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Abstract: Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children,
accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with
a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology,
and the identification of novel potential therapeutic targets and agents is an urgent clinical need.
The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with
a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor
suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA
interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness.
Here, we selected (−)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the
molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that
treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase
in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP
pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that
the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere
with this interaction, deserves further preclinical evaluation.

Keywords: (−)-epigallocatechin 3-gallate; EGCG; LIN28B/let-7 interaction inhibitors; neuroblastoma;
AlphaScreen; PLC/PLGA-PEG nanoparticles; differentiation therapy; target therapy

1. Introduction

Neuroblastoma (NB) is the most frequently diagnosed extracranial solid tumor in
children. The majority of cases occur in patients under the age of 5, with an average age of
diagnosis of 2 years [1]. Despite being considered a relatively rare disease affecting 1 in
7000 live births, NB accounts for 15% of all pediatric cancer-related deaths [1–3].
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NBs are highly heterogeneous tumors in terms of clinical presentation and outcome. In-
deed, they include cases that spontaneously regress even if metastatic, low-to-intermediate-
risk cases with tumors that can be surgically resected and treated by chemotherapy as well
as high-risk cases, which are often metastatic and treatment-refractory [1,4,5]. Although the
5-year survival rate of patients with the high-risk disease has increased from less than 20%
to over 50% in the past few decades [1], NB remains a challenge in pediatric oncology, and
the identification of novel potential therapeutic targets and agents is an urgent clinical need.

NBs arise from the developing peripheral sympathetic nervous system in the adrenal
medulla or along the sympathetic chain [6,7]. Specifically, NBs originate from the transient
population of neural crest cells that undergo defective sympathetic neuronal differentia-
tion [6,7]. Being a developmental tumor, NBs have a few associated genetic mutations.
The most common genetic alteration found in NBs is the focal amplification of the MYCN
gene, which is present in 25% of cases [8,9], while other frequently recurring mutations
are located in the ALK [10,11] and ATRX [12] genes. Additionally, overexpression of the
TERT [13,14] and LIN28B [15–17] genes has been associated with NB onset.

LIN28 is an evolutionarily conserved RNA-binding protein that was first characterized
in Caenorhabditis elegans due to its crucial role in development and the regulation of develop-
mental timing [18]. In mammals, the two LIN28 paralogs, LIN28A and LIN28B, which act
as gatekeepers regulating the transition between pluripotency and committed cell lineages,
are highly expressed in the early developmental stages, decrease upon differentiation,
and are typically absent in most differentiated cells in adults [19]. Reactivation of either
LIN28A or LIN28B is common in many human cancers, where their expression is usually
mutually exclusive [20,21]. The paralog LIN28B is recognized as an oncogene in NB and
plays an important role in NB tumorigenesis [15–17]. Indeed, forced expression of LIN28B
in nude mice is sufficient to induce NB formation [16]. Furthermore, a high expression of
LIN28B in NB is associated with a poor prognosis, an aggressive disease phenotype, and
the promotion of tumor cell migration and survival [15–17].

Even if the mechanisms by which LIN28B drives tumor development and progression
are not completely understood, it is well-known that LIN28B acts as a negative regulator
of the biogenesis of the tumor suppressors let-7 miRNAs [22,23]. Specifically, LIN28B
selectively blocks the processing of let-7 miRNA precursor molecules into mature miRNAs,
resulting in lower amounts of mature let-7 miRNAs [22,23], which in turn cannot exert
their tumor suppressor activity by directly repressing several well-known oncogene targets,
including RAS, MYC, HMGA2, and BLIMP1 [20,21].

Given the critical role of the LIN28B/let-7 miRNA pathway in NB, we reasoned that
selective interference with the LIN28B/let-7 miRNA circuit would result in increased levels
of let-7 miRNAs and, as a consequence, decreased cell proliferation and induction of cell
differentiation, ultimately reducing NB aggressiveness.

In the work presented here, we exploited two orthogonal biochemical techniques to
screen and validate 4959 molecules and selected (−)-epigallocatechin 3-gallate (EGCG) as
the molecule with the best inhibitory activity on the LIN28B/let-7 miRNA interaction. Since
EGCG is unstable under cell culture conditions, we encapsulated it in PLC/PLGA-PEG
polymeric nanoparticles (EGCG-NPs), which are a well-studied nanocarrier system due
to their high biocompatibility, high drug encapsulation rate, and suitability for targeted
therapy. We showed that EGCG-NP treatment led to a strong increase in mature let-
7 miRNAs and a consequent inhibition of growth and promotion of differentiation in
NB cells. Finally, we also showed that EGCG-NP pretreatment reduced the tumorigenic
capacity of NB cells using a zebrafish xenograft model. Taken together, these experiments
suggest that the LIN28B/let-7 miRNA axis is a valuable therapeutic target in NB and that
EGCG, which can interfere with this interaction, deserves further preclinical evaluation.
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2. Results
2.1. LIN28B Downregulation Increases Let-7 miRNA Levels and Reduces Aggressiveness in
NB Cells

To characterize the effects of modulating the LIN28B/let-7 interaction on the NB
cell phenotype, we analyzed four NB cell lines for LIN28B and MYCN expression lev-
els and downregulated LIN28B expression in two of them, namely CHP134 and NB69,
which express different levels of LIN28B and have different MYCN amplification status,
being MYCN-amplified and MYCN-non-amplified, respectively [24] (Figure 1A). LIN28B
downregulation (Figure 1B–D) led to a statistically significant increase in almost all let-7
miRNA family members tested (let-7d, let-7f, let-7g, let-7i) in both cell lines (Figure 1E),
as previously observed by other groups [16,22,23]. Next, we investigated whether the
observed downregulation of LIN28B and the increase in let-7 miRNA levels would lead to
a reduction in the aggressiveness in NB cells. To this end, we examined the mRNA and
protein levels of several tumor and differentiation markers. Stable LIN28B downregulation
resulted in a significant decrease in the tumor markers SOX2, NESTIN, and SOX9 and an
increase in the neural differentiation marker GAP43 (Figure 1F–H), consistent with the
critical role of LIN28B in maintaining stemness.

