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Sound-squatting is a squatting technique that exploits similarities in word pronunciation to trick users into

accessing malicious resources. It is an understudied threat that has gained traction with the popularity of

smart speakers and audio-only content, such as podcasts. The picture gets even more complex when multiple

languages are involved. We here introduce X-squatter, a multi- and cross-language AI-based system that

relies on a Transformer Neural Network for generating high-quality sound-squatting candidates. We illustrate

the use of X-squatter by searching for domain name squatting abuse across hundreds of millions of issued

TLS certificates, alongside other squatting types. Key findings unveil that approximately 15% of generated

sound-squatting candidates have associated TLS certificates, well above the prevalence of other squatting

types (7%). Furthermore, we employ X-squatter to assess the potential for abuse in PyPI packages, revealing

the existence of hundreds of candidates within a 3-year package history. Notably, our results suggest that

the current platform checks cannot handle sound-squatting attacks, calling for better countermeasures. We

believe X-squatter uncovers the usage of multilingual sound-squatting phenomena on the Internet and it is

a crucial asset for proactive protection against the threat.
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1 INTRODUCTION

Cyber-squatting is a practice that tricks users into accessing malicious sites or content by rely-
ing on the similarities of words. It is applied in various contexts, including fake domains [15],
phishing campaigns [37, 38], the hijacking of smart speakers [20, 50] and brand abuse. Sev-
eral cyber-squatting strategies have been demonstrated in practice, including simple/frequent
typos [4, 17, 40, 48], visual similarity between characters [15], and combination of common
words [19, 24], leading to different attacks such as typo-squatting, bit-squatting, homograph-
squatting, combo-squatting [49], skill-squatting [20], and sound-squatting [30].

Sound-squatting is a relatively recent technique that exploits pronunciations similar to legiti-
mate names or brands to deceive users. It has garnered less attention in comparison to other forms
of cyber-squatting. However, it is increasing in importance, especially with the rise of smart speak-
ers and voice assistants [20] and the resurgence of audio-exclusive content consumption, such as
podcasts. A website or product verbally advertised and misunderstood by the users as well as a
careless voice search1 can, ultimately, lead users to malicious content. This may happen even when
users do not rely on voice assistants—for example, consider an instructor telling students to access
a website or install software packages, whose names may be mistyped due to similar pronunci-
ations. In general, sound-squatting can be a channel for phishing attacks, with URLs or package
names (and locators in general) that look and sound like the correct target but are not.

Detecting and preventing sound-squatting is challenging due to the inherent variations in
pronunciation across different languages and among individuals [49]. The complexity further
escalates when multiple languages are involved expanding sound-squatting possibilities, e.g.,
when a person must write, pronounce, or simply recognize a word pronounced in a foreign lan-
guage—hereafter called cross-language scenario. Previous studies have primarily concentrated on
English homophones [30], which are existing words with identical pronunciations. However, they
fall short in terms of coverage, as they do not account for non-existing words, words with similar
pronunciation (quasi-homophones), and cross-language scenarios.

We present X-squatter (pronounced cross-squatter), an AI-based system designed for the
automatic generation of multi- and cross-language sound-squatting candidates. We have designed
X-squatter to model any phonemic representation, enabling it to replace phoneme tokens with
counterparts that sound similar.

X-squatter produces candidates from a target name. It operates at the sub-word level and in-
cludes a mechanism to control quality during the candidate search process. X-squatter builds over
a Transformer Neural Network [47] architecture trained to produce candidates in any language.
It receives the written form of the word (grapheme), its pronunciation represented using the In-

ternational Phonetic Alphabet (IPA), and the language the word belongs to. It produces homo-
phones using features from pronunciation segments. In a nutshell, X-squatter uses a lightweight
and small Transformer-based sequence-to-sequence model to find written alternatives with simi-
lar pronunciations in the desired target language.

X-squatter seamlessly accommodates multiple languages and facilitates cross-language scenar-
ios. This requires ingenuity to handle the grapheme of non-existing phonemes in the target lan-
guage. We here restrict the analysis to proto-Indo-European languages, given their prevalence in
the Web (around 66.8% of the online content [33]). Yet, X-squatter is generic and its architecture
can be applied to other language scenarios.

We validate X-squatter by measuring its capabilities to generate well-written forms of word
pronunciations. Here we find that X-squatter can automatically generate all known homo-

1See an anecdotal example at https://www.bbb.org/article/news-releases/20523-scam-alert-using-voice-search-use-

caution-when-asking-for-auto-dial-from-your-smart-device
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phones for the languages we tested. Moreover, X-squatter produces thousands of additional
quasi-homophones, including a fair share of known cross-language homophones.

We demonstrate the applicability of X-squatter in cybersecurity scenarios in practical use cases.
We use X-squatter to compile a list of candidates for popular targets and check if any candidate cor-
responds to existing resources. We select as use cases (1) registered domain names and (2) Python
software packages. In both cases, we show a large number of existing resources with practical evi-
dence of abuses in some cases. While the mere existence of high numbers of these resources does
not inherently indicate abuse, X-squatter eases the uncovering of suspicious cases.

We believe that X-squatter can bolster brand protection against impersonation attacks on their
names. To amplify its impact as well as allow others to extend X-squatter to other language use
cases, we release the code as open source.2 The tool provides a cost-effective solution for scru-
tinizing squatting campaigns in less regulated markets by autonomously generating potential
names that attackers might exploit or have already exploited. In summary, our contributions are
as follows:

— A methodology for multi- and cross-language sound-squatting generation. We
present a methodology for generating multi-language and cross-language sound-squatting
candidates using features of phoneme tokens. This approach allows the model to handle pro-
nunciations even for languages not included in the training process.

— A comparison of sound-squatting with other squatting techniques. We compare the
search for sound-squatting with those for other squatting techniques generated with state-
of-the-art algorithms. Our findings demonstrate that sound-squatting poses a different threat
not fully covered by existing algorithms. X-squatter refines the hunting when combined with
other types of squatting.

— A study of sound-squatting attack surface in domain registration using issued TLS

certificates. We conduct a study of the sound-squatting attack surface in domain registra-
tion by analyzing candidates generated by X-squatter using around 900 million certificates
collected via Certificate Transparency logs. These certificates represent around 127 million
domains. Our findings show that approximately 16% of the generated candidates are regis-
tered, and around 95% of the analyzed domains have at least one registered candidate.

— An extensive view on the sound-squatting attack surface in Python Packages. We
conduct a study using the Python Package Index (PyPI) by analyzing candidates gener-
ated by X-squatter searching on data that cover more than 900 days. Our findings show that
1,579 of the generated candidates correspond to registered packages that might be squatting
951 popular packages.

In Section 2 we present the background and related work. In Section 3 we describe X-squatter,
and in Section 4 we validate it. Then we discuss our use cases in Section 5, discuss the limitations
of our study in Section 6, and conclude the article in Section 7. In Appendix A, we provide details
about X-squatter architecture.

2 BACKGROUND AND RELATED WORK

2.1 Tools for Squatting Generation

Cyber-squatting is a type of attack where malicious actors impersonate legitimate resources [7].
The phenomenon has been seen across various applications, encompassing domain names, soft-
ware packages within repositories, and even voice applications. For example, domain squatting
involves registering a name that may divert traffic from popular websites. Previous work [41] has

2https://github.com/rodolfovalentim/x-squatter
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Table 1. Tools and Services for Squatting Candidate Generation and Evaluation

Tool/Service Techniques Unique Exclusive Coverage (%)

DomainFuzz [3] Typo 3,403 175 (5%) 3.6%

URLCrazy [23] Typo, Homograph, Bit, Sound 1,521 91 (6%) 1.6%

dnstwist [2] Typo, Homograph, Bit 83,204 80,220 (96%) 87.4%

URLInsane [35] Typo, Homograph, Bit, Sound 2,752 204 (7%) 2.9%

AIL [1, 32] Typo, Homograph, Bit, Sound 13,274 9,777 (74%) 14.0%

X-squatter Sound 941 856 (91%) 1.0%

shown that squatting, in general, is a serious threat, with more than 657 k domain names founded
impersonating 702 popular brands in 2018.

