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In this work, we explore pattern formation dynamics across a diffusively coupled Memristor Cellular Nonlinear Network (MCNN), which is
composed of identical cells with locally active memristors. We bias the cells on the edge-of-chaos, introduce a systematic design procedure to
induce complexity in the array, and extract the element values analytically in a parametric form. In order to enhance the stability and speed of the
numerical simulations, we apply a simple variable transformation to a core memristor model while we include the additional effect of parasitic
resistors to investigate the locally active dynamics of a VO2 device. We first take a close look at the effect of the linear coupling resistor on pattern
formation, and later study how nonlinearly-resistive coupling, based upon tangent hyperbolic law, affect the emergence of complex patterns.
Simulation results reveal that a variety of static patterns with different characteristics can emerge across the proposed MCNN.

© 2022 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

1. Introduction

The dimensions of microelectronic circuits have been ag-
gressively scaled down since the first implementation of
integrated circuits (ICs) in 1960s. This downscaling has not
only boosted the technological developments but also re-
sulted in a huge market size for consumer electronics with a
significant demand on artificial intelligence (AI) technolo-
gies. Since reaching atomic boundaries in semiconductor
technology has announced the practical end of the Moore’s
law already a decade ago, the electronic industry is com-
pelled to develop novel materials and computing strategies to
overcome the Von-Neumann bottleneck of conventional
computing systems.1,2) In line with these expectations, the
intentional realization of memristors,3) a novel nanoscale
resistive memory element theoretically postulated4) in the
early seventies, led to the development of a new paradigm
called in-memory computing.5,6) Since 2008, when Hewlett
Packard Labs announced the observation of memristive
phenomena in resistance switching devices based on thin
oxide films, there has been a huge research on fabrication,
modeling, and implementation of memristor-based systems.
Due to the fact that memristors can perform computing and

data storage tasks inherently inside the same media, the need
for joining the computing and memory units can be elimi-
nated in memristive computing architectures. The perfor-
mance improvement, which this provides to electronics,
immediately suggests the design of novel circuits and
systems which are suitable for typical AI computations
within the Internet-of-Things (IoT) and Data-Processing-on-
the-Edge concept. For instance, memristors employed in
crossbar architectures,7,8) can be quite useful for the design
of hardware accelerators for running deep learning algorithms
in AI systems. Likewise, exploiting their extremely small size
fingerprints, memristors can be utilized in the design of dense
logic and memory blocks.9,10) Furthermore, locally active
volatile memristors can be engaged in the emulation of neural
circuits11,12) generating action potentials while multi-state
non-volatile memristors are particularly suitable for the

realization of synaptic circuits,13) indicating a promising
future for the design of bio-inspired systems.
Biological neural networks can implement cognitive tasks

such as associative memory or real time sensory data
processing in an area and power efficient way. Therefore,
the effectiveness and functionality of the neural systems have
been studied thoroughly while there is a continuing research
interest in the field of computational neuroscience,14,15) roots
dating back to the early 1900s.16) Consequently, the design of
neuromorphic circuits, which mimic the behavior of biolo-
gical neural networks in an area of power efficient way, has
been popular for several decades.17,18) Inspired from its
biological counterpart, Cellular Neural/Nonlinear Networks
(CNNs), which can be defined as homogeneous structures
composed of regularly spaced and locally coupled identical
cells, was suggested19) as an efficient hardware solution to
implement cognitive tasks such as image processing in
continuous period of time. It has been shown that many
complex problems, such as pattern formation, locomotion
control, modelling reaction-diffusion systems, based upon
partial differential equations, can be solved by properly
mapping them on CNNs.20,21) Furthermore, it has been
shown that, resistively coupled CNNs may implement
spatially-discretized versions of reaction-diffusion equations
and, having their isolated cells biased on the edge-of-chaos
(EOC), they constitute ad hoc hardware structures for the
reproduction of pattern formation.22,23)

Pattern formation, also known as emergent phenomenon,
occurs in various scientific disciplines.24) Following the
seminal paper of Turing,25) its mathematical basis has been
thoroughly studied via reaction-diffusion partial differential
equations.26) Specifically, pattern formation is believed to
establish the basis of neural oscillations, which take place
during different cognitive processes. Several pattern forma-
tion examples27,28) have been recently presented through
resistively coupled Memristor Cellular Nonlinear Networks
(MCNNs) employing locally active memristor models.
Recently, we have presented the analytical investigation of
pattern formation dynamics in MCNNs where we derived
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necessary conditions for the appearance of emergent phe-
nomena in a parametric form.29–31) Precisely, this was
implemented by taking into account the requirements estab-
lished by the theory of local activity and examining the effect
of design parameters on the complex behaviors of the bio-
inspired arrays.29–31)