Figure 1. LIN28B downregulation increases let-7 miRNA levels and promotes differentiation in NB cells.
(A) Representative immunoblot showing MYCN and LIN28B levels in KELLY, SK-N-BE(2), CHP134, and
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NB69 NB cell lines. β-TUBULIN was used as a loading control. n = 3 biological replicates. (B) LIN28B
mRNA expression levels analyzed by qPCR in shLIN28B CHP134 and shLIN28B NB69 cell lines. Data
were normalized to shCTRL cells. n = 3 biological replicates. Mean ± SD. Unpaired two-tailed Welch’s
t-test analysis (* p < 0.05). (C) Representative immunoblots showing LIN28B levels in shLIN28B and
shCTRL CHP134 and NB69 cell lines. β-TUBULIN was used as a loading control. (D) LIN28B protein
levels in shLIN28B CHP134 and shLIN28B NB69 cells. Data were normalized to shCTRL cells. n =
3 biological replicates. Mean ± SD. Unpaired two-tailed Welch’s t-test analysis (** p < 0.01; *** p <
0.001). (E) Let-7 miRNA expression levels analyzed by qPCR in shLIN28B CHP134 and shLIN28B
NB69 cell lines. Expression levels are shown as fold change relative to shCTRL cells (dashed line).
Data were normalized to the internal reference gene U6. n = 2 biological replicates, n = 3 technical
replicates each. Mean ± SD. Unpaired two-tailed t-test analysis (ns = not significant; * p < 0.05; ** p <
0.01). (F) SOX2, SOX9, NESTIN, and GAP43 mRNA expression levels analyzed by qPCR in shLIN28B
CHP134 and shLIN28B NB69 cell lines. Fold change relative to shCTRL cells is shown (dashed line).
SDHA was used as an internal reference gene. n = 3 biological replicates, n = 3 technical replicates
each. Mean ± SD. Unpaired two-tailed t-test analysis (ns = not significant; * p < 0.05; ** p < 0.01). (G)
Representative immunoblot showing LIN28B, MYCN, NESTIN, SOX9, and GAP43 levels in shCTRL
and shLIN28B CHP134 cells. GAPDH was used as a loading control. n = 3 biological replicates.
(H) LIN28B, MYCN, NESTIN, SOX9, and GAP43 protein levels in shLIN28B CHP134 cells. Data
were normalized to shCTRL cells (dashed line). n = 3 biological replicates. Mean ± SD. Unpaired
two-tailed Welch’s t-test analysis (* p < 0.05; ** p < 0.01; *** p < 0.001).

2.2. A High-Throughput Screen Identifies Candidate Molecules Capable of Interfering with the
LIN28B/Let-7 Interaction

To identify small molecules capable of targeting the LIN28B/let-7 interaction, we
screened two commercial libraries containing a total of 4959 molecules, including FDA-
approved drugs, natural products, and drug-like compounds, using the Amplified Lumi-
nescent Proximity Homogeneous Assay (AlphaScreen) technique. For the assay, we used a
biotinylated precursor let-7g (pre-let-7g) miRNA, which binds to streptavidin-coated beads,
and a c-MYC-tagged recombinant LIN28B protein (rLIN28B), which binds to anti-c-myc
acceptor beads. Upon excitation at 680 nm, an emission of light at 570 nm is observed
when the donor and acceptor beads are in close proximity due to the interaction between
the miRNA and the protein. Conversely, disruption of LIN28B/let-7 binding results in a
reduction or absence of the signal (schematic representation in Figure 2A, see Figure S1 for
assay setup). Based on the results of the primary screen (Figure 2B, Z factor of 0.65 and a
signal-to-background ratio of 12.49) and of a subsequent confirmatory screen, we selected
29 compounds (0.58% of the original compounds tested, Table S1), which we orthogonally
validated using the RNA electrophoretic mobility shift assay (REMSA, schematic repre-
sentation in Figure 2C). Specifically, we incubated a cyanine-3-labeled pre-let-7g miRNA,
the rLIN28B protein, and the molecule of interest for 1 h and then subjected them to elec-
trophoresis on a gel. As a positive control, we used a free cyanine-3-labeled pre-let-7g
miRNA without the addition of the purified rLIN28B protein. Figure 2D shows repre-
sentative images of the REMSA performed to validate the molecules selected after the
AlphaScreen. For molecules capable of interfering with the binding between the protein
and the RNA probe, the protein/RNA complex does not form, and the free miRNA probe
is detected in the lower part of the gel.

Based on the results of the REMSA, we finally selected four hits as candidate inhibitors:
(−)-epigallocatechin 3-gallate (EGCG), theaflavin monogallates (TFMG), gallic acid (GA),
and aurintricarboxylic acid (ATA), whose molecular structures are depicted in Figure 2E.
Of note, TFMG was present in the screened library as mixed isomers (theaflavin 3-gallate
and theaflavin 3′-gallate) from black tea. Interestingly, EGCG and TFMG are characterized
by a high degree of structural similarity (highlighted in pink in Figure 2E), while the third
hit (GA) is a small molecule whose structure is completely encompassed by those of EGCG
and TFMG. The fourth hit, although already reported as a LIN28B inhibitor as a result
of a drug screen performed by another group using a different approach [25], was not
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considered for further evaluation due to its intrinsic properties. Indeed, ATA has been
reported to readily polymerize in an aqueous solution, forming a stable free radical that
inhibits protein/nucleic acid interactions, and is known to be a promiscuous pan-selective
inhibitor of DNA and RNA processing enzymes, presumably due to its DNA-mimetic
properties [26].

Figure 2. Identification of candidate molecules that interfere with the LIN28B/let-7 interaction: screen-
ing and validation. (A) Schematic representation of the AlphaScreen technique. (B) A dot plot summariz-
ing the screening results expressed as a percentage of the mean of the negative controls. A biotinylated
pre-let-7g miRNA was used as a substrate for interaction with the rLIN28B. No drug addition was used
as a negative control (highlighted in purple), while a biotinylated pre-let-7g mut miRNA was used in-
stead of the biotinylated pre-let-7g miRNA as a positive control (highlighted in light blue). Compounds
that differed by two times the standard deviation from the mean of the negative controls were selected
as hits (highlighted in orange). (C) Schematic representation of the REMSA. (D) Representative REMSA
results for the validation of the hits selected by AlphaScreen. The rLIN28B protein plus a Cy3-labelled
pre-let-7g miRNA probe was used as a negative control, while the free Cy3-labelled pre-let-7g miRNA
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probe was used as a positive control. (1) Terbutaline hemisulfate, (2) thioguanine, (3) thioridazine
hydrochloride, (4) suramin, (5) diflubenzuron, (6) N-hydroxymethylnicotinamide, (7) salicylanilide,
(8) dibutyl phthalate, (9) aminosalicylate sodium, (10) amoxicillin, (11) amphotericin B, (12) anthralin,
(13) chloramphenicol, (14) chlorcyclizine hydrochloride, (15) dapsone, (16) ethionamide, (17) telen-
zepine hydrochloride, (18) medroxyprogesterone acetate, (19) piperazine, (20) procaine hydrochloride,
(21) acedapsone, (22) doxorubicin, (23) dehydro (11,12)ursolic acid lactone, (24) coralyne chloride, (25)
2′,5′-dihydroxy-4-methoxychalcone. (E) Molecular structures of EGCG, TFMG, GA, and ATA. TFMG
was present in the screened library as mixed isomers from black tea. Theaflavin 3-gallate isomer is
shown here. The degree of structural similarity between EGCG and TFMG is highlighted in pink.

