacement vector and F is the force vector.



Chapter 6

Global-local analysis

This chapter introduces a global/local approach adopted for the analysis of three-
dimensional stress states of composite laminated structures. It consists of a two-step
procedure. In particular, the first step makes use of finite element modelling based
on classical 2D plate elements by using commercial FE software, whereas a refined
layer-wise model based on CUF is employed to extract the 3D stress and strain fields
in some critical regions that may have arbitrary dimensions. This approach allows
for dealing with large local areas, increasing the static solution’s accuracy and
possibly embedding this technique in more complex procedures, such as the least-
weight design of large heterogeneous complex assemblies and stiffness optimization.
Furthermore, the proposed method is extended to deal with localized progressive
failure analysis using coupled FEM-PD models within the local refined domain.

6.1 Two-step procedure for composite laminates

The global/local strategy adopted in this work consists of two steps that can be
summarized in the following way:

1. A global analysis on a composite laminate is conducted. The commercial
software Nastran [141] is used to perform the analysis of the total structure.
This step is recalled as global analysis. Classical CQUAD4 elements are
adopted in combination with PCOMP properties for the geometrical and
material descriptions, respectively. CQUAD4 elements make use of First Shear
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order Deformation theory (FSDT) [142], according to which the displacement
field is given as follows:

u1(x,y,z) = u(x,y)+ zϕx

u2(x,y,z) = v(x,y)+ zϕy

u3(x,y,z) = w(x,y)
(6.1)

where u,v,w,ϕx and ϕy are five unknown displacement functions of the mid-
plane of the plate. The key contribution of this study is the expansion of
the CUF-based global/local analysis approach to include a patch-wise (PW)
formulation. This novel approach enables the selection of a group of global
elements for local analysis, providing more accurate results than the traditional
element-wise (EW) approach, where only a single CQUAD element is locally
refined at a time. Notably, prior research [68, 143] has only explored the EW
approach within the CUF framework.

2. A local analysis on the domain elements is performed. The refined local
analysis is conducted using high order 2D plate CUF-based elements. The
3D displacement field u(x,y,z) is thus defined as a 1D through-the-thickness
expansion function of the primary unknowns, evaluated via the finite element
method. The relation can be written as follows:

u(x,y,z) = Fτ(z)Ni(x,y)qτi (6.2)

where Fτ is the expansion function, Ni the shape function and qτi the nodal
unknowns vector. Index τ represents the number of terms in the thickness
expansion, while the subscript i denotes the number of structural finite ele-
ment nodes. This research adopts 2D sixteen-nodes cubic elements (Q16) as
shape functions for the in-plane modeling. Cubic Lagrange polynomials are
employed as Fτ function (LE). This work adopts the four-node cubic Lagrange
expansion function (LD3) over the thickness, where LD stands for Lagrange
Displacement-based (see Fig. 6.1).
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a
b

Fig. 6.1 Graphical representation of the cubic interpolation for in-plane and thickness
domains.

6.1.1 Local displacement-based model

The CUF model used for the analysis of the local domain is a displacement-based
formulation, meaning that pure displacement Degrees of Freedom (DOFs) at each
node are considered. Nevertheless, the commercial software provides translational
displacements (u0

x ,u
0
y ,u

0
z ) and rotations (θ 0

x ,θ
0
y ,θ

0
z ) at each node of the global model.

Thus, a suitable procedure must be implemented to transform the global model’s
rotations into pure displacement DOFs. The chosen strategy is the same adopted in
previous works [68, 143], where a Reissner-Mindlin displacement field [35, 144]
is employed for the computation of translational displacements at the local model
boundaries. The Reissner-Mindlin displacement field which operates is written as
follows:

ux (x,y,z) = u0
x (x,y)+ z θ 0

y (x,y)− y θ 0
z (x,y)

uy (x,y,z) = u0
y (x,y)− z θ 0

x (x,y)+ x θ 0
y (x,y)

uz (x,y,z) = u0
z (x,y)− x θ 0

y (x,y)+ y θ 0
x (x,y)

(6.3)

where the circled quantities u0
x ,u

0
y ,u

0
z and θ 0

x ,θ
0
y ,θ

0
z are displacements and rota-

tions of the global model, whereas the boxed ones ux,uy,uz are the pure translational
displacement DOFs in the refined model . The graphical representation of these
transformation is shown in Fig. 6.2.

6.1.2 Patch-wise formulation

A common procedure for EW and PW formulations consists of the computation
of displacements in all interface nodes using global rotations, which are then em-
ployed as boundary conditions for the local model. Nevertheless, in the precedent
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Fig. 6.2 Graphical representation of the procedure to transform rotational DOFs of the global
model into pure displacement for local one. The evaluated displacements, i.e. the boxed
ux,uy,uz of Eq. 6.3 are used as boundary condition of the local element. Two LD3 are used
for thickness modeling in the local domain.

EW formulation, displacements and rotations only from a single chosen CQUAD
element were adopted as boundary conditions. On the other hand, in the present
PW formulation, displacements and rotations from all the involved global nodes are
considered and used to construct the boundary condition set. An example of the
procedure is illustrated in Fig. 6.3., which also reports the EW approach. On the
right, a local region identified by a 2×2 patch of elements is considered. The two
areas have the same geometrical dimensions. Let us consider a point located at the
quarter (L/4,0) of the edge described by global nodes 1 and 2. Concerning the EW
approach, displacements and rotations evaluated in the point xEW result from the
interpolation within the single element CQUAD, referred to as 1EW , which describes
the entire region. On the other hand, for the PW model, boundary conditions in
point xPW are obtained through interpolation within element 1PW . The refinement
of the global mesh, without altering the geometrical dimensions of the local region,
will facilitate the provision of more precise boundary conditions, resulting in a more
accurate assessment of stress components.

6.2 PD-based progressive failure analysis via global-
local method

The two-step global/local analysis can be seen as a free-standing way to obtain a
more accurate solution regarding the stress state in specific regions of the structure.
However, the features of the proposed approach can be exploited to build a framework
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Fig. 6.3 Differences between element-wise and patch-wise formulation in terms of boundary
conditions evaluation.
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Fig. 6.4 General procedure for the proposed two-step global approach. The first step is
represented by the global analysis of a structure using 2D plate finite elements. The middle
rectangle shows the operations acting as interface between the global and local models. The
rectangle on the right represents the refined local model to be analyzed. The output of this
procedure are the strain and stress states in the chosen patch of elements.
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for progressive failure analysis in some localized zones, where, for example, a crack
is present or more likely to nucleate and propagate. This thesis proposes a framework
for PD-based localized progressive failure analysis. This approach consists of the
following steps:

1. Structural investigation of the full structure by using low-order theories within
the FEM commercial software;

2. Choice of the local region where a crack can arise or propagate, and extraction
of the displacement information at the boundaries of this region;

3. Building of the local model by using the coupled FEM-PD approach presented
in Section 5.1. Nevertheless, 2D higher-order CUF-based finite elements
are coupled with 3D PD domains here. The displacement retrieved at the
global scale is imposed as boundary conditions for the local investigation. A
single step of the PD-based progressive failure analysis (see Section 3.2) is
performed;

4. If any bond is broken within the peridynamic grid, a damage parameter d
is computed in order to transfer the information from the local to the global
scale;

5. Upon update of the stiffness of global elements undergoing damage at the
local scale, the structural analysis is performed.

Thus, this framework comprehends three modelling strategies on two different scales,
as shown in Fig. 6.5. The main challenge is represented by the transfer of information
on damage status from the local to the global scale. In this work, a scalar parameter
has been computed for this purpose:

dk =
Brk

Init(δ )
δ

Lc
(6.4)

This parameter is computed in the PD domain for each region related to each global
element k and then used as a reduction factor for its stiffness. Brk indicates the
number of broken bonds within the element k, whereas the index Init(δ ) is the
maximum number of bonds for a single particle in the PD region. The characteristic
length Lc is calculated as the diagonal of the domain related to the global element k.
The entire algorithm is graphically displayed in Fig. 6.6.
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Fig. 6.5 Representation of the three modelling strategies at global and local scales. Low-order
2D theories are used for the global domain. Then, a patch of elements (highlighted in red)
are chosen as local zones. The local domain is built by using coupled higher-order 2D FEM
and 3D PD particles.

Global analysis with low-order 2D
plate elements.

FROM GLOBAL TO LOCAL

� Choice of the local patch to be
analyzed with higher-order theories.
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global model to the local one,
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Fig. 6.6 Graphical representation of the implemented algorithm for localized progressive
failure analysis.



Chapter 7

Numerical results on damage analysis

This chapter proposes a selection of numerical examples obtained by adopting the
formulations and techniques presented in previous chapters. First, progressive failure
analyses are performed using the continuum Hashin-based orthotropic model in
fibre-reinforced composite laminates. Then, outcomes from static and progressive
failure analyses performed by using coupled FEM-PD models are presented. Finally,
numerical examples which make use of the global/local approach are proposed
for stress evaluation in composite structures, with a supplementary model where a
global/local method is adopted for localized progressive failure analysis through
coupled FEM-PD models.

7.1 Continuum damage modelling

7.1.1 Single element verification

This section demonstrates the verification process for the proposed orthotropic dam-
age model, focusing on a single component subjected to uniaxial loading. The
discretization consists of a 2-node linear finite element (B2) along the y-direction
and a single L4 for the cross-section. The adopted material is IM7/8552 carbon fiber
reinforced polymer (CFRP), and its corresponding properties are listed in Table 7.1,
in accordance with [111]. Tables 7.2 and 7.3 provide details regarding the strength
and fracture energies of the material. It is assumed that the interlaminar properties
match those of the matrix. The representation of the single element used to validate
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Table 7.1 Material properties of IM7/8552 carbon fiber reinforced polymer.

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 [-] ν13 [-] ν23 [-]
165.00 9.00 9.00 5.60 5.60 2.80 0.34 0.34 0.5

Table 7.2 Longitudinal, transverse, interlaminar and shear strength of CFRP for the single
element.

XT [MPa] XC [MPa] YT [MPa] YC [MPa] ZT [MPa] ZC [MPa] SL [MPa] ST [MPa] SI [MPa]
2560.00 1690.00 73.00 250.00 73.00 250.00 90.00 90.00 90.00

the implementation of the damage model can be observed in Fig. 7.1.
The first numerical evaluation consists of a longitudinal tension resulting in fiber
failure along the longitudinal direction. Figure 7.2 presents the stress-strain rela-
tionship for this scenario, comparing the current 3D damage model within a CUF
framework with the second-generation COmposite DAMage (CODAM2), which has
been implemented by using CUF [111] and LS-DYNA [145]. The tensile matrix
failure mode is explored by applying tension along the y-direction and setting the
fibers in the x-direction. The corresponding stress-strain behavior is depicted in Fig.
7.3. Moreover, the subsequent numerical investigation focuses on a quasi-isotropic
laminate with a ply sequence of [90/45/0-45]2s under uniaxial load. Along the y-
direction, a B2 element is employed, with each ply comprising an L4 element. Figure
7.4 displays the stress-strain curve for the quasi-isotropic configuration, whereas Fig.
7.5 provides a comparison of damage evolution in specific layers with the findings
of Reiner et al. [145].
Based on the obtained results, the following observations can be made:

1. The incorporation of the Hashin damage model into a 1D CUF framework
yields consistent results with the references, with peak stresses aligning with
the longitudinal and transverse strengths.

2. The damage model manages to handle different laminations, demonstrating
good agreement with the reference data, as depicted in Fig. 7.4. Minor

Table 7.3 Fracture energies of CFRP for the single element.

Gft [MPa·mm] Gfc [MPa·mm] Gmt [MPa·mm] Gmc [MPa·mm] Git [MPa·mm] Gic [MPa·mm]
120.00 80.00 2.60 4.20 2.60 4.20
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Fig. 7.1 Geometry and dimensions in mm of the single element.
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Fig. 7.2 Stress-strain of the single element under uniaxial longitudinal load.

40

Fig. 7.3 Stress-strain of the single element under uniaxial transversal load.
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40

Fig. 7.4 Stress-strain of the single element with a ply sequence of [90/45/0-45]2s under
uniaxial load.

40

40

40

Fig. 7.5 Comparative analysis of fiber and matrix damage evolutions in CUF with CODAM2
framework for the quasi-isotropic single element.
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inconsistencies with the CODAM2 can be detected in the softening path;
however, the peak force and the displacement at the peak remain consistent.

7.1.2 Compact tension test

This case focuses on the damage analysis of a pultruded glass fiber reinforced
polymer (GFRP) compact tension (CT) specimen. The material properties are
summarized in Table 7.4, derived from the work of [146, 147]. The specimen has
a thickness of 10 mm, with the strengths and fracture energies of the pultruded
GFRP provided in Tables 7.5 and 7.6, respectively. The fibers are oriented along the
z-direction, whereas the in-plane transversal direction aligns with the x-direction.
The lower pin is clamped, and the numerical investigation includes a convergence
analysis concerning the order of the adopted beam element, namely 2-node linear
(B2), 3-node quadratic (B3), and 4-node cubic (B4) finite elements, considering
various configurations. Detailed geometry information and an illustration of the
adopted cross-section discretization are provided in Figure 7.6.
Figure 7.7 shows the force-displacement curves for the CUF results, making a
comparison with both the experimental tests [148] and 3D Abaqus model [107],
where 8-node brick solid finite elements (C3D8) are used. Figure 7.7a illustrates
the convergence analysis on the number of elements over the cross-section. Figure
7.7b explicitly considers the effect of mesh size and discretization order, exploring
the differences between lower and higher-order kinematic theories in the load-
displacement curve. Table 7.7 provides a comparison of the maximum reaction
and vertical displacement at peak obtained using CUF with experimental and 3D
Abaqus results. Additionally, the table includes the number of degrees of freedom
(DOF) for the numerical simulations. Figure 7.8 illustrates the evolution of the
tensile matrix damage in the narrow band of the specimen for various applied vertical
displacements. Furthermore, in accordance with the findings of Arruda et al. [106],
the current damage framework successfully captures the evolution of compressive
matrix damage in the specimen, as depicted in Fig. 7.9. Additionally, Fig. 7.10
presents the final distributions of shear damage. In the domain of continuum
damage mechanics, the selection of finite elements can give rise to inherent mesh
sensitivity, which can carry significant consequences [149]. As highlighted in [150],
mesh sensitivity occurs when modifying the type or distortion of finite elements
within a fixed mesh, potentially resulting in variations in the solution based on the
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Table 7.4 Material properties of the GFRP material for the CT test in the material reference
system.