In this work, we investigate pattern formation dynamics in
an MCNN, where we employ an experimentally verified
model which is able to reproduce the rich dynamics of a VO2

memristor device.32) In particular, the equations that describe
experimental characteristics of the VO2 device are based
upon a threshold switch model, first developed by Pickett33)

to reproduce the nonlinear dynamics of a similar cell based
upon NbO. As a novelty of this work, in order to enhance the
stability and speed of the numerical simulations, we introduce a
variable transformation in the Pickett model. After that, by
including parallel and series resistors in the mathematical
description, we perform a systematic investigation of the small
signal and locally active dynamics of the overall VO2 device
which is known to exhibit extremely rich dynamical character-
istics. Then, we introduce the stability analysis of a compact VO2

memristor-based MCNN cell and extract its circuit parameter set
in the EOC region. Similarly, we present the instability analysis
of the same cell, taking into account the respective coupling
circuitry within the proposed array and extract qualitatively the
coupling parameter set in the sharp-EOC region. Differently from
previous works, we show that changing the capacitance value for
the capacitor inside the cell can affect static pattern formation in
the array. Most importantly, we take a close look at the effect of
the linear coupling resistor on the pattern characteristics exploring
the location of static equilibria on the DC current–voltage curve
of the memristor so as to show that the operating points lying in
the locally active and passive regions can simultaneously store
different patterns. We carry out a similar analysis after replacing
the linear coupling resistor with a nonlinear tangent hyperbolic
resistor and show that such a replacement introduces a clear
contrast in the patterns, improving their detection in view of a
future application. Importantly, an extensive number of numerical
simulation results reveal that a variety of static patterns with
different characteristics can emerge across the proposed MCNN
depending on the design parameter choice.

2. Experimental methods

In this work, we bring to the readers’ attention a threshold
switching device model that is based on the Joule heating rate of
a thermally driven insulator-to-metal phase transition in a volatile
memristor. This model was first proposed by Pickett and
Williams33) (thus referred as Pickett model in the following
text) and initially introduced to accurately reproduce the experi-
mental data of current-controlled (CC) negative differential
resistance (NDR) NbO devices. Additionally, the Pickett model
can be employed to represent a broader class of threshold
switching devices. For instance, as demonstrated in Ref. 32 and
in the respective supplementary information file in detail, the
Pickett model can also successfully replicate the experimental
characteristics of a VO2 device. Briefly, this was achieved after
the inclusion of parallel and series resistors into the mathematical
description and running the parameter fitting procedure once
again. In this way, a very good matching between experimental

and simulation data, pertaining to various neural behaviors, was
reported. In the design of the proposed MCNN cells, we employ
a comprehensive locally active VO2 memristor model, introdu-
cing its detailed circuit theoretic analysis in the following sub-
section. Later, we shall present the stability analysis for the single
cell of the proposed MCNN, as well as the instability analysis for
the coupled cell configuration.
2.1. Variable transformation in Pickett’s threshold
switching memristor model
The equations describing the Pickett model are given in
Eqs. (1)–(5) where /u r rmet ch stands for the state variable
and Î ( )u 0, 1 . Further discussion about the Pickett model
can be found in Ref. 33.
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During the current and voltage sweep simulations in the
Matlab environment, it was noticed that the Pickett model can
exhibit numerical instability issues depending on the choice of
the input signal characteristics. It was observed that the state
variable can attain values outside the range (0,1) during the
simulations and undergo multiple inconsistent sharp jumps
depending on the simulation settings, even if the state is forced
to be confined within the range (0,1) through a limiter function.
Likewise, the model requires a long simulation time during the
investigation of the device DC I–V characteristics. In order to
cope with these numerical complications and relax the tolerance
settings for the numerical solver, we apply a variable transforma-
tion in the Pickett model. In particular, we define a new state

variable x such that = -
-( )u exp .x

x x
a

s
Here, xa and xs are

constants, which are introduced in order to apply amplitude
scaling and shifting to the state variable, respectively, and the
new state variable x gets values in the interval ¥( )x , .s After
applying the variable transformation, it is possible to cast the
original model formulas from Eqs. (1)–(5) as given in
Eqs. (6)–(9) where g ,c g g k, ,0 1 andCc are simple combinations
of the Pickett model parameters, introduced here for a compact
representation

= ( ) · ( )i G x v 6
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We would like to note that the state dependent function
( )C x has a contribution during the voltage and current sweeps

for relatively high frequencies only (e.g. f 10 MHz), while
it can be assumed as a constant for quasi-static characteriza-
tion. Most importantly, the application of the variable
transformation reveals that the differential algebraic equation
(DAE) set of the original Pickett model belongs to the same
class as models of other NDR devices,34,35) where a Poole–
Frenkel conduction mechanism lies at the origin of volatile
resistance switching phenomena. Moreover, each of the DAE
sets of the original and transformed Pickett models, i.e.
Eqs. (1)–(5), and Eqs. (6)–(9), respectively, falls in the family
of generic memristors, as is the case for most NDR device
models proposed earlier in the literature. We depict in Fig. 1
the DC I–V plot of the Pickett model, demonstrating a
current-controlled characteristic, where two positive differ-
ential resistance (PDR) regions separate an NDR branch.
2.2. Numerically stable locally active VO2 memristor
model
Although Eqs. (1)–(5) and Eqs. (6)–(9) are identical and
represent the same system, it was confirmed through several
numerical simulations that the latter set of equations is
numerically stable (e.g. the inconsistent sharp jumps in the
state variable in the original model are eliminated), and
requires shorter simulation time for the same tolerance
settings as in the original set of equations. Furthermore, in
order to match experimental data extracted from a VO2

device, Ref. 32 recommends to connect parallel and series
resistors to the core device represented by Eqs. (6)–(9). The
current–voltage relationship and the state equation of the
complete device, including the contributions of series and
parallel resistors, Rs and R ,p respectively, are in turn given in
Eqs. (10) and (11), where = -G R .p p

