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ABSTRACT Deep learning-based recognition systems are deployed at scale for real-world applications that
inevitably involve our social life. Although of great support when making complex decisions, they might
capture spurious data correlations and leverage sensitive attributes (e.g. age, gender, ethnicity). How to factor
out this information while maintaining high performance is a problem with several open questions, many of
which are shared with those of the domain adaptation and generalization literature which aims at avoiding
visual domain biases. In this work, we propose an in-depth study of the relationship between cross-domain
learning (CD) and model fairness, by experimentally evaluating 14 CD approaches together with 3 state-of-
the-art fairness algorithms on 5 datasets of faces and medical images spanning several demographic groups.
We consider attribute classification and landmark detection tasks: the latter is introduced here for the first
time in the fairness literature, showing how keypoint localization may be affected by sensitive attribute
biases. To assess the analyzed methods, we adopt widely used evaluation metrics while also presenting their
limits with a detailed review. Moreover, we propose a new Harmonic Fairness (HF) score that can ease
unfairness mitigation model comparisons. Overall, our work shows how CD approaches can outperform
state-of-the-art fairness algorithms and defines a framework with dataset and metrics as well as a code suite
to pave the way for a more systematic analysis of fairness problems in computer vision (Code available at:
https://github.com/iurada/fairness_crossdomain).

INDEX TERMS Domain adaptation, domain generalization, fair and trustworthy artificial intelligence, face
recognition, landmark detection.

I. INTRODUCTION
Deep neural networks currently constitute the core of several
AI systems that support decisions in many socially important
tasks such as the hiring process, healthcare diagnosis, and
law enforcement. Despite their efficacy, it has become
apparent that they can learn to encode subtle biases that
disproportionately disadvantage particular sub-populations
(e.g. based on age, gender, ethnicity, etc.) [1], [2], [3], [4].
The causes of this unfairness are many, from amplifying bias
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that already exists in the training data [5], to learning spurious
correlations [6]. However, the end result is the same: AI
systems may exacerbate rather than alleviate social problems
of inequality and discrimination. This issue has motivated
a growing body of research in fairness interventions [5],
[7], [8] — algorithms designed to optimize some notion of
fairness jointly with conventional learning objectives. Still,
the research in this area is in its infancy and several factors
have been overlooked.

This work focuses on the natural alignment of the fair
learning problem with the more widely studied cross-domain
(CD) learning challenge in computer vision. In the latter area,
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FIGURE 1. In this example the task is predicting if the person in the
image has blonde hair or not and we would like to have a model that
works equally well for men and women. (Left) We start from a baseline
model that exhibits some degree of unfairness as evidenced by the
Difference in Accuracy between gender groups. (Right) By exploiting
Cross-Domain (CD) learning to reduce the visual domain shift among
groups the generalization ability of the model increases, producing an
unfairness mitigation effect.

the goal is to produce models agnostic to the specific details
of visual domains (e.g. camera pose, lighting, image style)
to obtain generalization across them. By mapping visual
domains to protected subgroups, we can see that the wealth
of existing algorithms for promoting domain invariance
could potentially benefit fairness (see Figure 1). Thus, our
first contribution is to present a fairness benchmark for
computer vision that spans 5 datasets of face and medical
images for classification and landmark detection tasks and
compares 14 CD learning approaches alongside 3 state-of-
the-art (SOTA) fairness algorithms. We remark that landmark
detection on face images of different demographic groups is
introduced here for the first time, indeed the bias related to
sensitive attributes may affect the whole image annotation but
also the precision with which critical keypoints are located.

Another aspect on which there is still a lot of confusion
and open debate is about how systems should be evaluated.
There are multiple competing notions of fairness and ways
to quantify it [7], [9]. Previous studies measured group
fairness by accuracy difference between advantaged and
disadvantaged subgroups [10]. However, this goal has been
criticized in philosophy and ethics literature [11]. Purely
minimizing the gap between subgroup performance, may lead
to choosing a model with worse accuracy for all subgroups,
which is Pareto inefficient [7] and violates the ethical
principles of beneficence and non-maleficence [12]. As our
second contribution, we analyze existing group fairness
criteria by highlighting their strengths and weaknesses.
The results of our experimental analysis are discussed
considering several of those metrics and we also propose a
scoring function named Harmonic Fairness that aggregates
performance and fairness level to assess the quality of a

model and ease the comparison among multiple unfairness
mitigation methods.

Finally, our evaluation campaign confirms the effective-
ness of CDmethods and the relevance of the proposed metric.
It highlights how less popular approaches in the CD literature
provide a significant advantage for unfairness mitigation
on different tasks, systematically outperforming the tailored
SOTA approaches. Moreover, it shows that CD models
trained to overcome the bias due to one sensitive attribute
can be beneficial also to prevent unfairness with respect to
a different one. This ability to transfer knowledge provides
insights into the robustness of CD approaches for fairness
applications. Overall, our work paves the way for a more
systematic analysis of fairness problems in computer vision
and the related unfairness mitigation methods, providing
reliable tools for future evaluations.

II. RELATED WORKS
A. MITIGATING UNFAIRNESS
The concept of fairness is very broad and has been largely
discussed in the machine learning literature to support
social, economic, and law choices [13], [14], [15], [16].
We focus here on group fairness whose aim is to develop
decision techniques that are invariant to differences across
non-overlapping subsets of data defined by human-sensitive
attributes like gender and ethnicity. Several studies have been
conducted on face and medical image collections to demon-
strate how their biases lead to poor performing recognition
models on some minority groups, progressively attracting the
attention of the computer vision community [17], [18]. The
existing strategies developed tomitigate unfairness have tack-
led the problem at three main levels depending on when they
are applied within the learning process. As data unbalancing
is among the main sources of unfairness, some methods act
before training by collecting ad hoc datasets [19], introducing
strategic sampling [5] or developing generative models that
mitigate the imbalance through image synthesis [5], [7], [20],
[21]. Other techniques have been designed to prevent models
from capturing spurious data correlations during training,
by improving the representation learning procedure. Some
approaches quantify these correlations and minimize them
by aligning the representations of different demographic
groups [22], [23]. Disentanglement-based methods force
orthogonality between target classes and sensitive attributes
in order to disregard the latter during task learning [24],
[25], [26], [27]. A similar goal is obtained by adversarial
approaches that include dedicated modules to reduce the
discriminability of semantic attributes [5], [28], [29], [30],
[31]. Other techniques leverage feature distillation [22], rein-
forcement [32] and contrastive learning [8]. Very recently,
a different family ofmethods proposed to identify and remove
the critical parts of the models causing unfairness [33], [34].
Finally, post-processing strategies modify output predictions
based on fairness criteria [35].