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 [-] ν13 [-] ν23 [-]
30.00 12.00 12.00 3.00 3.00 2.50 0.24 0.24 0.30

Table 7.5 Longitudinal, transverse, interlaminar and shear strength of the GFRP material for
the CT test.

XT [MPa] XC [MPa] YT [MPa] YC [MPa] ZT [MPa] ZC [MPa] SL [MPa] ST [MPa] SI [MPa]
323.00 426.00 71.00 71.00 71.00 71.00 67.00 64.00 64.00

Table 7.6 Fracture energies of the pultruded GFRP for the CT test.

Gft [MPa·mm] Gfc [MPa·mm] Gmt [MPa·mm] Gmc [MPa·mm] Git [MPa·mm] Gic [MPa·mm]
100.00 100.00 20.00 20.00 20.00 20.00
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Fig. 7.6 Dimensions of the specimen for the compact tension case in mm, along with an
illustration of the cross-section discretization utilizing biquadratic L9 elements.
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43

(a)

43

(b)

Fig. 7.7 Convergence analysis of vertical load-displacement in the cross-section (a) and the
narrow band (b) for the CT test. Additionally, the discretizations of the cross-section in the
notch are depicted.

Table 7.7 Assessing the maximum reaction and vertical displacement within CUF framework
and comparison with experimental data and 3D Abaqus outcomes, alongside the DOFs of
each model for the compact tension case.

Case Total DOF Peak load [kN] Vertical displacement at peak [mm]
Reference solutions

Exp 1 - Almeida-Fernandes et al. [148] - 2.933 0.763
Exp 2 - Almeida-Fernandes et al. [148] - 3.009 0.776
3D Abaqus - Arruda et al.[107] 66900* 3.075 0.834

Present 1D CUF models
1D CUF 1 B2 + 157 L9 4818** 2.906 0.629
1D CUF 1 B3 + 157 L9 6885** 3.000 0.689
1D CUF 1 B4 + 135 L9 7848** 3.022 0.710
1D CUF 1 B4 + 146 L9 8400** 3.025 0.730
1D CUF 1 B4 + 157 L9 8952** 3.025 0.730
1D CUF 1 B4 + 157 L4 3420** 3.179 0.810
1D CUF 1 B4 + 166 L4 3540** 2.959 0.770
1D CUF 1 B4 + 166 L9 9408** 3.056 0.700
*Symmetric along y-direction
**Full structure
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u = 0.45 mm u = 0.73 mm

tensile matrix damage

u = 0.89 mm u = 1.20 mm

Fig. 7.8 Progression of tensile matrix damage in the narrow band for the case with 1 B4 +
157 L9 for the compact tension case.

u = 0.73 mm

compressive matrix damage

u = 0.89 mm u = 1.20 mm

Fig. 7.9 Progression of compressive matrix damage in the narrow band for the case with 1
B4 + 157 L9 for the compact tension case.

shear damage 12 shear damage 13 shear damage 23

Fig. 7.10 The ultimate distribution of shear damage within the narrow band in the scenario
featuring 1 B4 + 157 L9 elements for the compact tension case.
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Fig. 7.11 Number of expansion sets within the narrow band for the CT coupon, considering
the width of a single element.

(a) (b)

Fig. 7.12 Sensitivity analysis of FEM mesh and structural theory for the cross-section of the
CT with (a) 4-node L4 elements and (b) 9-node L9 elements..

chosen type or distortion of finite elements. In 1D CUF, sensitivity assessment should
take into account: (i) the finite element mesh along the y-direction, incorporating
linear, quadratic, and cubic finite elements, specifically 2-node B2, 3-node B3, and
4-node B4; and (ii) across the cross-section, where the selection is between 4-node
bilinear L4 expansions and 9-node biquadratic L9 expansions. Consequently, in
CUF, mesh sensitivity pertains to the influence of FEM elements operating along
the y-direction, while sensitivity of structural theory can be contemplated for the
cross-section. To explore mesh sensitivity within the narrow band where damage
occurs, three different sets of expansions - 7, 8, and 9 elements - are employed
along the z-direction, with the width of each element depicted in Fig. 7.11. Figure
7.12a illustrates the variation in peak load using 4-node bilinear elements for the
cross-section as the number of beam elements increases, resulting in decreased width;
the same histogram is depicted in Fig. 7.12b with 9-node biquadratic elements for
the cross-section. The sensitivity of the structural theory is further investigated by
varying the order of the elements over the cross-section while fixing both the size of
the elements in the narrow band and the FEM discretization. Table 7.8 presents the
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Table 7.8 Forecasted maximum load for each element mesh size within the narrow band,
altering the structural theory and type of FEM element for the compact tension case.

Structural theory FEM element
Peak load [kN]

7 elements 8 elements 9 elements

Bilinear L4
B2 3.057 3.005 2.964
B3 2.996 3.056 3.021
B4 3.097 3.161 3.179

Biquadratic L9
B2 2.824 2.883 2.907
B3 2.884 2.936 3.000
B4 2.969 3.022 3.025

Table 7.9 Percentage difference between the peaks achieved with L4 and L9 for various
element sizes in the narrow section, as the order of the FEM element varies along the y-
direction.

FEM element
Percentage variation

7 elements 8 elements 9 elements
B2 7.9% 4.1% 1.9%
B3 3.8% 4.0% 0.7%
B4 4.2% 4.5% 4.9%

forecasted peak load, while Table 7.9 outlines the percentage deviation among the
structural theories for each FEM discretization. When considering the biquadratic L9
as the structural theory, one can examine the impact of mesh size within the narrow
band. The diminishing trend of the percentage variation is depicted in Fig. 7.13 as
the order of FEM discretization increases.
By observing the results and assuming the case of 1 B4 + 157 L9 as CUF reference,
the following observations can be made:

1. The convergence analysis indicates that employing cubic elements for the
thickness yields satisfactory agreement with experimental curves, even with a
coarser cross-section discretization. Additionally, the CUF framework demon-
strates superior cost-effectiveness compared to 3D Abaqus while maintaining
significant accuracy in peak detection and softening path determination.

2. Figure 7.7a illustrates that CUF results exhibit a softening branch behavior
more closely aligned with experimental observations compared to 3D Abaqus.
The current approach utilizes the cubic root of the Gauss point volume associ-
ated with each element as the characteristic length, in contrast to the square



74 Numerical results on damage analysis

Fig. 7.13 Percentage variation of peak load for L9 structural theory with various FEM
elements.

root of the numerically calculated surface area employed in Arruda et al. [107].
Moreover, the current implementation incorporates higher order kinematic
theories compared to the Abaqus framework.

3. Comparison of the maximum reaction in Table 7.7 reveals that the reference
CUF maximum force exceeds mean experimental values by 1.82%, demon-
strating greater accuracy than 3D Abaqus. However, the vertical displacement
at peak in CUF outcomes is 2.5% smaller than mean experimental displace-
ments. Furthermore, the number of degrees of freedom (DOF) utilized within
the CUF framework is significantly lower than that in the study by Arruda et
al. [107], resulting in reduced computational costs.

4. Analysis of the shear damage distribution indicates occurrences of both fiber
and interlaminar damages, albeit their significance is minor compared to matrix
damage evolution. The 3D damage model facilitates extraction of damage
evolution in the transversal out-of-plane y-direction, a capability previous 2D
damage models lacked.

5. Sensitivity analysis reveals that slight differences in peak detection can arise
when employing quadratic or cubic FEM elements along the y-direction, with
a biquadratic discretization of the cross-section, as depicted in Fig. 7.12b.
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Fig. 7.14 Dimensions in mm of the specimen for the three-point bending case, along with
boundary conditions.

6. Structural theory sensitivity analysis indicates minor sensitivity when utilizing
4-node B4 elements for FEM discretization, which remains relatively con-
stant across different mesh sizes in the narrow band. Conversely, for cases
employing B2 and B3, reducing the size of narrow section elements leads
to a significant decrease in structural theory sensitivity, as shown in Table
7.9. However, Fig. 7.13 illustrates that employing higher-order elements
substantially reduces the mesh-size dependency for predicting peak load..

7.1.3 Three-point bending beam

This investigation aims to analyze the damage evolution in a three-point bending
GFRP beam with a notch at the midspan. To mitigate analysis costs, the numerical
simulation focuses solely on a quarter of the beam, with the corresponding geometry
depicted in Fig. 7.14. FE models with B2, B3, and B4 finite elements operate
along the y-direction of the beam, whereas the cross-section discretization comprises
biquadratic L9 expansion elements, as illustrated in Fig. 7.15. Table 7.10 lists the
adopted material properties, based on [106, 107], with fibers oriented along the
x-direction, and Tables 7.11 and 7.12 detail the damage properties. The beam is
simply-supported, with a steel support applying vertical displacement, following the
methodology employed in [107].
Five analysis cases are investigated, employing various discretizations for both axial
and cross-sectional domains. Table 7.13 outlines the number of FEM elements
and their respective discretization for section A-A (see Fig. 7.15). Figure 7.16
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Fig. 7.15 Finite element mesh along the y-direction for the three-point bending case, fea-
turing magnification in the narrow section, alongside an illustrative example of in-plane
discretization for section A-A.

Table 7.10 Material characteristics of the GFRP material utilized in the three-point bending
beam and the steel support expressed in the material reference system.

E11 [GPa] E22 [GPa] E33 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 [-] ν13 [-] ν23 [-]
30.00 11.38 11.38 3.00 3.00 3.00 0.24 0.24 0.4

Table 7.11 Longitudinal, transverse, interlaminar and shear strength of the GFRP material
for the three-point bending case.

XT [MPa] XC [MPa] YT [MPa] YC [MPa] ZT [MPa] ZC [MPa] SL [MPa] ST [MPa] SI [MPa]
323.00 426.00 37.00 80.00 37.00 80.00 33.00 33.00 33.00

Table 7.12 Fracture energies of the pultruded GFRP for the three-point bending case.

Gft [MPa·mm] Gfc [MPa·mm] Gmt [MPa·mm] Gmc [MPa·mm] Git [MPa·mm] Gic [MPa·mm]
130.00 130.00 3.84 3.84 3.84 3.84
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Table 7.13 FEM and cross-section discretizations for five distinct analysis scenarios concern-
ing the three-point bending case.

FEM discretization Cross-section discretization (A-A)
Case A 7 B4 150 L9
Case B 6 B4+1 B3 64 L9
Case C 6 B4+1 B2 32 L9
Case D 6 B4+1 B2 24 L9
Case E 6 B4+1 B2 16 L9

46

46
46

46

Fig. 7.16 Vertical load versus CMOD for the three-point bending case.

presents vertical reaction-crack mouth opening displacement (CMOD) curves of
CUF results, an Abaqus 3D employing C3D8 elements [107], and experimental data
[151]. Furthermore, a detailed comparison of maximum reaction force, CMOD, and
numerical DOF is presented in Table 7.14. Finally, Fig. 7.17 depicts the evolution
of the tensile matrix damage during the analysis, while Fig. 7.18 showcases the
ultimate distribution of some representative damage modes. 7.18.
Assuming case C as the CUF reference, the results suggest that:

1. Examination of Fig. 7.16 highlights that implementing the Hashin damage
model within the CUF framework yields results more closely aligned with
experimental data compared to the user-subroutine UMAT in Abaqus. Both
CUF and 3D Abaqus accurately predict the pre-peak branch of the force-
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Table 7.14 Assessment of the maximum reaction and CMOD within CUF and their compari-
son with experimental data and 3D Abaqus results, along with the total DOFs of each model
for the three-point bending case.

Case Total DOF Peak load [kN] CMOD at peak [mm]
Reference solutions

Exp 1 - Liu et al. [151] - 3.800 0.474
Exp 2 - Liu et al. [151] - 4.040 0.556
Exp 3 - Liu et al. [151] - 4.030 0.498
Exp 4 - Liu et al. [151] - 3.530 0.458
3D Abaqus - Arruda et al. [107] 381270 3.971 0.623

Present 1D CUF models
1D CUF Case A 36735 3.605 0.500
1D CUF Case B 15504 3.544 0.504
1D CUF Case C 7803 3.567 0.503
1D CUF Case D 6069 3.472 0.511
1D CUF Case E 4335 3.348 0.455

CMOD = 0.24 mm CMO 0 mm

tensile matrix damage

Fig. 7.17 Progression of tensile matrix damage within the notch for case C of the three-point
bending case.
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Fig. 7.18 The ultimate distribution of tensile fiber, compressive matrix and tensile interlaminar
damage for case C of the three-point bending beam.

CMOD plot, with only CUF capable of forecasting the subsequent softening.
Moreover, similar observations to those made in the preceding section can be
drawn regarding the disparities between CUF and 3D Abaqus outcomes.

2. The utilization of CUF facilitates a notable reduction in computational costs,
given its significantly lower number of DOF compared to Abaqus, as indicated
in Table 7.14. Furthermore, the maximum reaction obtained using CUF is
3.5% lower than the mean experimental peak, while the CMOD at peak for
CUF results is 2.2% larger than the mean reference [151].

3. Fig. 7.18 vividly illustrates the occurrence of fiber, matrix, and interlaminar
damages. Additionally, the current model captures certain three-dimensional
effects that eluded previous 2D models [106].
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7.2 Static and progressive failure analysis through
coupled FEM-PD models

7.2.1 Comparison of coupling methods by static analysis of square
cross-section beam

The first case study considers a 3D isotropic beam under traction load. Geometrical
and modelling features are shown in Fig. 7.19. The bar has a square cross-section,
with side equal to 10 mm, whereas the beam’s axial length equals 100 mm. The
material has an elastic modulus E = 10 GPa and Poisson’s ratio ν = 0.2. The central
segment of the isotropic bar is simulated using a 3D peridynamic grid. A grid
spacing of ∆x = 1 mm and an m-ratio of 3 are employed, yielding a horizon radius
of δ = 3 mm. A state-based formulation is utilized. The remaining sections of
the beam are represented by B2 FEs, with one element allocated to each region.
Thus, within the Carrera Unified Formulation (CUF), the kinematics associated
to the FE spans from classical beam models to higher-order Lagrange expansions
(LE). Specifically, Taylor expansions of different orders N (TEN) are adopted. For
example, the notation TE1 refers to the use of first-order polynomials as an expansion
function. Additionally, nine-node quadratic Lagrange elements (LE9) are utilized.
In this assessment, the aim is to compare the two coupling approaches. This bar
was previously studied in [152], where the coupling method employed Lagrange
multipliers at the FEM-PD interface. The results of this investigation were found
to be in good agreement with the full FEM solution. However, some discrepancies
at the interface were observed. The solutions obtained from the smeared coupling
method are compared with those obtained using the Lagrange multipliers approach.