2.3. EGCG Interferes with the LIN28B/let-7 Interaction by Binding to LIN28B

We then measured the extent of the interference of EGCG, TFMG, and GA in dose-
dependent titration experiments using the Alpha assay. Due to its structural similarity to
EGCG and TFMG, we also included (−)-epigallocatechin 3,5-digallate (EGCDG), which
emerged from the primary screen but was not subsequently confirmed (molecular structure
shown in Figure 3A; the structural similarity with EGCG is highlighted in pink). All the
compounds tested, except for EGCDG, effectively inhibited the association between LIN28B
and the pre-let-7g miRNA, with an inhibition constant (Ki) in the low nanomolar range and
with EGCG and GA slightly more potent than TFMG (Figure 3B). Next, to test for possible
broad in vitro effects of the EGCG and TFMG, we challenged these compounds with another
well-characterized protein/RNA interaction, which occurs between the RNA-binding
protein HuR and the TNFα AU-rich element, and for which other small molecule inhibitors
have been described [27]. As expected, EGCG and TFMG did not affect HuR/RNA binding
(Figure 3C).

To further investigate the binding of the hits to LIN28B, we then performed a structure-
based molecular modeling study. Specifically, we used three experimentally solved struc-
tures to generate a 3D model of LIN28B by homology modeling. This model includes the
protein’s cold shock domain and the zinc knuckle domain (Figure 3D). Docking calcula-
tions indicated that both EGCG and TFMG have good steric complementarity with the
pre-let-7 miRNA binding site of LIN28B (Figure 3E,F) with ChemPLP scores of −79.6 and
−73.1, respectively. Both hits place their gallate moiety into the pocket formed by Tyr130,
Lys149, Lys150, Cys151, His152, Met160, and Val161, establishing hydrophobic contacts,
electrostatic interactions, and hydrogen bonds with this pocket. The docking prediction
also suggested that the common gallate moiety forms a hydrogen bond with the backbone
of Lys150. Moreover, the catechin scaffold is stabilized by π–π stacking with Tyr130 and
hydrophobic contacts with the methylene moieties of Lys121 and Lys123. EGCDG also
showed a similar interaction pattern to EGCG and TFMG but with the lowest ChemPLP
score of −71.6, suggesting a lower complementarity to the binding site (Figure 3G). Al-
though GA assumed the same confirmation observed for the gallate moiety in EGCG,
TFMG, and EGCDG, its reduced chemical complexity resulted in different conformations
with similar scores, making it more difficult to rationalize (Figure 3H).

Based on these results, we selected EGCG for further studies as it guarantees a good
binding mode and a better in silico binding efficiency than TFMG and EGCDG.
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Figure 3. EGCG disrupts the LIN28B/let-7 interaction by binding to LIN28B. (A) Molecular structure
of (−)-epigallocatechin 3,5-digallate (EGCDG). The degree of structural similarity with EGCG and
TFMG is highlighted in pink. (B) Dose-dependent titration experiments performed using the Alpha
assay showing the effect of increasing concentrations of EGCG, TFMG, GA, and EGCDG on the
interaction between rLIN28B and biotinylated pre-let-7g miRNA. (C) Dose-dependent titration
experiments performed using the Alpha assay showing the effect of increasing concentrations of
EGCG and TFMG on the interaction between HuR and the TNFα AU-rich element. (D–H) Molecular
modeling studies: the binding conformation of the pre-let-7 miRNA (AGGAGAU) (D) and the
obtained poses by molecular docking for EGCG (E), TFMG (theaflavin 3-gallate) (F), EGCDG (G),
and GA (H).

2.4. EGCG Encapsulated in Nanoparticles Affects NB Cell Viability

Since EGCG has been reported to have low stability and to oxidize under cell culture
conditions [28,29], we evaluated the stability of EGCG under our cell culture conditions
using the high-performance liquid chromatography (HPLC) analysis. Specifically, after
constructing a calibration curve (Figure S2A), we analyzed a 50 µM solution of EGCG
dissolved in cell culture media at different time points. The HPLC analysis clearly showed
that EGCG is unstable under biological test conditions, being reduced by more than 50%
after 15 min and completely degraded after 45 min (Figures 4A and S2B). Therefore, to
enhance the stability and deliverability of EGCG into cells, we encapsulated the molecule
inside polymeric nanoparticles, which are a well-studied biodegradable and biocompatible
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drug nanocarrier system [30,31]. Specifically, we used a blend of poly(epsilon)-caprolactone
and poly-lactide-co-glycolide-polyethylene glycol (PCL/PLGA-PEG)-based nanoparticles
(NPs) (Figure 4B), which exhibited the highest performance in terms of EGCG loading
content, encapsulation efficiency, and production yields [32].

Figure 4. Evaluation of EGCG stability by HPLC, schematic representation of the structure of the
EGCG-NPs, and assessment of their penetration and effect in NB cells. (A) Percentage of EGCG
amount over time (0, 15, 30, 45, 60, and 75 min) under cell culture conditions. The area of the EGCG
peak was normalized to t = 0. n = 3 replicates, mean ± SD. (B) Schematic representation of the
EGCG-NPs. Adapted from [32]. (C) Immunofluorescence analysis of NB69 cells treated with different
amounts of Cou6-containing NPs. Images acquired using the Operetta-High Content Imaging System
were analyzed using the Harmony software 4.1, and the average fluorescence intensity of the Cou6
fluorescent dye (green) was quantified. n = 6 technical replicates. Two-way ANOVA followed by
Fisher’s LSD test (**** p < 0.0001). (D) Representative confocal images of CHP134 cells treated with
0.003 µg/µL of Cou6-NPs (green). Nuclei were stained with Hoechst 33342 (blue), and cytoplasm
was stained with the CellMask™ Deep Red Stain (red). Scale bar = 10 µm. (E) IC50 values for
NB69, KELLY, and CHP134 after treatment with non-encapsulated EGCG or EGCG-NPs. n = at least
3 biological replicates, n = 3 technical replicates each. Mean ± SD. Unpaired two-tailed Welch’s t-test
(* p < 0.05, ** p < 0.01).
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To assess whether NPs penetrate and effectively accumulate in NB cells, we first treated
NB69 cells with different amounts of NPs containing the fluorophore coumarin 6 (Cou6-
NPs) and analyzed them using the Operetta High Content Imaging System. As expected,
the fluorophore signal contained in the NPs was localized inside the cells (Figure S2C), and
the fluorescence intensity increased proportionally with the concentration of NPs used
(Figure 4C). To better visualize the Cou6-NPs inside the cells, we then treated CHP134 cells
with 0.003 µg/µL of Cou6-NPs and imaged them using a confocal microscope. Again, this
analysis showed that all the cells analyzed had internalized the NP content (Figure 4D),
with no Cou6 fluorescence signal in the nuclei, indicating that the NP content is released
into the cytoplasm.