Several tools and services are available to assist in the detection of squatting, and most of them
have been introduced as a proactive measure to protect names. In general, these tools generate
name modifications and check the availability of the candidate domains. In Table 1 we show a
summary of popular tools and services. Each alternative employs a range of squatting techniques,
including typo, bit-flip, homograph, combo, and sound-squatting.

For completeness, we briefly introduce the key differences between sound-squatting and the
other squatting techniques. Typo-squatting primarily leverages typos to create confusingly similar
names (e.g., gogle). Homograph-squatting exploits characters that visually resemble each other,
sometimes using different alphabets (e.g., g00gle). Combo-squatting leverages combinations of
words to fool people into believing a resource is legitimate (e.g., my-google). Bit-flip squatting
relies on bit-flip errors that may change messages during transmission in insecure protocols.

We have conducted an analysis to assess the redundancy and coverage of squatting techniques
among these tools and services. To achieve that, we have selected 12 high-profile target names
and generated candidates using all alternatives in Table 1. We then compare the generated sets of
unique names.

Notice how the number of candidates generated by each alternative varies. For example,
dnstwist leads in the number of candidates with more than 83 k names, while URLCrazy pro-
duces 1,521. The coverage of each tool is reported in the Coverage column. This metric measures
how many candidates each tool generates in the total set of generated candidates. As expected, it
is proportional to the number of candidates. The table also reports the number of exclusive can-
didates, i.e., candidates that appear only in the set of the given tool. Notice how DomainsFuzz,
URLCrazy, and URLInsane candidates are not exclusive. That is, these tools generate candidates
that are also present in other sets (notably dnstwist), indicating redundancy in their capabilities
when compared to alternatives.

To motivate the need for a new sound-squatting generation tool, we include in the table the
results of applying X-squatter to the same 12 high-profile names. While X-squatter produces 941
candidates, this set is practically disjoint, even when compared with tools like AIL [32] that include
techniques for sound-squatting generation. The 856 names generated by X-squatter (≈91% of the
names it generated) are exclusive to our tool. We will show later that X-squatter candidates are of
high quality too. This result suggests that sound-squatting has received less attention, calling for
instruments to assist in the understanding of the phenomenon. Moreover, as we will see later, we
have found some evidence that X-squatter candidates are exploited in the wild, thus calling for
attention to the prevention of such attacks.

2.2 List-based Models for Sound-squatting

Specifically for sound-squatting two common approaches can be employed to generate candidates:
list-based models and data-driven models. List-based models rely on predefined lists of known
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homophones and common replacements that originate potential instances of sound-squatting.
Such methods replace entire or pieces of the input name with their homophones, thus producing
a new written form of the name with exact (or similar) pronunciation.

Nikiforakis et al. [30] generated potential instances of sound-squatting from a static database of
English homophones, focusing on domain sound-squatting. Their approach involves substituting
words in domain names with homophones. The authors then present a comprehensive evaluation
and categorization of these generated candidates.

Considering voice-based attacks, Kumar et al. [20] uncover the skill-squatting attack, where the
attacker leverages systematic errors on the understanding of homophones to route Alexa Smart
Speaker users to malicious applications. They show that around 33% of the systematic errors in the
speech-to-text system are due to homophones. Later, Zhang et al. [50] formalize the skill squatting
attack, calling it Voice Squatting Attack (VSA) and Voice Masquerading Attack (VMA). They
also evaluate the feasibility of such attacks by deploying a malicious skill, which has been invoked
by 2,699 users in a month by Alexa’s Speech Recognition engine.

2.3 Data-driven Models for Sound-squatting

To the best of our knowledge, we have been the first to propose data-driven approaches to sound-
squatting generation in our preliminary works [44–46].

Data-driven models leverage machine learning algorithms and require training data to learn
patterns and produce alternative written forms for the names. We here classify data-driven models
as audio-based, token-based, or hybrid models.

Audio-based models process the raw audio associated with words. They extract various au-
dio features, such as pitch, intensity, and spectral characteristics, to capture distinctive acoustic
patterns. The model then learns how to alter some of these features to generate distortions that
lead to the desired alternative written forms (e.g., the homophones). These models suffer from the
complexity of dealing with audio signals and controlling errors. In a way, they work similarly to
a Speech-to-Text pipeline, where the generated text contains the sound-squatting candidates.

Token-based models operate on textual representations of names. They break down the in-
put name into tokens, which can be either (1) normal grapheme tokens or (2) pronunciation to-
kens. Pronunciation tokens rely on a phonetic representation of the words, for instance, using the
IPA.3 These models then learn how to map the representation of the name back into a phoneti-
cally equivalent grapheme form (e.g., homophone or quasi-homophone). Since the used represen-
tation consists of categorical tokens, these models are not able to search for “close” tokens when
needed.

Hybrid models use special representations of phonemes that encode the similarities of
phonemes. There are several proposals for this type of representation such as the articulatory vec-
tor representation [29]. A key advantage of this approach is that it enables cross-language support.
That is, it overcomes the problem created by the lack of particular phonemes in some languages.
Indeed, such representations allow one to obtain a list of similar phonemes in the target language,
which is much harder with token-based representations (e.g., based on the IPA).

We compare four alternative models. The architectures of the first three models are introduced
in our preliminary work [45, 46] and summarized in the following. We then propose an improved

3The IPA represents phonemes with standard symbols [5]. Some languages are phonetically consistent, like Italian and

German, where most graphemes correspond to a single phoneme. Other languages, like English, are not phonetically

consistent, leading to pronunciation confusion, and are more susceptible to sound-squatting attacks. There exist solutions

that translate any word in the corresponding IPA. For instance, the eSpeak NG (Next Generation) Text-to-Speech engine

supports more than 100 languages.
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Fig. 1. Model comparison. The dotted lines mark the trainable modules. (a) Simple IPA Translation [45]. (b)

Audio Inbound with IPA Translation [45]. (c) Multi-language IPA Translation [46].

architecture (X-squatter —introduced in Section 3), which generalizes the problem to handle the
cross-language scenario and adds more controls for configuring the quality of candidates.

We show the training architecture of the first three alternatives in Figure 1.

(1) Simple IPA Translation is a token-based single-language model we introduced in [45],
trained to learn transliterations from IPA segments to graphemes for a given language. This
model includes IPA Encoder and Decoder to Grapheme modules and employs beam search
during inference to generate multiple candidates. Since X-squatter builds upon similar ideas,
we defer the details to the next section.

(2) Audio Inbound with IPA Translation is an audio-based single-language model (also in-
troduced in [45]), which operates similarly to the previous model but additionally learns
features from audio, thereby incorporating similarities between IPA segments.

(3) Multi-language IPA Translation is the first token-based multiple-language model for
cyber-squatting generation, which we proposed in [46]. It features the inclusion of spe-

cial language tokens (LSTs, which correspond to tokens representing the language ISO
code [16], e.g., en-US) to generate homophones in multiple languages. However, being to-
ken based, this model cannot generate homophones in cases where there are gaps in the
representation, for instance, in cross-language squatting.

In the following, we refer to these models as baselines to compare against.

2.4 List-based Versus Data-driven Models

We briefly discuss a motivation for choosing data-driven over list-based models. Consider list-
based models for generating homophones. The list selection can be done by manual curation
or a similarity mapping between IPA tokens. The problem is that (1) the number of existing
homophones is very limited, and (2) we will miss the quasi-homophones. In fact, our evaluation
of alternative approaches that rely on list-based techniques in Table 1 shows these alternatives
are insufficient: they fail in terms of coverage, with X-squatter presenting 91% of uniqueness.
List-based solutions miss quasi-homophones and, more importantly, they are very imprecise in
the cross-language scenario, when some IPA tokens are not present in a language.