In terms of tasks, the fairness literature mainly focuses
on classification, dealing with both tabular data and images.
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Only in the last months, Meta presented a dataset to analyze
fairness in classification, detection, and segmentation [36].
Still, we are not aware of previous works discussing fairness
for keypoint localization.

B. CROSS-DOMAIN LEARNING
In real-world conditions training and test data often belong
to different domains. Cross-domain models are trained to
provide good performance on any unseen target domain at test
time (Domain Generalization), or to adapt the training source
knowledge to a specific, different but related target (Domain
Adaptation).

The techniques proposed to tackle the challenging Single-
Source Domain Generalization (SSDG) setting extend
regularization strategies usually applied in empirical risk
minimization to prevent overfitting (e.g. label smooth-
ing [37]) and reshape them to face large source-target domain
shifts. These include strategic dropout based on gradient
observation [38], tailored model selection [39], [40] or
data-augmentation to increase data variability [41]. When
training samples are drawn from multiple domains, robust
models can be obtained via data-augmentation techniques
[42], or style-transfer-based approaches [43]. Other popular
Multi-Source Domain Generalization (MSDG) strategies
align the source domain representations through Maximum-
Mean Discrepancy (MMD) minimization [44] or adversarial
learning [45], [46]. A similar aim is also pursued by multi-
task models that combine supervised and self-supervised
learning [47], [48]. Meta-learning solutions get prepared for
the source-target discrepancy experienced at test time by
emulating the same condition with data drawn from the
different sources during training [49], [50].

In the Unsupervised Domain Adaptation (UDA) setting
the target data is available at training time but it is
unlabeled. Possible strategies to close the domain gap are
based on adversarial learning [51] and feature alignment
via MMD [52] or via feature norms matching [53]. Pixel-
wise adaptation can also be performed with GAN-based
techniques [54], [55]. Clearly, MSDG and UDA share several
solutions with slight differences due to the availability
of multiple sources in one case, and source and target
in the other. Finally, when the target is at least partially
labeled, the setting is named Supervised Domain Adaptation
(SDA) and inherits most of the techniques developed for
the more challenging UDA, SSDA, and MSDA. Further
constraints are eventually added to prevent overfitting in
case of a very limited amount of labeled target data
[56], [57], [58], [59].

In terms of tasks, previous works on cross-domain learning
broadly cover object classification and detection, as well as
semantic segmentation, re-identification and retrieval prob-
lems [60]. Still, the task of regression has been significantly
less studied [61], [62] and only a few works proposed robust
methods for keypoint localization across domains [63], [64],
[65], [66].

C. LANDMARK DETECTION
Locating specific points in an image is crucial for applications
like face recognition [67], [68], object tracking [69] and pose
estimation [70], with practical use in fields such as medicine,
sports, and robotics. Keypoints as object corners and edges
or facial features like the eyes, nose, and mouth are indicated
as landmarks. Older landmark detection methods treat the
task as a regression problem, where the goal is to predict
continuous pixel coordinates for each landmark [71], [72].
Recent methods have obtained significant gains in accuracy
and robustness by modeling the landmark locations through a
spatial probability distribution and providing high-resolution
2D heatmaps as output [64], [73].We consider these heatmap-
based strategies in studying the problem of fair landmark
detection.

III. FAIRNESS MEETS CROSS-DOMAIN LEARNING
To formalize the problem of fairness we start by defining
a data sample as (x, y, a), where x is an image, y is its
semantic label and a is a sensitive attribute. In the simplest
case, the labels are binary y ∈ {0, 1} (e.g. for faces, eye
bags yes/no), and the same holds for the attributes a ∈ {0, 1}
(e.g. male/female or young/old). Given a set of annotated data
spanning all the semantic labels and attributes, the goal is to
learn a classifier ŷ = f (x) that correctly predicts the label
and achieves certain group fairness criteria with respect to a.
These criteria mainly focus on the difference in performance
between privileged and disadvantaged data groups associated
with distinct attributes (see section IV).

The presented fairness problem shares some common traits
with that of cross-domain learning, where source (xs, ys) ∼

ps and target (xt , yt ) ∼ pt data differ on the basis of the
distribution from which they are drawn. The information
about the distribution is usually summarized by a label
indicating the data type: considering one source and one
target domain, it holds d ∈ {0, 1} (e.g. photos/sketches).
By simply switching d with a in the SDA setting we get to the
framework described for the fairness problem. As SDA can
leverage the whole cross-domain literature, there is a large set
of methods that can be applied and evaluated for unfairness
mitigation. Some of them have been considered in previous
fairness-related publications (e.g. discrepancy, adversarial,
and disentanglement strategies), but a thorough benchmark
is still missing. As discussed in the following, letting cross-
domain learning to meet fairnessmay lead to new evaluation
strategies and interesting research questions.