The initial result is illustrated in Fig. 7.20, showing the deformed shape of the bar
under uniaxial displacement. In this scenario, a single LE9 element is employed for
cross-section discretization. Figure 7.21 demonstrates the consistency of solutions
when 3D PD is coupled with different FE models. Notably, the discretization of
the cross-section does not impact the longitudinal displacement evaluated at the
central point of the section along the bar length. Comparison between the two
coupling methods is presented in Fig. 7.22. This comparison reveals distortions in
displacement at interface regions when the Lagrange multipliers method is utilized
(refer to Fig. 7.22b). Conversely, as depicted in Fig. 7.22c, these discrepancies
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Fig. 7.19 Geometrical and modelling properties.

Fig. 7.20 Deformed shape of the beam. The one-dimensional FEs adopt here a quadratic
(L9) kinematics. The Lagrange multipliers coupling method is employed.
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Fig. 7.21 Influence of various 1D-CUF models for FEM regions on the longitudinal displace-
ment.

are nearly eradicated when the smeared method is employed, particularly at the
interfaces. Specifically, a relative error exceeding 5% is computed at the FEM-PD
interfaces with the Lagrange multipliers method. In contrast, the smeared coupling
technique significantly reduces the error, resulting in a maximum relative error of
0.69%.

7.2.2 Static analysis of a C-shaped beam

The second case study involves a C-section beam subjected to bending and torsion, as
detailed in Fig. 7.23. The beam is made of the same isotropic material of the previous
case, with an elastic modulus of E = 200 GPa and a Poisson ratio of ν = 0.2. In this
analysis, the smeared coupling approach is utilized. The primary objective of this
case study is to emphasize the three-dimensional nature of the proposed coupling
model, which applies to both coupling approaches. High-order LE elements are
essential for accurately depicting the behavior of the beam under bending and torsion.
It has been extensively demonstrated that classical low-order beam theories encounter
significant challenges in reproducing these three-dimensional phenomena. In this
case study, the axial FEM discretization comprises 10 four-node cubic elements (B4).
Differently from the previous case, the entire cross-section is not modeled using
3D PD. Instead, the PD region is embedded within the finite element domain. This
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Fig. 7.22 Longitudinal displacement of the bar under tensile loading along a) its entire
length and b) the peridynamic region. When employing the Lagrange multipliers coupling
approach at the FE-PD interfaces, distortions occur. However, tthese distortions are rectified
when employing the smeared coupling method. A comparison of the errors relative to the
full finite element solution obtained with both methods is illustrated in (c).
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Fig. 7.23 Geometrical and modelling properties of C-shaped section beam.
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Model FE dof’s PD dof’s -uz [mm] Point A -uz [mm] Point B
TE1 333 - 0.1713 0.1732
TE4 1665 - 0.1959 0.2658
TE8 4995 - 0.2646 0.5252
L9 9657 - 0.2403 0.5436

L9-PD 9432 20040 0.2344 0.5337

Table 7.15 Transverse displacements at the midpoint of the free-end section (Point A) and at
the load application point (Point B).

is achieved by adjusting the cross-section of the 1D FEs along the axial direction,
resulting in a disconnected region wherever PD is employed, specifically 490 ≤
y ≤ 510 mm (refer to Fig. 7.23). A grid spacing of ∆x = 1 mm and horizon radius
δ = 3 mm are selected. The deformed shape of the C-section beam for both the full
FEM (Fig. 7.24 (a)) and the coupled PD-FEM model (Fig. 7.24 (b)) is depicted
in Fig. 7.24. Additionally, a closer view of the deformed state is provided in Fig.
7.25. It can be observed that the three-dimensional PD domain aligns perfectly with
the FEM regions. These considerations validate the use of high-order Lagrange
elements capable of capturing 3D-like phenomena. Table 7.15 compares the vertical
displacements at points A and B (refer to Fig. 7.23) obtained from the smeared
coupled FE-PD model with those from reference solutions obtained using CUF-
based TE and LE refined models. Displacements at two different points are evaluated
to further illustrate the capability of the refined CUF models to capture both the
bending and torsional behavior of the investigated beam. A notable observation is
the challenge faced by low-order theories in accurately computing displacements
at both investigated points. The model employing LE9 elements for cross-section
discretization achieves an optimal solution, consistent with findings from recent
works (e.g., [153]). Furthermore, the smeared coupling model yields transverse
displacements comparable to those obtained with fully refined models, with errors
of 1% and 2% detected at points A and B, respectively. Finally, the vertical
displacement along the beam span is presented in Fig. 7.26, with the green line
indicating the path followed. Results from the current coupled model are compared
with a full FEM solution. The displacement evolution along the beam span is
accurately captured by the FEM-PD model. Additionally, it is important to highlight
the coupled solution’s ability to maintain smooth transitions at domain interfaces, as
evident from the continuous variation between FEM (red dots) and PD (green dots)
displacements. However, residual errors that remain visible in Fig. 7.26 stem from
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(a) Full FEM model
(b) FE-PD coupled model

Fig. 7.24 Deformed configuration of the C-section beam for FEM and FE-PD coupled model.

Fig. 7.25 Close view of the deformed PD region for the examined case, demonstrating a
significatn consistency between the two formulations.
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Fig. 7.26 Displacement in z-direction along its span (indicated by the green line in Fig.
7.23). A full FEM solution (solid blue line) serves as reference, whereas the displacement in
the FEM and PD domains is denoted by red and green dots, respectively.

the inherent differences between the local and nonlocal solutions of Peridynamics
and CUF when the displacement field is a superlinear function [138]. Furthermore,
the absence of corrections for the peridynamic surface effect may further contribute
to the discrepancies between the results obtained with the full FEM approach and
the CUF-PD coupling.

7.2.3 Static analysis of a reinforced aeronautical panel

A stiffened panel is examined as an additional example to highlight the capability of
the proposed method to incorporate PD domains into complex structures. Figure 7.27
provides an overview of the geometric and modeling characteristics. The material
properties remain consistent with those adopted in Section 7.2.1. The structure
consists of two stringers and one panel, each independently modeled using high-
order four-node beam elements in a component-wise manner [154]. One of the
main novelties introduced in this numerical case is the opportunity to explore a
structure featuring two distinct peridynamics domains. Specifically, two separate
square regions, one for each stringer, are modelled using 3D peridynamics. The
PD domain is discretized in a meshless manner with a grid spacing of ∆x = 1 mm
and a horizon radius δ = 3 mm. Table 7.16 presents the vertical displacement and
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Fig. 7.27 Geometric and modeling characteristics of the analyzed reinforced panel. Two
separate peridynamic regions are incorporated, each corresponding to a stringer.

Model FE dof’s PD dof’s -uz [mm] @Point A -uz [mm] @Point B σyy [MPa] @ Point C
TE1 225 - 29.532 29.368 71.274
TE4 1125 - 31.471 27.513 89.505
TE8 3378 - 40.765 18.396 114.42
L9 10659 - 44.942 14.153 126.916

L9-PD 10641 15480 45.346 14.719 126.847

Table 7.16 Vertical displacements and longitudinal stress σyy are assessed at specific points of
interest within the structure for both the reference solutions and the current FE-PD coupled
model.



88 Numerical results on damage analysis

(a) Full FEM model
(b) Coupled FE-PD model

Fig. 7.28 Distribution of longitudinal stress σyy in the reinforced panel from a full FEM
analysis and from a coupled FE-PD model.

the longitudinal stress σyy values at specific points (see Fig. 7.27) for both the
current coupled model and reference solutions obtained through full FEM analysis.
These findings once again underscore the effectiveness of the proposed coupling
model in accurately capturing three-dimensional phenomena. Moreover, it’s worth
highlighting the precise prediction of axial stress at point C within the structure.
Figure 7.28 also illustrates the complete axial stress distribution within the structure,
comparing the FEM solution (Fig. 7.28a) with the coupled model (Fig. 7.28b). It’s
noteworthy that the presence of the PD domain embedded within the structure does
not disrupt the stress distribution, indicating the potential utility of FEM-PD coupled
models for fracture mechanics applications (as discussed in [41]).

Vertical deflection along the green line in Fig. 7.27 is depicted in Fig. 7.29.
The solution derived from a complete FEM analysis is illustrated by a solid blue
line, while red and green dots represent deflections in the FEM and PD domains,
respectively. The coupled model perfectly aligns with the FEM solution along the
beam span and across the peridynamic region, with no indication of distortion at
either the FE-PD interfaces. As observed in the previous scenario, residual errors
arise from the distinct formulations of peridynamics and CUF theories.

7.2.4 Progressive failure analysis of a pre-cracked beam under
uniaxial load

The first case study focusing on crack propagation involves a pre-cracked beam
subjected to uniaxial tension, as depicted in Fig. 7.30. The beam is 200 mm long
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Fig. 7.29 Vertical displacements along the span of the structure, as indicated by the green line
in Fig. 7.27. A FEM solution (solid blue line) serves as a reference, while the displacement
in the FEM and PD domains is represented by red and green dots, respectively.

and has a rectangular cross-section with sides measuring 40 mm and 100 mm. Steel
plates, each 5 mm thick, are placed at both ends to facilitate load application and
boundary conditions. A crack, 4 mm wide, is positioned at the bar’s center. The
plate located at y = 0 is clamped, while the end plate undergoes axial displacement.
The bar is made of a homogeneous isotropic material with Young modulus E = 32
GPa. The Poisson’s coefficient is ν = 0.25 in the peridynamic domain. The value of
the critical energy release rate G0 is 60 N/m2. The peridynamics grid occupies the
central region of the bar, spanning from y = 60 mm to y = 140 mm. The remaining
sections are modeled using CUF-based finite elements. Along the longitudinal axis,
four two-node linear finite elements (B2) are utilized, two for the steel plates and two
for the bar. The cross-section employs a single L9 element for discretization, a choice
validated for similar traction problems in previous research [155]. Nevertheless, TE
models are also employed to assess the influence of 1D theory on model accuracy.
In the reference study, progressive failure within the structure is explored using
cohesive and bulk elements. In this work, the assumption that the crack initiates and
propagates solely within the peridynamics domain is made. In Fig. 7.30, a crack
is simulated by removing PD nodes, just for explicative reasons. However, in the
current model, the crack is formed by removing bonds between the two edges of
the open surface, as depicted in Fig. 7.31. Consequently, the particles involved
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Fig. 7.30 Geometry and boundary conditions of the traction bar.

Fig. 7.31 Visual representation of crack opening by removing the affected bonds.

will possess fewer initial bonds compared to their neighbours, resulting in reduced
stiffness and creating a plausible zone for crack initiation. As outlined in Section 3.2,
a series of sequentially linear analyses were conducted by incrementally applying
displacement and updating the scalar functions µ based on the bond stretch criterion.
The progression of the crack pattern is depicted in Fig. 7.32, where the damage index
ϕ for each particle is presented at four distinct simulation stages. The evolution
of ϕ indicates the crack propagating parallel to the pre-existing crack, consistent
with experimental observations and numerical simulations. Figure 7.33a displays the
curves of CMOD versus forces for various cases. The numerical reference curve is
sourced from [156], where the authors incorporated a model comprising cohesive
elements and plasticity. The other curves are derived from the FEM-PD coupling
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CMOD=0.0152 mm CMOD=0.0244 mm CMOD=0.0348 mm CMOD=0.0645 mm

0.0e+00 5.0e-010.1 0.2 0.3 0.4
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x
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Fig. 7.32 Progression of the damage index ϕ , providing insights into the propagation of
cracks.

Case ∆x [mm] Horizon δ [mm] FEM DOFs PD DOFs Peak load [N] CMOD [mm]
Numerical Reference - - 30672 - 5700 0.017

L9 - 3D PD 2 6 162 131733 7191 0.0193
L9 - 3D PD 2 8 162 131733 5544 0.014
L9 - 3D PD 4 12 162 18018 5986 0.0156
L9 - 3D PD 4 16 162 18018 5020 0.015

Table 7.17 Significant parameters for both the reference and simulation scenarios, varying
grid spacing ∆x, and horizon radius δ .

method utilizing Lagrange multipliers. The influence of grid spacing ∆x and horizon
radius δ on CMOD and peak load was examined, with the corresponding curves
presented in Fig. 7.33a. A summary of the peak loads and their corresponding
CMODs is provided in Table 7.17. The initial observation highlights a significant
dependency of the peak load on the peridynamics parameters. When comparing
two simulations with a fixed grid spacing ∆x while adjusting the horizon radius, a
notable variation in the failure load value emerges, whereas the CMOD calculated
at this stage exhibits minimal differences. Specifically, increasing δ results in a
reduction of the peak load. However, more detailed convergence analyses, as those
outlined in [157], were not conducted as they lie beyond the scope of this study.
The simulations closest to the numerical reference are those with ∆x = 2 mm and
δ = 4∆x = 8 mm, and ∆x = 4 mm and δ = 3∆x = 12 mm. Both sets of failure
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Fig. 7.33 CMOD-force curves: (a) Influence of grid spacing ∆x and horizon radius δ on the
current L9-PD model, along with a comparison to numerical findings [156]; (b) Assessment
of various 1D-CUF models for FEM regions, maintaining a constant grid spacing (∆x = 4
mm) and horizon radius (δ = 12 mm)

load and CMOD values from these simulations are comparable. Nonetheless, there
is an almost order of magnitude difference (18k versus 131k) in the number of
peridynamics DOFs between them. This discrepancy demonstrates that halving the
grid spacing leads to a significant increase in the number of DOFs. Practically, this
implies that a full 3D peridynamic domain could quickly escalate to an impractical
number of DOFs, making the problem computationally expensive to solve. Another
interesting observation can be made regarding the choice of theory and its relative
order used to discretize the FEM region. The CMOD-force curves for different
FEM discretizations are depicted in Fig. 7.33b, with fixed grid spacing ∆x and

Case FEM DOFs PD DOFs Peak load CMOD
Value [N] Diff [%] Value [mm] Diff [%]

TE1 - 3D PD 54 18018 6176 3.1 0.0152 −2.5
TE4 - 3D PD 270 18018 5981 0.0 0.0161 3.2
TE8 - 3D PD 648 18018 5980 0.0 0.0162 3.8
L9 - 3D PD 162 18018 5986 - 0.0156 -

Table 7.18 Significant parameters for simulation cases featuring different 1D-CUF models
for FEM regions. Additionally, the percentage difference of TE models compared to the
L9-PD model is presented.
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horizon radius δ values of 4 mm and 12 mm, respectively. Table 7.18 presents some
key parameters of the simulation, including the failure load and the corresponding
CMOD for each case. Additionally, the relative difference with the reference value
of the L9-PD simulation is provided. It’s noteworthy that these differences are
negligible, ranging from a maximum of 3.8% for the CMOD value to practically
zero difference for the failure load. These analyses indicate that the solution remains
unaffected by the choice of theory for the FE model employed. This conclusion
aligns with findings from [155], where simple linear static analyses were conducted.