1
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The DC current–voltage (Im–Vm) characteristics of the
complete memristor, together with its schematic, are given in
Fig. 2, where the effects of Rs and Rp on the DC Im–Vm

characteristic are further highlighted. Here, the slope of the
lower PDR region (PDR1) is dominated by Rp while the
slope of the upper PDR region (PDR2) is dominated by R .s
To gain a deeper insight, we divide the branch between
PDR1 and PDR2 regions of the DC Im–Vm curve of the
complete device into 3 regions (these regions will be shown
to be locally active in the following sub-section) and label
them as LA1, LA2, and LA3, where the union of LA1 and
LA2 represents the NDR region of the overall device.
Comparing Figs. 1 and 2, it can be observed that DC
characteristic of the complete device, as a distinctive prop-
erty, has a positive slope in region LA3. This property indeed
shows itself as a horizontal jump through voltage values
during a current sweep, as depicted by the green lines in
Fig. 2. Here, it should be noted that the equilibria in region
LA3 are never visited during such a current sweep while the
equilibria in region LA2, where the differential resistance is
negative, are visited only during the decremental phase of the
input. On the other hand, being a single valued function of
the device current, region LA1 region keeps featuring similar
qualitative characteristics as the corresponding one on the
NDR branch of the core device and can be visited in both
phases of a current sweep.
2.3. AC equivalent model of the VO2 memristor
Small-signal models may provide peculiar information about
the local dynamics of nonlinear systems. In this regard, it is
essential to utilize the AC equivalent model of the VO2

device to gain further insights. Derivation of AC equivalent
models of locally active memristor with different mathema-
tical models have been recently presented in the literature
where, different circuit topologies were proposed36,37) for the
basic cell of bio-inspired cellular arrays. Derived in Ref. 38
and utilized in Refs. 29 and 31 here we adopt Foster’s first

Fig. 1. (Color online) DC I–V characteristic of the core VO2 memristor according to the Pickett model. The current-controlled NDR region, drawn in blue
color, is further zoomed in to improve the quality of its graphical illustration. The upper and lower purple traces represent the PDR2 and PDR1 branches. Their
union composes the locally-passive NDR region.
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form for the RL circuit configuration39) of the local model of
the core memristor, which is illustrated in Fig. 3(a). In the AC
equivalent circuit of the core memristor, R1 represents the
inverse of the slope of the DC I–V curve and naturally
assumes negative values in the NDR region. The quantity

+( )R R1 2 corresponds to the instantaneous resistance (i.e.
/V I ) of the core memristor, which inherently gets always

positive values since the I–V curve may only reside in the
first and third quadrants. L represents the dynamics of the
core device. Finally, L and R2 have positive values at all
equilibrium points.
The procedure to obtain the AC equivalent circuit of the

complete device is illustrated in Fig. 3(b) where we replace
the core memristor with its linear equivalent model and
derive the AC circuit of the complete device. After a simple
rearrangement of the circuit elements, it is possible to cast the
final version of the AC equivalent circuit in a RL circuit
form, once again.
Here, we note that since the core memristor and the

complete device possess the same form of AC equivalent
circuit topology, we may conclude that R1m corresponds to
the inverse of the slope of the DC Im–Vm curve while the sum

+( )R R1m 2m defines the instantaneous resistance /V I ,m m

which always attains positive values. The exact expressions
for the AC circuit elements of the complete device in terms of
the core device element values as well as of Rs and Rp are
given in Eqs. (12)–(14)

=
+
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Referring to the right plot of Fig. 2 and focusing on the LA
region, it can be deduced from Eq. (12) that, when the
polarity of the term +( )R R1 p goes negative, which is the
case in the branch LA3, R1m attains positive values. Likewise,
it can be concluded from Eq. (13) that, when +( )R R1 p

attains a negative sign, i.e. along the LA3 branch, R2m

becomes negative as well. Recall that, on the other hand,
the corresponding parameter in the core device local circuit
model, namely R ,2 is strictly positive. Thus, the common
dependency of R1m and R2m on the term +( )R R1 p implies
that R1m and R2m change their signs simultaneously. Finally,
it can be seen from Eq. (14) that Lm always gets positive
values, as the element L of the core device in the local circuit
model does. Table I summarizes the polarities of the
parameters in the small signal equivalent circuit model of
the overall device, shown in the inset within the left plot of
Fig. 2, as well as some of the other critical terms, for each of

Fig. 2. (Color online) DC Im–Vm characteristics of the overall VO2 device in the inset. Note that Vm is not a single valued function of Im, while Rs and Rp

dominate the slope of the upper and lower PDR region, respectively. The locally active portion of the DC Im–Vm characteristic, which lies between the two
PDR regions, is divided into 3 branches, called LA1, LA2, and LA3. These regions are further zoomed in, resulting in a clearer illustration. Vm is a single
valued function of Im along the LA1 branch. On the other hand, over the common current range for the LA2 and LA3 branches, Vm is a triple-valued function
of Im, which explains the horizontal jumps observed under current sweep (see the green lines).

