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Abstract

In this paper, we consider a novel mathematical modeling framework for the spread of two competitive diseases in a
well-mixed population. The proposed framework, which we term a bivirus SIRIS model, encapsulates key real-world
features of natural immunity, accounting for different levels of (partial and waning) virus-specific and cross protection
acquired after recovery. Formally, the proposed framework consists of a system of coupled nonlinear ordinary differential
equations that builds on a classical bivirus susceptible–infected–susceptible model by means of the addition of further
states to account for (temporarily) protected individuals. Through the analysis of the proposed framework and of two
specializations, we offer analytical insight into how natural immunity can shape a wide range of complex emergent
behaviors, including eradication of both diseases, survival of the fittest one, or even steady-state co-existence of the two
diseases.
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1. Introduction

Mathematical models have emerged as powerful frame-
works to predict the spread of epidemic diseases, assess
the effectiveness of different intervention policies, and, ul-
timately, derive tools to help assist public health authori-
ties in their decision-making during an health crisis [1–4].
In their original formulations, these models consider a sin-
gle disease (to which we shall refer as a virus) spreading
in a population. Recently, models considering the simul-
taneous spread of multiple competitive viruses have being
developed, for which it is assumed that individuals cannot
contract multiple diseases at the same time [5–9]. These
models allow study of antagonistic viral interference —
which often occurs between respiratory viruses [10–12]—
and the competition between multiple strains of the same
virus —e.g., coronaviruses [13].

1.1. Literature review

The literature on competitive viruses mostly focuses on
two viruses that follow a susceptible–infected–susceptible
(SIS) epidemic progression, relying on the simplifying as-
sumption that individuals become immediately suscepti-
ble again to both diseases after recovery [5–9]. The theo-
retical analysis of such models, which are termed bivirus
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SIS models, has established that two scenarios are pos-
sible: either both diseases are eradicated, or the fitter
virus —technically, the one with largest basic reproduc-
tion number— becomes endemic [6]. Therefore, persis-
tent co-existence of the two viruses is not a feasible emer-
gent behavior of such a model, unless considering the non-
generic scenarios in which the two viruses have exactly
the same basic reproduction number, or assuming more
complex scenarios in which the population is spatially dis-
tributed and thus interacts via a network structure [14],
or the spread is driven by a complex (nonlinear) contagion
mechanisms [15].

Nevertheless, the medical literature provides strong ev-
idence that persistent co-existence of multiple competing
viruses is not only possible, but is also a very common
fact, even in a well-mixed population. This is the case,
e.g., with viruses causing seasonal flu and the common
cold (RSVs), which are in competition but are observed
spreading concurrently [10, 11, 16]. Interestingly, among
the various factors that favor the emergence and persis-
tence of such co-existence of multiple viruses, the medical
literature suggests that natural immunity may play a key
role [17].

Indeed, natural immunity is a very complex phe-
nomenon. In fact, recovery from a disease often yields
some level of protection against re-infection with the same
virus and, in some cases, it also grants a level of cross-
immunity against other competitive viruses. This is the
case, e.g., with orthopoxviruses —including variola ma-
jor, variola minor, and monkeypox— which provide al-

Preprint submitted to Elsevier May 11, 2024



most complete virus-specific and cross-immunity [18, 19],
or different strains of RSVs [17] and COVID-19 [20–22], for
which however the protection against re-infection is only
partial. On the other hand, not all competitive viruses
provide cross-immunity: there is no evidence that recov-
ery from influenza grants protection from RSVs [10], or
of cross-immunity for different strains of rhinoviruses [23].
Moreover, depending on the virus, the (possibly partial)
protection gained after recovery may be permanent (such
as for orthopoxviruses [18]), or may vanish in time (such
as for COVID-19 [20–22]).

Despite such a pervasive presence, natural immunity
is typically overlooked or oversimplified in mathematical
multi-virus models. In fact, most of the analytically-
tractable models for competing viruses that account
for immunity use a susceptible–infected–removed (SIR)
model [24–26], where natural immunity is assumed to be
perfect and permanent for all viruses, while all aspects of
immunity discussed in the above have been typically in-
vestigated only via numerical simulations [27, 28].

Here, we fill in this gap by proposing an analytically-
tractable mathematical model —called the bivirus SIRIS
model— in which two competitive viruses spread in a pop-
ulation with specific focus on the different aspects of nat-
ural immunity. In particular, building on the preliminary
effort in [29], we expand a classical bivirus SIS model [9] by
incorporating two additional compartments to account for
individuals who have recovered from the two viruses and
a set of tunable parameters to capture the key differences
between virus-specific and cross immunity, and to account
for the waning nature of immunity. Formally, the model
consists of a system of coupled nonlinear ordinary differen-
tial equations (ODEs), which capture the evolution of the
fraction of population belonging to each compartment.

1.2. Paper contribution

The main contributions of this paper build on the pre-
liminary findings from [29] and extend them along multiple
directions, including the development of novel theoretical
findings, which rely on the use of new and nontrivial tech-
nical arguments, as well as the expansion of the model
motivation and the discussion of the results. Specifically,
the contributions of this paper are five-fold, and can be
summarized as follows:

• We formalize a single-virus implementation of the
SIRIS model, which serves as a baseline for all fur-
ther studies, and we analyze its behavior. The novel
results relative to [29] are Theorems 1 and 2.

• After illustrating our bivirus SIRIS model, firstly
proposed in [29], we present some novel general re-
sults on its asymptotic behavior. Specifically, we es-
tablish conditions on the parameters for which the
disease-free equilibrium (DFE) is globally asymptot-
ically stable, and thus both viruses are eradicated
(Theorem 3). Then, we focus on the behavior of

the system when the DFE is not stable, character-
izing the endemic equilibria (EEs) in which a single
virus survives —termed boundary endemic equilib-
ria (BEEs)— and proving that co-existence equilib-
ria (CEEs), if they exist, are finite in number and
nondegenerate (Propositions 5 and 6, respectively).
Technically, the high-dimensionality and nonlinear-
ity of the system of ODEs call for the use of an
array of different analytical methods, ranging from
classical linearization techniques to tools borrowed
from systems theory [30, 31] and differential geome-
try [32, 33].

• We analyze a first specialization of the model in-
volving a scenario of non-waning but partial immu-
nity, which is a proxy for several real-world multi-
strain diseases where immunity wanes at a much
slower time-scale than the competition between dif-
ferent strains. For this specialization, we offer two
sets of novel analytical results. First, we characterize
its transient behavior, which we bound in terms of
simpler SIS-like equations (Proposition 9). Second,
we expand the results in [29] —which only focus on
existence of EEs— by providing a complete charac-
terization of the asymptotic behavior of the model
(Theorem 4), including the analysis of the stability
of the healthy manifold and the study of the non-
generic case in which the two viruses have the same
contagiousness, which gives rise to a line segment of
equilibria.