7.2.5 Progressive failure analysis of a beam under torsion

The second case study involving progressive failure is the so-called Brokenshire
test [158]. The whole setup of the test is given in Fig. 7.34. A notched beam is
clamped at its extremities by two steel frames, with three loading arms of these
frames supported and one loaded with a vertical force or displacement, inducing
torsion on the notched beam. These boundary conditions induce a torsion on the
notched beam. Unlike the previous symmetric problem, the boundary conditions
and pre-existing crack pattern (45° angle) make this problem asymmetrical. Thus,
the high tri-dimensionality makes it a hallenging test for the proposed coupled
model. The bar is 400 mm long and has a square cross-section with a side length
equal to 100 mm, whereas the steel plates have a length of 25 mm. The bar is
made of a homogeneous isotropic material with Young modulus E = 35 GPa. The
Poisson’s coefficient is ν = 0.25 in the peridynamic domain. The value of the critical
energy release rate G0 is 80 N/m2. The peridynamics grid spans from the coordinate
y = 125 mm to y = 325 mm in the central zone of the bar, while the remaining
zones are modeled using finite elements. Along the longitudinal axis, two three-node
quadratic (B3) elements are allocated for each steel plate, along with a total of four
four-node cubic (B4) elements for the bar. The cross-section is discretized using
six L9 elements. Sequential linear analysis are then performed. In Fig. 7.35, the
value of the damage index ϕ for most interesting particles at four simulation steps is
shown. The distribution of ϕ gives information about the propagation of the crack.
The resulting crack front closely aligns with both experimental findings[159] and
previous numerical simulations [156, 160–162]. Additionally, Fig. 7.36 presents a
comparison of the damage distribution between a plasticity-damage model [162] and
the current model. Notably, the crack pattern observed from the bottom of the beam
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Fig. 7.34 Geometry and boundary conditions of the notched beam.

CMOD = 0.074 mm CMOD = 0.131 mm

CMOD = 0.251 mm CMOD = 0.388 mm

Fig. 7.35 The progression of the damage index ϕ , which provides insight into the propagation
of cracks. For clarity, only the particles that have incurred damage are depicted.



7.2 Static and progressive failure analysis through coupled FEM-PD models 95

Fig. 7.36 Damage index distribution from a plasticity-damage model (left, adapted from
[162]) and the present model (right).

0.0e+00 5.0e-010.1 0.2 0.3 0.4

Phi

Fig. 7.37 Distribution of the damage index φ at the final step in the deformed configuration.

is accurately replicated. For a better understanding of the crack propagation in the
Brokenshire test, Fig. 7.37 shows the deformed structure at the end of the simulation.
In Fig. 7.38, the CMOD-force curves for various values of δ are depicted, with a fixed
grid spacing ∆x of 5 mm. The CMOD is computed between two points at the centre
of the crack. The remaining curves represent the experimental results [159] and a
numerical reference [163], respectively. The latter proposed a FEM-PD coupled
model, where FEM nodes can be converted into PD nodes in order to track the crack.
Thus, for this particular case, the number of PD DOFs in Table 7.19 indicates the
total number of DOFs. A significant impact of the horizon radius on the peak load
in this structure is evident. Similar to the previous case, an increase in the horizon
radius δ results in a reduction of the failure load, while the corresponding CMOD
remains unchanged. The simulation with δ = 5∆x yields a failure load comparable to
that obtained in the numerical reference, which employed a higher number of DOFs
and a more complex model. However, a noticeable difference from the experimental
failure load remains.
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Fig. 7.38 CMOD-force curves considering various horizon radius δ for the notched beam
under torsion.

Case ∆x [mm] Horizon δ [mm] FEM DOFs PD DOFs Peak load [N] CMOD [mm]
Experimental Results - - - - 1397 0.0075
Numerical Reference 2.5 7.5 - 939366 1618 0.007

1D FEM - 3D PD 5 15 774 54243 2117 0.0069
1D FEM - 3D PD 5 20 774 54243 1801 0.0067
1D FEM - 3D PD 5 25 774 54243 1678 0.0069

Table 7.19 Overview of essential parameters for both reference and simulation curves.
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7.3 Global/local analysis

Numerical results obtained with the global/local approach proposed in this thesis
are shown. Its capability is demonstrated by analyzing two-layer and ten-layer
composite plates. For each example, the influence of the global and local meshes
is investigated by performing convergence analyses, and the results are compared
to those coming from refined layer-wise models. Furthermore, an analysis of a
free-edge case is conducted, with the out-of-plane components of the stress tensor
being evaluated using different patch dimensions and discretization. Finally, an
aeronautical wing under bending load is considered. These analyses provides insight
into the performance of the PW approach under varying conditions and further
demonstrates its potential for accurate and efficient global/local analysis of complex
structures. The stresses retrieved from the local refined analysis are reported in the
global or material reference system (see Fig. 2.1).

7.3.1 Two-layer plate subjected to transversal pressure

The first case study is a two-layer plate subjected to transversal pressure, with
[90◦/0◦] stacking sequence. The plies are of equal thickness and are made of an
orthotropic material, whose properties are enlisted in Table 7.20. Geometrical
features and boundary conditions are shown in Fig. 7.39. A transversal pressure is
applied on the surface of the laminate, with a magnitude equal to 10 kPa. All four
edges are in clamped conditions.

This numerical case serves as an assessment of the proposed PW formulation.
The model for the first step of the global/local analysis consists of 81 CQUAD4
elements. Then, two different regions are chosen for the local study, a single global
element for case A (see Fig. 7.40(a)) and a 3×3 patch in case B (see Fig. 7.40(b)).
Both regions are locally refined with high order finite elements, adopting a 5× 5
grid of cubic Q16 in the plane and two LD3 for each layer through the thickness.
The in-plane discretization of the local domain is represented by a grid built using
Chebyshev nodes to minimize errors that occur at edges when using polynomial
interpolation [164]. A comparison with the EW global/local approach and a full
layer-wise model is provided. The latter is built with a total of 196 cubic Q16
elements for the in-plane mesh, while four-node cubic LD3 are adopted through
the thickness of the plate, two for each layers. Strain and stress distributions are
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E11 E22 E33 ν12 ν13 ν23 G12 G13 G23
143.17 9.64 9.64 0.252 0.252 0.49 6.09 6.09 3.12

Table 7.20 Material properties in MPa.

evaluated in point Q (a
4 ,b

4), which corresponds to the centroid for both the single
element and the 3×3 patch.

xy

z

Pz=10 kPa

Fig. 7.39 Geometrical and modeling features of the investigated plate.

Local model 
In-plane mesh: 5x5 Q16

Thickness mesh: LW LD3

Global model 
9x9 CQUAD4

Thickness mesh: 4 LD3

Fig. 7.40 Global and local models of the two-layer plate subjected to transverse pressure.
Case A represents the EW approach, whereas a PW approach of a 3 x 3 elements region is
recalled as Case B. Point Q represents the evaluation point of stress components.

Figure 7.41 shows the in-plane stress through the laminate thickness in point Q
for the layer-wise model and the two cases of global/local analysis. Results obtained
in cases A and B have a perfect match with those obtained through a refined model.
Thus, in this specific case, it can be concluded that displacements and rotations
extracted from the global model are sufficient as boundary conditions for the refined
local analysis to retrieve the correct in-plane stress state of the laminate. Nevertheless,
this consideration is not valid when out-of-plane stresses are evaluated (see Fig. 7.42).
In fact, a slight discrepancy is witnessed for both σxz and σyz between case A and
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the LW model. This error is mitigated when a larger global region is chosen to be
locally analyzed, as in case B. As a result, a larger global area can help in providing
a more accurate set of boundary conditions for the local model, thanks to the more
significant number of global nodes involved. It is important to note that for each
global/local approach considered (Case A or B), the transverse shear stresses fulfill
the C0

z requirements [165], and they are null at the thickness edges. It should be
underlined that the σzz component is not herein represented due to its very small
value compared to other stress components.
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Fig. 7.41 Comparison of in-plane stresses distribution through the thickness of the laminate
between a full LW model and two global/local approaches (see Case A and B in Fig. 7.40).
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Fig. 7.42 Comparison of transverse shear stresses evolution through the thickness of the
laminate between a full LW model and two global/local approaches (see Case A and B in
Fig. 7.40).

Furthermore, a failure analysis is conducted. Failure Indices (FIs) are evaluated
in point Q for each case using the Hashin 3D criterion [166]. The stress components
obtained from the local analysis are used as input to evaluate the four Hashin-based
FIs, namely fiber tension, fiber compression, matrix tension, and matrix compression.
Results are shown in Fig. 7.43. Values obtained in cases A and B agree with the
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XT XC YT YC XY XZ Y Z
2586 1620 94.0 340.5 174.5 152.6 174.5

Table 7.21 Material allowables in MPa.

full LW model. It is noteworthy that no significant differences are observed between
the two global/local analyses, despite the slight mismatch in the out-of-plane stress
distribution (see Fig. 7.42). This is because the values of σxz and σyz are at least
100 times smaller than the in-plane stresses, resulting in a negligible influence of the
out-of-plane stress values on the failure mechanism.
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Fig. 7.43 Comparison of failure indices between a full LW model and two global/local
approaches (see Case A and B in Fig. 7.40). Hashin 3D criterion has been applied for failure
indices evaluation.
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7.3.2 Ten-layer composite plate subjected to a localized trans-
verse pressure

The second case study consists in a ten-layer composite plate. The material and
geometric properties are the same as those used in the previous case. A symmetric
stacking sequence [90/45/45/0/90]s is chosen. A transversal pressure is applied
only on a central squared region, with a side dimension equal to 110 mm. The plate
is simply supported.

Global mesh convergence

A preliminary convergence study is conducted on the mesh size of the global model.
An illustrative overview of the three investigated cases is shown in Fig. 7.44. Briefly,
we increase the refinement of the global model, mantaining the domain to be locally
analyzed. Consequently, the local patch corresponds to a single global element for
case A.1, a 2×2 patch for case B.1, and a 3×3 patch for case C.1 (see Fig. 7.44 for
the details). The local model adopted is the same for all three cases, consisting of
a 5×5 grid of Q16 elements for in-plane mesh and a total of ten LD3 through the
thickness, one for each layer. Stresses are evaluated in point Q (a

4 ,b
4), and they are

reported in the global reference system.

In-plane stress distributions are shown in Fig. 7.45. The convergence is reached
with case B.1. It can be noticed that case A.1 already provides great overall accuracy.
However, slight discrepancies can still be detected, such as σxx values in top and
bottom layers or σyy behavior in 0◦- oriented layers. Through-the-thickness stress
distributions are displayed in Fig. 7.46. Full layerwise solution for σxz is matched
when cases B.1 and C.1 are considered. On the other hand, the σyz is well reproduced
by each model.

Local mesh convergence

A second convergence study is performed on the mesh refinement of the local model.
A 9×9 grid of four-node plate elements is adopted for the global model, and a 3×3
patch of global elements is chosen for the local analysis, whose centroid is located in
point Q. Three different in-plane meshes are employed for the refined local models.
Information about the considered cases is summarized in Fig. 7.47.
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Case A.1

Q

Q

Q

Global model 
18x18 CQUAD4

Global model 
27x27 CQUAD4

Case B.1

Case C.1

Local model 
In-plane mesh: 5x5 Q16

Thickness mesh: LW LD3

Global model 
9x9 CQUAD4

QQ

Thickness mesh: 10 LD3

Fig. 7.44 Global and local models employed for global mesh convergence study. Patch of
elements to be locally refined are highlighted in red. Point Q represents the evaluation point
of stress components.
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Fig. 7.45 Comparison of in-plane stresses evolution through the thickness of the laminate
between a full LW model and three global/local models (see Case A.1, B.1 and C.1 in Fig.
7.44).
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Fig. 7.46 Comparison of transverse shear stresses evolution through the thickness of the
laminate between a full LW model and three global/local models (see Case A.1, B.1 and C.1
in Fig. 7.44).

Fig. 7.47 Global and local models employed for local mesh convergence study. The patch of
elements to be locally refined is highlighted in red. Point Q represents the evaluation point
of stress components.
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Fig. 7.48 Comparison of in-plane stresses distribution through the thickness of the laminate
between a full LW model and three global/local models (see Case A.2, B.2 and C.2 in Fig.
7.47).
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Fig. 7.49 Comparison of transverse shear stresses evolution through the thickness of the
laminate between a full LW model and three global/local models (see Case A.2, B.2 and C.2
in Fig. 7.47).

Numerical results are shown in Fig. 7.48 for in-plane stresses and in Fig. 7.49 for
the through-the-thickness components. A first important remark can be issued about
the behavior of σxx. In fact, case A.2, representing the coarser local mesh, leads to
significant differences in evaluating the normal stress at the top and bottom layers.
On the other hand, cases B.2 and C.2 match the results obtained via the full LW
model. As in the previous case study, transverse shear stress components are 100
times lower than in-plane ones. The global/local approach still correctly reproduce
the behavior of transverse stress components retrieved with the LW model.

Centroid convergence

A final convergence study is performed considering the patch size as a parameter. In
this case, mesh refinement for both the global and local models is fixed. A model
with 324 CQUAD4 plate elements is adopted, while the local model is discretized
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Thickness mesh: 10 LD3

Fig. 7.50 Global and local model employed for patch size convergence study. Group of
elements to be locally refined are highlighted in red.

with a 5× 5 Q16 grid for the in-plane and ten LD3 through-the-thickness of the
laminate. Thus, the only variable is the dimension of the patch to be locally analyzed.
A single global element is considered in case A.3, whereas 3×3 and 5×5 patches
of global elements are chosen for the local analysis in case B.3 and C.3, respectively.
These regions have been chosen to have their centroids at the same coordinates.
Figure 7.50 shows the three global/local models with red regions highlighting the
different patches.
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Fig. 7.51 Comparison of in-plane stresses evolution through the thickness of the laminate
between a full LW model and three global/local models (see Case A.3, B.3 and C.3 in Fig.
7.50).
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Fig. 7.52 Comparison of transverse shear stresses evolution through the thickness of the
laminate between a full LW model and three global/local models (see Case A.3, B.3 and C.3
in Fig. 7.50).