(a) (b)

Fig. 3. (Color online) (a) AC equivalent circuit of the core memristor. (b) Visualization of the procedure to obtain the AC equivalent circuit of the complete
device. Both memristors feature the same type of AC equivalent where R1m (R1) corresponds to the slope of the DC I–V curve, the sum ( +R R1m 2m) (( +R R1 2))
defines the instantaneous resistance /V Im m ( /V I ) and Lm (L) represents the device dynamics.
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the three locally active regions in the DC Im–Vm characteristic
of the device itself. Lastly, we plot R1 and R1m together in
Fig. 4(a), versus all the possible equilibria in the locally
active region LA of the corresponding device. We then plot
R2 and R2m together in Fig. 4(b) versus the same set of
equilibrium points. It can be appreciated from Fig. 4 that, R1m

and R2m have qualitatively similar characteristics but hold
opposite signs.
2.4. Stability and local activity analysis of the VO2

device
In order to examine the stability of the complete device, we
refer to the AC equivalent circuit of Fig. 3(b) and introduce
its local impedance function ( )Z s (equivalently the admit-
tance function /=( ) ( )Y s Z s1 ) in Eq. (15)

=
+ +

+
( ) ( ) ( )Z s

sL R R R R

sL R
. 151m 2m 1m 2m

2m

The poles of the impedance function define the stability of a
given equilibrium point when the input is a current signal.
Similarly, the zeros of ( )Z s (corresponding to the poles of the
admittance function ( )Y s ) define the stability of a given
equilibrium point when the input is a voltage signal. Since

( )Z s has a right hand side (RHS) pole for <R 0,2m we can
conclude from Table I that the memristor device is unstable
during a current sweep for each equilibrium point lying in LA3,
which explains the horizontal jumps that are depicted on the
right plot of Fig. 2. Furthermore, ( )Z s owns a RHS zero over
the entire locally active region ( È È=LA LA1 LA2 LA3)
since /= - + >( )z R R L R R 01m 2m 1m 2m according to Table I,
implying instability of each equilibrium along the entire LA
region for the voltage driven case.
In order to promote pattern formation in a diffusively coupled

network, it is essential for the latter to own locally active
elements which can exhibit unstable dynamics under certain
conditions. In this regard, local activity can be considered as the

violation of local passivity where all the dynamics are strictly
stable. Furthermore, a locally active element is defined to be on
the EOC as long as it is asymptotically stable. A rigorous
definition with criteria for local activity can be found in Ref. 23
while the application of these criteria through the local activity
analysis of a memristive cell can be found in Refs. 29,30. Here,
we adopt a practical approach and confirm that the memristor
under investigation is locally active in LA1, LA2, and LA3
regions due to the existence of the RHS zero, as mentioned
above, which cannot be accommodated by a locally-passive
element. Then, under current input, the VO2 device is said to be
on the EOC in LA1 and LA2 regions where ( )Z s has a left hand
side (LHS) pole (i.e. /= - <p R L 02m ) and is therefore
asymptotically stable. Finally, the current-controlled VO2 mem-
ristor is locally active but unstable in LA3, since the pole of

( )Z s resides on the right half plane.
2.5. The basic MCNN cell: stability, local activity, and
destabilization after coupling
The basic 2nd order cell employed in this work is presented
in Fig. 5(a) where Ib is a DC current source, Rb is a bias
resistor, C is a capacitor in parallel with the memristor and
the coupling node is denoted by an open circle.
For the emergence of complex behavior through a homo-

genous medium, the isolated cell has to be poised on the EOC,
implying local activity with stability or a “silent” state with
hidden excitability for the cell. In order to investigate stability
and local activity conditions for the cell in Fig. 5(a), we apply the
strategy introduced in Ref. 40 and utilize the AC equivalent
circuit, which is illustrated in Fig. 5(b). The impedance function

( )Z ssc of the cell small signal equivalent circuit, as appearing
between the coupling node and ground, is given in Eq. (16)

=
+ +

+ + + + + + +

( )

( )

[ ( ) ]
( ) [ ( ) ] ( )

Z s

.