• We analyze a second specialization of the model in
which recovery from a virus grants waning virus-
specific immunity but not cross immunity. By com-
bining tools from systems theory and differential ge-
ometry, we derive an array of novel analytical in-
sights, expanding the analysis of BEEs (Theorem 5)
and CEEs (Propositions 13 and 14), and demonstrat-
ing a key novel finding: for a certain range of the pa-
rameter values, CEEs exist. Such a conclusion is con-
sistent with real-life observations [10, 11, 16, 34], and
may provide analytical support for the discussion on
the role of immunity on co-existence between differ-
ent competing viruses, which is a phenomenon often
observed in the medical literature [17], but one that
cannot be predicted using the simpler SIS bivirus
model [6].

• Importantly, we extend the discussion on the model
motivation and on the implications of our theoretical
findings with respect to the medical literature.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the single-virus model and our results
on its analysis. In Section 3, we introduce our general
formalism. In Section 4, we present our results on the
model and on its equilibria. Then, the two specializations
of the model are studied, with results reported in Sec-
tions 5 and 6, respectively. Section 7 concludes the paper.
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2. Single-virus SIRIS Model

Here, we present a single-virus implementation of the
SIRIS model, which encapsulates partial and waning natu-
ral immunity. Through its analysis, we bound its temporal
evolution by means of simpler SIS models, and we deter-
mine its asymptotic behavior, i.e., whether the disease is
eradicated or becomes endemic. These results will serve
as a baseline for our study of the bivirus SIRIS model.

2.1. Model

We extend the classical scalar SIS and SIR models [3]
by assuming that recovery provides only partial (and pos-
sibly waning) immunity. Hence, recovered individuals may
further transition to either the infected or the susceptible
state. We consider a fully-mixed population, and we de-
note by w(t) the fraction of the population susceptible to
the virus at (continuous) time t ≥ 0, x(t) the fraction
of infected population, and y(t) the fraction of popula-
tion who recovered from it and is (partially) immune to
re-infection. Noting that w(t) = 1−x(t)−y(t), we can re-
duce the state space of the system to the two dimensional
vector (x, y) ∈ D, with D := {(x, y) ∈ [0, 1]2 : x+ y ≤ 1}.
We consider the following planar system of ODEs:

ẋ = −µx+ λx(1− x− (1− α)y), (1a)

ẏ = µx− νy − αλxy, (1b)

Thus, an individual infected with the virus recovers at a
rate µ > 0. Once recovered, the individual acquires partial
immunity, which is captured by the parameter α ∈ [0, 1]:
α = 1 models absence of immunity, α = 0 models perfect
immunity. Such a parameter affects the contagion rate as
a multiplicative factor. Namely, while susceptible individ-
uals (the corresponding fraction being equal to 1− x− y)
are infected by coming into contact with infected individ-
uals with contagion rate λ > 0, those that are (partially)
immune are infected with contagion rate reduced to αλ.
Finally, natural immunity wanes at a rate ν ≥ 0, and the
individual becomes susceptible again. Note that here we
allow ν to be equal to 0, capturing the limiting case in
which immunity does not wane, being the case, e.g., for
orthopoxviruses [18].

2.2. Results

Before presenting our results on the single-virus SIRIS
model, we introduce some terminology.

Definition 1. The healthy manifold is defined as H :=
{(x, y) ∈ D : x = 0}, and the disease-free equilibrium
(DFE) as (x, y) = 0. Given (x̄, ȳ) ∈ D, a fixed point of
Eq. (1), (x̄, ȳ) is an endemic equilibrium (EE) if x̄ > 0.

Proposition 1. The domain D and the healthy mani-
fold H are positively invariant for Eq. (1). Moreover, if
(x(0), y(0)) ∈ H and ν > 0, then limt→∞(x(t), y(t)) = 0.

Proof. The domain D is compact and convex and Eq. (1)
is Lipschitz-continuous. Hence, Nagumo’s Theorem can
potentially be applied [35]. We are left with checking the
direction of the vector field at the boundaries of D. We
immediately observe that ẋ = 0 for x = 0; ẏ = νx ≥ 0,
for y = 0. Finally, for x = 1 − y, we observe that the
field points towards the interior, as ẋ + ẏ = −νy ≤ 0.
Hence, Nagumo’s Theorem implies positive invariance of
D. Positive invariance of H can be easily checked, since
ẋ = 0 for all (x, y) ∈ H. Finally, given (x(0), y(0)) =
(0, y0) ∈ H, Eq. (1) can be solved analytically, obtaining
(x(t), y(t)) = (0, y0e

−νt), which yields the claim.

Now, we present a general result, which provides up-
per and lower bounds on the temporal evolution of the
epidemic process in terms of simpler epidemic models.

Proposition 2. Let (x(t), y(t)) be the solution of Eq. (1)
with initial condition (x(0), y(0)). Then there holds z(t) ≤
x(t) ≤ z(t), where z(t) and z(t) are the solutions of the
Cauchy problems

ż = −µz + αλz(1− z), z(0) = x(0) (2)

and
ż = −µz + λz(1− z), z(0) = x(0), (3)

respectively which can be computed explicitly, obtaining
z(t) = αλ−µ

αλ+(αλ−µ)αλ(1−x(0))−µ
(αλ−µ)x(0)

exp{−(αλ−µ)t}
and z(t) =

λ−µ
λ+(λ−µ)λ(1−x(0))−µ

(λ−µ)x(0)
exp{−(λ−µ)t}

. Moreover, inequalities are

strict for any finite t > 0, if α ∈ (0, 1), x(0) + y(0) < 1,
and y(0) > 0.

Proof. For the upper bound in Eq. (2), we observe from
Eq. (1a) that ẋ = −µx + λx(1 − x − (1 − α)y) = −µx +
λxw + αλxy ≥ −µx + λαx(1 − x), being w, x, y ∈ [0, 1]
(Proposition 1), and α ∈ [0, 1], which yields the claim.
For the upper bound in Eq. (3), we observe from Eq. (1a)
that ẋ = −µx+ λx(1− x− (1− α)y) ≤ −µx+ λx(1− x),
being y ∈ [0, 1] (Proposition 1), which yields the claim.

Finally, to prove strictness, we proceed as follows.
From Eq. (1), we observe that ẏ ≥ −(ν + αλ)y and
ẇ ≥ −λw. Hence, Gronwall’s inequality [30] yields
y(t) ≥ y(0) exp{−(ν + αλ)t} and w(t) ≥ (1 − x(0) −
y(0)) exp{−λt}. Hence, if x(0) + y(0) < 1 and y(0) > 0,
then w(t) and y(t) are always strictly positive for any finite
t ≥ 0. As a consequence, under these conditions and with
the further assumption that α ∈ (0, 1), the inequalities on
ẋ are strict, which implies that the inequalities on x(t) are
strict too, for any finite strictly positive time t > 0.