Figures 7.51 and 7.52 depict the stress distributions for in-plane and out-of-
plane components, respectively. It is evident that the single global element can
provide sufficient information to obtain an accurate stress distribution for in-plane
components and shear stress σyz. On the other hand, case B.3 global/local model is
needed to correctly reproduce the σxz evolution through the thickness of the laminate.

7.3.3 Free-edge analysis

This case study shows the capability of this global/local approach to reproduce the
free-edge effects which arise due to the mismatch of the mechanical properties of the
plies at the interfaces. A composite plate from Lorriot et al. [167] is used as reference.
The shape of the plate is a rectangle with sides equal to a = 200 mm and b = 300 mm
(see Fig. 7.53). The mechanical properties of the orthotropic material are enlisted
in Table 7.22. The stacking sequence of the plate is [152/90/−152]s, and each ply
has a thickness of 0.125 mm. The loading conditions adopted in the reference work
are simulated by imposing a clamped condition at coordinate y = 0 and applying a
traction force of 250 N on the opposite edge. The global mesh discretization consists
of a total of 10 CQUADs along the x-direction and 15 elements along the y-direction.
For this case, a single global element is chosen, meaning that an EW strategy is
adopted.

Figure 7.53 displays the distribution of the transverse shear stress σyz, starting
from the free-edge (at x/h = 0) towards the inner part of the plate. The black line
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E11 E22 E33 ν12 ν13 ν23 G12 G13 G23
159.0 8.4 8.4 0.33 0.33 0.33 4.1 4.1 4.1

Table 7.22 Material properties in GPa.
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Fig. 7.53 Transverse shear stress along x at the plies interface 90/-15 for y = b/2. The
horizontal axis starts at the free-edge (Point P) for x/h = 0 and goes towards the middle of
the plate (along the red line). Reference solution is from [167].

represents the reference solution, whereas the red dots are the stress values estimated
through the global/local approach in an EW manner. It is here important to remark
that the shear stress value goes to zero for a ratio x/h equal to 1, revealing that the
free-edge effects are confined in a very small region, with dimensions comparable
to the plate thickness. For this reason, the EW approach is sufficient for accurately
predicting the σyz at the free-edge and its evolution along the x-direction.

Nevertheless, the free-edge singularities can affect transverse stress values along
a larger span length. In this situation, the importance of using a PW approach arises.
As a further case, the composite beam investigated in [168] is considered. Geometry
and loading conditions of the beam are shown in Fig. 7.54. The laminate has a
stacking sequence [45,−45]s, with each layer of equal thickness. A longitudinal
strain εyy = 0.01 is applied to the structure.

Figure 7.55 shows the transverse shear stress at y = l/2 and at z = h/4, from the
free-edge (x/b = 0.5) towards the centre of the plate, along the blue line. Solutions
from four different test cases are compared with the approximated elasticity solutions
of Pipes and Pagano [169]. Cases A and B use EW approaches with a fine and coarse
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Fig. 7.54 Geometry and loading conditions of the laminated beam.

global mesh. For models C and D, a PW formulation with a 3×3 and a 5×5 patch is
adopted in combination with the most refined global mesh. For all four cases, a 5×5
Q16 mesh is employed for the in-plane discretization of the local model, whereas 4
LD3 are adopted for the through-the-thickness mesh, one for each layer.

For the sake of completeness, the transverse shear stress evolution through the
thickness of the plate is displayed in Fig. 7.56. The results obtained with the
present G/L approach, with both EW and PW formulations, are compared with a
reference solution [170], where a refined LW theory of structure based on Legendre
polynomials is adopted.

The results suggest the following considerations:

• A PW formulation is needed to accurately describe the stress value at the
free-edge and the evolution along the span length. In fact, EW models (cases
A and B) show some discrepancies in reproducing the reference value for the
transverse shear stress, which are correctly replicated when PW models are
employed (cases C and D).

• In this particular case, the free-edge phenomenon affects the transverse stress
in a relatively vast region. Thus, an EW approach is not suitable. In fact,
model A is able to calculate σyz up to x/b = 0.41, where a value of zero
stress is retrieved. A possible solution could consist of a coarser global mesh
discretization, as in case B. However, even if the stress can be evaluated until
x/b = 0.25, a discrepancy with the reference solution is still evident. Thus,
using a PW model helps in both accuracy and solution field interval. Note that
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Fig. 7.57 Geometry and dimensions (in inches) of the wing. The panel chosen as local region
is indicated and its local 3D representation is also shown.

E11 E22 E33 ν12 ν13 ν23 G12 G13 G23
21.5 1.23 1.23 0.329 0.329 0.329 0.571 0.571 0.571

Table 7.23 Material properties in Msi.

the local region dimensions for cases B and C are the same, with a clear gain
in accuracy provided by adopting a 3×3 patch.

7.3.4 Aeronautical composite wing under bending load

The last numerical example highlights the capability of the proposed approach to
deal with complex structures. An aeronautical wing is considered. A graphical
representation is shown in Fig. 7.57. Figure 7.57(a) depicts the wing and its upper
skin, whereas Fig. 7.57(b) shows the inner core of the wing, more specifically spars
and ribs. It should be noticed that each colour could represent a region with different
properties, such as thickness and stacking sequence. The lower and upper skin
structures are made of an orthotropic material, whose properties are provided in
Table 7.23. The wing is clamped at one edge, whereas a vertical force of magnitude
15 lbf is applied at the opposite edge.

The global Nastran model is made of 14935 CQUAD4 elements. The selected
region for the local analysis is illustrated in Fig. 7.57, and refers to a panel in the
upper skin. A total of 121 global elements are then considered as local region. The
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Fig. 7.58 Comparison of in-plane stresses evolution through the thickness of the wing panel
between Nastran global simulation and G/L. The stresses are considered in the material
reference system.

stacking sequence is [90/45/0/−45]s with respect to the leading edge. Finally, each
ply has a thickness of 0.05 in. The refined region is discretized with a 5 × 5 grid
of cubic Q16 elements, whereas a total of 16 LD3 element are adopted through the
thickness, two for each layer.

The solution from the global/local analysis is compared with the results coming
from the stress computation in Nastran at global scale. The evaluation is made in
the central point of the investigated panel. Figure 7.58 shows the in-plane stresses
distribution through the thickness of the wing panel, demonstrating an accurate match
with the solution retrieved from the global analysis. For the sake of completeness,
Fig. 7.59 illustrates the transverse stresses obtained with the proposed approach,
expressed with respect to the global reference system.

Furthermore, a failure index evaluation is performed on the investigated panel.
As previously done in Section 7.3.1, an Hashin-based criterion is adopted. The
material allowables are presented in Table 7.24. The Hashin criterion is able to
distinguish between four failure modes. Their distributions through the thickness
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Fig. 7.59 Transverse stresses evolution through the thickness of the wing panel for the G/L
model. The stresses are here considered in the local reference system.

XT XC YT YC XY XZ Y Z
477.0 216.1 11.0 40.3 20.0 19.1 20.0

Table 7.24 Material allowable in ksi.

of the panel in its central point are depicted in Fig. 7.60. The outcome shows that
the maximum value of failure index is found for the fiber compression mode in the
layers with fiber oriented in the same direction as the leading edge, thus respecting
the physics of the problem.

7.3.5 Localized progressive failure analysis in a pre-cracked plate

This case study consists of a notched plate subjected to a uniaxial traction load. The
structure is made of an isotropic material, with Young modulus E = 32 GPa and
Poisson ratio ν = 0.25. As shown in previous sections, the reference solution is
retrieved through progressive failure analysis of a coupled CUF/3D PD model. The
reference model comprises two 2D CUF-based finite element domains and a 3D
peridynamic region. Cubic Q16 elements are employed for in-plane discretization,
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Fig. 7.60 Hashin-based failure indices in the investigated wing panel.

whereas linear interpolation is used for thickness expansion, see Fig. 7.61. A
complete convergence investigation is carried out in order to tune the PD parameters
to be adopted and to study the influence of mesh discretization at global and local
scales.

Figure 7.62 displays the effect of the m-ratio value on the force-displacement
curve. This value is expressed as m = δ

∆x , with ∆x = 4 mm, resulting in three different
values of horizon radius δ . A not negligible influence of the m-ratio on both peak
load and related applied displacement is witnessed. These curves are compared
with one obtained from a full FEM/PD model, where a m-ratio equal to 3 is chosen.
Furthermore, Fig. 7.63 compares full and localized progressive failure analyses
when the same PD parameters are employed. Notably, a reduction of the m-ratio
(and, thus, a decrease in terms of horizon radius) leads to a closer match between
the two different analyses. A summary of the outcomes displayed in Figs. 7.62
and 7.63 is provided in Table 7.25. A second convergence study is conducted on
the dimension of the portion of the structure to be adopted as a local region while
maintaining the global mesh discretization. Three different local regions are chosen.
They are shown in Fig. 7.64. Figure 7.65 shows the load-displacement behavior
when considering three different local regions. The curves are not affected by the
different local domain dimensions, except for slight differences in the peak load.
Results are also enlisted in Table 7.26. Finally, three different mesh discretizations
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Fig. 7.61 Global and local models for the localized progressive failure analysis in a notched
beam.
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Fig. 7.62 Influence of PD parameter m-ratio over the force-displacement curve for localized
progressive failure analysis. The outcomes are compared with those coming from a full
FEM/PD model (solid blue line).

m-ratio Horizon δ [mm] Peak load [kN] u [mm]
Reference solutions

CUF-PD Reference - Case 1 2 8 20.48 0.087
CUF-PD Reference - Case 2 3 12 17.52 0.076
CUF-PD Reference - Case 3 4 16 15.49 0.070

Present G/L approach
CUF-PD G/L - Case 1 2 8 21.05 0.084
CUF-PD G/L - Case 2 3 12 18.59 0.079
CUF-PD G/L - Case 3 4 16 17.25 0.071

Table 7.25 Summary of key parameters for both reference and simulation cases with different
grid spacing ∆x and horizon radius δ .
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Fig. 7.63 Comparison of results of the localized progressive failure analyses with those from
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Fig. 7.64 Three different regions to be locally refined by using coupled FEM/PD models.

Dimension [mm] Peak load [kN] u [mm]
CUF-PD Reference model - 17.52 0.0076

CUF-PD G/L - Local region 1 100 18.55 0.0079
CUF-PD G/L - Local region 2 140 18.59 0.0079
CUF-PD G/L - Local region 3 180 18.82 0.077

Table 7.26 Summary of key parameters for both reference and simulation cases with different
grid spacing ∆x and horizon radius δ .
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Fig. 7.65 Influence of local region dimensions over the force-displacement curve for localized
progressive failure analysis. The outcomes are compared with those coming from a full
FEM/PD model (solid blue line).

for the global domain are considered, while the dimensions of the local region to be
refined are constant. Figure 7.66 demonstrates that this parameter does not really
influence the local solution.

It should be underlined that the studies about how PD and FEM parameters,
both at global and local scale, affect the problem solution are related to this specific
simple case and thus not generalizable. Further investigations are needed to sustain
these considerations in a more general way.



7.3 Global/local analysis 117

0

2

4

6

8

10

12

14

16

18

20

0 0.02 0.04 0.06 0.08 0.1

F
or

ce
 [k

N
]

Applied displacement [mm]

CUF-PD Reference model
CUF-PD G\L - Global Mesh 1
CUF-PD G\L - Global Mesh 2
CUF-PD G\L - Global Mesh 3

Fig. 7.66 Influence of global mesh discretization over the force-displacement curve for
localized progressive failure analysis. The outcomes are compared with those coming from a
full FEM/PD model (solid blue line).



Part II

Data-driven damage detection in
multi-component structures





Chapter 8

Numerical techniques for damage
detection

In this chapter, the numerical strategies and techniques employed in this work for
damage detection purposes are presented. First, the component-wise formulation
within the CUF framework is illustrated, and its advantages when dealing with
damage modelling are explicated. Then, the necessity of using higher-order theories
to build high-fidelity models to be adopted for damage mapping is made clear by
presenting the results from two different cases.

8.1 Component-wise damage modelling

This section will highlight the advantages of a component-wise formulation for
damage detection. CW models within the CUF framework are obtained using the
Lagrange expansions element on cross-sectional subdomains of the multi-component
structures in the case of beam formulations. In this research, CW formulation
has been adopted to build a database for solving two different damage detection
problems:

• Predicting the intensity and location of damage in randomly damaged metallic
thin-walled structures by using an Artificial Neural Network (ANN) fed with
dynamic parameters.
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CW

Assembled matrix

Fig. 8.1 Global matrix assembly using a CW formulation. Each colour denotes a distinct
component.

• Prediction of damage severity and location by introducing into a CNN dis-
placement and strain fields of randomly damaged composite laminates;

Figure 8.1 illustrates a CW modelling applied to an I-section beam, comprising
three components: two flanges and the web. Each component can be represented
by one or multiple LE elements. These LE elements are then assembled across
the cross-section to derive the global stiffness matrix, as depicted in Fig. 8.1. One
notable advantage of the CW formulation lies in its flexibility, enabling users to tailor
the model’s capabilities i) selecting a specific degree of accuracy for each component,
and ii) determining the order of the structural model to be utilized. Consequently,
this approach permits the introduction of varying levels of damage intensity for each
component, facilitating a more localized distribution of damage within the structure,
if required.

First, a basic isotropic damage modelling approach has been used. Thus, the
Young moduli along all three directions are degraded by the same damage parameter
d:

Ed
ii = (1−d)×Eii, with 0 ≤ d ≤ 1 (8.1)

where Ed
ii and Eii represent the Young moduli for the damaged and pristine struc-

ture, respectively, whereas d denotes the damage index. This coefficient ranges from
d = 0 to d = 1, representing the scenarios from an undamaged (pristine) component
to a completely failed one. An example of damaged structures is illustrated in
Fig. 8.2.
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Damage intensity
0 1

Fig. 8.2 Example of damage modelling in isotropic structures : Undamaged structure (left);
one damaged component (centre); two damaged components with different intensities (right).

In the case of composite laminates, the aforementioned approach may oversim-
plify the situation since the properties can vary significantly between the longitudinal
and transverse directions. To address this, orthotropic damage modeling has been
incorporated. Within this framework, two parameters, namely d1 and d2, are utilized
to account for stiffness degradation in each region. These parameters are employed
to adjust the relative material matrix C according to the following modification, as
described in [171].