The usage of IPA as an intermediary representation helps in the generalization of list-based
methods. However, IPA tokens are categorical symbols, and categorical data requires an additional

ACM Trans. Priv. Sec., Vol. 27, No. 3, Article 21. Publication date: June 2024.



X-squatter: AI Multilingual Generation of Cross-language Sound-squatting 21:7

Table 2. Summary of Our Data-driven Models and Their Capabilities

Baseline 1 Baseline 2 Baseline 3

Simple IPA Audio Inbound Multi-language

Feature Translation with IPA Translation IPA Translation X-squatter

Data-driven homophone generation Yes Yes Yes Yes

Multiple homophone generation Yes Yes Yes Yes

Multi-language support No No Yes Yes

Cross-language support No No Partial Yes

step to improve the representation, especially to allow us to measure similarity. In X-squatter, we
overcome this problem by representing each IPA token as a set of articulatory features in a vector,
which is a novel contribution over the models presented in Figure 1.

At last, sub-sequences of IPA tokens—called segments—influence each other through the speech
articulation process and by the way they are grouped into syllables. Therefore, we still need to de-
fine a metric for sequence similarity, and finding a good similarity metric is not trivial [22]. For
these reasons, the usage of Transformers is a natural choice because of their general-purpose ar-
chitecture for learning a contextual function mapping sequence of symbols in sequences of sym-
bols. It also handles peculiarities of the various languages that can be better learned from a rich
dataset rather than encoded in rules.

2.5 X-squatter’s Contribution over Existing Data-driven Models

We provide a qualitative example to illustrate the contribution of X-squatter over the previously
mentioned methods. Let us consider the word “gnocchi,” pronounced as /"NOk.ki/ in Italian. Some
IPA segments in the Italian pronunciation are not present in the en-US (American English) phonetic
inventory. Consequently, the Italian pronunciation of “gnocchi” encompasses sounds that do not
precisely align with American English phonology.

The Simple IPA Translation (Figure 1(a)) and Audio Inbound with IPA Translation (Figure 1(b))
models cannot handle these cases, as they must be trained for a particular language. When we
prompt the Multi-language IPA Translation (Figure 1(c)) model to generate candidates, it produces
homophones based on its contextual knowledge and the IPA segments present in the target
language (en-US in the example), producing “nowey,” “nowy,” “nori,” and “norie,” which are bad
candidates.

X-squatter uses a hybrid approach to produce candidates for a given target. X-squatter’s dis-
tinct advantage lies in its capacity to find good substitutes for IPA tokens not present in the tar-
get language. This is facilitated by the incorporation of sound features within the model, which
align tokens based on articulatory attributes. Besides surpassing the limitations illustrated by the
Italian-to-English example above, X-squatter’s hybrid approach has the significant advantage of
automatically matching token sizes (based on IPA transcripts), thus simplifying the audio signal
processing when compared to pure audio-based alternatives.

In sum, X-squatter incorporates the advantages of token-based models with the flexible repre-
sentation capabilities of audio-based models. Table 2 provides a comprehensive summary of our
data-driven models in terms of their capabilities.

2.6 Squatting of TLS Certificates and PyPI Packages

We apply X-squatter in two use cases, covering squatting of TLS certificates and PyPI packages.
The literature on attacks against both resources is vast. As we use them simply as a means to
illustrate X-squatter in practice, we here summarize only the most significant and recent works
approaching squatting in each scenario, deferring readers to these works for a complete discussion
on abuses of the TLS and PyPI ecosystems.

ACM Trans. Priv. Sec., Vol. 27, No. 3, Article 21. Publication date: June 2024.
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In [18], the authors evaluate how Certificate Authorities (CAs) are involved in the HTTPS
phishing ecosystem. The authors concentrate their study on various types of squatting, includ-
ing combo-squatting, typo-squatting, and homograph-squatting. In particular, they study whether
insecure practices of CAs lead to an increase in attacks. They highlight the high risk of squat-
ted domains in the TLS environment: end-users might perceive squatted domains as legitimate
when the domains are protected by TLS since they appear as valid in browsers’ address bar. Other
works [12, 36, 42] evaluate the occurrence of domain squatting using tools to create candidates
and verify the existence of the created domains. However, these works focus only on techniques
such as typo-squatting, combo-squatting, and homograph-squatting, ignoring sound-squatting.

Gu et al. [14] present a comprehensive analysis of security threats within software registries
such as PyPI and NPM. Alongside addressing various vulnerabilities, they approach typo-squatting.
The authors conclude that approximately 81.0% and 88.1% of removed packages on PyPI and NPM,
respectively, share name similarities with at least one other package—i.e., they could be examples
of typo-squatting. Additionally, a staggering 96.9% of the malicious packages—officially identified
by NPM—have names that resemble benign packages.

3 X-SQUATTER: SYSTEM DESCRIPTION

Here we detail the neural architecture and training for X-squatter. Utilizing a Transformer Neu-
ral Network, X-squatter simplifies the process of translating phoneme feature vectors into corre-
sponding graphemes. The functional process is shown in Figure 2(a). The generation pipeline is
built upon four essential components (detailed in the following):

(1) The Grapheme to Phoneme (G2P) component converts the input word presented in
grapheme format (in the example, the word “eye”) into its corresponding representation in
the IPA, given a read language (such as /aI/ for British English).

(2) The IPA to Feature Vector component processes each segment of the IPA representation,
substituting it with a feature vector that aligns with acoustic attributes.

(3) The Feature Vector Encoder component transforms the sequence of feature vectors into
representation in a latent space using a Transformer-based sequence-to-sequence model.

(4) The Grapheme Decoder (P2G) component interactively decodes the latent representation
into characters to compose a new grapheme form that presents similar pronunciation of the
input word (such as “I”). The initial state fed to the model selects the target language.

(5) The Post Processor component engages in beam search across the output logits and makes
token selections according to probabilities derived from the decoder’s output. This process
is key to generating numerous quasi-homophones from a single pronunciation.

In essence, the model acts as a function F (target word, read language,write language), where
the “target word” is the word for which we want to create sound-squatting candidates. The “read
language” represents the language used to pronounce the word, as the same sequence of letters
can have different pronunciations in different languages. Similarly, the “write language” denotes
the language in which we aim to transcribe the pronunciation (i.e., the language of the sound-
squatting victim). The output of this function is a set of sound-squatting candidates that belong to
the target language and include homophones, quasi-homophones, and so forth.

Next, we take a closer look at each component, breaking down their roles and contributions.

3.1 Grapheme to Phoneme (G2P)

The Grapheme to Phoneme component transforms written words into their respective IPA repre-
sentations for a specific language. There are different tools available for that, including solutions
that work for multiple languages. The most common approaches are either (1) rule based or (2)

ACM Trans. Priv. Sec., Vol. 27, No. 3, Article 21. Publication date: June 2024.
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Fig. 2. Illustration of the inference process of X-squatter.

data driven. Rule-based models employ predefined rules to convert word pronunciations based on
their spelling. Data-driven models use machine learning techniques and annotated data to build a
model for this task.

X-squatter can use any G2P model. Here, we chose to use the eSpeak NG (Next Generation) text-
to-speech engine [11] and Epitran [28] for transliterating text into IPA. eSpeak NG has better per-
formance for English-GB and English-US. Epitran is more generic and suitable for other languages.