Note that Eqs. (2) and (3) are each equations of a sim-
ple SIS system; thus the proposition shows that an SIRIS
model has a behavior in some sense between the behaviors
of two SIS models, which are determined by the SIRIS
model. Note that α = 1 models the absence of immunity,
and then the two SIS models in fact coincide.
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The (non-strict) inequalities established in the propo-
sition obviously will continue to hold when t→ ∞, and we
also know what the limits of z(t) and z̄(t) are, depending
as they do on the values of µ/αλ and µ/λ. This allows us
to state the following corollary.

Corollary 1. If λ/µ ≤ 1, then limt→∞ x(t) = 0. If
λα/µ > 1, then, for any σ > 0 there exists a finite
constant Tσ ≥ 0 such that, for any t ≥ Tσ, there holds
x(t) ∈ [λα−µλα − σ, λ−µλ + σ].

In the following, we will provide a complete characteri-
zation of the asymptotic behavior of the single virus SIRIS
model, for the two distinct scenarios of waning immunity
(ν > 0) and non-waning immunity (ν = 0), respectively.

2.3. Results on the waning immunity scenario

We start by considering the asymptotic behavior of the
single-virus SIRIS model in the case of waning immunity,
i.e., when ν > 0, and we establish the following result.

Theorem 1. Assume ν > 0. If λ/µ ≤ 1, then the solution
of the single-virus model in Eq. (1) converges to the DFE;
if λ/µ > 1, then the solution of Eq. (1) converges to the
unique EE (x̄, ȳ) for any initial condition x(0) > 0, where

x̄ =
αλ− ν − µ+

√
(αλ− ν − µ)2 + 4αν(λ− µ)

2αλ
(4)

and

ȳ =
αλ− ν − µ+

√
(αλ− ν − µ)2 + 4αν(λ− µ)

αλ(αλ+ ν − µ+
√
(αλ− ν − µ)2 + 4αν(λ− µ))

.

(5)

Proof. Eq. (1) is a planar autonomous system, which
means that no chaotic solutions are possible as a conse-
quence of the Poincaré–Bendixson theorem—see, e.g., [31,
36] for more details. Moreover, it has a bounded domain
(Proposition 1), and periodic orbits can be ruled out using
the Bendixson–Dulac theorem [31], with Dulac function

ψ(x, y) = 1
x . In fact ∂(ψẋ)

∂x + ∂(ψẏ)
∂y = −λ− ν

x − αλ < 0.
Now, we compute the equilibria of the system by posit-

ing the right-hand-side of Eq. (1) equal to zero and we
characterize their (local) stability via the Jacobian matrix:

J(x, y) =

[
λ(1− x− (1− α)y)− λx− µ −λ(1− α)x

µ− αλy −αλx− ν

]
.

(6)
From Eq. (1b), the DFE is the unique equilibrium on the
boundary x = 0, which is unstable if λ > µ (from Eq. (6)),
while it is locally asymptotically stable if λ < µ. Conver-
gence when λ = µ and global stability are consequences of
the bound in Proposition 2.

Now we focus on EEs. From Eq. (1b), we obtain that
at an equilibrium there holds y = µx/(αλx + ν), which,
substituted into the equilibrium condition from Eq. (1a),
yields the quadratic equation

f(x) = −αλ2x2 + (αλ2 − λν − λµ)x+ ν(λ− µ) = 0. (7)

For λ > µ, f(0) > 0, f(1) < 0, and limx→−∞ f(x) = −∞.
Hence, the two solutions of f(x) = 0 are such that one is
negative and one lies in [0, 1]. The explicit computation of
the second solution yields Eqs. (4)–(5), for which we check
that x̄ + ȳ ≤ 1. For λ ≤ µ, instead, a similar argument
concludes that both solutions are nonpositive.

To prove that the unique EE (if it exists) is locally ex-
ponentially stable, we evaluate Eq. (6) at (x̄, ȳ), obtaining

J(x̄, ȳ) =

[
−λx̄ −λ(1− α)x̄

µ− αλȳ −αλx̄− ν

]
, (8)

because at (x̄, ȳ), Eq. (1a) yields −µ+λ(1−x̄−(1−α)ȳ) =
0. Notice that tr(J(x̄, ȳ)) < 0. We compute det(J(x̄, ȳ)) =
λ2α(x̄)2+νλx̄+λ(1−α)x̄(µ−αλȳ) = λx̄µ(1−α)+λ2x̄α(x̄+
(1 − α)ȳ) + νλx̄ > 0. Hence, the eigenvalues of J(x̄, ȳ)
have negative real part, yielding local stability. Finally,
the Poincaré–Bendixson theorem guarantees convergence
to a fixed point [31], which is the unique EE.

Remark 1. For ν > 0, the conditions for stability of the
DFE and the qualitative behavior when the DFE is unsta-
ble (i.e., convergence to a unique EE) coincide with those
of a standard SIS model [3]. However, the exact value of
the EE is indeed affected by immunity. Specifically, the
epidemic prevalence in Eq. (4) is always smaller than that
of the corresponding SIS model, which is equal to 1−µ/λ.
Moreover, from the monotonicity of f(x) in Eq. (7) with
respect to the model parameters, we observe that the EE
x̄ is monotonically increasing in α and decreasing in ν, in
accord with intuition.

2.4. Results on the non-waning immunity scenario

We conclude this section by considering the special case
in which immunity does not wane (ν = 0). In this case,
the behavior of the model is substantially different, as il-
lustrated in the following result.

Theorem 2. Assume ν = 0. If λα/µ ≤ 1, then the single-
virus model in Eq. (1) converges to the healthy manifold
H and x(t) is monotonically decreasing if λ/µ ≤ 1. If
λα/µ > 1, then the single-virus model in Eq. (1) converges
to its unique EE (x̄, ȳ) = (1− µ

αλ ,
µ
αλ ).

Proof. When ν = 0, Eq. (1) reduces to

ẋ = −µx+ λx(1− x− (1− α)y), (9a)

ẏ = µx− αλxy. (9b)

Similar to Theorem 1, the Poincaré–Bendixson theorem
can be used to prove convergence to a fixed point [31].
From Eq. (9), we observe that the fixed points of the
single-virus model are the entire healthy manifold (which
includes the DFE), and the EE (1 − µ/αλ, µ/αλ), which
exists only if λα > µ. The Jacobian in a generic point is

J(x, y) =

[
λ− µ− 2λx− λ(1− α)y −λ(1− α)x

µ− αλy −αλx

]
, (10)
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from which we observe that the EE is always stable when
it exists. Moreover, if λα > µ, then ẋ > 0 in the neighbor-
hood of x = 0, implying that the system cannot converge
to the healthy manifold from any point in the interior.

In contrast, if λ ≤ µ, we observe that ẋ < 0 in the
entire domain. Hence, any trajectory converges to H.