C =
1
∆



(1−R2ν23ν32)R1E11 (ν21 +ν23ν31)R1R2E11 (ν31 +R2ν21ν32)R1E11 0 0 0

(1−R1ν31ν13)R2E22 (ν32 +R1ν31ν12)R2E22 0 0 0

(1−R1R2ν21ν12)E33 0 0 0

∆R1R2G12 0 0

∆G23 0

sym ∆G13


(8.2)

where Ri = (1 − di), i = 1,2 are the reduction factors and ∆ = 1 − R2ν23ν32 −
R1R2ν12ν21 −2R1R2ν31ν12ν23 −R1ν31ν13. Hence, the parameter d1 is responsible
for simulating damage along the longitudinal direction, while d2 represents damage
along the transverse direction, with both directions being defined within the material
reference system. There are two potential approaches to incorporate damage into the
analyzed structure. (see Fig. 8.3). The initial approach involves uniformly reducing
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a) Interlayer damage b) Layer-wise damage

Damage intensity

0 1

Fig. 8.3 Examples of component-wise damage modelling in composite laminates.

the stiffness across the entire thickness of a specific region within the composite
section, which is further divided into four components. Alternatively, layer-wise
damage modeling presents a second option, where each individual layer experiences
a distinct level of intensity. It should be noted that these two methods can also be
combined, allowing for a comprehensive analysis.

8.2 Need of higher-order theories for damage detec-
tion purposes

This segment explores the impact of damage localization and intensity on the struc-
tural response of a thin-walled isotropic beam and a composite laminate. Through
the following examples, it will be demonstrated how crucial it is to employ accurate
and component-specific models for effective damage detection.

8.2.1 Beam under bending and torsion

A cantilever I-section beam is considered the first numerical case study. The beam is
made of an isotropic material, with Young Modulus E = 200 GPa and Poisson ratio
ν = 0.2. The geometrical features and boundary conditions are shown in Fig. 8.4. At
first, a model assessment is carried out. The reference solution is obtained through
commercial FE software using 3D brick elements. Different CUF-based TE and
LE models are compared with the reference. In particular, the vertical displacement
along the red line in Fig. 8.4 is considered. The outcome is displayed in Fig.
8.5. These findings underscore the importance of employing sufficiently enriched
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Fig. 8.4 Geometrical and modelling features of an I-section beam subjected to point load.
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ment along the blue line at y = 1000 mm are compared, using various theories and with two
different damage scenarios. Point A denotes the loading point.

kinematics for CUF-based finite elements to achieve high accuracy. Notably, the
curve generated by the low-order TE1 model exhibits significant deviation from the
Abaqus 3D simulation. However, enhancing the kinematic theory results in a closer
match, particularly evident when employing high-order LE9 models.

A subsequent numerical investigation focuses on an I-section beam to highlight
the necessity of adopting a component-wise approach for damage detection. Two
distinct regions of the cross-section have been subjected to damage, with identical
extension and intensity. Specifically, the damage intensity (d) is set to 0.3, and these
regions are situated on the right and left sides of the upper cap, denoted by red
regions in Fig. 8.6. The damaged sections are confined to the vicinity of the clamped
section, spanning 0 < y < 300 mm, where a reduction in stiffness is expected a more
pronounced influence on the beam’s behavior.

Figure 8.6(a) displays the vertical component of the displacement along the red
line for different FE models and both damage cases. A key observation arises from
comparing the curves generated by employing low-order TE1 models. Notably,
this theory fails to discern any discrepancy between the two damage scenarios in
terms of vertical displacement. Such a limitation represents a significant drawback,
particularly concerning damage detection. However, Fig. 8.6(a) also illustrates that
enriching the beam kinematics enables better discrimination between the two damage
cases. Similar observations hold for the longitudinal displacement, assessed along
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E11 [MPa] E22 [MPa] E33 [MPa] ν12 ν13 ν23 G12 [MPa] G13 [MPa] G23 [MPa]
165.0 9.0 9.0 0.34 0.34 0.5 5.6 5.6 2.8

Table 8.1 Material properties.

x y

z Py=
5 MPa

b=50 mm

a= 50 mm

h=2 mm

Clamped

Fig. 8.7 Geometry and boundary conditions of the investigated composite laminate.

the blue line in Fig. 8.6(b) at the free section (y = 1000 mm). When utilizing TE1
models, an almost constant value of uy is obtained due to the beam’s rigid motion in
the cross-section plane. Nonetheless, even with this low-order theory, a distinction
between the two damage scenarios emerges in this case. Conversely, employing
high-order LE theories facilitates an accurate depiction of the warping phenomenon
experienced by the structure.

8.2.2 Composite laminate under uniaxial pressure

Another interesting case study involves a four-layer composite laminate, with stack-
ing sequence [90/0]s (Fig. 7.39). The plies are of equal thickness and are made of
an orthotropic material, whose properties are detailed in Table 8.1. TThe plate is
clamped along one edge, wherease the opposite undergoes uniaxial traction. For the
FE discretization along the longitudinal axis, three four-node cubic (B4) elements
are utilized, while through-the-thickness discretization employs three LE9 elements
for each layer. Various damage scenarios are explored, comprising nine distinct
subportions of the entire domain. Each damaged area spans the entire stacking
through the thickness, as depicted in Fig. 8.3a. The initial analysis examines the
influence of damage location and intensity on the longitudinal displacement uy along
the middle surface of the laminate on one edge (red line in Fig. 8.7). Fig. 8.8
illustrates the introduction of isotropic interlaminar damage in a single region, with
intensity ranging from 0 (indicating an undamaged structure) to 0.5 (resulting in a
50% reduction in region stiffness). The isotropic damage modelling will be adopted
for all analyses in the present section. It is evident that damage location significantly



8.2 Need of higher-order theories for damage detection purposes 127

2.6

2.8

3

3.2

3.4

3.6

3.8

4

-30 -20 -10 0 10 20 30

u
y

[m
m

]

x-coord [mm]

d = 0
d = 0.1
d = 0.3
d = 0.5

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

-30 -20 -10 0 10 20 30

u
y

[m
m

]

x-coord [mm]

d = 0
d = 0.1
d = 0.3
d = 0.5

2.6

2.8

3

3.2

3.4

3.6

3.8

-30 -20 -10 0 10 20 30

u
y

[m
m

]

x-coord [mm]

d = 0
d = 0.1
d = 0.3
d = 0.5

(a) (b) (c)

Fig. 8.8 Influence of a single damaged region on longitudinal displacement uy.
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Fig. 8.9 Influence of three damaged regions on longitudinal displacement uy.

affects the maximum displacement of uy. Specifically, the maximum displacement
occurs at the location of the damaged region, due to the stiffness reduction induced by
the damage. In Figure 8.9, a cluster of three components experiences simultaneous
damage. Similar to the previous scenario, the same type of damage is assigned on
all four layers throughout the thickness. The affected regions exert a significant
influence not only on the magnitude of the maximum displacement but also on its
precise location. To examine the impact of layer-wise damage, Figure 8.10 illustrates
the longitudinal displacement characteristics when an individual layer is subjected to
damage. The study also explores the influence of the stacking sequence on the uy

displacement. Four distinct lamination configurations have been analyzed:

• Lamination 1 : [45/0/0/45] - Symmetric

• Lamination 2 : [45/0/45/0] - Asymmetric

• Lamination 3 : [90/0/0/90] - Symmetric

• Lamination 4 : [90/0/90/0] - Asymmetric
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Fig. 8.10 Influence of layer-wise damage modelling on longitudinal displacement uy, assessed
along the red line.
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Fig. 8.11 Influence of the stacking sequence on longitudinal displacement uy at fixed level of
damage.

The results for four different damage scenarios have been displayed in Fig. 8.11.

Remarks about direct problem and damage simulation

The investigations conducted in Sections 8.2.1 and 8.2.2 yield significant insights. In
section 8.2.1, the importance of employing high-order theories and component-wise
approaches for accurate damage detection is demonstrated. Low-order theories
inadequately capture complex mechanical behaviors such as bending and torsion,
resulting in an inaccurate portrayal of the effects arising from localized damages. In
section 8.2.2, the impact of damage in a composite laminate is explored. Initially,
Figures 8.8, 8.9, and 8.10 provide insights into how damage location and intensity
affect displacement. Notably, the magnitude and location of maximum displacement



130 Numerical techniques for damage detection

can vary significantly when damaging different regions. An illustrative example is
seen in cases (a) and (c) in Fig. 8.8. In the former, the maximum displacement uy

occurs at the plate’s edge (x = l/2), while in the latter, with damage near the load
application, the maximum displacement uy is detected at x >−l/2. However, such
differences are eliminated when damage spans the entire plate length, as depicted
in Fig. 8.9, resulting in symmetric behavior in terms of displacement location and
intensity for cases (a) and (c).

The results presented in Fig. 8.10 highlight that damage exerts a more pronounced
influence on axial displacement when occurring in layer soriented at 0 degrees,
compared to those oriented at 90 degrees. While this outcome is expected for the
present case, different loading conditions such as bending and shear will yield a more
intricate response of the structure to layer-wise damage, necessitating high-order
theories for accurate description. Figure 8.11 depicts the variation in longitudinal
displacement when various stacking sequences are adopted. As expected, different
lay-ups lead to different structural responses due to the change in the laminate
properties.



Chapter 9

AI-based damage detection methods

This chapter is devoted to introducing two different AI techniques for damage detec-
tion purposes. A vibration-based method is first introduced. An Artificial Neural
Network (ANN) is employed to solve the inverse problem: given some specific fea-
tures, the ANN should be able to predict both the location and intensity of damages
in the investigated structure. For this method, some vibrational characteristics (e.g.
natural frequencies and Modal Assurance Criterion (MAC) scalars) are considered.
The influence of damage in aeronautical structures is first demonstrated in this
chapter. Then, the procedure adopted to solve the inverse problem using ANN is
illustrated. The second proposed technique uses displacement and strain field images
to perform a complete mapping of damages in composite laminates. A Convolutional
Neural Network (CNN) architecture is employed here. The common feature between
the two methods is the creation of a training database using CUF-based models,
allowing a component-wise modelling of the structures and thus the capability of
introducing a different damage in each component of the structure.

9.1 Vibration-based damage detection

The first technique adopted for structural damage detection is the vibration-based
method. This approach operates on the principle that structural damage induces
alterations in dynamic parameters such as natural frequencies, mode shapes, and
damping. The primary obstacle lies in establishing the correlation between these
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dynamic parameters and the damage itself, enabling the development of an algorithm
capable of accurately predicting both the location and severity of the damage.

In a recent investigation [172], it was demonstrated that establishing a straight-
forward correlation between changes in natural frequencies and the presence of
damage is not always feasible. Specifically, certain types of damage can impact
natural frequencies without affecting the corresponding mode shapes, or vice versa.
To address this challenge, the authors introduced the Modal Assurance Criterion
(MAC) as an additional evaluation metric alongside the analysis of natural frequen-
cies. The MAC quantifies the correlation between modal shapes of damaged and
undamaged structures by calculating the normalized scalar product of two modal
vectors. Subsequently, these scalar values are organized into the MAC matrix:

MACi j =
|{φAi}T{φB j}|

2

{φAi}T{φAi}{φB j}{φB j}T

where {φA} and {φB} represent the damaged and undamaged modal vector for
the ith and jth modes, respectively. The MAC indicator assumes values ranging
from 0 (indicating no consistent correspondence) to 1 (representing a consistent
correspondence) between the modal vectors. In [172], the goal pursued was to assess
the influence of damage location and intensity on the vibration characteristics of the
structure. Consequently, the study aimed to solve the direct problem in this regard.

9.1.1 Influence of damage on vibrational characteristics

In this section, two case studies to demonstrate the effect of damage on the structural
dynamic parameters are proposed.

Three-stringer spar

The initial evaluation involves a longeron structure with three stiffeners, as depicted
in Figure 9.1. The geometrical specifications of this structure are as follows: length
(L) = 3 m, cross-sectional height (h) = 1 m, stringer area (As) = 1.6×10−3 m, panel
thickness (t) = 2 mm, and distance between the top and middle stringers (b) = 0.3
m. The longeron is composed of a homogeneous and isotropic material with the
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Fig. 9.1 Geometry of three-stringer spar.
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Fig. 9.2 Mode shapes of undamaged three-stringer spar.

following properties: Young’s Modulus (E) = 75 GPa, Poisson’s ratio (ν) = 0.33, and
a density of 2700 kg/m3. The spar is clamped at y = 0 mm.

This particular case study has previously undergone validation in a prior investiga-
tion [172]. The focus of the previous study was on calculating the natural frequencies
of the structure using the CW beam model. Figure 9.2 showcases representative
mode shapes of an intact three-stringer spar. Table 9.1 presents the frequencies
for the undamaged structure as well as three different damage cases. The MAC
matrices, depicted in Figure 9.3, illustrate the mode-to-mode comparisons between
the undamaged structure and the aforementioned three damaged structures. These
final two parameters play a crucial role in training the Artificial Neural Network
(ANN).
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Undamaged d=0.1 d=0.3 d=0.5
f1 3.17 3.00 2.65 2.25
f2 3.56 3.38 3.00 2.55
f3 3.83 3.65 3.27 2.84
f4 14.27 13.59 12.12 10.42
f5 16.73 15.90 14.10 12.01
f6 17.67 16.94 15.37 13.61
f7 21.17 20.40 18.19 15.41
f8 21.70 20.59 18.78 16.37
f9 22.95 21.79 19.27 16.96
f10 25.10 23.89 21.23 18.19
f11 25.75 24.85 22.98 20.94
f12 31.21 30.15 27.92 25.47
f13 37.92 36.60 33.81 30.75
f14 45.79 44.13 40.61 36.73
f15 54.85 52.77 48.35 41.20

Table 9.1 First 15 natural frequencies (Hz) of the Three-stinger spar for the undamaged case
and three damage scenarios.

a) d = 0.1 a) d = 0.3

a) d = 0.5

Fig. 9.3 MAC mode-to-mode comparison between undamaged and damaged three-stringer
spar for different damage scenarios.
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Fig. 9.4 CW model of a NACA profile wing.