3.2 IPA to Feature Vector

The IPA to Feature Vector module maps IPA segments to respective Articulatory Feature Vectors.
The technique produces a rich representation of IPA segments, introducing a concept of similarity
that is absent in pure IPA representation. Being IPA is a symbolic alphabet, it is not possible to

ACM Trans. Priv. Sec., Vol. 27, No. 3, Article 21. Publication date: June 2024.
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measure how similar two IPA segments are, e.g., in terms of the sound of their pronunciations.
This understanding of similarity becomes crucial for cross-language sound-squatting generation,
as each language may include only a subset of IPA segments. Given two differing languages, it
thus becomes necessary to search within the destination language set for other phonemes that
can effectively replace those from the original language. Equally, the definition of a metric that
quantifies the similarity between phonemes allows us to search for quasi-homophones and words
with similar pronunciations, better controlling the quality of the generated candidates.

Projects like [10, 25, 27] aggregate IPA segments and associated features for different languages.
Several proposals exist for creating Articulatory Feature Vectors that encompass features shared
across languages. Implementations such as in [21, 29, 39] convert IPA segments into these vectors,
which are then employed in various Natural Language Processing (NLP) applications. We use
PanPhon [29], one of the most recent proposals, which maps over 6,000 IPA segments to 21 sub-
segmental articulatory features.

3.3 Feature Vector Encoder and Grapheme Decoder

The fundamental components of X-squatter are the Feature Vector Encoder and Grapheme Decoder .
They are Transformer Neural Networks [47]. These transformers rely on the self-attention mech-
anism to learn how to translate a sequence of feature vectors to grapheme format. Readers unfa-
miliar with the Transformer architecture can find more details in Appendix A.

We rely on labeled data and standard algorithms employed for training Transformer Neural Net-
works in a sequence-to-sequence (Seq2Seq) task. A Seq2Seq task is a type of machine learning
problem where the goal is to transform an input sequence of data into an output sequence of data,
often of different lengths and structures. Seq2Seq models typically consist of two main components:
(1) an encoder, which processes the input sequence and encodes it into a fixed-length context vec-
tor (the latent representation), and (2) a decoder, which generates the output sequence based on
the context vector and previously generated tokens. The Transformer is an auto-regressive model
at inference; i.e., it can leverage its history of predictions to forecast future states.

When presented with a sequence of feature vectors that are obtained from the IPA to Feature

Vector model and predictions for each of the preceding (N − 1) characters, the Grapheme Decoder

module estimates the probabilities associated with each potential character becoming the N th
character of the output. Subsequently, the Post Processor component comes into play, analyzing
these probabilities and feeding the historical context back to the Grapheme Decoder for generating
the next forecast.

Our training approach involves instructing the transformers to take a feature vector input and
generate (1) the corresponding ISO code of the language and (2) the word’s written pronunciation
form. For example, given the feature vector of the input “/"wAt@ô/,” the correct output sequence
is “en-us water.” Similarly, if provided with “/"wO:t@/,” the output should be “en-gb water.” When
faced with such tasks, our model assimilates the associations between certain combinations of IPA
segments and specific languages or accents. We design X-squatter as a multi-language model, with
the explicit capability of generating cross-language homophones and quasi-homophones. During
inference, we control the language used to read the grapheme by changing the language or accent
of the G2P model.

In the cross-language case, for example, suppose we pronounce “water” in English-US and spec-
ify that we want the grapheme form to be transliterated into French-FR. In that case, the model can
generate the quasi-homophone “warères” (/waö@ö/), which does not exist as a word in French-FR
but has a similar pronunciation to “water” in English-US.

To specify the language the transformer shall use to transliterate the phoneme back into
grapheme form, we provide as the start of the decoder input the target language ISO code.
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3.4 Post Processor: The Quasi-homophone Generation

The Post Processor is the last element of the inference: it receives as input the Grapheme Decoder’s
probabilistic forecasts of the next character, and it keeps track of the history of predictions to
feed back to Grapheme Decoder . Because Grapheme Decoder operates as an auto-regressive model
at inference, we can generate more than a candidate quasi-homophone by providing different se-
quences of previous N − 1 characters. We use a Beam Search to pick from among the tokens those
whose probabilities add up to p, also known as top-p strategy.

Figure 2(b) shows the exact output for four iterations. At each step, the Post Processor stores
the C most likely predictions of Grapheme Decoder whose probabilities add up to at least p and
constructs alternative histories for the next step. Figure 2(b) shows this process with a directed
graph diagram (with p = 0.8) starting from the IPA representation of eye. After four iterations,
the process generates six ways to write eye. Each branch stops when Grapheme Decoder outputs
the special character EoS.

The number of iterations (M), maximum number of candidate predictions (K ), probability (p),
and temperature (t ) are parameters that we can define manually.4 For this work, we empirically
define M = N + 6 times, where N is the size of the source word. We discuss the choice for p and t
in Section 4.

4 X-SQUATTER: TRAINING AND VALIDATION

We now detail the training procedure and validation of X-squatter. We train our model using four
distinct languages: English-US, English-GB, French-FR, and Portuguese-BR. The selection of Eng-
lish is grounded in its ubiquitous usage on the Internet. The inclusion of both English variants
serves to highlight the influence of accents in homophone-based impersonation. Additionally, we
opt for two Latin languages: French-FR, which lacks phonetic regularity, making it more suscep-
tible to transliteration confusions, and Portuguese-BR, a more phonetically consistent language
where the alignment between graphemes and phonemes is uniform. Moreover, we have restricted
ourselves to those languages since we managed to present results to speakers who are fluent in
at least two of the selected languages, thus helping us to get a qualitative validation of results. Ex-
tending the analysis to other languages, in particular out of the proto-Indo-European spectrum, is
left for future work.

4.1 Dataset and Training

The training dataset consists of the list of English-US, English-GB, French-FR, and Portuguese-BR
words from the GNU Aspell [6] word list. GNU Aspell is a free and open source spell checker
containing word lists for multiple languages. To acquire the pronunciation, we use rule-based G2P
tools: eSpeak NG for English-GB and English-US and Epitran for French-FR and Portuguese-BR.

The training involves taking an IPA input and generating the corresponding ISO code for the
associated language, together with the word in written form. The training process of X-squatter is
depicted in Figure 3. Dashed lines delineate the perimeter of the learnable parameters. There are
two important differences in the training process when comparing X-squatter to the other models
presented in Figure 1: (1) recalling that X-squatter is a hybrid solution, note how the Transformers
expect features that encode audio properties, and (2) the target language is passed directly to the
Grapheme Decoder block and, as such, should not be encoded in the latent features.

The training process involves a sequence-to-sequence task. The input sequence consists of a
text and the “Read Language” ISO code to produce the pronunciation. The Grapheme to Phoneme

4The temperature is a normalization factor that allows the model to be more or less innovative in the generation.
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Fig. 3. X-squatter training process.

Table 3. Dataset Size for Each Chosen Language

Language Tag Language Region Data Size

en-GB English United Kingdom 65,118
en-US English United States 125,923
fr-FR French France 245,971
pt-BR Portuguese Brazil 95,943

Total 532,955

module processes the input text and generates a sequence of IPA tokens based on the “Read Lan-
guage,” which defines the pronunciation of the input in that language.

These IPA tokens are then passed to the IPA to Feature Vector module, where each token is
transformed into a vector representing the acoustic features of pronunciation. The Feature Vector

Encoder uses the Transformer’s attention mechanism to map these vectors to an embedding space.
In the final stage, the Grapheme Decoder generates the output token sequence, taking as input the
“Write Language” ISO code. During training, this ISO code should match the “Read Language” ISO
code, and the sequence should also contain the correct spelling of the pronunciation. The loss is
calculated based on the expected output, which consists of the sequence of ISO codes plus the
Grapheme Target.

Table 3 shows the size of the dataset for each language. In total, we use 437,012 words and their
pronunciation. We train the Feature Vector Encoder and the Grapheme Decoder using a batch size of
16 words. Our training dataset comprises 80% of the samples, while 10% is allocated for validation
and another 10% for the test set. The maximum sequence length is limited to 50 tokens. Following
the standard practices on machine learning, we employ the validation set for model selection, while
the test set serves to assess over-fitting. We set a maximum of 100 epochs for training, setting an
early stop heuristic to interrupt the training in case of no progress in the validation set for three
consecutive epochs. Indeed, training has converged after 38 epochs (about 1.15M steps), which
took around 12 hours on a single Nvidia Tesla v100.