It is left to prove the behavior when µ < λ ≤ µ/α.
For λ ̸= µ/α, from Eq. (10), we observe that the healthy
manifold can be split into two subsets: Hs = {(x, y) : x =
0, y > λ−µ

λ(1−α)} ⊂ H and Hu = H \ Hs. The line segment

Hs is made of equilibrium points with a 0 eigenvalue (with
eigenvector parallel to the line segment) and a negative
eigenvalue with eigenvector orthogonal to the line. Hence,
the points on this segment line are attractive in the direc-
tion orthogonal to the line segment 0. On the contrary, the
line segmentHu is made of unstable equilibria. Hence, due
to the absence of other fixed points, the system necessar-
ily converges to the line segment Hs (which is part of the
healthy manifold). Finally, when µ < λ ≤ µ/α, Eq. (9b)
reads ẏ = µx(1 − y), which implies that y(t) is monoton-
ically increasing until either x = 0 or y = 1 (where the
latter implies x = 0), yielding convergence to H.

Remark 2. For ν = 0, below the epidemic threshold
λα/µ, the disease is eradicated and the system converges
to the healthy manifold, with part of the population re-
covered and part still susceptible. It is worth noticing
that, while the exact proportion of the two compartments
cannot be determined a priori since it may depend on the
initial condition, we can lower-bound the fraction of recov-
ered individuals as ȳ > 1− µ

λ(1−α) , using the observations

in the proof of Theorem 2. Above the epidemic threshold,
instead, susceptible individuals eventually vanish, and the
behavior of the model eventually coincides with a standard
SIS model with contagion rate re-scaled by α.

3. General Bivirus SIRIS Model

When multiple competitive diseases are considered,
natural immunity gains an additional dimensions of com-
plexity. In fact, recovery from a specific virus may
or may not grant protection against infection with a
different virus —the former being the case of differ-
ent orthopoxviruses [18, 19], the latter of influenza and
RSVs [11]. On the top of this distinction between virus-
specific and cross-immunity, each type of immunity can be
partial, e.g., cross-immunity between different RSVs [17],
and can wane in time, as for the strains of COVID-19 [20].

For these reasons, the development of compartmental
models for multiple competitive viruses spreading in the
same population is nontrivial, and requires specific care in
the definition of the compartments for recovered individu-
als, and in the introduction of a suitable set of parameters
to captures all the features discussed in the above. Before
presenting such implementation, we briefly recall the stan-
dard bivirus SIS model [6] and we describe its emergent

behavior. This will be key in the discussion of the impact
of immunity on the epidemic process.

3.1. Bivirus SIS model

In the bivirus SIS model, three compartments are used
to represent individuals who are susceptible (S), infected
with virus 1 (I1), and infected with virus 2 (I2), respec-
tively. We denote by w(t) ∈ [0, 1] the fraction of pop-
ulation susceptible to the two viruses at time t ≥ 0;
and by x1(t) and x2(t) the fraction of the population
infected with virus 1 and virus 2, respectively. Since
w(t) = 1 − x1(t) − x2(t), the dynamics of the bivirus SIS
model is fully captured by the planar system of ODEs

ẋ1 =− µ1x1 + λ1(1− x1 − x2)x1 (11a)

ẋ2 =− µ2x2 + λ2(1− x1 − x2)x2, (11b)

with λi > 0 and µi > 0 being the infection and recovery
rates of virus i, respectively. The competitive nature of
the two viruses is captured by the second term in Eq. (11),
which couples the two equations. In fact, new infections
with virus i occur with contagion rate λi > 0 when sus-
ceptible individuals (the fraction being 1− x1 − x2) come
into contact with individuals infected with virus i (the
fraction being xi). In [6], Eq. (11) is analyzed, and the
main results, reported in the following, depict a survival-
of-the-fittest scenario: co-existence is only possible in the
non-generic case of two equally infectious viruses.

Proposition 3 (From [6]). If λi/µi ≤ 1 for both i ∈
{1, 2}, then Eq. (11) converges to the DFE (x̄1, x̄2) = 0. If
λi/µi > λj/µj and λi/µi > 1, then Eq. (11) converges to
the (unique) EE (x̄1, x̄2), where x̄i = 1−µi/λi and x̄j = 0.
Finally, if λi/µi = λj/µj > 1, then Eq. (11) converges an
equilibrium on the line segment (s, 1 − µ1/λ1 − s), for all
s ∈ [0, 1− µ1/λ1].

3.2. Bivirus SIRIS model

To capture the features arising from immunity, we
build on a bivirus SIS model and we include two addi-
tional compartments accounting for individuals who have
recovered from virus 1 and 2 (R1 and R2, respectively).
Consequently, we add two variables to account for the
fraction of the population recovered from virus 1 and 2
at time t ≥ 0, denoted by y1(t) and y2(t), respectively.
Similar to other compartmental models, we notice that
w(t) = 1 − x1(t) − x2(t) − y1(t) − y2(t). Hence, we
can reduce the state space of the system to the four
dimensional vector (xi(t), xj(t), yi(t), yj(t)) ∈ D, where
D := {(xi, xj , yi, yj) ∈ [0, 1]4 : x1 + x2 + y1 + y2 ≤ 1}.
Therefore, we propose the following four-dimensional sys-
tem of ODEs to capture the disease spreading dynamics:

ẋ1 =− µ1x1 + (1− x1 − x2 − (1− α11)y1

− (1− α21)y2)λ1x1, (12a)

ẋ2 =− µ2x2 + (1− x1 − x2 − (1− α22)y2

5
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Figure 1: Schematic of the general model. Black solid arrows denote
spontaneous transitions; red (orange) dashed arrows are transitions
driven by interactions with individuals infected with virus 1 (2).

Table 1: Variables and parameters of the bivirus SIRIS model

symbol meaning
w(t) susceptible population at time t
xi(t) population infected with virus i at time t
yi(t) population recovered from virus i at time t
λi contagion rate of virus i
µi recovery rate from virus i
νi rate of waning immunity from virus i
αii virus-specific immunity against virus i
αij cross immunity against virus j

− (1− α12)y1)λ2x2, (12b)

ẏ1 =µ1x1 − ν1y1 − α11λ1y1x1 − α12λ2y1x2, (12c)

ẏ2 =µ2x2 − ν2y2 − α21λ1y2x1 − α22λ2y2x2. (12d)

Similar to the bivirus SIS model in Section 3.1, the
parameters λi and µi captures the infection and recov-
ery rate of virus i, respectively. However, once recovered,
an individual acquires partial immunity against the two
viruses. Specifically, for each virus i, we introduce two pa-
rameters αii ∈ [0, 1] and αij ∈ [0, 1], which captures virus-
specific immunity and cross immunity due to recovery from
virus i, respectively (αii = 1 and αij = 1 models absence
of virus-specific and cross immunity, respectively; αii = 0
and αij = 0 model perfect virus-specific and cross immu-
nity, respectively). Such parameters affect the contagion
rate of the corresponding viruses as multiplicative factors,
similar to the single-virus SIRIS model illustrated in Sec-
tion 2. Natural immunity due to infection from virus i
wanes at a rate νi ≥ 0, and the individual becomes sus-
ceptible again. Hence, for each virus i, the characteristics
of immunity in terms of level of virus-specific protection,
level of cross-protection, and duration are captured by the
three parameters αii, αij , and νi, respectively. The model
is illustrated in Fig. 1 and all variables and parameters are
summarized in Table 1. We introduce some terminology.