16

sc
R sL R R R R

s L C R R R s L R R R R R R C R R Rb

b m 1m 2m 1m 2m
2

m 1m 2m m 1m 2m b 1m 2m b 1m b 2m

To ensure the stability for the cell, ( )Z ssc has to feature LHS
poles only, which enforces the inequalities + >( )R R R 01m b 2m

and + + + >( )L R R R R R R C 0m 1m 2m b 1m 2m b to be satisfied.
According to Table I, the first inequality is satisfied if and only
if >R 02m and + >R R 0,1m b suggesting that the device has
to biased either in branch LA1 or in branch LA2. The stability
conditions under this assumption can be derived as given in
Eqs. (17) and (18)

Table I. Polarities of the AC circuit elements and of some other critical
terms in each of the three branches LA1, LA2, and LA3 of the DC Im–Vm

locus of the complete device.

R1 + Rp R1m R2m Lm R1m + R2m

LA1 >0 <0 >0 >0 >0
LA2 >0 <0 >0 >0 >0
LA3 <0 >0 <0 >0 >0

(a) (b)

Fig. 4. (Color online) (a) R1 and R1m and (b) R2 and R2m versus all the possible equilibria in the LA regions of corresponding device. R1 is always negative
since the NDR and locally active regions of the core memristor overlap, while R1m attains positive value in region LA3. Likewise, R2 is always positive while
R2m reads negative values in region LA3. It should be noted that R1m and R2m always have opposite signs while their sum ( +R R1m 2m) can attain positive
values only.
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Once the device is biased either in branch LA1 or in
branch LA2, inspecting Eq. (16) and Table I, it can
be realized that ( )Z ssc features a RHS zero (i.e.

/= - + >( )z R R L R R 01m 2m 1m 2m ), and, as a result, cannot
be implemented via a locally passive one-port. Therefore, we
conclude that the isolated cell is both locally active and
stable, i.e. on the EOC, as long as the device is biased either
in branch LA1 or in branch LA2 and the conditions given by
Eqs. (17) and (18) are satisfied.
With the single cell poised on the EOC, resistive coupling

between the identical cells can destabilize the “silent” cells
and promote pattern formation41) in the resulting network. A
simple yet highly accurate method23) to investigate the
destabilization “potential” of coupled cells is to terminate
the coupling node of a single cell (see the exemplary unit of
Fig. 5(a), for example) with a coupling resistor Rc and
investigate the stability of the resulting simple network
through the analysis of its AC equivalent circuit model. In
this case, Rc will appear in parallel with Rb from the AC
equivalent circuit model of Fig. 5(b). Therefore, the condition
for destabilizing the basic cell of our MCNN, by adding a
single resistor Rc between its coupling node and ground [refer
to Fig. 5(a)], can be obtained by a simple replacement of Rc

with the parallel equivalent R Rb c in Eq. (16). This replace-
ment updates the formula for the local impedance ( )Z s ,sc

indicated in Fig. 5(b), according to the new cell topology.
More details on this procedure can be found in Ref. 40.
Applying the theorem of local activity for the new formula of

( )Z s ,sc the destabilization condition for the cell of Fig. 5(a)
under the simple resistive coupling scenario is given by
Eq. (19). This inequality defines a constraint on the dis-
sipative environment, which, together with the conditions
(17)–(18), forms the so-called sharp-EOC parameter set and
promotes the emergence of complexity in the overall network

< -
+

= = -- · ( ) ( )R
R R

R R
R R R . 19c

1m b

1m b
c max 1m b

We depictCmax and -Rc max as a function of the equilibrium
points in the branches LA1 and LA2 in Fig. 6. Here,Cmax and

-Rc max are clearly inversely proportional one to the other.
Finally, we present three different DC biasing scenarios for

the VO2 device inside the cell. In this regard, for each cell of
the network, we fix the bias resistance Rb to W50 k and tune
the bias current through each value in the set

m= { }I 100, 110, 150 A.b The intersections between the DC
Im–Vm locus of the VO2 device and the load lines, each
associated to one of the aforementioned three DC bias current
values, are graphically illustrated in Fig. 7. Here, filled circles

indicate the locations of the stable DC operating points of the
single cell. On the other hand, open circles indicate the
locations of the unstable DC operating points as well. We
note that, for m=I 100 A,b the condition given by Eq. (17) is
satisfied only for the operating point denoted with the filled
circle lying in LA2 region.

3. Results and discussion

The proposed MCNN has a 2D grid form where all the 35´
35 constitutive cells are identical one to the other and
resistively coupled to the respective nearest neighbors only.
Moreover, periodic boundary conditions are imposed to
define the dynamics of the network at its borders. The pattern
configurations to be presented in this work are obtained for
three different DC bias current values, precisely those in the
set m= { }I 100, 110, 150 A.b Furthermore, we set the same
initial conditions for all the cells, except the cell in the center
of the network. Specifically, we choose a stable DC operating

(a) (b)

Fig. 5. (Color online) (a) Basic cell of the MCNN structure where Ib is the DC current source, Rb is the bias resistor, C is the parallel capacitor and open
circle denotes the coupling node. (b) AC equivalent of the cell in (a) where ( )Z ssc is the impedance function appearing between the coupling node and ground.

Fig. 6. (Color online) Cmax and -Rc max versus all equilibria in across the
union of regions LA1 and LA2, where the cell can be biased on the edge-of-
chaos. Note that Cmax and -Rc max have inversely proportional characteristics
in these regions.