Table 4 lists the number of trainable parameters we used to train X-squatter and the baselines.
This aspect affects resource consumption and training time. Since all models use the same base
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Table 4. Model Size of the Different

Alternative Approaches

Model # Trainable Parameters

X-squatter 23.8 M
Baseline 1 22.1 M
Baseline 2 60.2 M
Baseline 3 22.2 M

Table 5. Examples of Homophones Obtained

from Their IPA Representations

IPA Pronunciation Homophones

waIt white, wight
slaIt sleight, slight
3:n earn, urn
bOl ball, bawl
neI nay, neigh

architecture (Transformer), the number of parameters has the most influence on resource consump-
tion, i.e., GPU memory. In terms of size, all models are similar, with an exception for Baseline 2.
The reason for that is the inclusion of audio signals as input. The need for reconstructing the audio
signal via Mel Spectrogram requires the addition of other modules in the architecture of the tool.
The new module is responsible for the 38-million-parameter difference in the size of Baseline 2.

4.2 Model Validation

The rationale behind our validation lies in confirming whether X-squatter can generate well-
accepted written forms for any specific pronunciation. For that, we assess the model coverage
of known homophones given a target word. The better the coverage of known homophones of a
model when generating candidates, the better its generation capacity.

Our verification is divided into two parts. First, we verify the average coverage within a single
language, wherein we chose English-US. In the second part, we focus on cross-language homo-
phones. An instance of cross-language homophones is illustrated by:

— Hache (French-FR) [a;S]: In French, hache means “axe.”
— Ash (English-US) [a;S]: In English, ash refers to the residue from burning.

The two words—from distinct languages—are cross-language homophones since their pronunci-
ations (represented in IPA) are identical. Often, the involved words assume very different written
representations and meanings in these cases. Yet, they are good sound-squatting candidates, i.e., in
this example, the victim could be a French person who must write ash heard with proper English
pronunciation.

4.3 Single-language Homophone Coverage

We first evaluate the single-language scenario. For that, we obtain a complete list of homophones
for English, using the curated list of known homophones provided by the AIL tool [26, 32]. Some
examples of homophones are provided in Table 5.

This list contains 362 pronunciations in English-US represented as IPA transcripts. Each IPA
transcript is associated with at least two English words, which are thus homophones. This curated
list serves as our ground truth. Our evaluation involves inputting the IPA transcripts into both
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Fig. 4. Homophone coverage for single- and cross-language scenarios: As the parameter K (maximum num-

ber of candidates prediction) increases, the model exhibits a higher coverage.

the baseline models and X-squatter and gathering the candidates generated by each model. When
making predictions with the models, we set the beam search with a probability threshold of p =
0.9999 and a temperature value of t = 1.0.

We then measure the percentage of known homophones generated by each model when produc-
ing a given number of candidates for each of the 362 pronunciations. Clearly, the more candidates
we produce, the higher the probability of generating all known homophones. We expect good mod-
els to generate the known homophones earlier since known homophones are the best candidates
for sound-squatting.

Results are summarized in Figure 4(a), which depicts the average coverage with lines. Results
for the three baseline models are mostly coincident, and thus lines overlap in the figure. The color
ranges mark the confidence intervals. As expected, increasing the maximum number of candi-
dates per pronunciation systematically increases coverage. While the baseline models arrive at a
maximum coverage of 90% of the homophones with 30 candidates per pronunciation, X-squatter
generates all homophones already with less than 20 candidates per pronunciation.

4.4 Multi- and Cross-language Homophone Coverage

We complement the analysis with the multi-language scenario. As there is no curated list of cross-
language homophones, we collect all pronunciations from the training dataset and mark as cross-
language homophones the words showing exactly the same pronunciation across different lan-
guages.5 Recall that models are trained using phoneme/grapheme pairs always of the same lan-
guage. As such, models have not seen cross-language homophones during training.

We find a total of 95 pronunciations with multiple written forms in various languages. Notably,
since we have the rigid requirement that the pronunciation must be identical across at least two lan-
guages, the number of cross-language homophones is relatively small. In total, we observe 374 writ-
ten forms spanning four languages. Examples of cross-language homophones are shown in Table 6.

Following the same approach as for the single-language validation, we input these
pronunciations into both the baseline models and X-squatter, capturing the candi-
dates generated by each model. Recall that the model can be represented as a function

5We engaged multi-language speakers in the used languages to validate these lists of cross-language homophones.
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Table 6. Examples of Cross-language Homophones with IPA Pronunciations

IPA Phoneme Homophones

ES [f r − f r ] ais, [en − us] esse
SI [f r − f r ] chie, [pt − br ] xi, [en − us] shi

kædi [f r − f r ] caddie, [pt − br ] cádi, [en − дb] caddie, [en − дb] caddy
maS [f r − f r ] mâchai, [pt − br ] más, [en − дb] mache, [en − дb] mash
kaS [f r − f r ] cache, [pt − br ] chás, [en − дb] kasch

F (target word, read language,write language). In the cross-language case, we modify the input
to F (unknown word, unknown language,write language). By varying the “write language,” we
generate the output for all four target languages, aggregating the outcomes. During predictions,
we again utilize a probability threshold p = 0.9999 and a temperature value t = 1.0.

Figure 4(b) provides a visualization of the results. Similar to the single-language scenario, in-
creasing the maximum number of candidates systematically enhances the average coverage. How-
ever, we observe a divergence among the baseline models. As expected, two baseline models do
not support multi-language scenarios and as such achieve a maximum coverage of 60%. That is,
they identify only the cases where there are also intra-language homophones in the dataset.

X-squatter stands out, generating around 94.89% of the known cross-language homophones
with less than 10 candidates per pronunciation. These results confirm that X-squatter candidates
are of good quality, including all single-language homophones and most of the cross-language ones
already in its first few candidates. X-squatter is, however, able to generate many more candidates,
including quasi-homophones and words with similar pronunciation, i.e., cases that are completely
neglected by the list-based methods used for producing our validation ground truth. In the follow-
ing, we show how X-squatter’s candidates can be used for the proactive search of sound-squatting
abuses.

5 SEARCHING FOR SOUND-SQUATTING

We now apply X-squatter in the search for sound-squatting in practical use cases. Specifically, we
compile a collection of popular names, derive their homophones and quasi-homophones across
multiple languages, and actively check whether (1) they have been used in practice and (2) they
may be sound-squatting abuses.

We focus on two types of resources: PyPI packages (Section 5.1) and domain names found in
registered TLS certificates (Section 5.2). In both cases, when generating sound-squatting, we also
use alternative squatting tools for generating candidates, comparing the results of our analysis of
sound-squatting against other types of squatting. We use as a baseline the AIL tool [32], generat-
ing all candidates for each given target. This tool incorporates a set of 21 algorithms encompassing
typo-squatting, homograph-squatting, and list-based sound-squatting (see Section 2). For simplic-
ity, we will refer to the candidates generated by AIL as “other-squatting.”

By contrasting our sound-squatting approach with the other-squatting techniques generated by
the AIL tool, we show that our data-driven approach can uncover threats neglected by the baseline,
leaving resources exposed to attacks.

5.1 Squatting on PyPI Repository

We first investigate the squatting opportunities on PyPI. Here we limit ourselves to finding
packages in the PyPI platform that are good squatting candidates for popular packages. We study
the characteristics of these packages and their statistics, comparing sound-squatting against our
baseline. Verifying the actual maliciousness of all these candidates is out of our scope—instead,
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Table 7. Generated Candidates and Projects Found Online per Technique,

Along with the Intersection Comprising Candidates Matching Both

Sound-squatting and Other-squatting Techniques

Sound-squatting Other-squatting Intersection

Generated 518,180 7,637,268 21,870
Found 1,579 16,770 1,050

we shed light on the attack opportunities, illustrating how sound-squatting candidates differ from
other-squatting.