Naca wing profile

As the second assessment, a complete wing is considered in this study. The wing
features a straight configuration with a NACA 2415 airfoil, and its cross-sectional
geometry is depicted in Figure ??. The chord length (c) is set at 1 m. Each panel has
a thickness of 3 mm, while the spar webs have a thickness of 5 mm. The dimensions
of the spar caps can be found in the reference [173]. The overall length of the
structure is L = 6 m. The wing consists of three wing boxes separated by transversal
stiffening members located at sections y = 2 m, 4 m, and 6 m. The ribs have a
thickness of 6 mm. For the purpose of illustration, the wing is assumed to be entirely
made of a metallic material, specifically an aluminum alloy. The material properties
of the aluminum alloy are as follows: elastic modulus (E) = 75 GPa, Poisson’s ratio
(ν) = 0.33, and density (ρ) = 2700 kg/m3. The wing is clamped at y = 0 mm. The
validity of this model has been established in the reference [173].

As in the precedent case study, the CW model is considered. Each longeron,
panel, leading, and trailing edge is discretized separately, as depicted in Figure 9.4.
Nine B4 elements are utilized for discretization along the longitudinal axis, while a
combination of L3, L4, and L9 elements is employed for the cross-section. Figure
9.5 showcases some typical mode shapes of an intact NACA profile wing. Table
9.2 presents the frequencies of 15 modes for both the intact structure and three
distinct damage scenarios. Conversely, Figure 9.6 illustrates the MAC matrices for
comparing mode shapes between the intact and the aforementioned three damaged
structures.
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a) Mode 1 b) Mode 3 c) Mode 4

d) Mode  5 e) Mode 9 f) Mode 10

Fig. 9.5 Mode shapes of undamaged NACA profile wing.

Undamaged d=0.1 d=0.3 d=0.5
f1 4.14 3.93 3.47 2.93
f2 21.28 20.24 17.94 15.24
f3 25.00 23.81 21.16 18.02
f4 39.45 39.32 39.03 38.61
f5 64.84 62.02 55.66 47.94
f6 85.61 82.09 73.90 63.84
f7 91.54 87.39 78.07 67.03
f8 93.46 89.15 79.61 68.39
f9 96.99 93.70 85.89 75.54
f10 103.67 99.45 89.85 78.23
f11 104.82 100.43 90.88 79.56
f12 106.76 102.29 92.38 80.62
f13 109.90 105.69 96.42 85.06
f14 115.76 111.201 100.69 87.63
f15 124.19 119.33 108.49 95.39

Table 9.2 First 15 natural frequencies (Hz) of the NACA profile wing for the undamaged
case and three damage scenarios.

a) d = 0.1 a) d = 0.3

a) d = 0.5

Fig. 9.6 MAC mode-to-mode comparison between undamaged and damaged NACA profile
wings for different damage scenarios.
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Fig. 9.7 Representation of the architecture of an Artificial Neural Network.

9.1.2 Simulation-driven ANN training process

Section 9.1.1 has elucidated the impact of damage on natural frequencies and mode
shapes. In this study, the objective is to develop a model capable of detecting the
location and intensity of all damages within separate components of the structure,
given the free vibration characteristics (natural frequencies and MAC matrix scalars).
This model consists of an Artificial Neural Network (ANN), trained through a
database of damage scenarios generated using the CW approach. An artificial
neural network is a group of interconnected neurons, typically organized into layers
including an input layer, one or more hidden layers, and an output layer. Each
layer may contain a varying number of neurons, and each neuron is connected
to all neurons in the subsequent layer. An example of ANN architecture used in
this work is depicted in Fig. 9.7. It is a feedforward neural network, employing
hyperbolic tangent sigmoid transfer functions for the hidden layer(s) and linear
functions for the output layer. An ANN can learn during the training process, which
aims to reduce the network’s error. The algorithm utilized for ANN training is
Bayesian regularization backpropagation, wherein the error between the predicted
and desired outputs is computed, followed by a backward step to adjust network
parameters and minimize the error. Bayesian regularization is employed to ensure
that the trained network exhibits good generalization qualities. Additional details
regarding ANN architecture and training procedures can be found in [174], which
serves as a reference for this study. Detecting the presence, quantifying, and locating
damage through free vibration analysis necessitates an extensive training database
for the neural network, including dynamic parameters of the structure. Consequently,
a considerable number of analyses must be conducted. The adoption of the CW
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Component 1 Component 2 Component 3 Component 4
Sample 1 0.12 0.00 0.15 0.21
Sample 2 0.20 0.07 0.01 0.15
Sample 3 0.03 0.05 0.17 0.14
Sample 4 0.22 0.12 0.02 0.00
Sample 5 0.16 0.15 0.01 0.09
... ... ...
... ... ...
Sample N 0.14 0.04 0.18 0.12

Table 9.3 Example of database of N samples for a 4-Component structure. The damage
introduced for each component is indicated in terms of stiffness reduction (1-d).

formulation is crucial for achieving highly accurate analysis at reduced computational
costs, with the added benefit of localized damage detection at the component level.

The training database is established via Monte Carlo simulations based on the
CW approach. Damage intensity is randomly assigned to each component, fol-
lowing a Gaussian distribution with a mean of 0 and a standard deviation of 0.1.
Consequently, a database comprising N structures, covering a broad spectrum of
potential damage scenarios, is assembled. An illustrative example of such a database
for a structure with four components is presented in Table 9.3. Subsequently, free
vibration analyses are conducted for all samples. The Artificial Neural Network
(ANN) utilizes the first natural frequencies and MAC scalars of each structure for
its training process. Once trained, the neural network can analyze new structures
with different damage distributions. By inputting the first natural frequencies and
MAC scalars of a structure, the ANN can predict the location and intensity of all
damages. The accuracy of this prediction hinges on the ANN architecture. Some
studies attempt to optimize the ANN architecture through design optimization meth-
ods [175, 176]. However, there is no definitive and universally proven method for
defining all parameters beforehand. Therefore, in this study, the network architecture
was primarily developed through a trial-and-error approach, contingent upon the
specific problem under investigation. Parameters such as the number of hidden layers
and neurons per layer were involved in this process. Fig. 9.8 depicts a flow chart
outlining the entire process of vibration-based damage detection, from CW modeling
of a structure to ANN testing.
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Fig. 9.8 Flowchart illustrating the comprehensive process for damage detection, spanning
from the structural modeling phase to the training of the ANN.

9.2 Strain and displacement-based damage detection

The vibration-based damage detection approach presented in Section 9.1 has been
applied to composite laminates [97]. Nevertheless, the results are not as promising
as previous studies on thin-walled structures. This was mainly due to the monolithic
nature of laminates, leading to the necessity of higher frequency mode computation
to obtain sufficient information for damage detection. Furthermore, the actual
measurement of natural frequencies does not represent an easy task to perform,
especially if precise values and high-frequency modes are needed. For these reasons,
virtually generated displacement and strain images retrieved by CUF-based analyses
have been used to train a Convolutional Neural Network (CNN). The final objective
is the complete mapping of damage in a composite structure.

9.2.1 Architecture

A convolutional neural network is a specific deep learning architecture [177], well-
suited for image processing tasks. The key advantage of CNNs over traditional
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Fig. 9.9 Example of CNN architecture.

neural networks lies in their ability to handle high-dimensional inputs and mitigate
overfitting. This is achieved through the local connectivity characteristic of CNNs,
where each hidden unit is connected to a subset of the previous layer, reducing
the number of learnable parameters and computational demands during training.
Additionally, CNNs exhibit robustness to input translation and distortion [92]. CNNs
are designed to process three-dimensional inputs, and their architecture typically
comprises three main layers. Convolutional layers utilize two-dimensional learnable
filters that slide over the input layer, computing dot products with small regions of the
input to generate feature maps. These feature maps serve as inputs to subsequent lay-
ers. Subsequently, pooling layers perform downsampling operations using maximum
or average operations. Finally, the fully connected layer computes the weighted sum
of inputs similar to classical feedforward neural networks. Regularization techniques
are commonly employed during CNN training to enhance model generalization to
unseen data. In this work, dropout regularization and batch normalization layers are
utilized. Fig. 9.9 illustrates an example of a CNN architecture.

9.2.2 Simulation-driven CNN training process

The capabilities of CUF and the component-wise formulation are once again used
to conduct numerous analyses with high accuracy while minimizing computational
resources. A database is constructed using CUF-based Monte Carlo simulations,
wherein damage intensity is randomly assigned to each component, following a
Gaussian distribution with a mean and standard deviation of 0.1. Consequently, a
database comprising N samples is compiled to encompass a wide range of potential
damage distributions. Unlike Section 9.1, orthotropic damage is considered in
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Component 1 Component 2 Component 3
d1 d2 d1 d2 d1 d2

Sample 1 0.11 0.20 0.02 0.01 0.16 0.23
Sample 2 0.23 0.05 0.24 0.06 0.00 0.14
Sample 3 0.02 0.15 0.034 0.06 0.15 0.12
... ... ... ... ...
... ... ... ... ...
Sample N 0.11 0.05 0.11 0.14 0.08 0.02

Table 9.4 Example of database of N samples for the three-component structure shown in Fig.
8.1. The damage introduced for each component is indicated in terms of longitudinal (d1)
and transversal (d2) stiffness reduction.

this study. An illustrative example of such a database is presented in Table 9.4.
Subsequently, a component-wise simulation of each damaged structure is conducted.
The training process will entails feeding the CNN with representative displacement
and strain field images. Finally, the accuracy of the CNN in predicting damage
location and intensity is assessed using images of potentially damaged and unseen
structures. A flowchart outlining the entire process is depicted in Fig. 9.10.
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Fig. 9.10 Flowchart illustrating the comprehensive process for damage detection, spanning
from the structural modeling phase to the training of the CNN.



Chapter 10

Numerical results on damage
detection

This chapter proposes a selection of numerical examples obtained adopting the
formulations and damage detection techniques presented in chapters 8 and 9. First,
the vibration-based method is applied to aeronautical thin-walled structures, par-
ticularly to a stringer and a wing. In these cases, a simplified isotropic damage is
considered. Then, convolutional neural networks are employed to predict damage lo-
cation and intensity using displacement and strain field images as training database
in composite laminates. For these assessments, both isotropic and orthotropic
damage modelling are used.

10.1 Vibration-based method

This section introduces the damage detection results for the aeronautical structure
previously introduced in Section 9.1, where the influence of damage on the vibra-
tional response was investigated. The inverse problem is solved using ANN and a
virtually generated training database.
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Fig. 10.1 Modeling of the three-stringer spar using the CW approach, along with the depiction
of the Gaussian distribution representing the damage intensity for each component.

10.1.1 Three-stringer spar

The first case study is the three-stringer spar. Geometrical dimensions, modelling
features and material properties are those listed in Section 9.1.1. The finite element
model along the longitudinal axis consists of ten B4 elements. The CW model
is composed of five L9 elements representing each component of the beam cross-
section, as illustrated in Fig. 10.1. The probability density function of the damage
intensity for each component is also depicted. A sensitivity analysis has been
conducted to determine the architecture of the ANN. Two parameters have been
investigated: number of hidden layers (Nl) and number of neurons for each layer
(Nn). A training database of 2000 samples has been used. The results of this study
are presented in Fig. 10.2. Each bar on the graph represents a simulation employing
a different neural network, trained using the MATLAB toolbox [178]. The horizontal
axis denotes the variable paramete, while the other parameter is held constant. The
vertical axis indicates the Mean Squared Error (MSE) obtained when the trained
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Fig. 10.2 (a) Influence of number of layers (Nn=5); (b) Influence of number of neurons per
layer (Nl=1).

network is fed with dynamic parameters from an unseen structure. It reads:

MSE =
∑

n
i=1(yi − ŷi)

2

n

where yi represent the target and ŷi the output of the network. It serves as a perfor-
mance metric indicating the accuracy of the neural network in predicting the desired
output. Lower MSE values signify better predictive capability of the neural network.
It’s worth noting that increasing the number of neurons and layers escalates the
computational cost for training the neural network. From Fig. 10.2, it is evident
that the optimal balance between performance and computational cost is achieved
when the ANN comprises two hidden layers with five neurons each. It’s important
to emphasize that only networks with an equal number of neurons per layer were
considered.

Consequently, the results presented hereafter have been found with a dataset of
2000 samples and a neural network consisting of two hidden layers, each comprising
five neurons.

The network’s performance is depicted in Fig. 10.3. The coefficient R represents
the correlation coefficient, indicating the degree of association between the predicted
output and the targets. It ranges from 0 to 1, where a value of 1 means perfect
alignment between the predicted output and the targets. It’s notable that this ANN
achieves remarkably high accuracy in predicting both the location and intensity of
damage in a three-stringer spar. Figures 10.4, 10.5, and 10.6 illustrate the comparison
between the ANN’s predictions (Blue Bars) and the solutions obtained through the
CUF formulation (Red Bars). The components are labeled on the horizontal axis
according to the structure’s partition shown in Fig. 10.1, while the vertical axis
represents the damage intensity. In Fig. 10.4, only one component of the structure is
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Fig. 10.3 Performance of the ANN with two hidden layers each containing five neurons, for
a three-stringer spar geometry.

damaged, while in Fig. 10.5, a maximum of two components can be simultaneously
damaged. In Fig. 10.6, all components are damaged simultaneously. When damage
is introduced across multiple components, its severity can vary from one component
to another. The samples depicted in these figures exhibit damage distributions
distinct from those used during the training process. Another important observation
regarding the results presented in Fig. 10.4 and Fig. 10.5 is the ANN’s ability to
identify the damaged component(s) and their corresponding intensity, even when
only one or two components are affected.
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Fig. 10.4 Comparison between the exact CUF solution (Red bars) and the ANN output (Blue
bars) for a three-stringer spar. Each graph illustrates a structure with only one damaged
component.
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Fig. 10.5 Comparison between the exact CUF solution (Red bars) and the ANN output (Blue
bars) for a three-stringer spar. Each graph illustrates a structure with a maximum of two
components damaged, with the level of damage potentially differing between components.
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Fig. 10.6 Comparison between exact the CUF solution (Red bars) and the ANN output
(Blue bars) for a three-stringer spar. Each graph illustrates a structure with all components
damaged, with the level of damage potentially differing between components.
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Beam element
Cross sectional Lagrangian
polynomials L9
 

Fig. 10.7 CW model of a NACA profile wing and depiction of the Gaussian distribution of
the damage intensity for certain components.