Definition 2. The healthy manifold is defined as H :=
{(x1, x2, y1, y2) ∈ D : x1 = x2 = 0}, and the DFE
as (x1, x2, y1, y2) = 0. Given a fixed point of Eq. (12),

(x̄i, x̄j , ȳi, ȳj) ∈ D, the point is an EE if x̄1 + x̄2 > 0.
Specifically, the fixed point is a boundary (endemic) equi-
librium (BEE) if x̄1 > 0 and x̄2 = 0 or x̄1 = 0 and x̄2 > 0,
and it is a co-existence (endemic) equilibrium (CEE) if
both x̄1 > 0 and x̄2 > 0.

4. Results on the General Bivirus SIRIS Model

In the following, after reporting a result that guar-
antees the well-posedness of the bivirus SIRIS model in
Eq. (12) in terms of the invariance of the domain and of
the healthy manifold, we prove a general result to charac-
terize the stability of the DFE in the scenario of waning
immunity.

Proposition 4 (Proposition 3 from [29]). The domain
D and the healthy manifold H are positively invariant for
Eq. (12). Moreover, if (x1(0), x2(0), y1(0), y2(0)) ∈ H and
ν1, ν2 > 0, then limt→∞(x1(t), x2(t), y1(t), y2(t)) = 0.

Theorem 3. Let ν1 > 0 and ν2 > 0. Then, the DFE
is globally asymptotically stable for Eq. (12) if and only if
(iff) λi ≤ µi, for i ∈ {1, 2} (with exponential stability if
both inequalities are strict), and it is unstable otherwise.

Proof. For the sufficiency, we verify that, for λi ≤ µi, the
DFE is globally asymptotically stable. In fact, for λi <
µi, from Eqs. (12a)–(12b), we can bound ẋi ≤ −(µi −
λ)xi. Using Gronwall’s inequality [30], we bound xi(t) ≤
x(0) exp{−(µi − λi)t}. Similar, for λi = µi, we bound

ẋi ≤ −µix2i , yielding xi(t) ≤
x(0)
µit+1 . In both cases it holds

xi(t) → 0, but convergence is exponentially fast only in
the first case. Then, using Eq. (12c) and Eq. (12d), for
i, j ∈ {1, 2} and i ̸= j, there holds

ẏi = −νiyi + µixi − λjxjyi = −νiyi + ωi(t), (13)

with ωi(t) being an input signal that decays to zero,
whereas Eq. (13) with no input would converge to 0 expo-
nentially fast (being νi > 0). Evidently, limt→∞ yi(t) = 0
for all i = 1, 2, which yields the first part of the claim.

For necessity, we evaluate the Jacobian of the right side
of Eq. (12) at the DFE, obtaining a lower triangular matrix
with diagonal entries equal to λ1 − µ1, λ2 − µ2, −ν1, and
−ν2, concluding that the DFE is unstable if at least one
of the two ratios λi/µi > 1, yielding the claim.

While a general characterization of the EEs is a chal-
lenging problem, we can explicitly compute the BEEs and
prove that CEEs (if present) are finite in number, for al-
most any value of the parameters.

Proposition 5. Let ν1 > 0 and ν2 > 0. Then, the bivirus
SIRIS model in Eq. (12) has at most two BEEs, of the
form (x̄1, x̄2, ȳ1, ȳ2), where x̄j = ȳj = 0,

x̄i =
αiiλi − νi − µi +

√
(αiiλi − νi − µi)2 + 4αiiνi(λi − µi)

2αiiλi
(14)
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and

ȳi =
µix̄i

νi + αiiλxi
, (15)

which exists iff λi > µi, for i ∈ {1, 2} and j ̸= i.

Proof. We derive the equilibrium conditions by equating
the right-hand side of Eq. (12) to 0. Without any loss
in generality, we consider the boundary x̄i = 0. From
Eq. (12c), we observe that for an equilibrium on the bound-
ary x̄1 = 0 to exist, there necessarily holds ȳ1 = 0. By
substituting these conditions into Eq. (12d), we obtain

ȳ2 =
µ2x2

ν2 + α22λx2
(16)

By replacing x̄1 = ȳ1 = 0 and Eq. (16) into the equilibrium
condition from Eq. (12b), we obtain the equilibrium con-
dition for a single-virus SIRIS model with λ = λ2, µ = µ2,
ν = ν2, and α = α22, studied in Theorem 1, which yields
the claim.

Proposition 6. The bivirus SIRIS model in Eq. (12) has
a finite number of CEEs (possibly none), which are non-
degenerate, for almost all the parameter values.

Proof. Let us consider a generic coexistence equilibrium
(x1, x2, y1, y2), with x1 ̸= 0, x2 ̸= 0. Let us denote the
vector field in Eq. (12) by F , by p = [µ1, µ2, ν1, ν2, λ1, λ2]

⊤

a vector of parameters and v = [x1, x2, y1, y2]
⊤ the state

vector that gathers the four variables of the system.
Let g1 := [1 − x1 − x2 − (1 − α11)y1 − (1 − α21)y2]x1

and g2 := [1 − x1 − x2 − (1 − α12)y1 − (1 − α22)y2]x2,
then we can consider the vector field F as function also of
the parameter vector p, and write the Jacobian of F (v,p)
with respect to the parameters p:

Jp =


−x1 0 0 0 g1 0
0 −x2 0 0 0 g2
x1 0 −y1 0 −α11y1x1 −α12y1x2
0 x2 0 −y2 −α21y2x1 −α22y2x2

 .
(17)

From Eq. (12c), we observe that at a co-existence equilib-
rium, it necessarily holds that y1 ̸= 0 and y2 ̸= 0. Hence, it
is clear from considering the first four columns that Jp has
rank 4. Further, the equilibrium equations give µi = giλi,
which shows that the gi are both nonzero.