IV. FAIRNESS CRITERIA
Evaluating the group fairness of a classification model means
assessing its performance on different population subgroups
and comparing them. Many criteria have been proposed
for this [9], [74]. In the following, we review the most
used metrics in computer vision. We start from the basic
definitions of True Positive Rate TPR = TP/(TP + FN ),
False Positive Rate FPR = FP/(FP + TN ) and Accuracy
Acc = (TP + TN )/(TP + TN + FP + FN ). In terms of
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FIGURE 2. Left: C1 and C2 have the same DEO but C1 is clearly
preferable to C2. Right: C2 has a higher mGA than C1, but it also has a
higher DA. Neither DEO nor mGA are sufficient for selecting a fair
classifier with respect to sensitive attribute a.

conditional probabilities for data with two different attributes,
it holds

TPRa=0 = P(ŷ = 1|y = 1, a = 0) (1)

FPRa=0 = P(ŷ = 1|y = 0, a = 0) (2)

and their analogues for a = 1. The Difference in Equal
Opportunity (DEO) measures fairness by

|P(ŷ = 1|y = 1, a = 0) − P(ŷ = 1|y = 1, a = 1)| , (3)

so the maximum fairness is obtained for DEO = 0 when
TPRa=0 = TPRa=1. The Difference in Equalized Odds
(DEOdds) measures fairness by∑

t∈{0,1}

|P(ŷ = 1|y = t, a = 0) − P(ŷ = 1|y = t, a = 1)|,

(4)

thus maximum fairness is obtained for DEOdds = 0 when
both DEO = 0 and FPRa=0 = FPRa=1. In other words, the
decision of the classifier should be conditionally independent
of the attribute, given the ground truth (ŷ ⊥ a|y). Another
basic way to consider the variation of the model’s output over
the subgroups identified by the attributes is via theDifference
in Accuracy (DA):

|P(ŷ = y|a = 0) − P(ŷ = y|a = 1)| . (5)

All these metrics evaluate the relative behavior of the
classifier on data subgroups defined by different attributes but
lose track of its absolute performance. This is a critical issue
as shown by the practical example in the left part of Figure 2.
Although the performance of the two classifiers is different,
with C1 better than C2, they have the same value of DEO.
Moreover, both DEO and DEOdds are minimized by a trivial
classifier that predicts always ŷ = 1. In that case, for all the
attributes it holds FN = TN = 0, so TPR = FPR = 1 and
DEO = DEOdds = 0. Since the accuracy reduces to the
Positive Predictive Value (PPV = TP/(TP + FP)), also DA
becomes uninformative.
Recent works have introduced the Minimum Group

Accuracy (mGA) as fairness criterion: rather than evaluating
differences in statistics across groups, it considers the
classification accuracy of the worst performing group [7],
[30], [75]. The rationale of this metric is that by increasing
mGA we are certainly improving the overall accuracy. Hence
we avoid the suboptimal condition of unnecessarily harming

FIGURE 3. Visualization of the [mGA, MGA] space with exemplar points.
The bottom triangular part of the space is unfeasible as by definition
mGA is lower than MGA. The three plots on the right show the HF isolines
when starting from different baseline methods indicated by the △, ♢
and × points.

all groups to get a trade-off improvement in fairnessmeasured
by DEO and DEOdds. Still, when the goal is to evaluate
whether a certain unfairness mitigation method was able to
improve over the reference classifier, mGA is not sufficiently
informative as exemplified by the right part of Figure 2.
Here a = 0 is the privileged attribute, thus the one
that identifies the best group with the associated Maximum
Group Accuracy (MGA). When moving from C1 to C2,
mGA increases and so does MGA. Although globally the
classifier improved, the disadvantaged group suffers even
more for unfair treatment with respect to the privileged one
as indicated by the increased DA.

With these premises, we can state that two unfairness
mitigation methods can be reliably compared only by
considering at the same time their prediction accuracy and
measures of per-group discrepancy. This can be done by
looking at several bar plots jointly or at bi-dimensional plots
as done in [7]. However, interpreting them and making sense
of multiple pieces of information at once is difficult, and
defining a single score would facilitate rigorous quantitative
evaluations. For this purpose, we can start from the space
defined by mGA andMGA. As shown in Figure 3, the bottom
right triangular part of the space is an unfeasible region
where mGA > MGA. In the top right corner, the point
with [mGA,MGA] = [100, 100] indicates the optimal utopia
condition. The results of various methods can be collected in
this space and ranked on the basis of the L2 Distance To the
Optimum (DTO, [18]) which sounds like a reasonable metric
for the score.

Let’s focus for instance on the marked points in the figure
and consider the biased reference classifier represented by
△ = [50, 100]. We expect a good unfairness mitigation
method to keep the top MGA = 100 result and improve
mGA to reduce the discrepancy among groups, thus moving
horizontally towards the ideal point. The point ✩ =

[70.38, 100] is a possible result of such an approach.
Differently, a method that trades off accuracy for fairness
would decrease MGA while improving mGA to reduce

VOLUME 12, 2024 47857
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DA to zero. This behavior is exemplified by the point
□ = [79.06, 79.06]. It can be noticed that both □ and
△ share the same Pareto efficiency level approximated by
the circumference centered in [0, 0], as done in [7]. Instead,
✩ shows an efficiency advantage, which is feasible as
discussed in [76]. Despite their clear difference, the points
✩ and □ are equivalent according to DTO. Thus, although
DTO keeps track of both mGA and MGA it might not be
sufficiently informative to benchmark different unfairness
mitigation approaches. The presented analysis also highlights
the importance of taking as a reference the performance of the
baseline to fully understand model comparisons.

V. HARMONIC FAIRNESS
To better deal with the peculiarities of the space defined by
mGA and MGA, we formalize relative distances for each
method with respect to its biased reference and introduce the
Harmonic Fairness metric.

A. CLASSIFICATION
We focus on MGA and DA = MGA − mGA, using the
subscripts b and m to refer respectively to the baseline model
and its unfairness-mitigated version. The relative differences
are:

1DA = DAb − DAm (6)

1MGA = MGAm −MGAb (7)

with 1DA, 1MGA ∈ {−100, 100}. Both these values will be
high for an accurate and fair model. Thus, we combine them
in the Harmonic Fairness metric defined as:

HF =
1DA′

× 1MGA′

1DA′ + 1MGA′
, (8)

where we added an additional shift to the component values
to avoid degenerate cases (dividing by 0): 1DA′

= 1DA +

100 and 1MGA′
= 1MGA + 100. The minimal value

HF = 0 corresponds to having either 1DA = −100 or
1MGA = −100, which can be obtained with a very poorly
defined model that reduces the performance (increasing DA
or decreasingMGA) rather than improving over the baseline.
An unfairness mitigation model that maintains the same DA
and MGA of the original baseline gets HF = 50. Finally,
every increase over this value corresponds to models able to
symmetrically improve accuracy and fairness.