5.1.1 Background. The Python Enhancement Proposal (PEP) 541 [13] is explicit in its stance
against name squatting within the PyPI ecosystem. This prohibition serves as a preventive mea-
sure against the distribution of malware through the manipulation of users’ potential confusion
regarding package names. A stark illustration of these concerns emerged in November 2022 when
Phylum6 published an article detailing PyPI attacks: malicious actors utilized Python to engineer a
JavaScript extension that substitutes cryptocurrency addresses in clipboards with wallet addresses
under the attackers’ control. Generally, documented attacks against the PyPI ecosystem primarily
rely on typo-squatting. Yet, there has been anecdotal evidence of squatting that unintentionally
affected non-English speakers.7

These incidents underscore the intrinsic risks associated with name squatting within platforms
such as PyPI. Sound-squatting may introduce greater complexities for moderators to detect, po-
tentially allowing packages to evade surveillance.8

5.1.2 Methodology. We start from a list of 5,000 highly popular packages from the PyPI reposi-
tory based on their download counts in the last 30 days before June 20, 2023. Subsequently, we gen-
erate candidate package names using both sound-squatting and other-squatting techniques. Next,
we search the repository index to determine the occurrence of these candidate packages. Our anal-
ysis focuses on tracking the existence of these packages over 967 days, from November 20, 2020,
to July 14, 2023.

In total, we generate a substantial number of candidate package names. Specifically, we create
518,180 sound-squatting candidates and 7,637,268 other-squatting candidates across the entire
set of 5,000 packages. That is, there are approximately 15 times more other-squatting candidates
per project, which is expected given the diverse range of algorithms utilized for other-squatting
generation.

5.1.3 PyPI Package Candidates. Table 7 shows the number of candidates evaluated and the total
number of candidates that exist on the platform at some point in the evaluation period. We also
show the intersection between the techniques to illustrate that sound-squatting is not covered by
the other algorithms.

As said above, the number of other-squatting candidates is around 15 times the number of sound-
squatting candidates. Yet, there is a first interesting difference in the proportion of candidates
found to exist on the platform. While ≈2.2 packages are found online for every 1,000 candidates
for other-squatting, this ratio increases to ≈3.0 for sound-squatting. It is also interesting to check

6https://blog.phylum.io/phylum-discovers-another-attack-on-pypi/
7https://metrodore.fr/i-have-been-powned.html
8Notice that we do not envision only scenarios where users rely on voice commands to install packets, which may be

rather rare currently. Instead, we believe a greater threat in this case is represented by users who must type in the name

of packets heard from others.
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Fig. 5. Temporal analysis of squatting candidates in PyPI. (a) Found candidates over total generated candi-

dates. (b) Found candidates over the number of evaluated targets. (c) Downloads of candidates vs. downloads

of target packages.

the intersection of the lists. Names found in both lists have a much higher chance of being found
on the platform: ≈48 for every 1,000 candidates is indeed found online. That is, X-squatter offers a
good method to refine and prioritize the search for squatting in lists generated by the other tools.

This behavior is consistent over time, as depicted in Figure 5(a). The figure shows the cumulative
count of found candidates per day, divided by the total number of generated candidates. Separated
lines show sound-squatting candidates (yellow) and other-squatting (blue). The share of sound-
squatting candidates found online is consistently higher than other-squatting, growing almost
linearly over time as new packages are added to PyPI.

In the temporal analysis, we note a particular behavior starting in February 2021. To improve
its analysis, we show the share of packages found online per day normalized by the number of
targets (5,000) in Figure 5(b). Naturally, other-squatting is above sound-squatting in this figure as
we have more other-squatting candidates than sound-squatting candidates.

On February 12, 2021, a total of 573 packages from our list of typo-squatting candidates were
created in the platform. We see in Figure 5(b) a major increase in the share of other-squatting
candidates found online, followed by a sharp drop. Between February 25, 2021, and February 26,
2021, approximately 73,000 packages faced suspension in PyPI due to violations of the platform
rules. In the aftermath, on February 27, a large portion of the suspended packages were reinstated
(see the plateau after that day in Figure 5(b)), as not all removed packages could be linked to
malicious activity. Finally, on July 5, 2021, 1,610 packages were permanently deleted from PyPI,
with a substantial number also present in our generated dataset, as shown by the sharp drop for
other-squatting in Figure 5(b). This event has been documented in reputable sources.9

Interestingly, sound-squatting candidates have mostly been ignored in the February 2021 inci-
dent. Yet, package statistics suggest that it does represent a threat that could be equally exploited.

Figure 5(c) displays a scatter plot of the number of downloads of the package targets (y-axis) ver-
sus the number of downloads of the candidates found online (x-axis). Notice the different scales.
Each point marks a candidate and colors represent sound-squatting (yellow) and other-squatting
(blue). Sound-squatting candidates are found in the complete spectrum of the figure, with down-
load statistics comparable to other-squatting types. Notice in particular that many sound-squatting
candidates present large download counts.

We finally perform a manual qualitative analysis of some sound-squatting candidates generated
by X-squatter, presenting in Table 8 salient examples. Some of these packages are periodically
deleted by the platform and republished right after the removal. Not all of them are malicious. In

9See https://www.theregister.com/2021/03/02/python_pypi_purges/ and https://github.com/pypi/support/issues/935
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Table 8. Examples of Candidates Generated by X-squatter and Found Online in the PyPI Repository

Squatting Legitimate Package Context

scrapi Scrapy Empty repository
sfinx sphinx Low-reputation project without documentation

requestes requests Warning page
regex rejex Affiliated project (legitimate)
skema schema Low-reputation project without documentation
flasque flask Low-reputation project without documentation

noompy numpy Project uses similarity as a form of homage
pidantic pydantic Low-reputation project without documentation

pirec pyrect Unrelated. Squatting project, allow shell command execution

particular, requestes is a package that warns users against installing packages without checking
them first. Most packages have a low reputation with almost no documentation, which indicates a
parking or squatting attempt. One striking example is pirec, which is very similar in pronuncia-
tion to the legitimate package pyrect. However, pirec is a software that can execute shell scripts,
giving attackers a high degree of freedom once victims install the package.

These results indicate that sound-squatting represents a feasible technique for malicious actors
seeking to propagate malware via PyPI. We believe X-squatter can assist PyPI’s moderators in
adopting measures to effectively mitigate the potential risks associated with sound-squatting.

5.2 Domain Impersonation

We now move into domain squatting, specifically within the context of HTTPS domains. Squatting
in domains with valid TLS certificates is a serious threat as valid certificates can fool users into
believing the squatted domain is legitimate. As for the previous use case, we focus on comparing
sound-squatting to other types of squatting. While some examples of malicious sound-squatted
domains are provided, a comprehensive verification of maliciousness is beyond the scope of our
work.

5.2.1 Methodology. Attackers are known to register TLS certificates for squatted domains to
increase the success rate of phishing campaigns. We thus search for squatting candidates using
a dataset of registered domains found in certificates collected via CertStream (Certificate Trans-
parency Logs).10 We select the 10,000 most accessed domains from the Tranco Ranking List [31]
(accessed on July 10, 2023).

Using X-squatter, we generate a total of 545,509 unique names from these 10,000 candidates,
employing several cross-language configurations. In this use case, we set X-squatter parameters to
limit the number of candidates to 35 per domain, and use as a thresholdp = 0.999 and a temperature
of t = 1.0. Again, we generate candidates for other-squatting candidates with AIL Typo-Squatting.
We obtain 7,853,273 other-squatting candidates, and, among those, 52,089 candidates fall within
the intersection of the two categories.