Let V and P denote the associated open sets of allowed
v and p, with the openness guaranteeing they are mani-
folds. Let W denote the manifold that is the image of
V × P under Eq. (12), thus W = {w : w = F (v,p)}. Let
Z := {0}, where 0 is the 4-dimensional all-zero vector.
The calculation above demonstrates that the Jacobian Jp

in Eq. (17) has rank 4 at any point in V×P which maps to
Z, so a fortiori the Jacobian Jv,p (which is obtained by
adding columns to Eq. (17)) has rank 4 at any such point.
Hence F : V × P → W is transversal to Z, and by the
parametric transversality theorem (see [32, p.145] and [33,
p. 68]), for almost all particular p̄ ∈ P, i.e., excluding a
set of zero measure, the Jacobian Jv associated with the

mapping Fp̄ : V → W, with Fp̄(v) = f(v, p̄) will have
full row rank at any zero, i.e., for v such that Fp̄(v) = 0.
Equivalently, for almost all p̄, a zero of Fp̄ gives rise to
a nonsingular Jacobian or the zero is nondegenerate (and
consequently isolated). The bounded nature of D implies
that there can only be a finite number of equilibria.

Remark 3. Note that the argument used in the proof of
Proposition 6 does not take into account the values of the
parameters αij . Hence, a corollary of Proposition 6 is
that, for any fixed α11, α22, α12, and α21, the bivirus
SIRIS model has a finite number of nondegenerate CEEs
for almost all the parameter values.

We report here an intuitive but important result for
the case ν1 = ν2 = 0, which models situations in which,
following infection, some permanent level of immunity re-
mains. In this scenario, it is intuitive that, if the disease
becomes endemic, then the pool of susceptible individu-
als goes to zero: once a person has had a virus, they can
never return to the susceptible state. The following re-
sult from [29] provides theoretical guarantees to such an
intuition.

Proposition 7 (Proposition 4 from [29]). If ν1 = ν2 = 0,
then either Eq. (12) converges to H or limt→∞ w(t) = 0.

Above, consideration is given as to what happens in
the non-waning immunity scenario, when both νi = 0. We
now ask what happens in the opposite scenario of fast-
waning immunity, i.e., when νi → ∞. Intuition is that
any individuals who are (temporarily) immune will lose
that immunity arbitrarily fast, implying that there cannot
be a nonzero endemic value possible for yi. If both νi go to
infinity, the system should then be indistinguishable from
the bivirus SIS model in Eq. (11). The following result
formalizes this intuition.

Proposition 8. Let νi → ∞ for i = 1 or i = 2 (both
possibilities being permitted). Then, Eq. (12) is such that
yi(t) → 0 for any t > 0. Moreover, if both ν1, ν2 → ∞,
then the ODEs for x1 and x2 with t > 0 become identical
to those for the bivirus SIS model in Eq. (11).

Proof. Suppose without loss of generality that i = 1. Then

ẏ1 = µ1x1 − (ν1 + α11λ1x1 + α12λ2x2)y1

= u(t)−
(
a(t) + ν1

)
y1 (18)

where u(t) = µ1x1 is bounded and nonnegative, a(t) =
α11λ1x1 + α12λ2x2 is bounded and nonnegative, and im-
portantly, the derivative of u(t) is bounded, the claim be-
ing easily checked. A conventional singular perturbation
argument appears awkward to apply, and we use a ‘first
principles’ style of argument.

The solution of Eq. (18) is the sum of a zero input com-
ponent, call it ỹ(t), arising from the initial condition y1(0),
and a zero-initial-state component, call it ŷ(t), arising from
the “input” u(t). The zero-input component is the solution
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Figure 2: Simulations of the bivirus SIRIS model with λ1 = λ2 = 0.7,
µ1 = 0.4, µ2 = 0.2, α11 = α22 = 0, and α12 = α21 = 1.

of d
dt ỹ1 = −(a(t)+ν1)ỹ1, i.e., ỹ(t) = y1(0) exp{

∫ t
0
(−a(s)−

ν1)ds)}, and it clearly goes to zero at any nonzero t when
ν1 → ∞. For the zero-initial-state component, there
holds ŷ1(t) =

∫ t
0
exp{

∫ s
0
(−a(σ) − ν1)dσ}u(t − s)ds. Since

u(t) > 0 for all t, the integral is nonnegative and in fact

0 ≤ ŷ1(t) ≤
∫ t
0
e−ν1su(t − s)ds = − 1

ν (e
−ν1tu(0) − u(t)) +

1
ν

∫ t
0
e−ν1s ddsu(t−s) ≤ − 1

ν (e
−ν1tu(0)−u(t))+ν−2M , where

M is an upper bound on |u̇(t)|. Letting ν1 go to infinity
establishes the lemma claim for y1(t). It is immediate that
if for t > 0 one replaces y1(t) and y2(t) by zero in the dif-
ferential equations for x1 and x2 one recovers Eq. (11).

While the general bivirus SIRIS model is amenable
to some analytical treatment, such as characterizing the
stability of the DFE (see Theorem 3) and investigating
relevant limit cases (see, e.g., Proposition 8), its general
study is challenging, being Eq. (12) made of four inde-
pendent nonlinear equations regulated by 10 parameters.
Nonetheless, numerical simulations reported in Fig. 2 illus-
trate a wide range of emergent behaviors, which include
not only survival-of-the-fittest scenarios (see Fig. 2a), sim-
ilar to what happens in the standard SIS model, but also
stable co-existence of the two viruses for generic values of
the parameters (see Fig. 2b), which cannot emerge in the
standard SIS model [6].

To provide analytical evidence to such observations, in
the rest of this paper we focus on two specializations of
the model, which are amenable to analytical treatment.
First, we derive a specialized model that focuses on the
role of partial immunity, neglecting waning immunity and
the (possible) differences between virus-specific and cross
immunity. This study aims to provide some insight into
diseases with multiple strain, where recovery from one
strain provides a certain level of immunity against the
same strain and other strains, but not complete immu-
nity. This is the case, for instance, for COVID-19 [20–22].
Second, we simplify our general model to study the role of
virus-specific waning immunity. This study aim to provide
insights into diseases such as seasonal flu and cold [10, 11],
which despite being competitive, are often observed stably
co-existing in the population [16]. Each of the two special-
izations obtained is characterized by only six parameters:
four are common and are associated with the characteris-
tics of the two viruses: λ1, λ1, µ1, µ2; two are specific to
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Figure 3: Schematics of the two specializations of the SIRIS model.

the particular phenomenon under analysis.

5. Model I: Partial immunity

In this first specialization, we focus on understanding
the effect of partial immunity. Thus, we assume that af-
ter recovery from either of the two viruses, an individual
acquires a certain level of immunity against both viruses,
which may be different between the two viruses, but with
no distinction between virus-specific and cross immunity.
Moreover, we neglect waning immunity. To some extent,
these assumptions may capture scenarios with multiple
strains of a virus during an epidemic outbreak, where im-
munity waning occurs on a much slower time-scale than
the competition between different strains. This was the
case, e.g., in the emergence of the Omicron variant of
COVID-19 in late 2021 [13].

Briefly, our assumptions can be summarized in the fol-
lowing set of conditions on the model parameters.