Fig. 7. (Color online) Intersection between three different load lines with
the DC Im–Vm curve, defined for = WR 50 kb and each Ib value from the set

m{ }100, 110, 150 A. Here, filled (open) circles denote stable (unstable) DC
operating points for the VO2 device inside the basic cell.
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point of the basic cell, which emerges either in the LA1
branch or in the LA2 branch depending upon the Ib choice
(refer to Fig. 7), as the initial condition for each unit in the
proposed MCNN. For m=I 150 A,b initial condition for the
center cell is fixed to a slightly-perturbed version of the
common initial condition chosen for the other cells. For each
Ib value in the set m= { }I 100, 110 A,b the stable DC
operating point of the basic cell, which lies in the PDR1
region (refer to Fig. 7), is assigned to the initial condition of
the center cell.
3.1. Static pattern formation
In this sub-section we investigate static pattern formation
dynamics in the proposed MCNN, and present new findings
which we never reported earlier. We firstly examine the effect
of the parallel capacitor on pattern formation. We
set m=I 150 A,b = WR 50 k ,b = WR 4 kc and vary the
capacitance value through each value in the set
= { }C 10, 50, 100 fF. Results are shown in Fig. 8, where

we visualize the steady-state value of the memristor voltage
in each cell of the network, according to the given color
coding map, for the first, second, and third capacitance value
in the aforementioned set.
In the next step, we explore the effect of the coupling

strength on the pattern characteristics as well as on the
distribution of the equilibrium points of all the cells of the
network along the DC Im–Vm curve of the VO2 device. We
set m=I 100 A,b = WR 50 k ,b =C 10 fF and vary the
coupling resistance through each value in the set

= W{ }R 0.5, 2.5, 10 k .c Results are depicted in Fig. 9 where,
plots (a)–(c) visualize the memristor voltages across the
MCNN according to the aforementioned color coding map,
and plots (d)–(f) define ternary patterns, illustrating whether
the equilibrium of each cell of the array is located along the
PDR1 branch, or the LA branch, or the PDR2 branch, using a
shade of gray, red, or yellow, to color the pixel in the relevant
position across the 35 × 35 grid, respectively.
We continue our investigation on the impact of the local

resistive connections between the cells on pattern formation
dynamics by replacing the linear coupling resistor with a
nonlinear one with tanh characteristics, as shown
in Fig. 10. We vary Ib through each value in the set

m= { }I 100, 110, 150 A,b while we set = WR 50 k ,b and
=C 10 fF. As for the local resistive connections between the

cells, we either choose a linear resistor of resistance
= WR 1 k ,c or a nonlinear resistor obeying the constitutive

relationship = -· · ( · )I V5 10 tanh 20 .Rc Rc
5 Figures 11(a)–

11(c), 11(g)–11(i) and 11(m)–11(o) visualize the simulation

results obtained in the linear coupling case. Figures 11(d)–
11(f), 11(j)–11(l) and 11(p)–11(r) illustrate the simulation
results obtained in the nonlinear coupling case. Here, each of
the Figs. 11(a)–11(f) provides a graphical representation for
the memristors’ steady-state voltage values throughout the
MCNN for the respective simulation scenario, according to the
color coding map defined in the legend. Each of the
Figs. 11(g)–11(l) illustrates whether, in the respective simula-
tion, the equilibrium of each MCNN cell is found to lie in the
PDR1 branch, or in the LA branch, or, rather, in the PDR2
branch of the DC Im–Vm characteristic, employing a gray, or a
red, or, rather, a yellow color for the pixel in the relevant
position across the 35 × 35 grid, respectively. Finally, each of
the Figs. 11(m)–11(r) shows the spatial distribution of the
MCNN cells’ DC operating points along the same Im–Vm
locus, for the corresponding simulation.
Finally, we examine the transient characteristics of the cell

capacitor (or equivalently memristor) voltages for different
emerging patterns. For this purpose, we set m=I 110 A,b

= WR 50 k ,b =C 10 fF and vary the coupling resistance
through each value in the set = W{ }R 0.2, 2, 20 k .c The
results are shown in Fig. 12 where the first, second and third
rows represent the cases = WR 0.2 k ,c = WR 2 k ,c and

= WR 20 k ,c respectively. Here, plots (a), (c), (e) illustrate
the memristor voltages across the MCNN according to the
given color coding map, while plots (b), (d), (f) introduce the
transient characteristics of cell capacitor voltages until they
settle down to the respective steady-state values.
3.2. Discussion
Inspecting Fig. 8, it may be realized that, although it does not
play a role on the DC solution of the network, the cell
capacitance has an impact on the static patterns emerging in
the array. This fact implies that the transient solution of the
network can be modulated via the capacitance value and, as a
result, evolve toward one among a number of different
heterogeneous patterns. This observation further points that,
another approach to affect the transients of the network so as
to influence the emerging patterns envisages the tuning of the
cells’ initial conditions.
Comparing the three plots in Figs. 9(a)–9(c), it may be

concluded that the color transition between a cell and its
direct neighbors is rather smooth in the strong coupling
scenario [see Fig. 9(a)], while it becomes sharper as the
coupling strength is reduced [see Fig. 9(c)]. As a novel
investigation, looking now at the three plots in Figs. 9(d)–
9(f), it may be realized that, in the strong coupling scenario
[see Fig. 9(d)], most of the DC equilibria of the MCNN cells