Getting back to the points ✩ and □ analyzed before
and always considering the △ as a baseline, we obtain the
meaningful ranking HF✩ = 54.62 > HF□ = 51.77 which
matches the expectations given the advantage of the former
over the latter. We remark that HF takes into proper account
the model starting baseline and encourages a decrease in DA
and an increase in MGA with different strengths depending
on the baseline position, consequently shaping the space in
various ways as shown by the isolines of HF in the right part
of Figure 3. Of course, the right way to benchmark multiple
methods is by setting a fixed baseline model considered as a
shared reference for all of them.

B. LANDMARK DETECTION
When dealing with landmark detection every data sample can
be defined as (x, a,Y ), where Y ∈ RK×2 is a set of y1,...,K
landmark bi-dimensional coordinates. The reference metric
for this task is the Normalized Mean Error (NME) calculated
as:

NME(Y , Ŷ ) =
1
K

K∑
i=1

∥yi − ŷi∥2
D

, (9)

where D is a normalization factor, usually chosen as the
interocular distance for face images. We indicate with SDR
the Success Detection Rate calculated as the percentage
of images whose NMEs is less than a given threshold.
Symmetrically to what was done for classification, we define
Max Group Success (MGS) and Min Group Success (mGS),
respectively as the success rate of the best and worst
performing protected groups. We consider also the difference
between groups DS = MGS − mGS, and to assess the
effectiveness of an unfairness mitigation model m over the
reference baseline b we calculate:

1DS = DSb − DSm (10)

1MGS = MGSm −MGSb (11)

with 1DS, 1MGS ∈ {−100, 100}. We then combine these
values to get theHF metric for landmark detection consistent
with what is defined for classification in equation (8).

C. RESCALING
To better investigate fine-grained differences among the
results of various unfairness mitigation methods we adopt
a simple sigmoid rescaling: σ (HF) =

1
1+exp{−HF+50} , with

σ (HF) ∈ {0, 1}. Hence, σ (HF) > 0.5 will indicate a gain
over the reference baseline.

D. DISCUSSION AND EXTENSIONS
To summarize, HF is designed to evaluate whether a method
is jointly improving in terms of accuracy and fairness.
It builds over the worst group accuracy mGA (mGS) and the
best group accuracy MGA (MGS) by passing through their
differenceDA (DS). Still, it is more than a linear combination
of the last two terms. If the baseline model is accurate but
leads to unfair predictions, then HF will rank higher the
unfairness mitigation approaches that provide at least the
same performance but decrease DA. Instead, if the baseline
treats each group approximately in the same manner (i.e. low
DA), then HF will rank higher the approaches able to keep at
least the same DA but that yield better performance.

If needed (e.g. in situations where fairness is of utmost
importance), the original harmonic mean formulation can be
easily adjusted by introducing a weight:

HFw =
1DA′

× 1MGA′

w1DA′ + (1 − w)1MGA′
, (12)

where w ∈ [0, 1] controls the importance of the two terms.
The closer w is to 1, the more 1DA′ will weigh. Viceversa,
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for values of w close to 0, 1MGA′ will be the prominent term
of the equation. For w = 0.5 we recover Eq. (8), up to a
constant.

Moreover, HF can be extended to the case in which
the sensitive attribute is multi-class rather than binary by
following [8]. Given a sensitive attribute g having G classes,
we define the set of all the unique pairs (i, j) of classes within
the attribute g as S = {(i, j) ∈ {1, . . . ,G} × {1, . . . ,G} | i ̸=
j}, where ‘‘×’’ represents the cartesian product between sets.
We extend DA and MGA by taking into account the pairs
∀(i, j) ∈ S in the following way

DAij = |Acci − Accj| (13)

MGAij = max
ij

{Acci,Accj} . (14)

Similarly to Eq. (6), we derive the quantities

1DAij = (DAijb − DAijm) (15)

1MGAij = (MGAijm −MGAijb) . (16)

Thus we can compute HF by taking the average over all
HF ij values, each of them calculated according to Eq. (8).
Mathematically,

HF ij =
1DAij

′

× 1MGAij
′

1DAij′ + 1MGAij′
, (17)

where we applied the same shifts to 1DAij and 1MGAij of
Eq. (8): 1DAij

′

= 1DAij + 100 and 1MGAij
′

= 1MGAij +
100. The resulting formulation for HF is

HF =
2

G(G− 1)

∑
(i,j)∈S

HF ij . (18)

If one needs to manage at once multiple sensitive attributes
(either binary or multi-class), the fomulation presented above
can be repurposed by taking (i, j) from the list of all the
unique pairs obtained from the combinations of the classes of
each sensitive attribute. Formally, given g1, . . . , gN sensitive
attributes each having K1, . . . ,KN classes, respectively,
we define S = {(i, j) ∈ {1, . . . ,K1}× . . .×{1, . . . ,KN } | i ̸=
j}. Then, we can apply the very same definition of HF given
in Eq. (18), where G = K1 · . . . · KN . As an example, given
three sensitive attributes like gender Male(M)/Female(M),
age Young(Y)/Old(O) and skin tone Light(L)/Dark(D) we
take pairs from the combinations {MYL,MYD,MOL,MOD,
FYL, FYD, FOL, FOD}.

VI. BENCHMARK DESCRIPTION
For our analysis, we focus on two tasks that may be affected
by fairness issues: attribute recognition and landmark detec-
tion. For the former, we consider two binary classification
scenarios based on face and medical images. For the latter,
we focus on localizing keypoints on face images. To our
knowledge, we are the first to study the impact of unfairness
on landmark detection and to propose cross-domain learning
as a possible solution.