Assumption 1. Let ν1 = ν2 = 0, α21 = α11, α12 = α22.

Intuitively, since virus-specific immunity and cross im-
munity are assumed to have the same effect, there is no
need to define two distinct variables for the recovered com-
partments. Hence, if we define y = y1 + y2, we can reduce
the dynamics in Eq. (12) under Assumption 1 to the fol-
lowing three dimensional system:

ẋ1 = −µ1x1 + (1− x1 − x2 − (1− α11)y)λ1x1, (19a)

ẋ2 = −µ2x2 + (1− x1 − x2 − (1− α22)y)λ2x2, (19b)

ẏ = µ1x1 + µ2x2 − α11λ1x1y − α22λ2x2y, (19c)

as illustrated in Fig. 3a. The model is fully determined by
six parameters: λ1, λ2, µ1, µ2, α11, and α22.

The analysis of the partial immunity model is two-fold.
First, we study its transient behavior, establishing bounds
on its evolution in terms of simpler bivirus SIS models,
extending the bounding arguments used in Proposition 2.
Second, using Proposition 7, we characterize the asymp-
totic behavior of the bivirus model.

5.1. Results on the transient behavior

The earlier results for a single virus model with im-
munity showed how two SIS models can be found whose
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solutions provide upper and lower bounds for a specified
SIRIS model. This motivates the following material, where
similar bounds are provided for the bivirus case. In partic-
ular, we start by presenting the following technical lemma,
whose proof is reported in Appendix A.

Lemma 1. Consider the Partial Immunity Model in
Eq. (19) with initial conditions satisfying x1(0) ≥
0, x2(0) ≥ 0, x1(0) + x2(0) ≤ 1. Then there hold

ẋ1 ≥ −µ1x1 + λ1α11(1− x1 − x2)x1 (20a)

ẋ2 ≤ −µ2x2 + λ2(1− x1 − x2)x2 (20b)

and also

ẋ1 ≤ −µ1x1 + λ1(1− x1 − x2)x1 (21a)

ẋ2 ≥ −µ2x2 + λ2α22(1− x1 − x2)x2 (21b)

Moreover, if α11 ̸= 1, α22 ̸= 1, x1(0) > 0, x2(0) > 0 and
w(0) = 1− x1 − x2 − y > 0, then the four inequalities are
strict for all t > 0.

The inequalities above are the key to obtaining SIS sys-
tems whose trajectories bound those of the SIRIS system.
The technique for doing this is to use draw on results for
positive systems, see [37].

Proposition 9. Consider the Partial Immunity Model
in Eq. (19) with initial conditions satisfying x1(0) ≥
0, x2(0) ≥ 0, x1(0) + x2(0) ≤ 1. Consider the following
two bivirus SIS systems:

u̇1 = −µ1u1 + λ1α11(1− u1 − u2)u1 (22a)

u̇2 = −µ2u2 + λ2(1− u1 − u2)u2 (22b)

and

v̇1 = −µ1v1 + λ1(1− v1 − v2)v1 (23a)

v̇2 = −µ2v2 + λ2α22(1− v1 − v2)v2 (23b)

Suppose that x1(0) = u1(0) = v1(0), x2(0) = u2(0) =
v2(0). Then for all t, there holds

v1(t) ≥ x1(t) ≥ u1(t), v2(t) ≤ x2(t) ≤ u2(t). (24)

If α11 ̸= 1, α22 ̸= 1, and x1(0), x2(0) and w(0) are all
positive, then the inequalities are strict for all t.

Proof. We shall prove only the inequalities in Eq. (22);
the inequalities in Eq. (23), being obtained by the same
procedure. To enable applicability of the comparison the-
orem for differential equations [37], we need to introduce
new variables x̃2(t) = −x2(t) and ũ2(t) = −u(t), so
that the differential inequalities are all in the same di-
rection. Using Eq. (20a), we see that ẋ1 − u̇1 ≥ −µ1x1 +
λ1α11(1 − x1 + x̃2)x1 + µ1u1 − λ1α11[1 − u1 + ũ2]u1 =
[−µ1+λ1α11(1−x1−u1)](x1−u1)+λ1α11(x̃2x1− ũ2u1)].
Now since x̃2x1−ũ2u1 = x̃2(x1−u1)+(x̃2−ũ2)u1, we have
that ẋ1 − u̇1 ≥ [−µ1 +λ1α11(1−x1 −u1 + x̃2)](x1 −u1)+

λ1α11u1(x̃2 − ũ2). A similar argument yields ˙̃x2 − ˙̃u2 ≥
−λ2ũ2(x1 − u1) + [−µ2 + λ2(1 + x̃2 + ũ2 − x1)](x̃2 − ũ2).

Let us set α = x1 − u1, β = x̃2 − ũ2. Then there
are time functions gij(t) such that α̇ ≥ g11(t)α + g12(t)β

and β̇ ≥ g21(t)α + g22(t)β, with strict inequality at time
t in case α11 ̸= 1, α22 ̸= 1 and x1(0), x2(0)1 − x1(0) −
x2(0)− y(0) all positive. Moreover, the functions g12 and
g21 are nonnegative for all t ≥ 0 (and it is irrelevant that
they can be expressed in terms of some of the variables
of interest). Since also α(0) = 0, β(0) = 0, there holds
α(t) ≥ 0, β(t) ≥ 0 for all t ≥ 0, (with strict inequality
under the stated conditions), i.e., the result follows [37,
Lemma VIII.1].

5.2. Results on the asymptotic behavior

Here, we will discuss the asymptotic behavior of the
Partial Immunity Model in Eq. (19). Specifically, we start
by reporting a result from [29], which establish condi-
tions under which EEs exist and they are (almost) globally
asymptotically stable, with the exception of a set of non-
generic parameter values.

Proposition 10 (Proposition 7 from [29]). If α11λ1

µ1
̸=

α22λ2

µ2
, Eq. (19) admits at most two EEs, coinciding with

the BEEs:

(x1, x2, y) =

(
α11λ1 − µ1

α11λ1
, 0,

µ1

α11λ1

)
, (25a)

(x1, x2, y) =

(
0,
α22λ2 − µ2

α22λ2
,
µ2

α22λ2

)
, (25b)

which exist iff α11λ1 > µ1 and α22λ2 > µ2, respectively.
Eq. (25a) is locally asymptotically stable iff α11λ1

µ1
> α22λ2

µ2
;

while Eq. (25b) is locally asymptotically stable iff α11λ1

µ1
<

α22λ2

µ2
. In each case, the locally asymptotically stable BEE

is globally stable for all initial conditions in the interior of
{(x1, x2, y) ∈ [0, 1]3 : x1 + x2 + y ≤ 1}.