(a) (b) (c)

(a)

Fig. 8. (Color online) Simulation results of a 35´ 35 MCNN structure for m=I 150 A,b = WR 50 k ,b = WR 4 k ,c while =C 10 fF in (a), =C 50 fF in (b),
and =C 100 fF in (c). All the cells have the same initial condition except for the one in the center of the network. It can be seen that the capacitance dependent
transient solutions of the network may affect the type of static pattern, which arises at steady state.
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lie along the PDR1 region of the Im–Vm locus, as indicated
by the gray pixels, some of them are located along the PDR2
region of the Im–Vm locus, as indicated by the yellow pixels,
while only a few of them sit on the LA region of the Im–Vm

locus, as indicated by the red pixels. On the other hand,
increasing the coupling resistance progressively moves the
cell equilibrium points, lying originally along the PDR2
region, into the LA region [see Fig. 9(e)], till a point, where
cell equilibria may no longer be found on the upper locally-
passive branch [see Fig. 9(f)].
Figure 11 demonstrates the strong impact that a tanh-based

nonlinearity in the resistive coupling element has on the
characteristics of the patterns emerging in the network.
Comparing Figs. 11(a)–11(c) with Figs. 11(d)–11(f), it can
be concluded that the nonlinear coupling creates new geo-
metric features, e.g. vertical and horizontal paths, in the static
patterns, enhancing their dynamic range, and the

strengthening the color contrast across them, which certainly
facilitates their classification. The implications of introducing
a nonlinearity in the couplings between the MCNN cells can
be further explored through a comparison between
Figs. 11(m)–11(o) and Figs. 11(p)–11(r). It is clearly
appreciable that the cell equilibria, sitting along the PDR2
region of the DC Im–Vm characteristic in the linear coupling
scenarios, move into the LA region of the same characteristic,
accumulating over a comparatively-narrower voltage range,
in the nonlinear coupling simulations. On the contrary, the
cell equilibria, located on the PDR1 region of the DC Im–Vm

characteristic in the linear coupling scenarios, spread across a
relatively-larger voltage range, in the nonlinear coupling
simulations, which explains the increment in the dynamic
range of the patterns, appearing in the network in the latter
cases.
It is worth observing that a tanh nonlinearity, featured by

the coupling resistor in the simulations, can be physically
realized by exploiting the saturation characteristics of
MOSFET transistors operating in the ohmic regime.
Finally, the bistability of the basic cell under suitable bias
conditions, e.g. under each Ib value in the set m{ }100, 110 A,
for = WR 50 kb (refer to Fig. 7), can be employed to assign
well defined initial conditions other than the operating point,
to cell groups across the MCNN.
Figure 12 reveals the link between the transients of the cell

capacitor voltages and the resulting steady-state pattern
characteristics. Focusing first on the smooth pattern, shown in
Fig. 12(a), the cell capacitor voltages are found to exhibit a
relatively-low degree of ripple in amplitude, and to settle
down to the respective steady-state solutions rather quickly,
in about 5 ns, while covering a limited range with a
homogenous distribution, as illustrated in Fig. 12(b).

(a) (b) (c)

(d) (e) (f)

Fig. 9. (Color online) Simulation results of a 35´ 35 MCNN structure for m=I 100 A,b = WR 50 k ,b =C 10 fF while we set = WR 0.5 kc in (a),
= WR 2.5 kc in (b), and = WR 10 kc in (c). All the cells have the same initial condition, except for the one in the center of the network. As the coupling

strength reduces, the color contrast between neighboring cells increases, indicating a sharper transition between their memristor voltage amplitudes at steady
state. The effect of the coupling strength on the location of the cell equilibria is illustrated in the ternary maps, shown in plots (d)–(f), where a red, yellow, and
gray pixel represents a cell equilibrium, lying along the LA, or PDR2, or PDR1 branch, respectively. Comparing plots (d), (e), and (f), it can be realized that, as
the coupling resistance is increased, those cell equilibria, originally lying along the PDR2 branch, are progressively forced to move to the LA branch.