In the following we provide the details of the proposed
benchmark that covers 5 datasets, 14 domain adaptive meth-
ods (13 for classification and 1 for regression), and 3 SOTA
unfairness mitigation approaches.

A. DATASETS
1) CELEBFACES ATTRIBUTE (CELEBA)
[77] comprises 202,599 RGB face images of celebrities,
each with 40 binary attribute annotations. We focus on the
same subset of 13 reliable target attributes considered in [7]
and [78]. We select male and young as protected attributes,
and adopt the same setting of [7], based on the official
train/val/test splits.

2) COVID-19 CHEST X-RAY
Reference [79] is composed of 719 images of chest x-
ray coming from different online sources showing scans of
patients affected by pulmonary diseases. Each image has a
structured label describing many attributes of the patient.
We focus on the finding attribute as target, considering the
COVID-19 pathology, while gender is selected as sensitive
attribute. We split the dataset into 80/20% training/test sets,
using 20% of the training split for validation.

3) FITZPATRICK17K
Reference [80] is a collection of 16,577 clinical images
depicting 114 skin conditions from two dermatology atlases.
The images are annotated with the six Fitzpatrick skin type
labels, that describe the skin phenotype’s sun reactivity. The
dataset is widely used in algorithmic fairness research [18].
We classify whether the dermatological condition in each
picture is either benign/non-neoplastic or malignant and we
use skin tone as the protected attribute, keeping only the
examples belonging to skin type I (light) and skin type VI
(dark) of the Fitzpatrick scale. We split the dataset into
80/20% training/test sets, using 20% of the training split for
validation.

4) UTKFACE
Reference [81] consists of over 20k RGB face images
characterized by great variability in terms of pose, facial
expression, illumination, etc., and present age, gender, and
race annotations. We focus on landmark localization (68
points) considering the values white and black of the label
race as protected groups for the experiments related to skin
tone. Moreover, we define the young and old groups by
collecting respectively samples with the value of label age
in 0-10 and 40-50 years old. Training/test division is 80/20%
with 20% of the training split used for validation.

5) FAIRFACE
Reference [19] is a dataset designed to assess model fairness
in face attribute recognition. It comprises a vast collection
of 108,501 facial images, representing individuals from
seven race groups: White, Black, East Asian, Southeast
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Asian, Middle Eastern and Latino. The dataset provides also
annotations for gender and age groups. We adopt the same
setup of [82]: gender as sensitive attribute, multi-class race
as target.

B. REFERENCE METHODS
1) BASELINES
For our classification experiments we follow the fairness
literature [7], [83] adopting as baseline ResNet50 with
standard cross-entropy minimization objective, pre-trained
on ImageNet. For landmark detection we follow [64] and
[84] and consider ResNet18 pre-trained on ImageNet with
a dedicated head composed of deconvolutional layers. It is
optimized with an L2 loss to reduce the discrepancy between
the predicted probability distribution of the location of each
landmark and the ground truth.

2) FAIRNESS REFERENCES
We consider three SOTA unfairness mitigation methods.
GroupDRO [83] minimizes the worst-case training loss over
a set of pre-defined groups. FSCL [8] re-designs supervised
contrastive learning to ensure fairness by paying attention to
the choice of the negative samples and to the distribution of
the anchors between data groups. Finally, g-SMOTE [7] is a
generative approach that reduces unfairness by synthesizing
new samples of the most disadvantaged group. All of them
focus on classification problems while we are not aware
of works dedicated to unfairness mitigation on landmark
detection.

3) CROSS-DOMAIN METHODS
We investigate methods from four main families. The
Regularization-based approaches include all the techniques
designed to prevent overfitting with a consequent boost
in the model generalization ability. LSR [37] encourages
the model to avoid overconfidence by smoothing data
annotation. SWAD [39] searches for flat minima. RSC [38]
is based on a refined drop-out. L2D [41] includes a module
trained to synthesize new images with a style distribution
complementary to that of the training data. The models
based on Adversarial training encode domain-invariant
representations by preventing the network from recognizing
the domains. In DANN [51] the gradient computed by a
domain discriminator is inverted while learning the data
representation. CDANN [45] improves over DANN by
matching the conditional data distributions across domains
rather than the marginal distributions. Finally, SagNets [85]
introduces dedicated data randomizations to disentangle style
from class encodings. Feature alignment models involve
training objectives that minimize domain distance measures.
AFN [53] measures domain shift by comparing the feature
norms of two domains and adapts them to a common
large value. MMD [88] minimizes the homonym metric to
reduce the domain discrepancy. Lastly, Fish [86] proposes
to align the domain distributions by maximizing the inner

product between their gradients. Self-Supervised Learning-
based techniques exploit auxiliary self-supervised tasks to let
the network focus on semantic-relevant features. RelRot [87]
predicts the relative orientation between a reference image
(anchor) and the rotated counterpart as an auxiliary task.
Here we also consider a variant that we name RelRotAlign
to encourage the domain alignment using as anchor a
sample with the same target attribute but from a different
protected group. SelfReg [46], exploited contrastive losses to
regularize the model and guide it to learn domain-invariant
representations.

4) LANDMARK DETECTION
The community has dedicated less attention to domain
adaptive approaches for keypoint detection. For our analysis,
we consider the recent RegDA [64] that was developed to
target human pose estimation and introduced an adversarial
regressor based on the Kullback-Leibler divergence between
domains to narrow their gap. We also extend DANN [51] and
AFN [53] to this task.

VII. EXPERIMENTS
In this section we present the main results of our experiments.
The code at the basis of our evaluation is in Pytorch and
covers all the methods in the benchmark, providing maximal
transparency and fostering reproducibility. We organized the
code as a suite that can also easily welcome other methods
for future benchmark extensions. Unless stated otherwise,
for all the experiments we adopted the same validation
protocol described in [7]. Further information about the
implementation details can be found in the appendix.