Using the CertStream data, we extract all server names to build a list of registered second-level
domains. By scrutinizing these names, we identify domains that have the potential to impersonate
popular websites, even in their nascent stages. This early identification is pivotal in preventing
squatting attacks. We collected certificates spanning 124 days, from February 11, 2023, to June 14,
2023. In total, we gathered 866,125,758 certificates representing 127,775,910 domains across 5,155
Top-Level Domains (TLDs). These certificates originated from a total of 263 certificate issuers

10https://certstream.calidog.io/
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Table 9. Candidates Generated and Registered Domains per Technique,

Along with the Intersection of Candidates Matching Both Sound-squatting

and Other-squatting Techniques

Sound-squatting Other-squatting Intersection

Generated 545,509 7,853,273 52,089
Found Registered 84,377 607,010 32,490

located in 50 different countries. Processing this longitudinal dataset required substantial resources
(including a PySpark cluster). It is worth noting that conducting daily searches is also a feasible
approach with few resources.

5.2.2 Registered TLS Certificates. Table 9 details the total number of candidates and those we
found in CertStream. We notice a trend similar to the PyPI use case, however, with much higher
percentages. While ≈7.7% of the candidate TLS certificates are found online for other-squatting,
this ratio increases to ≈15.5% for sound-squatting. Names found in both lists again have a much
higher chance of being found on CertStream: ≈62.4% are indeed online. This reinforces the impor-
tance of checking sound-squatting and the use of X-squatter for proactive defense.

The percentages of existing candidates are striking for both other-squatting and sound-
squatting. To observe how the phenomenon evolves over time, Figure 6(a) presents the proportion
of registered candidates we identified as existing, compared to the total number of domains found
in all certificates issued on each respective day. Notice how the ratio is constant over time, with
some minor spikes in particular days. That is, the registration of potentially abused domains is
very high and continuous. Naturally, other-squatting is above sound-squatting as we have much
more other-squatting candidates.

Figure 6(b) provides insight into the relationship between TLDs and sound-squatting candidates.
Notably, the TLD .io stands out with an average of 467.46 (standard deviation 146.94) unique
registered domains that match our candidates per day, a share of 3.98%. To complement the picture,
in Figure 6(c), we represent the position of the most popular TLDs according to the number of
registered domains and their ranking position based on the number of squatting candidates per
TLD. Ideally, we would expect a linear relationship around the red line, indicating that the number
of squatting candidates is proportional to the number of domains managed by each TLD. This is
indeed the general trend. However, we also observe some outliers in the figure.

Among the top 100 most present domains, we find that TLDs such as .io, .app, and .dev deviate
significantly from the diagonal line. Even more concerning is the outlier TLD .us. These findings
align with recent reports of phishing campaigns hosted in the .us TLD.11

This variation among TLDs in their susceptibility to squatting activities highlights the need for
a nuanced examination of each TLD’s security and potential misuse.

Finally, Table 10 summarizes the number of candidate domains found online, grouped by the
type of sound-squatting they represented. Some domains are potentially abused in a unique cross-
language combination since the global unique abused domains are 9,586. This provides evidence
that sound-squatting also considers cross-language homophones. Considering other-squatting, we
find 607,010 names with the potential of being abused for 3,661,705 unique registered domains,
which represents a total of 8.98% of the generated candidates. In total, 8,878 domains can be po-
tentially squatted by at least one candidate using the typo-squatting technique.

Also in Table 10, one of the languages used in the Phoneme to Grapheme (target language)
is Spanish-ES. This language is not on the training data; however, X-squatter is able to model

11https://it.slashdot.org/story/23/09/02/1415234/why-are-godaddys-us-domains-being-used-for-so-much-phishing
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Fig. 6. Temporal analysis of squatting candidates in SSL/TLS certificates collected from Certificate Trans-

parency: (a) Registered candidates over total registered domains on issued certificates per day. (b) Ratio of

registered sound-squatting candidates per TLD. (c) Relationship of TLD and squatting candidates.

Table 10. Results for Cross-language Sound-squatting by Language Combination

Sound-squatting Other-squatting

G2P

P2G en-GB en-US fr-FR pt-BR

en-GB 0.791 / 21,606 / 0.0034 0.750 / 20,597 / 0.0032 0.649 / 16,521 / 0.0026 0.681 / 19,076 / 0.0030
en-US 0.754 / 20,467 / 0.0031 0.795 / 21,394 / 0.0033 0.656 / 16,592 / 0.0026 0.700 / 19,401 / 0.0030
es-ES 0.578 / 15,096 / 0.0023 0.601 / 15,954 / 0.0024 0.425 / 9,876 / 0.0016 0.575 / 12,640 / 0.0021
fr-FR 0.677 / 19,557 / 0.0031 0.675 / 19,550 / 0.0031 0.636 / 15,086 / 0.0026 0.639 / 15,814 / 0.0026
pt-BR 0.650 / 16,117 / 0.0023 0.668 / 16,768 / 0.0025 0.431 / 9,989 / 0.0016 0.714 / 15,329 / 0.0025

Overall 9,586 / 84,377 / 1,116,227 8,878 / 607,010 / 3,661,705

The table displays separated by a ‘/’ (i) the ratio of targets with at least one existing candidate, (ii) the number of

registered candidates, and (ii) the ratio of registered candidates over the total number of registered domains analyzed.

Note that a single candidate might be registered across multiple top-level domains (TLDs), leading to a higher count of

registered domains than candidates.

the language and produce results similar to the other languages that are present in the training
set. This result suggests that the representation power of X-squatter can be generalized to other
languages, which we will investigate further in future work.

5.2.3 Manual Qualitative Analysis. To assess the effectiveness of our generation, we chose do-
mains with known histories of phishing attacks. Specifically, we choose amazon, bankofamerica,
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dropbox, facebook, icloud, instagram, linkedin, microsoft, netflix, paypal, steamcommunity, and
tripadvisor for our analysis.

Subsequently, we obtain the candidates using X-squatter and conduct a manual verification pro-
cess to ascertain whether these domains exhibited phishing characteristics. The manual verifica-
tion covers 1,038 domains. We use the tool Puppeteer to capture screenshots, setting a timeout of
2 seconds.

We organize the candidates into nine distinct classes that effectively capture legitimate/abuse
characteristics. This classification scheme aids in gaining insights into the nature and potential
purposes behind these domains:

— Error Domains (463 domains): The “Error Domains” category consists of domains that
do not present any content and are shown as errors in the browser. These domains likely
represent typographical errors, misconfigurations, or inactive websites. While they may not
be malicious, they still have relevance.

— Legitimate Domains (279): These are genuine, non-squatting domains that are not in-
volved in any malicious or deceptive activities. They serve their intended purpose without
any evidence of fraud.

— Domains for Sale (117): Domains in this category are put up for sale. While not necessarily
malicious, they might be squatting on potentially valuable domain names with the intention
of selling them at a higher price.

— Parked Domains (90): Parked domains are placeholders typically used by domain owners
or registrars. They often display advertisements or a generic landing page, and their primary
purpose is to generate revenue through ad clicks.

— Redirector Domains (40): Redirector domains are used to redirect web traffic from one
domain to another. They can be legitimate, but they may also be used in various online
scams and malicious campaigns.

— Hit-stealing Domains (16): Hit-stealing domains might be involved in schemes where they
try to intercept or steal web traffic intended for other legitimate domains, potentially for
fraudulent purposes.

— Look-alike Domains (10): Look-alike domains often resemble well-known, legitimate
pages, but with slight variations that might go unnoticed. They are typically used in phish-
ing or deception attempts.

— Phishing Campaign (7): Domains categorized under this label are likely part of phishing
campaigns, where they are used to trick users into revealing sensitive information or cre-
dentials.

— Other (16): This category includes domains that do not fit neatly into the previously defined
categories or require further investigation to determine their purpose and intent.