We then evaluated the effect of EGCG-containing NPs (EGCG-NPs) on three NB cell
lines. Specifically, we used the CHP134 and NB69 cell lines that we used for LIN28B
downregulation and the KELLY cell line, which harbors extremely high amplification levels
of the MYCN locus [24] and expresses high levels of LIN28B (Figure 1A). By treating the
cells with different concentrations of NPs for 48 h, we assessed the effects of EGCG-NPs on
cell viability. To ensure the observed effect was not due to the polymeric carrier alone, we
added controls with the same increasing concentrations of EGCG-free NPs (empty-NPs).
The empty-NPs showed no significant toxicity, even at the highest concentrations, while
the three cell lines showed varying degrees of sensitivity to EGCG-NPs (Figure S2D). We
then calculated the viability half-maximal inhibitory concentration (IC50) values, which
is defined as the compound concentration that causes 50% inhibition of cell viability.
Nanoencapsulation resulted in a significant decrease in EGCG IC50 values in all cell lines
tested compared to those treated with non-encapsulated EGCG (Figure 4E), suggesting that
the polymeric matrix stabilizes the EGCG in the solution and leads to higher concentrations
of EGCG inside the cells.

2.5. EGCG-NP Treatment Decreases In Vitro Proliferation and Stemness and Reduces Tumorigenic
Potential of NB Cells in a Zebrafish Model

We then proceeded to assess the molecular effects of EGCG-NP treatment in NB
cells using doses of EGCG-NPs below or around the previously determined IC50 values
(Figure 4E). Specifically, we first assessed the effects on the levels of three let-7 miRNA
family members (let-7d, let-7f, let-7g) by qPCR. Treatment with EGCG-NPs significantly in-
creased let-7 miRNA levels in all cell lines tested, with a dose-dependent effect particularly
evident in KELLY cells (Figure 5A).

At the same time, EGCG-NP treatment also resulted in a dose-dependent reduction
in NB cell proliferation (Figure 5B), while empty-NPs only slightly affected cell growth
(Figure S3A). Furthermore, EGCG-NP treatment in CHP134 cells, which have been re-
ported to be prone to differentiation upon specific stimuli, such as 13-cis-retinoic acid
treatment [33], led to a significant decrease in the mRNA levels of the tumor markers
MYCN, SOX2, and SOX9 and a significant increase in the differentiation markers TUBB3,
GAP43, and TH (Figure 5C).

Since the increase in let-7 miRNA levels, decrease in proliferative capacity, and pro-
moted differentiation observed after EGCG-NP treatment are expected to affect the aggres-
siveness of NB cells, we next investigated whether EGCG-NP pretreatment would affect
the tumorigenic potential of NB cells in vivo. To this end, we injected fluorescently labeled
NB cells, pretreated for 48 h with either empty-NPs or EGCG-NPs, into the duct of Cuvier
of 48-h-old Tg(fli1:EGFP) zebrafish embryos, which express the green fluorescent protein
throughout the vascular endothelium, allowing for visualization of blood vessels [34]. Since
CHP134 cells do not possess a strong engrafting ability, and no data are available for KELLY
and NB69 cells in the literature, we used the SK-N-BE(2) cell line, whose engraftment
capacity has already been reported [35]. As for the NB69, KELLY, and CHP134 cell lines
(Figure S2D), SK-N-BE(2) also showed a dose-dependent decrease in viability (Figure S3B)
and an increase in the let-7 miRNA levels (Figure S3C) upon in vitro EGCG-NP treatment.
Immediately after in vivo injection, pre-treated SK-N-BE(2) cells rapidly spread throughout
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the embryonic vasculature, mimicking the metastatic spread of the disease (Figure 5D, top
panel). At 24 h post-injection, the cells were found arrested along the endothelium of the
trunk and the tail regions of the embryos (Figure 5D, bottom panels). Thus, we evaluated
the maintenance of the fluorescence intensity in the caudal region of each injected embryo
deriving from NB cells pretreated with either EGCG-NPs or empty-NPs. In both conditions,
we observed a lower fluorescence intensity signal compared to time 0 (Figure 5D,E), but
with a much greater decrease for EGCG-NP-pretreated cells. Specifically, after 24 h, the
fluorescence intensity signal of empty-NP-pretreated cells decreased by approximately 50%,
while the signal of EGCG-NP-pretreated cells decreased to 3.4%, suggesting that EGCG-NP
pretreatment strongly reduces the tumorigenic potential of NB cells in vivo.

Taken together, these results indicate that EGCG-NP treatment effectively reduced NB
cell aggressiveness and their tumorigenic potential in vivo.

Figure 5. EGCG-NP treatment increases let-7 miRNA levels, decreases proliferation, promotes
differentiation in NB cells, and reduces their engraftment ability in zebrafish. (A) qPCR analysis of
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let-7d, let-7f, and let-7g miRNAs in NB69, KELLY, and CHP134 cell lines treated for 48 h with
empty-NPs or EGCG-NPs. The expression level is shown as fold change relative to non-treated cells,
and the data were normalized to the internal reference gene U6. n = 3 biological replicates, n = 3
technical replicates each. Mean ± SD. Unpaired two-tailed t-test analysis (* p < 0.05; ** p < 0.01; ***
p < 0.001, ns p ≥ 0.05). (B) Proliferation curves of NB69, KELLY, and CHP134 cells treated with
different doses of EGCG-NPs around or below the IC50 values. Cell viability was measured using the
CellTiter-Glo® Luminescent Cell Viability Assay and normalized to the day of the treatment (day 0).
NT = non-treated cells. n = 3 biological replicates, n = 3 technical replicates each. Mean ± SEM.
Two-way ANOVA followed by Fisher’s LSD test (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
(C) MYCN, SOX2, SOX9, TUBB3, GAP43, and TH mRNA expression levels analyzed by qPCR after
96 h of EGCG-NP treatment in CHP134 cells. Expression level is shown as fold change relative to
empty-NP treatment (dotted line). SDHA was used as a reference gene. n = 3 biological replicates,
n = 3 technical replicates each. Mean ± SD. Unpaired two-tailed t-test analysis (ns = not significant;
* p < 0.05; ** p < 0.01, *** p < 0.001). (D) Upper panel shows a transgenic zebrafish embryo with
NB cells (red signal) at the injection site in the duct of Cuvier (dashed lines) and in the caudal
region (white dashed square). Representative fluorescence microscopy images of the caudal region of
Tg(fli1:EGFP) zebrafish embryos analyzed 2 h and 24 h after injection with non-treated or pretreated
SK-N-BE(2) cells (empty-NPs and EGCG-NPs) and labeled with the Vybrant® DiI (red signal). Scale
bar = 100 µm. (E) Absolute fluorescence intensity of SK-N-BE(2) cells pretreated with either empty-
NPs or EGCG-NPs measured at time 0 or 24 h after injection. Each dot represents the value from
a single embryo. A.U. = arbitrary units. Mean ± SEM. n ≥ 32 zebrafish embryos analyzed per
condition. Unpaired two-tailed t-test analysis (**** p < 0.0001).