A. CLASSIFICATION RESULTS
For the binary classification tasks, we present the tables
with different horizontal sections that group the cross-domain
methods by family. The bottom part of the tables contains
the SOTA fairness approaches. The columns show the
evaluation metrics with the aim of providing an overview of
model accuracy as well as fairness criteria already discussed
in section IV. Specifically, for DTO we use the relative
formulation 1DTO = DTOb − DTOm: as the baseline is
fixed and shared by all themethods,1DTO ranks themethods
exactly as DTO but makes the tables easier to read.

The results on CelebA are presented in Table 1 and focus
on the two most challenging attributes: EyeBags and Chubby.
Out of the whole set of 13 attributes, they are the ones with
the lowest Acc and the highest DA.
In terms of overall accuracy Acc, most of the approaches

provide a small improvement or are equivalent to the baseline.
A similar trend can be observed by looking at the per-
group accuracy with a few notable exceptions among the CD
methods that present more visible gains over the baseline
as well as over the SOTA competitors: AFN shows the
best performance in terms of mGA, followed by DANN on
Eyebags and SagNets on Chubby. Still, the mGA metric
cannot be considered alone: for instance for EyeBags,
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TABLE 1. Results obtained on face images when the task is to recognize EyeBags (left) and Chubby (right) with gender as sensitive attribute. Every
number represents the average over three runs. Bold indicates the best results, underline the second best.

TABLE 2. Results obtained on CelebA considering the whole set of
13 reliable attributes as target, while gender is the sensitive attribute. The
numbers represent the average over 13 experiments, each repeated
3 times. Bold indicates the best results, underline the second best.

RelRot and RelRotAlign have the same mGA but they differ
significantly in terms of the other accuracy scores Acc and
MGA. Moreover, the low value of DA for RelRotAlign on
EyeBags comes together with an improvement in mGA over
the baseline (72.29>70.15) and with a significant loss in
MGA (76.57<81.46). Thus, even looking only at DA may
be misleading. The same holds for DEO and DEOdds as
indicated by their low values for RelRotAlign on Chubby.
These last two metrics reward the leveling down behavior
already criticized in [7], by largely relying on DA without
considering the decrease in MGA and mGA with respect to
the baseline.

Finally, 1DTO and σ (HF) have a similar role here in
providing indications of the models’ trustworthiness by
summarizing the previous metrics. They assign RelRotAlign
a very low rank with respect to the other competitors and
agree to identify AFN as the best method.

For completeness, we also present in Table 2 the results
on the set of 13 attributes already used in [7] and [78].
According to [78], these attributes are the most reliable out
of the whole set of 40 CelebA attributes as they can be
labeled objectively, without being ambiguous for a human.
AFN confirms itself as the best method as it is able to increase
bothmGA andMGA, while decreasingDA. The second best is

DANN confirming the effectiveness of adversarial techniques
to deal with the fairness problem [5], [89]. Considering the
high baseline accuracy, the improvements of the different
methods appear relatively small but they are consistent with
the results presented in the supplementary material of [7].

The results on COVID-19 Chest X-Ray and Fiz-
patrick17k are presented in Table 3. On the first dataset,
according to both 1DTO and σ (HF), RSC is the top method
and RelRotAlign is the second best, while AFN ranks third.
Even in this case, it is clear that referring only tomGAmay not
be sufficient to differentiate among the methods as many of
them share the exact same value for this metric. Specifically,
this happens for RSC and RelRotAlign: by observingDA one
should rank the second as better than the first. This possible
confusion underlines again the benefit of summary metrics.

The results on Fizpatrick17 lead to similar conclusions,
with RelRot and LSR presenting the best results. DANN,
which was among the top methods for CelebA, now ranks
sixth among all the CD approaches and still shows results
comparable with the best SOTA fairness approach.

Overall, the exact CD family that best suits each classifica-
tion task may vary (feature alignment and adversarial training
methods for faces, regularization-based and self-supervised
approaches for medical images), but the results confirm
the effectiveness of cross-domain learning for unfairness
mitigation and the relevance of our study.

B. MULTI-CLASS SENSITIVE ATTRIBUTES AND TARGET
The data in Fizpatrick17 are annotated with six skin types
that range from light to dark. This provides the possibility
to investigate the effectiveness of CD approaches even in
a multi-class attribute setting by comparing the extended
versions of DEO, DEOdds, and σ (HF). We focus on the
methodswith themost promising performance in the previous
analysis and present the results in Table 4. They confirm that
cross-domain models outperform SOTA fairness-dedicated
approaches with increased accuracy for all skin tones.

By exploiting the FairFace dataset we can instead study
themulti-class target case. Specifically, we considered gender
as binary sensitive attribute and multi-class race as target,
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TABLE 3. Results on medical images for covid recognition with gender as sensitive attribute (left) and for benign/malignant skin lesion recognition with
skin tone as sensitive attribute. Every number represents the average over three runs. Bold indicates the best results, underline the second best.

TABLE 4. Results on medical images for benign/malignant skin lesion
recognition with skin tone as multi-class sensitive attribute. Every
number represents the average over three runs. Bold indicates the best
results, underline the second best.

TABLE 5. Results on FairFace for the recognition of seven race groups
with gender as binary sensitive attribute. Every number represents the
average over three runs. Bold indicates the best results, underline the
second best.

TABLE 6. Landmark detection results. SDR is evaluated using 8% NME as
threshold. Results averaged over three runs.

following the same setup [82]. The obtained results are shown
in Table 5 with the EO metrics calculated according to
the definition in [90]. Even in this setting the CD methods
confirm their effectiveness.