We show in Figure 7 some examples of phishing domains found during the classification.
Interestingly, some brands chose to buy problematic domains and redirect traffic to their services.

We call these Authoritative Owned domains. Focusing on the Redirector Domains, we discovered
by checking DNS data that 18 quasi-homophone domains for Amazon and Apple are Authorita-
tive Owned. Four domains are owned by an organization responsible for brand protection. Eight
domains belong to third-party organizations, and for 11 domains we could not find any informa-
tion regarding ownership. After this inspection, we conclude that measures taken by high-profile
organizations against domain impersonation include some sound-squatting candidates. However,
there are many missing candidates, which thus represents an opportunity for attackers.

6 DISCUSSION AND LIMITATIONS

We now discuss limitations related to both our proposed tool and experiments.
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Fig. 7. Phishing examples for Amazon.com and Netflix.com found in selected candidate domains.

6.1 Coverage

Language Scope. Our investigation focused on languages within the Indo-European family,
specifically English (United States and Great Britain), French (France), Portuguese (Brazil), Italian
(Italy), and Spanish (Spain). These languages collectively represent a substantial portion of online
users and resources [33]. While this choice allows for an extensive evaluation of phonetic aspects
due to the availability of tools and resources, it excludes important languages from other language
families such as Russian, Chinese, and Arabic.

X-squatter can be extended to cover these languages. The IPA applies universally, enabling us
to obtain Feature Vectors for other languages. We have illustrated this flexibility by reporting re-
sults for es-ES (Spanish from Spain) as the input language in Table 10, even though the model has
not been trained with this language. The application of X-squatter for other languages requires
that Grapheme to Phoneme be adapted to the input language, while a specific Grapheme Decoder

module must be adjusted to specific written forms of the output language via fine-tuning or
retraining.

Also, regarding adaptability, a potential challenge arises if the rules of Grapheme to Phoneme are
no longer applicable, which would be the case if new words are added to a language, e.g., due to
the natural evolution of languages. However, languages often adapt spellings and pronunciations
slowly, making this scenario rare. Moreover, words borrowed from one language to another typi-
cally maintain a similar pronunciation but change in written form, and thus are in line with our
assumptions.

Handling Heteronyms. A limitation in our approach is its lack of handling of heteronyms, i.e.,
words with the same written form but different pronunciations, common in non-phonetic lan-
guages like English and French. Again, this is mostly a problem to be addressed in the Grapheme

to Phoneme module. The eSpeack NG is designed to produce a single pronunciation alternative and
does not cover heteronyms. Properly handling them requires using a Grapheme to Phoneme that
generates all alternative pronunciations for the same word. Measuring the practical impact of the
lack of this feature is challenging, as their classification depends on context.

6.2 Applicability

We do not provide a comprehensive measurement study that quantifies sound-squatting actual
abuses and their impact on end-users. Quantifying the effectiveness of attacks based on sound-
squatting will require a study with real users.

Unlike typo-squatting, sound-squatting candidates may appear familiar to users, making them
harder to detect. Indeed, our qualitative analyses indicate that X-squatter can be applied to improve

ACM Trans. Priv. Sec., Vol. 27, No. 3, Article 21. Publication date: June 2024.



X-squatter: AI Multilingual Generation of Cross-language Sound-squatting 21:23

the search for other squatting techniques. Moreover, as mentioned earlier, we believe the threat is
far from limited to voice commands. We hypothesize, for example, potential abuses exploiting mis-
understanding on recommendations. These cases may occur when someone recommends products
(e.g., sites or software) with foreign names without spelling. This is the case of a user listening to
radio or podcast advertisements and trying to access resources for which the pronunciation may
be misleading. In summary, we envision spoken language as the attack vector, extending beyond
smart speakers or voice-to-text engines. However, we do not validate this hypothesis here, as it
will require a different methodology—which necessarily will involve users—to collect significant
datasets.

6.3 Scalability

X-squatter uses a Transformer network, which can be trained in a single-commodity server in
a few hours. Compared to the list-based alternatives, X-squatter requires more computational
resources during training. However, it improves the quality and coverage of the generated
candidates.

While we compare different Transformer architectures during our design of X-squatter, we have
not considered more recent alternatives, in particular those based on generative AI. The defining
characteristic of Large Language Models (LLMs) is their large number of parameters [8]: for
instance, Bert [9] has 100 million parameters, GPT-2 has 1.5 billion parameters [34], and LLama2
has 65 billion parameters [43]. Usually, specializing these models to specific problems requires fine-
tuning, with substantial effort in terms of data collection and especially computational resources.
We instead decide to build a specialized model to tackle a domain-specific problem, avoiding fine-
tuning large/huge models. This allows us to reduce the model size while increasing the perfor-
mance in the specific task. X-squatter has 22M parameters, and it leverages architectural choices
fine-crafted for the homophone generation problem.

In sum, the capabilities seen in recent LLMs call for a direct comparison of X-squatter with these
new models. This will require more experiments to assess not only the quality of the generated
candidates but also the complexity of the complete pipeline.

7 CONCLUSION AND FUTURE WORK

This article focused on cross-language sound-squatting, a threat that has gained prominence, par-
ticularly with the rise of smart speakers and audio content like podcasts.

We introduced X-squatter, a multi-language AI-based system that leverages a Transformer Neu-
ral Network to generate high-quality sound-squatting candidates. We employed X-squatter to enu-
merate domain names vulnerable to sound-squatting abuse within the vast landscape of TLS cer-
tificates. We uncovered that approximately 15% of the generated candidates are associated with
existing TLS certificates—a higher figure when compared to other squatting types (7%).

Additionally, we applied X-squatter to study PyPI packages, where we identified hundreds of
sound-squatting candidates within a 3-year package history. We identified that sound-squatting
candidates are more often neglected in periodic platform checks, as opposed to other types of
squatting, calling for more proactive prevention measures.

In essence, X-squatter is a new asset for the proactive defense against the multilingual sound-
squatting. It not only helps to uncover the threat but also paves the way for enhanced protection
in the evolving landscape of the cyber threat.

For future work, we plan to integrate X-squatter for the protection of smart speakers. We also
plan to investigate multi-modal models to include sound, together with other types of features,
directly in the model training.
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APPENDIX

A ARCHITECTURAL DETAILS

Figure 8(a) details the architecture of the model used for homophone generation. We include in
the diagram the Feature Vector Encoder and Grapheme Decoder . We also show in Figure 8(b) the
inside of the decoder block that we use to reduce the complexity of the visualization.

Fig. 8. (a) High-level representation of the X-squatter Transformer architecture. (b) Inside view of the Artic-

ulatory Decoder Block.

We adopted the Adam optimizer with a learning rate (LR) of 0.0001, β1 = 0.9, β2 = 0.98, and
ϵ = 10−9. Training halts when we observe the Validation Loss ceasing to decrease for three consec-
utive epochs. Symmetric hyperparameters are employed for the Transformer Network in both the
encoder and decoder modules, with a hidden representation size of 512, an embedding dimension
of 512, and eight attention heads. The input vocabulary encompasses 6,487 IPA segments, while
the output vocabulary comprises 133 grapheme tokens, consistent across all languages. Table 11
lists the hyper-parameters.

Table 11. Compilation of Hyper-parameters for X-squatter

Hyper-parameter Value

# Phoneme Vectors 6,487

# Grapheme Tokens 133

Phoneme Embedding Dimension 512

Feature Vector Encoder # of Attention Heads 2

Feature Vector Encoder Hidden Dimension 512

Feature Vector Encoder Linear Hidden 2,048

Feature Vector Encoder Dropout 0.1

Grapheme Decoder # of Attention Heads 2

Grapheme Decoder Hidden Dimension 512

Grapheme Decoder Linear Hidden 2,048

Grapheme Decoder Dropout 0.1

Total Number of Parameters 60.2 M
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