3. Discussion

Reactivated LIN28A or LIN28B expression almost invariably correlates with poor
prognosis in many tumors, including acute myeloid leukemia [36], brain cancers [37,38],
and NB [15–17]. Disruption of the LIN28B/let-7 miRNA interaction restores the tumor sup-
pressor let-7 miRNA levels, providing a potential new therapeutic target in oncology [20,21].
Indeed, identifying small molecules capable of interfering with the LIN28B/let-7 interac-
tion holds great promise for the development of new anticancer treatments. In this work,
using two orthogonal biochemical techniques, we screened 4959 molecules and selected
(−)-epigallocatechin 3-gallate (EGCG) as the molecule with the best inhibitory activity on
the LIN28B/let-7 miRNA interaction. Interestingly, TFMG, which shares the same epigallo-
catechin scaffold as EGCG, emerged as a second hit from our screening and subsequent
validation. Our results complement those of several screens performed in recent years,
which have led to the identification of some other molecules capable of disrupting the
LIN28B/let-7 interaction ([25,39–43], reviewed in [44]). Docking calculations indicate that
EGCG binds to LIN28B in the pre-let-7 miRNA binding pocket in the cold shock domain of
the protein, forming hydrophobic contacts, electrostatic interactions, and hydrogen bonds
with this pocket. Further interactions are also formed through the gallic acid moiety and
the catechin backbone.

EGCG is an abundant polyphenolic component of green tea extract and has been
reported to possess various biological functions, including antioxidant, anti-inflammatory,
and anticancer properties [45–47]. The anticancer properties of EGCG have been linked to
several important cellular signaling pathways, including those mediated by EGFR, JAK-
STAT, MAPKs, NF-κB, and PI3K-AKT-mTOR [45,47]. Moreover, EGCG has been shown
to bind to and inhibit the human peptidyl prolyl cis/trans isomerase (Pin1), which plays
a critical role in oncogenic signaling [48,49]. Interestingly, EGCG has also been reported
to upregulate let-7 miRNAs in human lung cancer and melanoma cells [50,51], consistent
with possible LIN28B inhibition also in these cancer models.

Despite a wide range of reported potential therapeutic and promising results in pre-
clinical studies, EGCG is known to have low stability under cell culture conditions [28].
Furthermore, the applicability of EGCG in humans has been hampered by its low bioavail-
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ability, poor membrane permeability, rapid metabolic clearance, and lack of stability [52].
Based on this evidence, we decided to incapsulate EGCG into suitable nanocarriers.

In recent years, the application of nanoparticles for drug encapsulation in cancer has
gained increasing interest due to the potential to improve their delivery and pharmacoki-
netic properties while reducing the overall toxicity of treatments [53,54]. To date, most
studies on the application of the nanomedicine strategy to NB therapeutics have been
conducted mainly in the preclinical setting using cellular and animal experiments, which
together have provided some positive evidence [55,56]. Despite these encouraging results,
the therapeutic potential of nanomedicine in NB has not yet been systematically explored,
and only albumin-bound paclitaxel nanoparticles (i.e., Abraxane) have reached phase I/II
clinical trials for refractory NB and other pediatric solid tumors (NCT01962103) [57,58].

In this scenario, among the different approaches pursued in the field of nanoformu-
lation, we chose to use polymeric nanoparticles as a model of nanosystems for ECGC
delivery. Polymeric nanoparticles are a well-studied nanocarrier system due to their high
biocompatibility, high versatility, and high encapsulation rate [30,31]. We have previously
shown that encapsulation of EGCG into polymeric blended nanosystems, targeted with
small molecules capable of binding to the prostate-specific membrane antigen, enhances
the antiproliferative activity of EGCG in prostate cancer both in vitro and in vivo [32].

Here, we used non-targeted NPs to deliver EGCG into NB cells. EGCG encapsulation
resulted in a significant decrease in IC50 values compared to the free drug in all cell lines
analyzed, suggesting that the PLC/PLGA-PEG nano-construct protects and stabilizes
EGCG, leading to a significant increase in molecule accumulation within the cells. In
addition, EGCG-NP treatment resulted in a significant increase in all let-7 miRNA family
members analyzed, demonstrating that EGCG effectively interferes with the LIN28B/let-7
miRNA interaction. Of note, LIN28B has been shown to have pro-tumorigenic activity
independent of its interaction with let-7 miRNAs by binding to specific mRNAs and acting
as a post-transcriptional regulator [21]. Further experiments to investigate whether EGCG
can also affect LIN28B pro-tumorigenic activity in a let-7-independent manner are definitely
needed and may strengthen the relevance of EGCG in NB and potentially other tumor types.

The increase in mature let-7 miRNA levels upon EGCG-NP treatment was also accom-
panied by dose-dependent inhibition of cell growth, decreased tumor marker expression,
and increased differentiation marker expression. Given the role of let-7 miRNAs, which
have been described as fundamental tumor suppressors and essential regulators of ter-
minal differentiation [59], and considering the effects we observed with EGCG treatment,
EGCG may promote NB cell differentiation. Finally, EGCG-NP treatment also significantly
reduced the tumorigenic potential of NB cells in a zebrafish xenograft model.

The poor pharmacokinetic profile of EGCG, which requires the use of a nanocarrier-
based formulation, represents the main limitation of the present study and potentially hin-
ders a streamlined clinical development. Future studies aimed at elucidating the structure
of EGCG bound to LIN28B could guide the design of new molecules with greater potency
and better pharmacokinetic properties, with the ultimate aim of selecting a molecule more
suitable for further preclinical and clinical development. In this context, EGCG should be
considered as a chemical probe to prove that inhibition of the LIN28B/let-7 axis is a novel
and promising therapeutic option for NB, especially with regard to the development of
new agents for differentiation therapies.

Therapies capable of inducing cancer cell differentiation have long been considered an
alternative to cytotoxic therapy to suppress tumorigenesis, but differentiation therapy is still
a largely unexplored field. The most successful example of differentiation therapy in the
clinic is the combination of the differentiation-inducing agents all-trans-retinoic acid and
arsenic trioxide, which has led to clinical complete remission rates of over 90% in patients
with acute promyelocytic leukemia [60]. In NB, 13-cis-retinoic acid, a pro-differentiating
agent, is currently used in clinical practice as part of the treatment of patients with high-risk
NB in the post-consolidation phase of the therapeutic schedule [61–63]. Indeed, the rate of
tumor relapse is directly dependent on the efficacy of post-consolidation. Unfortunately,
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many patients are refractory to retinoic acid-induced differentiation and further research
efforts, including synergistic combination therapy, are needed [64,65]. In this context, EGCG
and, more generally, inhibitors of the LIN28B/let-7 miRNA circuit may represent good
candidates to be used as experimental drugs in the post consolidation phase for high-risk
patients, both alone and as part of synergistic pro-differentiating multi-drug treatments.
Additional in vitro and in vivo studies are required to further explore the potential clinical
use of LIN28B inhibitors in NB.