10.1.2 NACA Profile wing

The second assessment involves the wing discussed in Section 9.1.1. Similar to the
previous case test, the CW model is employed. Each longeron, panel, leading, and
trailing edge are meshed separately, as depicted in Fig. 10.7. Along the longitudinal
axis, nine B4 elements are utilized for discretization, while a combination of L3,
L4, and L9 elements is employed for the cross-section. The figure also displays
the probability density function of the damage intensity for selected components.
The use of the CW formulation enables the treatment of each bay individually. This
means that a portion of the longeron in one bay can be damaged while the others
remain intact, resulting in a more precise localization of damage within the structure.
Consequently, a total of 18 components can potentially be damaged, six for each bay.
The components for each bay are delineated in Fig. 10.8: Leading edge (Component
1), top panel (Component 2), trailing edge (Component 3), rear longeron (Component
4), bottom panel (Component 5), and front longeron (Component 6). No damage is
introduced in the three ribs since even minor damage to a rib should not occur during
typical operating conditions of this structure. The training dataset for the ANN
comprises 2000 samples, with each sample representing a structure with a distinct
damage distribution. The initial network architecture tested is identical to that used
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Fig. 10.8 Cross-section of the NACA profile wing with the enumeration of the components
for a single bay.
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Fig. 10.9 Comparison between the exact CUF solution (Red bars) and the non-optimized
ANN (Blue bars) for a profile wing. The ANN architecture employed comprises two hidden
layers with five neurons in each.

in the three-stringer spar case, consisting of two hidden layers with five neurons
each. All 18 components are simultaneously damaged, and the results are depicted
in Fig. 10.9. The component numbers range from 1 to 6 for each bay, following the
numbering scheme introduced in Fig. 10.8. Clearly, the network previously effective
for the prior case test is inadequate for this problem. The correlation coefficient R is
approximately 0.5, signifying diminished performance. The complexity of the FEM
model has increased, with the number of involved components rising from 5 to 18.
Hence, an iterative trial-and-error approach was undertaken to determine the optimal
architecture. The resulting ANN comprises three hidden layers, each housing 28
neurons. Similar to the prior case test, the input and output consist of 15 natural
frequencies plus the MAC scalars. Fig. 10.10 demonstrates the performance of this
network, exhibiting remarkable accuracy in predicting damage location and intensity.
A detailed examination reveals minimal discrepancies in predicting damage location
and severity in components with minor defects. Figures 10.11 and 10.12 compare
the CUF exact solution (Red bars) with the network’s output (Blue bars) when one
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Fig. 10.10 Performance of the ANN with three hidden layers, each comprising 28 neurons,
for a wing.

or two components were damaged, potentially spanning two different bays. The
structures analyzed in these figures had damage distributions distinct from those
used in training the ANN, indicating the network’s ability to predict damage location
and intensity with exceptional accuracy even in more complex structures like wing
profiles. Figure 10.13 shows the results of the ANN when all components are
damaged simultaneously. The same hypotheses have been made for figures 10.11
and 10.12.

10.2 Strain and displacement-based method

Figure 10.14 shows the architecture employed in this research. The field images
adopted for training have a dimension of 413x413 pixels. Then, blocks formed
by convolutional and average pooling layers were used before introducing fully
connected ones. The final output of these layers will be the location and intensity of
each damage in the investigated structure.

10.2.1 Composite plate with isotropic damage

The same composite laminate introduced in Section 8.2 is examined here for damage
detection. Damage is introduced in each region of the structure using an isotropic
formulation. In total, nine areas are identified, requiring the CNN to predict nine
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Fig. 10.11 Comparison between the exact CUF solution (Red bars) and the optimized ANN
(Blue bars) for a profile wing. Each graph represents a structure with only one damaged
component.
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Fig. 10.12 Comparison between the exact CUF solution (Red bars) and the optimized ANN
(Blue bars) for a profile wing. Each graph represents a structure with a maximum of two
damaged components. The damage can vary from a component to another.
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Fig. 10.13 Comparison between the exact CUF solution (Red bars) and the optimized ANN
(Blue bars) for a profile wing. Each graph represent a structure with all components damaged.
The damage can vary from a component to another.
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Fig. 10.14 CNN architecture employed in the present work.



10.2 Strain and displacement-based method 153

Fig. 10.15 Numbering of the regions for the investigated plate.

Number samples Time elapsed Regression coefficient
4000 17min 47sec 0.9785
6000 27min 08sec 0.9837
8000 36min 23sec 0.9865

10000 48min 18sec 0.9902
Table 10.1 Convergence study for the scenario considering isotropic damage model.

damage parameters d. These parameters are assigned through Monte Carlo simu-
lation, with mean and standard deviation set to 0.1. It’s noteworthy that the same
damage is applied to each layer within a single region The boundary conditions
consist of a uniaxial pressure applied on one edge, while the opposite edge remains
clamped. Fig. 10.16 illustrates examples of images depicting two different damage
scenarios: pristine and randomly damaged structures, respectively. The CNN will be
fed numerous such images from structures with known damage distributions, with
the ultimate aim of detecting damage in unseen structures. However, determining the
appropriate number of images required for accurate prediction of damage intensity
and severity necessitates a convergence study. The objective is to assess the mini-
mum number of database samples needed to achieve the highest prediction accuracy
possible. The proportion of sample numbers allocated to training, validation, and
testing sets has been kept constant for all cases (i.e., 75%, 20%, and 5%, respec-
tively). The CNN training process utilizes an NVIDIA GeForce GTX 1650 GPU.
The results of the convergence study are displayed in Table 10.1. It is evident that a
total of 4000 samples already ensures good prediction accuracy by the CNN, with a
regression coefficient of 0.9785. While increasing the number of adopted samples
enhances prediction accuracy, it also escalates the computational time required for
CNN training. Hence, a trade-off between accuracy and computational time needs
to be determined based on the specific application requirements. Thereafter, results
are presented for the scenario involving 10000 database samples. A total of 500
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(b) Damaged structure

Fig. 10.16 Longitudinal displacement fields of a pristine and damaged structure considering
the isotropic damage model.
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Fig. 10.17 Regression curve for the case with isotropic damage model.

unknown structures were input into the trained neural network to validate its ability to
ascertain the location and intensity of damage in each structure. The regression curve
depicted in Fig. 10.17 showcases a regression coefficient R near unity, indicating
high accuracy in predicting the correct values of the CNN targets (i.e., damage).
Figure 10.18 provides a comparison between the target value of damage intensity
(red bars) and the CNN prediction in each region of the structure (blue bars) for
two test samples, which are unfamiliar to the CNN. The vertical axis represents the
intensity of the damage, while the horizontal axis displays the numbering of the
regions, consistent with the partitioning illustrated in Fig. 10.15.

10.2.2 Composite plate with orthotropic damage

The previous case study, with the same boundary and load conditions, is replicated
here for the detection of orthotropic damages. Reduction factors d1 (representing
longitudinal damage) and d2 (representing transversal damage) are introduced in
each of the nine regions through Monte Carlo simulations. Each layer within the
same region will experience the same damage intensities. Therefore, the aim is now
to predict the values of nine longitudinal damages d1 and nine transversal damages
d2.
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Fig. 10.18 Comparison between the target value and the CNN prediction in structures where
all regions are damaged, considering the isotropic damage model.
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Fig. 10.19 Regression curve for the orthotropic damage model scenario using longitudinal
displacement images.

Initially, longitudinal displacement field images were chosen for network training.
The network architecture remained the same as in the isotropic damage case, with
the only modification being the output layer now having 18 neurons instead of
nine. The outcomes for both longitudinal and transversal damages are depicted in
Fig. 10.19. The CNN effectively detects longitudinal damage d1 with significant
accuracy in all nine involved regions. However, the network struggles notably in
predicting transversal damage d2. This outcome could have been anticipated in
advance. By utilizing only images of the axial displacement fields, the CNN can
only discern information strictly related to longitudinal damage d1, while limited or
no information is available regarding the influence of transversal damage d2 on the
structural behavior. Consequently, this choice of training images cannot be deemed
appropriate for the present case. To address the problem with orthotropic damage
formulation, a different approach is adopted. For each training sample, a set of
two images is introduced as input: the longitudinal displacement field uy and the
normal strain field εxx. An example of training images from a randomly damaged
sample is depicted in Fig. 10.20. The objective is to provide the CNN with sufficient
information to accurately predict both d1 and d2 parameters. Once the network
training is complete, the test images from unseen structures are fed into the CNN for
damage prediction. The results are illustrated in Fig. 10.21. It can be observed that
the CNN maintains its ability to accurately predict the longitudinal damage d1, while
a noticeable enhancement is observed in the prediction of the transversal damage
d2. However, it is evident that the CNN’s performance in predicting d2 is not as
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Fig. 10.20 Example of axial displacement and normal strain field images depicting a randomly
damaged structure in the scenario of the orthotropic damage model.

N samples Time elapsed Regression coeff. d1 Regression coeff. d2
8000 48min11sec 0.9577 0.8809
10000 58min55sec 0.9731 0.8848
12000 73min27sec 0.9798 0.9165
14000 96min24sec 0.9845 0.9276
Table 10.2 Convergence study for the case with orthotropic damage model.

robust as for the d1 parameter, with a regression coefficient of 0.927 compared to the
value of 0.984 for the longitudinal parameter. Subsequently, a convergence study
was conducted to explore the influence of the number of training samples on the
results. The findings are presented in Table 10.2. It is clear from these results that
there is an improvement in accuracy as the number of samples increases. Therefore,
a larger database could potentially lead to better predictions, even for the transversal
damage parameters.

Similar to the isotropic formulation case, a comparison between the network
output (blue bars) and the target prediction (red bars) is illustrated in Fig. 10.22. The
left graph pertains to the longitudinal damages for each of the nine regions, while
the right graph pertains to the transverse damage parameters.
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Fig. 10.21 Regression curve for the scenario featuring the orthotropic damage model, utilizing
longitudinal displacement and normal strain images.
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Fig. 10.22 Comparison between the target value and the CNN guess in a structure where all
regions are damaged, using the orthotropic damage model.



Chapter 11

Conclusions

The present thesis proposes a series of techniques for the characterization of failure
in isotropic and composite structures, from damage identification to the analysis of
its propagation. The capabilities of the Carrera Unified Formulation (CUF) have
been exploited to carry out progressive failure, global/local and damage detection
analyses. CUF allows straightforward implementation of low to high order theo-
ries in a compact and automatic way. Within the CUF framework, the governing
equation and the related finite element (FE) arrays of any model are formulated
through Fundamental Nuclei (FNs), whose structure is independent of the theory
approximation order. Furthermore, the use of Lagrange expansion (LE) permits the
adoption of a Component Wise (CW) approach for structural modelling. First, a
three-dimensional (3D) orthotropic damage model has been employed for progres-
sive failure analysis in fibre-reinforced composites. The results have been validated
with outcomes coming from literature and experimental campaigns. The frame-
work has proven to provide accurate solutions in terms of damage progression and
structural responses in a highly efficient manner. Then, CUF-based finite elements
were coupled with a non-classical theory, peridynamics (PD). PD is a non-local
theory based on integro-differential equations, which allows the formulation to deal
with discontinuities, such as cracks. Two approaches have been proposed, and the
advantages and shortcomings are highlighted. This framework has been employed
for static and progressive failure analyses. Coupled FEM-PD models have been
embedded within a global/local tool for localized progressive failure analysis. The
two-step global/local approach has given reliable results regarding stress states and
failure index evaluations, even considering local regions of complex structures, such
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as an aeronautical wing. By introducing the coupled FEM/PD approach at the local
scale, a localized progressive failure analysis in a specific region of a large structure
is made possible. Finally, the potentialities of CUF have been exploited for damage
detection in both isotropic metallic and composite structures. CUF-based finite
element analyses are carried out in order to create an extensive database for training
of Artifical (ANN) and Convolutional (CNN) Neural networks. These are fed with
static or dynamic structural parameters to obtain a complete mapping of damages in
an unknown structure as output.

Main results

The main novelties and results obtained during this period of the doctoral research
can be summarized as follows:

• CUF-based finite element models have been presented and used for failure
analysis in composite laminates by means of an orthotropic Hashin-based
damage model;

• The proposed damage model has proven to correctly reproduce the damage
distribution in the investigated structures, including some 3D effects that 2D
models could not describe. Furthermore, the combination with CUF led to a
significant reduction of the computational costs, though maintaining a high
level of accuracy when results are compared with experimental and numerical
campaigns;

• The non-classical peridynamics theory has been coupled with higher-order
finite elements. Two methods have been proposed, and their advantages
and shortcomings are enlisted. However, the adoption of these coupling
approaches has solved some limitations of the peridynamic formulation, such
as the exponential increase in the computational demand due to its non-local
nature and the difficulties in correctly imposing boundary conditions on the
PD domain;

• The intrinsic non-local nature of peridynamics has been exploited for pro-
gressive failure analysis in quasi-brittle structures. The coupling with refined
elements has allowed using the peridynamic grid only in regions where the
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crack was more likely to nucleate and propagate. The outcomes have been
compared with results from the literature, showing good agreement in terms
of structural response and description of damage propagation;

• A global/local tool has been extended to deal with larger domains. The global
analysis is carried out in a commercial FEM software (Nastran). Then, a
region to be locally refined is chosen and a local analysis through CUF-based
finite element models is performed. The results have proven consistent with
those obtained by modelling the entire structure with higher-order elements.

• An innovative framework for localized progressive failure analysis has been
proposed. PD for crack propagation has been embedded within the global/local
tool, showing some good preliminary results for simple benchmark cases.

• The capabilities of CUF in modelling structures in a component-wise manner
have been exploited for dealing with damage detection. The need for higher-
order elements to accurately evaluate damage effects has been demonstrated.

• A vibration-based damage detection method has been developed. An artificial
neural network is fed with vibrational characteristics (natural frequencies and
MAC matrix) of damaged structures. After training, the network is able to
provide the location and intensity of each damage of an unknown structure.

• The damage modelling has been extended to deal with orthotropic damages.
An alternative method has been proposed for detection in composite laminates.
A convolutional neural network is trained with images of displacement and
strain fields of the composite laminate.

Future works

The work presented in this thesis can represent a first step towards interesting
developments. Within the present research, the CUF has shown good performance in
progressive failure and damage detection analysis, thus paving the way for future
research, including:

• the extension of coupled FEM-PD model to deal with failure in different
materials, such as composite laminates;
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• the extension of the global/local approach for dealing with localized progres-
sive failure in composite laminates, by using the Hashin-based orthotropic
damage model proposed in this research;

• the integration of the global/local approach within an optimization framework
for aircraft design;

• the adoption of hybrid (experimentally and numerically generated) data as
database to train the neural networks for damage detection purposes.

• the development of a framework where the global/local approach is used in
combination with deep learning algorithm for dealing with both detection of
damage and investigation of its progression.
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