C. LANDMARK DETECTION RESULTS
The performance of a model which locates keypoints on
facial components may be affected by a change in skin tone

and age, resulting in a less precise prediction in case of
high melanin pigmentation or wrinkles. To investigate the
presence of a bias related to these demographics we run
experiments on the UTK Face dataset and we verify the
effectiveness of correction strategies based on cross-domain
learning by considering RegDA together with AFN and
DANN, as they have shown successful results in classification
on face images. The training procedure follows the one
presented in [64], with validation protocol in line with
that of [7]. We assess the performance of the methods by
considering both σ (HF) and 1DTO obtained from SDR
calculated with a standard 8% NME threshold [73].
Table 6 shows how the baseline reference has an unfair

behavior with more than 5% difference in group accuracy
(DS). All the cross-domain methods provide an advantage: in
particular, RegDA ranks higher or equal to AFN, and they are
both better thanDANN. The latter shows a large improvement
in MGS and mGS when the sensitive attribute is age, but the
group discrepancy appears worse than the baseline.

By reducing the NME threshold the evaluation becomes
progressively more demanding until the extreme of consid-
ering a predicted point as successful only if it perfectly
overlaps with the ground truth. The curves in Figure 4
show that even moving toward this condition most of
the cross-domain methods maintain their advantage over
the baseline confirming their effectiveness. The difference
between RegDA and AFN becomes more evident at lower
threshold values. In that regime, HF (as well as σ (HF))
and 1DTO show different trends for RegDA with the first
discouraging the use of this approach when the sensitive
attribute is age.

Although no previous publication proposed an unfairness
mitigation approach for landmark detection, GroupDRO
might sound general enough to be applied also in this setting.
This approach dynamically adjusts loss weights during
optimization to prioritize the poorest-performing protected
group. However, our investigation revealed that, even after a
comprehensive hyperparameter search, the loss of the worst
group decreases extremely slowly in landmark detection, and
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TABLE 7. Model Transferability analysis on the classification task. All the relative metrics are calculated with respect to the baseline results in the first
row. The bottom part of the table presents oracle results, i.e. a reference upper bound for the top part of the table. Every number is obtained as the
average over three runs. Bold indicates the best results, underline the second best. Note that these fonts are used only when the results improve over the
baseline, thus they do not appear in most of the columns of the right part of the table.

TABLE 8. Model transferability analysis on the landmark detection task. All the relative metrics are calculated with respect to the baseline results in the
first row. The bottom part of the table presents oracle results, i.e. a reference upper bound for the top part of the table. Every number is obtained as the
average over three runs. Bold indicates the best results, underline the second best.

FIGURE 4. Landmark detection results. Comparison among the
cross-domain methods and the reference baseline in terms of HF and
DTO when changing the NME threshold used for SDR.

the method keeps focusing on it which ultimately makes it
unable to obtain an improvement neither on the best group nor
overall. The result is a high Normalized Mean Error (NME)
achieved by GroupDRO during training and a consequent
0% Success Detection Rate (SDR) on the test set. Notably,
applying looser thresholds did not improve the situation,
suggesting that the logic employed by GroupDRO may not
be well-suited for landmark detection tasks.

VIII. MODEL TRANSFERABILITY
Considering the effort needed to train novel models, it is
always desirable to exploit existing ones for new tasks. For
unfairnessmitigation approaches, what is learned by reducing
the bias over some protected groups might be helpful also

for other demographics. We study this aspect on the CelebA
dataset considering EyeBags as the target attribute withMale
and Young as sensitive attributes.

We train and validate a classifier to recognize whether eye
bags are present while learning to disregard gender-specific
features through a cross-domain approach. Then, we test the
obtained model by assessing how the eye bags prediction
performance differs among age groups. We analyze the
CD methods AFN and DANN, reporting also the results
of the SOTA unfairness mitigation strategies. The top left
part of Table 7 shows the effect on age groups of the
approaches trained to be gender agnostic while focusing
on the semantic features relevant to identifying the target
EyeBags attribute. The results exceed those of the baseline
with a particular advantage of DANN over GroupDRO,
indicating that the knowledge acquired with cross-domain
learning is transferrable. The bottom left part of the table
presents the performance of oracle methods trained and
validated with the aim of mitigating age bias. They represent
an upper bound and allow to better appreciate the surprisingly
competitive results of transferred cross-domain models.
We note how the SOTA unfairness mitigation models obtain
low results even in this oracle setting.

The right part of Table 7 shows the results obtained when
inverting the roles for the sensitive attributes (Young/Old →

Male/Female). Now a model trained to be agnostic to age is
tested to evaluate whether it helps in mitigating unfairness
with respect to gender. From the results we observe that
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the transferability is not symmetric as none of the methods
improve over the baseline.

The transferability results look instead always very promis-
ing on landmark detection: a model trained to be fair on skin
tone is effective also in reducing the performance gap among
different age groups and vice-versa as shown in Table 8,
which may be explained by a moderate correlation between
skin surface-based cues (such as pigmentation or shadows
cast by the 3D shape of the face) with perceived age.

Overall the possibility to reuse fair models on different
sensitive attributes connects with the ability of the models
to capture knowledge shared across them and generalize
at deployment time to new social conditions with different
ethical constraints. We find it an interesting aspect that gives
rise to new research questions and deserves more attention in
the future.

IX. CONCLUSION
In this paper we proposed an extensive study on the
problem of fairness in computer vision by presenting a
new benchmark to assess the performance of cross-domain
learning approaches for unfairness mitigation. Our work
covers several demographics and goes beyond classification
by introducing landmark detection in fairness research.
Passing through a review of the existing criteria used
to evaluate unfairness mitigation methods, we proposed
Harmonic Fairness to summarize several relevant metrics
and ease comparisons among various approaches. Finally,
we shed light on the reusability of models created to
be robust among specific protected groups by underlying
their effectiveness when facing different sensitive attributes.
We dedicated particular attention to the reproducibility of our
study by releasing the code of the implemented methods in a
suite that can be easily extended for future analysis.

Although our focus is mainly on group fairness and other
definitions are possible, we believe that our work provides
several tools to broaden the study of fairness-related issues
and solutions in AI.