4. Materials and Methods
4.1. Cell Cultures

Human NB cell lines were purchased from the European Collection of Authenticated
Cells (ECACC, Porton Down, Salisbury, UK). NB69 (cat. 99072802, ECACC), KELLY (cat.
92110411, ECACC), and CHP134 (cat. 06122002, ECACC) cells were cultured in RPMI-
1640 (cat. 11875093, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
2 mM of glutamine (cat. A2916801, Thermo Fisher Scientific), 10% fetal bovine serum (FBS)
(cat. 10270106, Thermo Fisher Scientific), and 1% penicillin-streptomycin (10,000 U/mL
penicillin, 10000 µg/mL streptomycin, cat. 15140122, GIBCO, Thermo Fisher Scientific) at
37 ◦C and 5% CO2.

Human NB SK-N-BE(2) cells (cat. 95011815, ECACC) were cultured in a 1:1 mixture of
EMEM/F-12 (cat. 670086/11765054, Thermo Fisher Scientific) supplemented with 2 mM of
glutamine, 10% FBS, 1% penicillin-streptomycin, and 1% non-essential amino acids (cat.
11140050, Thermo Fisher Scientific) at 37 ◦C and 5% CO2.

Human embryonic kidney HEK293T cells were obtained from the Interlab Cell Line
Collection (ICLC) (cat. HTL04001, IRCCS Ospedale Policlinico San Martino, Genova, Italy)
and were cultured in DMEM (cat. 11960044, Thermo Fisher Scientific) supplemented with
2 mM of glutamine, 10% FBS, and 1% penicillin-streptomycin at 37 ◦C and 5% CO2.

4.2. LIN28B Downregulated Cell Line Generation

Lentiviral particles were produced in HEK293T cells by transfecting 10 µg of LIN28B-
shRNA or scramble-shRNA (referred to as shCTRL in the main text) inserted into MISSION®

pLKO.1-puro Empty Vector Control Plasmid DNA (cat. SHC001, Sigma-Aldrich, St. Louis,
MO, USA) with the packaging vectors psPAX2 (5 µg, cat. 12260, Addgene, Watertown,
MA, USA) and pMD2.G (2.5 µg, cat. 12259, Addgene) in serum-free Opti-MEM (cat.
31985070, GIBCO, Thermo Fisher Scientific). Lipofectamine 2000 (cat. 11668500, Thermo
Fisher Scientific) was used as a transfecting agent in a 1:1 ratio with the plasmid mixture.
Supernatants were harvested 48 h later, filtered through a 0.45 µm filter, and the produced
viral particles were concentrated by ultracentrifugation. Viral particles were aliquoted and
stored frozen at −80 ◦C.

LIN28B-stably-downregulated CHP134 and NB69 cells were generated by transducing
CHP134 and NB69 cells with the viral particles containing LIN28B shRNA or scramble
shRNA for 8–10 h. After 24 h, the transduced cells were selected by supplementing media
with 3–5 µg/mL puromycin (cat. ant-pr-5b, InvivoGen, San Diego, CA, USA) for at least
72 h.

4.3. RNA Extraction, Reverse Transcription, and qPCR

Total RNA was extracted using the TrizolTM Reagent (cat. 15596026, Thermo Fisher
Scientific) according to the manufacturer’s instructions. Reverse transcription was per-
formed on 1 µg of RNA with the RevertAid RT Reverse Transcription Kit (cat. K1691,
Thermo Fisher Scientific) on the C1000 Thermal Cycler (Bio-Rad, Hercules, CA, USA). The
cDNA was diluted to 5 ng/µL, and qPCR was performed using the KAPA SYBR FAST
qPCR Master Mix (2X) (cat. SFUKB, Kapa Biosystems, Wilmington, MA, USA) according
to the manufacturer’s indications on the CFX96 Real-Time System (Bio-Rad). All assays
were performed in triplicate in 3–4 independent experiments. Data were analyzed using
the CFX Manager software 3.1 (Bio-Rad) and quantified using the ∆∆Ct method. HPRT1 or
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SDHA was used as a reference gene, and shCTRL cells, non-treated cells, or empty-NP cells
were used as internal calibrators (as specified in the figure legend). Primer sequences can
be found in Table S2.

4.4. Immunoblotting

Total cell lysates were prepared from cells. Briefly, cells were washed with PBS and
resuspended in a RIPA lysis buffer (cat. 89901, Thermo Fisher Scientific) supplemented with
protease inhibitors. Protein concentrations were quantified with the PierceTM BCA Protein
Assay Kit (cat. A55864, Thermo Fisher Scientific). Equal amounts of protein (25 µg) were
separated on SDS-PAGE and transferred to a nitrocellulose membrane. Membranes were
probed with anti-LIN28B (diluted 1:1000, cat. 4196, Cell Signaling, Danvers, MA, USA), anti-
MYCN (diluted 1:1000, cat. 9405, Cell Signaling), anti-NESTIN (diluted 1:1000, cat. sc-23927,
Santa Cruz Biotechnology, Dallas, TX, USA), anti-SOX9 (diluted 1:500, cat. 702016, Thermo
Fisher Scientific), anti-GAP43 (diluted 1:500, cat. AB5220, Merck Millipore, Darmstadt,
Germany), anti-GAPDH (diluted 1:1000, cat. sc-32233, Santa Cruz Biotechnology), anti-
β-TUBULIN (diluted 1:3000, cat. sc-53140, Santa Cruz Biotechnology), and secondary
HRP-conjugated antibodies (diluted 1:3000, cat. 62-6520 and 31460, Invitrogen). Primary
antibodies were probed overnight at 4 ◦C, while secondary antibodies were probed for
1 h at room temperature. Detection was performed using Amersham ECL Prime or the
Select Western Blotting Detection Reagent (cat. RPN2232 or cat. RPN2235, GE Healthcare
Life Sciences, Chicago, IL, USA) and the ChemiDoc Imaging System (Bio-Rad). Data were
analyzed using Image Lab™ Software, Version 3.0.

4.5. Let-7 miRNA Quantification

Total RNA was extracted using the TrizolTM Reagent (cat. 15596026, Thermo Fisher
Scientific) according to the manufacturer’s instructions. The miRCURY LNA RT Kit (cat.
339340, Qiagen, Hilden, Germany) was used to perform the reverse transcription step
following the manufacturer’s instructions, while the miRCURY LNA SYBR Green PCR
Kit (cat. 339345, Qiagen) was used to perform the qPCR. The qPCR was run using the
CFX96 Real-Time System (Bio-Rad). The data were analyzed with CFX Manager software
3.1 (Bio-Rad) and normalized on U6 content. The following miRCURY LNA miRNA
PCR Primer mixes (cat. 339306, Qiagen) were used: U6 snRNA (YP00203907); hsa-let-
7d-5p (YP00204124); hsa-let-7f-5p (YP00204359); hsa-let-7g-5p (YP00204565); hsa-let-7i-5p
(YP00204394).