Fig. 10. (Color online) Red (blue) curve: current–voltage characteristic of
a coupling resistor with tanh nonlinearity (with linear constitutive relation-
ship).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Fig. 11. (Color online) Simulation results of a 35´ 35 MCNN structure for = WR 50 k ,b =C 10 fF where the local coupling is established through = WR 1 kc in
(a)–(c), (g)–(i) and (m)–(o), or the constitutive relationship = -·I 5 10Rc

5· ( · )Vtanh 20 Rc in (d)–(f), (j)–(l) and (p)–(r). In addition, m=I 100 Ab for the patterns in the
first column, m=I 110 Ab for the second column and m=I 150 Ab for the last column. It can be seen from (d)–(f) that the choice of tanh nonlinearity in the coupling
resistor enhances the contrast and the dynamic range, and therefore the visibility, of the patterns, while creating new geometric features facilitating their classification.
Comparing ternary patterns of (g)–(i) and (j)–(l), it can be observed that yellow pixels are rather replaced by red pixels, implying that nonlinear coupling forces the
equilibria in PDR2 region to move to LA region. This effect can also be observed by comparing the distribution of equilibria on Im–Vm loci in (m)–(o) with (p)–(r) while
the equilibria moving from PDR2 to LA accumulate in a relatively-narrower line segment on the Im–Vm curve, while the equilibria located PDR1 region are spread across
a relatively-wider range, resulting in an increased dynamic range for the patterns.
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Resulting from a reduction in the coupling strength, the
pattern depicted in Fig. 12(c) clearly features sharper color
transitions between neighboring cells as compared to the
pattern in Fig. 12(a). This stems from the higher degree of
ripple in amplitude, which the cell capacitor voltages from
Fig. 12(d) feature relative to their counterparts in Fig. 12(b).
In comparison to the time waveforms in Fig. 12(b), the
capacitor voltages from Fig. 12(d) further exhibit a longer
settling time, about 10 ns, and are found to cover a wider
range with a less uniform distribution. Finally, the pattern
with the sharpest color contrast—refer to Fig. 12(e)–emerges
across the MCNN as the capacitor voltages, shown in
Fig. 12(f), are subject to the largest amplitude ripple as
they converge through the longest settling time, i.e. around
20 ns, to the respective steady states, which clearly cover the
largest range, displaying the most uneven distribution.

4. Conclusions

In this work, we investigated pattern formation dynamics
across a MCNN employing locally active memristors. We

implemented a variable transformation in the Pickett model
as a novel technique to improve its numerical stability and
reduced the simulation time. Then, including parasitic
resistances, we obtained a VO2 memristor model with
multiple segments in the locally active region and showed
how to exploit its AC equivalent circuit to conduct a simple
and efficient analytical investigation of stability properties
and locally active dynamics for the single device and for the
single cell of the proposed MCNN. By varying the cell
capacitance value, we witnessed the formation of different
patterns, which reveals the impact of transient behavior of the
capacitor voltages on the emergent phenomena. Later on, to
get a better understanding of the pattern characteristics, we
introduced a novel approach based upon the derivation of
ternary pattern maps, where each pixel contains the informa-
tion of the location of the static equilibria located on a
specific region of the DC Im–Vm characteristic from a set of
three possible branches. We conjecture that, in the future,
these ternary pattern maps can also be employed for a fast
detection and classification of emergent phenomena in

(f)(e)

(d)(c)

(b)(a)

Fig. 12. (Color online) Simulation results of a 35´ 35 MCNN structure where transient characteristics of cell capacitor voltages are depicted for three
different patterns. For all patterns, m=I 110 A,b = WR 50 k ,b =C 10 fF whereas = WR 0.2 kc in (a)–(b), = WR 2 kc in (c)–(d), and = WR 20 kc in (e)–(f).
For the smooth pattern given in (a), the cell capacitor voltages exhibit relatively-lower degree of ripple in amplitude and settle down to the respective steady-
state solutions rather quickly, while covering a limited voltage range with a homogenous distribution, as shown in (b). In regard to the pattern illustrated in (c),
which can be characterized by relatively-sharper color transitions between neighboring cells, the capacitor voltages feature a higher degree of ripple in
amplitude, and exhibit a longer settling time during the transient process, converging to steady states distributed non-uniformly over a rather wide range, as
given in (d). For the pattern with sharpest color contrast, as depicted in (e), the capacitor voltages in (f) feature the highest degree of ripple in amplitude, while
requiring the longest settling time to approach the steady state, while their asymptotic values clearly display the most uneven distribution.
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MCNNs. Furthermore, we considered a tanh nonlinearity for
the constitutive relationship of the coupling resistor and
showed how this improves the contrast in the patterns.
As a future work, it can be fruitful to investigate the impact

of other kinds of nonlinearities for the constitutive relation-
ships of the coupling resistor as well as of the bias resistor,
which can introduce further control parameters to adjust the
distribution of the DC equilibria of the cells’ memristors
along the DC Im–Vm characteristic of the VO2 device. While,
in this work, we have particularly focused on a VO2
memristor model, the mathematical framework, conceived
by Pickett, is sufficiently general to capture the dynamics of
other devices including NbO Mott memristors42) or ovonic
threshold switches (OTS).43) Therefore, the analysis and
design procedure introduced in parametric form in this paper,
for the investigation of pattern formation dynamics in
MCNNs, can be adopted to describe similar phenomena in
arrays based upon other locally active resistance switching
memories.44) In general, we conjecture that comparable
results, allowing to draw qualitatively similar conclusions,
may be obtained for array designs centered around any NDR
device from a broad class.
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Appendix

The parameter values of the model equations given by
Eqs. (8)–(11) and employed during the numerical simulations
can be found in Table A·I.
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