APPENDIX A
IMPLEMENTATION DETAILS
A. CLASSIFICATION
For all the experiments we follow [7] in terms of base archi-
tecture, training details, and validation protocol. In particular,
all the methods are built upon the ImageNet pre-trained
ResNet-50 [91] backbone optimized with Adam (lr = 10−4,
batch size 64). As data augmentation, we use a center crop to
128 × 128 and RandAugment with N = 3 and M = 15. The
validation is done every 500 iterations and the best model is
selected based on the best mGA computed on the validation
set. Note that for g-SMOTE [7] we used the GAN inversion
model provided in [92], pre-trained on CelebA: the official
GAN code and weights used in [7] have not been released by
the authors. Although there may be some debate around the
use of generative approaches that are not tailored specifically
to the medical task at hand, we decided to incorporate

g-SMOTE into both the experiments on the COVID-19 Chest
X-Ray and Fitzpatrick17k datasets for completeness.

We perform an extensive hyper-parameters search to
find the best models for every approach considered in our
benchmark. In particular, we apply the Random Search [93]
algorithm followed by a refinement stage in the following
hyper-parameter intervals:
LSR [37]: ε is the coefficient used to smooth the ground

truth labels such that yLSk = yk (1 − ε) + ε/K , where K
indicates the number of classes. Used range: {ε ∈ [0.1, 0.5]};
SWAD [39]: r is the tolerance rate used on the validation

loss function when searching the interval in which the
model’s parameters have to be sampled and averaged.
We didn’t tune the optimum patience (Ne) and the over-
fit patience (Ns) since the overfitting behavior could be
observed already after the very first validation. Used range:
{r ∈ [0.1, 1.3]};
RSC [38]: f indicates the dropping percentage to

mute the spatial feature maps, b indicates the percentage
of the batch on which RSC is applied. Used range:
{f ∈ [10, 80], b ∈ [10, 80]};
L2D [25]: α1 weights the contribution of the supervised

contrastive loss function and α2 weights the negative log-
likelihood between the latent vectors of the source image x
and the generated one x+ in the final objective function. Used
range: {α1 ∈ [0.1, 3.0], α2 ∈ [0.1, 3.0]};
DANN [51], CDANN [45]: λ is the hyper-parameter that

weights the reverse gradient during the backpropagation
step, γ controls the penalty assigned to the norm computed
on the gradients of the domain discriminator. Used range:
{λ ∈ [0.01, 1.00], γ ∈ [0.01, 0.50]};
SagNets [85]: λweights the adversarial loss function. Used

range: {λ ∈ [0, 2]};
AFN [53]: λ trades off the feature-norm penalty and the

supervised cross-entropy loss, R is the value at which the
norms of the extracted features are forced to converge to.
Used range: {λ ∈ [0.01, 0.10],R ∈ [5, 100]};
MMD [44]: γ weights the MMD loss term in the final

objective. Used range: {γ ∈ [0.1, 1.0]};
Fish [86]: η weights the gradient inner product. Used

range: {η ∈ [0.01, 0.10]};
RelRot, RelRotAlign [87]: α weights the importance of

the self-supervised loss function in the total objective. Used
range: {α ∈ [0.1, 1.0]};
SelfReg [46]: λfeature and λlogit control, respectively, the

in-batch dissimilarity losses applied to the intermediate
features and the logits from the classifier. Used range:{
λfeature ∈ [0.1, 1.0], λlogit ∈ [0.1, 1.0]

}
;

GroupDRO [83]: C is a model capacity, η is the step
size to update the weights and balance worst/best performing
groups. Used range: {η ∈ [0.001, 0.05],C ∈ [1, 10]};
g-SMOTE [7]: m in the number of nearest neighbors

considered, k is the number of random points chosen
among the m and λ is the probability of selecting a
batch from the original dataset during training. Used range:
{m ∈ [2, 10], k ∈ [2,m], λ ∈ [0.1, 1.0]}.
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B. LANDMARK DETECTION
Throughout our experiments, we adopt the architecture and
training procedures outlined in [64]. To ensure consistency,
we also use the validation protocol proposed in [7]. Our
approach employs an ImageNet pre-trained ResNet-18 [91]
backbone, followed by an upsampling head consisting of
three 2D transposed convolutions with a dimension of
200 and a kernel size of 4. This head performs heatmap
regression to determine the position of each landmark,
resulting in an output tensor Ŷ ∈ R200×200×68. Our network
is optimized using stochastic gradient descent (SGD) with a
learning rate of 0.1, momentum of 0.9, weight decay of 1e-4,
and a batch size of 32 for 35000 iterations. We incorporate
a multi-step learning rate decay with a decay factor of 0.1,
using iteration 22500 and 30000 as milestones. To apply
several augmentation sequentially we use the TorchLM
library.1 The augmentations are: random rotation (with angles
ranging from -180 to 180 degrees), random horizontal flip
(with a probability of 0.5), random shear (with x and y
rescale factors of 0.6 and 1.3, respectively), color jitter (with
brightness, contrast, and saturation set to 0.24, 0.25, and
0.25, respectively) and Gaussian blur (with a kernel size of
5 and σ = (0.1, 0.8)). We validate every 500 iterations and
select the best model based on the highest mGS score on the
validation set.

We conduct an exhaustive search for optimal hyperpa-
rameters for all the approaches included in our benchmark.
Specifically, we employ the Random Search algorithm [93],
followed by a refinement stage, within the hyperparameter
intervals as specified below:
AFN [53]: λ trades off the feature-norm penalty and the

supervised cross-entropy loss, R is the value at which the
norms of the extracted features are forced to converge to.
Used range: {λ ∈ [1e− 6, 0.10],R ∈ [5, 100]};
DANN [51]: λ is the hyper-parameter that weights

the reverse gradient during the backpropagation step, γ

controls the penalty assigned to the norm computed on
the gradients of the domain discriminator. Used range:
{λ ∈ [1e− 6, 1.00], γ ∈ [0.01, 0.50]};
RegDA [64]: margin trades off between the KL divergence

loss and the Regression Disparity loss. t is a modifier of
the magnitude of the Regression Disparity loss. Used range:
{margin ∈ [1.0, 10.0], t ∈ [0.01, 1.0]}.
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