4.6. rLIN28B Protein Expression and Purification

The full-length human LIN28B cDNA sequence (NM_001004317.3) was amplified
from retro-transcribed RNA of HEK293 cells and inserted into the pCMV6-AC-Myc-His
mammalian expression vector (cat. PS100006, Origene Technologies, Rockville, MD, USA)
by using the forward (5′ AGTCGCGATCGCATGGCCGAAGGCGGGGC 3′) and reverse
(5′ ACGTACGCGTTGTCTTTTTCCTTTTTTGAACTGAAGGCC 3′) primers containing the
SgfI and the MluI restriction sites, respectively. The frame and sequence of the full-length
open reading frame in the newly cloned vector, hereafter named pCMV6-LIN28B-Myc-His,
were confirmed by sequencing. Recombinant human LIN28B-Myc-His protein (rLIN28B)
was produced by transient transfection of HEK293T cells with the pCMV6-LIN28B-Myc-His
vector using polyethyleneimine (PEI, cat. 408727, Sigma-Aldrich, vector/PEI ratio = 1:3).
Briefly, cells were harvested 24 h post-transfection in the EQ buffer (see Table S3 for buffer
composition) and sonicated (amplitude of 45, 7 cycles of 10 s, 10 s pause between each cycle,
power at approximately 250 W) at 4 ◦C. The rLin28B protein was purified using Ni-NTA
agarose beads (cat. 30210, Qiagen) and eluted with an imidazole gradient ranging from 10
to 400 mM. The protein was dialyzed using D-Tube™ Dialyzers midi (cat. 71506, Merck
Millipore) for 2 h at 4 ◦C, aliquoted, and stored at −80 ◦C in buffer S.

The rLin28B protein was analyzed by Coomassie staining on 15% SDS-PAGE. The
relative protein concentration was determined using bovine serum albumin standards and
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densitometric quantification of the corresponding bands on acrylamide gels. Western blot
analysis was performed using a monoclonal anti-Myc antibody (diluted 1:1000, overnight
incubation at 4 ◦C, cat. TA150014, Origene).

4.7. Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen)

The AlphaScreen assay was performed following the manufacturer’s instructions
(PerkinElmer, Waltham, MA, USA). Specifically, we used the rLIN28B protein and a 5′-
biotinylated single-stranded RNA corresponding to the precursor of the let-7g miRNA (Bi-
pre-let-7g miRNA, 5′-Bi-GCUAUGAUACCACCCGGUACAGGAGC 3′), whose interaction
with LIN28B is mediated by the specific GGAG motif present on its terminal loop [66].
As a positive control, instead of the Bi-pre-let-7g miRNA, we used a Bi-pre-let-7g-mut
miRNA, which is unable to bind to the LIN28B protein due to the absence of the adenine
in the conserved motif essential for the interaction, simulating the absence of interaction
between LIN28B and the pre-let-7g miRNA (5′-Bi-GGCAUGAUACCACCCGGUACGGGC
3′). RNA probes were purchased from Eurofins MWG Operon. The assay was performed in
a dialysis buffer in 384-well white OptiPlates (cat. 6007299, PerkinElmer) in a final volume
of 25 µL using the AlphaScreen c-Myc detection kit (cat. 6760611M, PerkinElmer). The
optimal concentrations for the two interacting partners were determined by titration as
10 nM and 100 nM for rLIN28B and for Bi-pre-let-7g miRNA, respectively. Anti-c-Myc-
acceptor beads and streptavidin-donor beads (cat. 6760002S, PerkinElmer) (10 µg/mL final
concentration) were added to each well containing a compound to be tested, the rLIN28B
protein and the Bi-pre-let-7g miRNA, and the reaction was incubated at room temperature
for 90 min. Two commercial libraries (MicroSource Spectrum Collection, MicroSource
Discovery Systems, Gaylordsville, USA and NDL-3000, TimTec, Tampa, USA) containing a
total of 4959 molecules were screened in the primary screening. Molecules were tested at
the final concentration of 75 nM in monoplicates. All the dispensation steps were performed
using Tecan EVO 200 (Tecan, Männedorf, Switzerland). Fluorescence signals were detected
on the Enspire plate reader instrument (cat. 2300-001A, PerkinElmer), and the specific
interaction signal was quantified by subtracting the background signal, calculated in the
absence of the protein and/or the probe. Compounds that differed by 2 times the standard
deviation from the mean of the negative controls were selected as hits. See Figure S1 for
the assay setup.

4.8. RNA-Electrophoresis Mobility Shift Assay (REMSA)

Six nM rLIN28B proteins and 6 nM of a Cy3-labeled pre-let-7g RNA probe (5′-Cy3-
GCUAUGAUACCACCCGGUACAGGAGC 3′, Eurofins MWG Operon, Ebersberg, Ger-
many) were incubated with 0.5 µM of the selected hits, for a final volume of 20 µL (20 mM
HEPES pH 7.5, 50 mM KCl, 0.5 µg BSA, 0.25% glycerol) at room temperature in the dark
for 1 h. For supershift experiments, 0.5 µg of anti-Myc antibody (cat. TA150014, Origene)
was added 10 min after preincubation of ligands. Samples were then loaded into a 6%
native polyacrylamide gel with 0.5% glycerol and run in a 0.5X TBE buffer at 80 V at 4 ◦C
for 45 min. The signal was detected with Typhoon Instrument (GE cat. 00-4277-85 AC,
Healthcare) using filters for red light emission detection.

4.9. HuR Protein Expression, Purification, and AlphaScreen with the TNFalpha AU-Rich Element

Recombinant HuR-cMycHis protein preparation and purification and AlphaScreen
with a 5′-biotinylated RNA probe (BiTNF, 5′-AUUAUUUAUUAUU UAUUUAUUAUUUA)
were carried out as already described [27,67]. Briefly, 1–3 nM of purified recombinant HuR
were incubated with 50 nM of a BiTNF probe and AlphaScreen beads (cat. 6760611M,
PerkinElmer) at a final concentration of 20 µg/mL. The inhibitory activity of compounds
was tested at the indicated concentrations.
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4.10. Molecular Modeling Studies

A 3D model of LIN28B containing both the cold shock domain (CSD) and the zinc
knuckle domain (ZKD) was built from different experimentally solved structures by ho-
mology modeling using three different templates. More precisely, the structure CSD of
human LIN28B (PDB code: 4A4I, X-ray) [68] and the LIN28-Zinc finger domains bound to
AGGAGAU of pre-let-7 miRNA human LIN28A (PDB code: 2LI8, NMR) [69] were selected
to cover the segment Val27-Ser176 on LIN28B. The mouse LIN28A structure in the complex
with let-7d (PDB code: 3TZR, X-ray) [70] was used to determine the relative orientation
between the CSD and ZKD domains. The model was built with the homology modeling
routine of the MOE2016 [71] suite using the Amber12 force field [72]. The segment 177–250,
suggested to be particularly flexible, was not modeled due to the lack of a reliable template.
The selected template guaranteed a confidence superior to 90% according to phyre2 [73].

Molecular docking studies were conducted using Plants1.2 coupled with the ChemPLP
scoring function [74]. The binding site was defined as a sphere centered on the pre-let-7
miRNA binding site. Ligand structures were retrieved from PubChem (https://pubchem.
ncbi.nlm.nih.gov/, accessed 4 May 2022) using CID 370 (GA), 65064 (EGCG), 169167
(TFMG), and 467299 (EGCDG) and prepared using the MOE2016 wash tools.

4.11. EGCG Stability Evaluation by HPLC Analysis

Six concentrations (10, 25, 50, 100, 250, and 500 µM, 1% DMSO each) of EGCG were
prepared from the 100 mM stock solution. The calibration curve was constructed by
injecting the EGCG dilutions into an Agilent 1200 high-performance liquid chromatography
(HPLC) system equipped with an autosampler, binary pump, and diode array detector. A
Phenomenex Gemini 5 µm C18 110 Å column (LC Column 250 × 4.6 mm, cat. 00G-4435-E0,
Phenomenex, Torrance, CA, USA) was used, and the elution was performed under isocratic
conditions with 80:20 water/acetonitrile and 0.01% TFA (pH 4–4.5). The flow rate and the
detection were set at 1 mL·min−1 and at 280 nm, respectively. The injection volume was
5 µL, and the total run time was set to 15 min at 25.0 ◦C. Each tested solution was injected
within 1 min of its preparation by diluting the DMSO stock solution. The calibration curve
obtained by plotting the area of the peaks as a function of the concentration gave an R2 of
0.9978. Stability was evaluated using a 50 µM EGCG solution in a cell culture medium and
by evaluating the molecule’s stability by HPLC at different time points (0, 15, 30, 45, 60,
and 75 min).

4.12. NP Preparation

EGCG-NPs, which are composed of a blend of two polymers, poly(epsilon)-
caprolactone (PCL) and amine poly(ethylene glycol)-block-poly(lactide-co-glycolide)
(PLGA-PEG-NH2), were prepared and characterized as previously described [32,75,76].
Briefly, PCL and PLGA-PEG-NH2 polymers (mass ratio of 1.5:1), and EGCG (5% w/w)
dissolved in acetonitrile were added dropwise under gentle stirring to a Pluronic F-127
solution (0.1% w/w), giving a final polymer concentration of 7.0 mg/mL. The resulting
suspension was stirred at room temperature to evaporate the organic solvent, then
centrifuged and washed to remove the non-encapsulated EGCG. Empty-NP was produced
in a similar manner and used for comparison. The dye-loaded NP, i.e., Cou6-NP, was
prepared by adding the fluorophore coumarin 6 (cat. 442631, Sigma-Aldrich) 0.05% w/w
instead of EGCG to the polymer solutions.

4.13. Detection of Cou6-NPs

NB69 (100.000 cells/well) and CHP134 (150.000 cells/well) were seeded in a six-well
plate and treated with different concentrations of Cou6-NPs (NB69: NT, 0.0003 µg/µL,
0.003 µg/µL, and 0.03 µg/µL; CHP134: NT, 0.003 µg/µL) for 48 h. After a wash with PBS,
cells were fixed with a paraformaldehyde solution (4% v/v final, 15 min incubation at
room temperature), followed by two washes with PBS. Hoechst 33342 (1 µg/mL, Thermo
Fisher Scientific) and HCS CellMask™ Deep Red Stain (Thermo Fisher Scientific, H32721,
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1:2000, 20 min at room temperature) were used to identify cell nuclei and cell surfaces,
respectively. The fluorescence signal in NB69 cells was detected using the Operetta High
Content Imaging System (PerkinElmer) and quantified using the Harmony software 4.1
(PerkinElmer). The CHP134 cells were imaged with a Leica TCS SP8 confocal microscope
equipped with a 63×/1.4 oil objective and the proper laser/filter setting. Images were
acquired at 400 Hz unidirectional scan speed with 2× zoom and a 130 nm z-step.

4.14. Evaluation of EGCG, EGCG-NP, and Empty-NP Treatment on NB Cell Viability
and Proliferation

NB cell lines were seeded into 96-well microplates in 100 µL of media. After 24 h,
serial dilutions of EGCG, EGCG-NP, and empty-NP were prepared in PBS, and 10 µL of
these dilutions were added to the cells and incubated for a specified period of time. The
cell viability was evaluated using the CellTiter-Glo® Luminescent Cell Viability Assay
(cat. G7570, Promega, Madison, WI, USA) following the manufacturer’s instructions.
Depending on the experimental setup, cell viability was expressed either as a percentage of
the respective non-treated control or normalized to viability 24 h post-seeding (treatment
day 0). Dose–response curves were plotted, and the IC50 values were calculated via
GraphPad Prism 8.4.2.

4.15. Zebrafish Models

Maintenance, breeding, and staging of zebrafish were performed as previously de-
scribed [77].

Transgenic Tg(fli1:EGFP) zebrafish embryos [33] at 48 h post-fertilization (hpf) were
anesthetized using 0.003% tricaine (cat. E10521, Sigma-Aldrich) and carefully positioned
on a 10 cm Petri dish containing 3% agarose. SK-N-BE(2) cells, previously treated with
10 µM of EGCG-NPs, or empty-NPs as a comparison, were labeled with a Vybrant® DiL
Cell-Labeling Solution (cat. V22885, Thermo Fisher Scientific) following the manufac-
turer’s guidelines. Fluorescent cells were then resuspended in 1xPBS and implanted using
borosilicate glass capillary needles (outer diameter/inner diameter: 1.0/0.75 mm, WPI), a
Pneumatic Picopump, and a micromanipulator (WPI). Around 300 cells were injected into
the duct of Cuvier of anesthetized embryos. Following implantation, zebrafish embryos
were kept at 33 ◦C. After 4 h post-injection, embryos with fewer than 40 cells were excluded
from further analysis. Live photographs of embryos at 2 and 24 h post-implantation (hpi)
were captured using a ZeissAxio Observer microscope (Zeiss, Oberkochen, Germany). The
absolute fluorescence intensity, expressed as an arbitrary unit, of xenografted NB cells
was analyzed and quantified using ImageJ software 1.53a (NHI, Bethesda, MD, USA and
University of Wisconsin, Madison, WI, USA).

4.16. Statistical Analysis

Results were reported as mean ± SD (standard deviation) or mean ± SEM (standard
error of the mean), as indicated in the figure legend. Details of each analysis are in the
figure legends. Statistical significance was determined by an unpaired two-tailed t test
or two-way ANOVA followed by the post hoc Fisher’s LSD test (* p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001; ns p ≥ 0.05). For the comparison of heteroscedastic samples,
we applied the Welch’s correction to the t-test. n represents the number of biological or
technical replicates, as indicated in figure legends. All the experiments with representative
images (including immunoblotting and immunofluorescence) were repeated at least twice,
and representative images are shown.

Supplementary Materials: The following supporting information can be downloaded at: https:
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