Proposition 10 complete characterizes the behavior of
the epidemic model when at least one of the viruses is
sufficiently infectious, that is, αiiλi > µi for at least one
i ∈ {1, 2}, and when α11λ1

µ1
̸= α22λ2

µ2
. In the following, we

investigate the nongeneric case α11λ1

µ1
= α22λ2

µ2
, in which,

as proved below, a line segment of equilibria is present.

Proposition 11. If α11λ1/µ1 = α22λ2/µ2 > 1, Eq. (19)
admits the line segment of equilibria (0, x1, 1 − µ1

α11λ1
−

x1,
µ1

α11λ1
), with x1 ∈ [0, µ1

α11λ1
]. When it exists, such a

segment is always globally attractive from any initial con-
dition in the interior.

Proof. If α11λ1/µ1 = α22λ2/µ2, then the equilibrium con-
ditions for Eq. (19a) and Eq. (19a) coincide and are equal
to x1 + x2 = α11λ1−µ1

α11λ1
, which yields the line segment of

equilibria. If we evaluate the Jacobian of Eq. (19) in the
generic point of the line segment and we compute its eigen-
values, we obtain that one is equal to 0 (with eigenvec-
tor parallel to the line segment), while the other two are
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always negative and equal to −(α11λ1x1 + α22λ2x2) and
−(λ1x1 + λ2x2), yielding local stability in the directions
orthogonal to the line segment. Global convergence is fi-
nally proved similarly to Proposition 10, using the argu-
ment that w(t) converges exponentially fast to 0, reducing
the system to a standard bivirus SIS model with an ex-
ponentially vanishing additive term, and then using again
the theoretical results from [6, 31, 38].

The results above consider scenarios in which at least
one of the viruses is sufficiently infectious so that it remains
endemic in the population, that is, when at least one of
the ratios αiiλi

µi
> 1. Now, we study the opposite scenario,

i.e., when both α11λ1

µ1
≤ 1 and α22λ2

µ2
≤ 1, which yields

eradication of the disease, as summarized in the following,
with proof reported in Appendix B.

Proposition 12. If αiiλi ≤ µi for both i ∈ {1, 2},
Eq. (19) possesses a line segment of equilibria defined by
x1 = x2 = 0, y ∈ [0, 1]. If αiiλi < µi for both i ∈ {1, 2}, an
equilibrium on this line is (locally) attractive in directions
orthogonal to the line iff

y ∈
(
max

[
λ1 − µ1

λ1(1− α11)
,

λ2 − µ2

λ2(1− α22)

]
, 1

]
, (26)

which is never empty. If α11λ1 = µ1 or α22λ2 = µ2, then
the only attractive point on this line is (0, 0, 1). Moreover,
Eq. (19) always converges to the healthy manifold H.

We now consolidate all our findings from Proposi-
tions 10–12 in a theorem, which is the main result of this
section and provides a complete characterization of the
asymptotic behavior of Eq. (19).

Theorem 4. Consider the Partial Immunity Model in
Eq. (19). Then, the following holds true.

1. If λiαii/µi ≤ 1 for both i ∈ {1, 2}, Eq. (19) converges
to the healthy manifold H for any initial condition.
Specifically, it converges to an equilibrium point of
the form (0, 0, y), with y that satisfies Eq. (26).

2. If λiαii/µi > 1 and λiαii/µi > λjαjj/µj, for j ̸=
i ∈ {1, 2}, then Eq. (19) converges to the BEE with
x̄i = 1− µi

αiiλi
, x̄j = 0, and ȳ = µi

αiiλi
, for any initial

condition in the interior of the domain.

3. If λ1α11/µ1 = λ2α22/µ2 > 1, then Eq. (19) con-
verges to the line segment of equilibria (x1, 1− µ1

α11λ1
−

x1,
µ1

α1λ1
), with x1 ∈ [0, µ1

α11λ1
] for any initial condi-

tion in the interior of the domain.

The simulations in Fig. 4 illustrates the findings in
Theorem 4. In particular, we consider two viruses with
λ1/µ1 = λ2/µ2 > 1, and we observe the behavior when
changing α11 and α22. As predicted by item 1, when
both αii are small so that αiiλi/µi < 1, the disease is
eradicated and the system converges to an equilibrium on
the healthy manifold (as reported in Fig. 4a). Figs. 4b
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Figure 4: Simulations of Model I with λ1 = 0.6, λ2 = 0.45, µ1 = 0.4,
µ2 = 0.3, and different values of α11 and α22.

and 4c show a survival-of-the-fittest scenario, where the
virus with largest αiiλi/µi remains endemic. Interestingly,
in Fig. 4c, where both viruses have αiiλi/µi > 1, after an
initial outbreak of virus 1 (which has larger value of λi),
virus 2 becomes dominant, as predicted by item 2. Finally,
in Fig. 4d, we illustrate the scenario predicted by item 3,
where the system converges to a point on the line of EEs,
with co-existence of the two viruses.

Remark 4. The emergent behavior of the Partial Immu-
nity model in Eq. (19) resembles that of a bivirus SIS
model presented in Section 3.1, wherein (except for a non-
generic set of parameter values) we observe either eradica-
tion of both diseases or survival-of-the-fittest virus. How-
ever, unlike the standard SIS model, the fitter virus is
not the one with largest basic reproduction number (i.e.,
λi/µi), but such a value is modulated by the (potentially
different) level of protection against the two viruses ac-
quired after recovery.

6. Model II: Waning Virus-specific Immunity

We consider now a second specialization of the model,
in which we focus on unveiling the effects of simultaneous
waning and virus-specific immunity. To this aim, we as-
sume that after recovery from either of the two viruses,
an individual acquires full (but waning) immunity only
against that virus, while no immunity is acquired against
the other virus. For instance, this is the case of the
influenza A virus and rhinovirus (which cause flu and
cold, respectively), for which no (or very limited) cross-
immunity has been observed [10].

Assumption 2. Let α11 = α22 = 0, α12 = α21 = 1,
ν1 > 0, and ν2 > 0.
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Under Assumption 2, Eq. (12) reduces to

ẋ1 = −µ1x1 + (1− x1 − x2 − y1)λ1x1, (27a)

ẋ2 = −µ2x2 + (1− x1 − x2 − y2)λ2x2, (27b)

ẏ1 = µ1x1 − ν1y1 − λ2x2y1, (27c)

ẏ2 = µ2x2 − ν2y2 − λ1x1y2, (27d)

as illustrated in Fig. 3b. The model is fully determined by
six parameters: λ1, λ2, µ1, µ2, ν1, and ν2.

Before starting the analysis of this model, we observe
that, because ν1 > 0 and ν2 > 0, we can apply Theo-
rem 3, which provides necessary and sufficient conditions
for global asymptotic stability of the DFE.

6.1. Results on the boundary endemic equilibria

We start by considering the BEEs, representing
survival-of-the-fittest scenarios. While their existence is
proved in Proposition 5, here we study their stability. The
results of this analysis are summarized in the following
theorem.

Theorem 5. Consider the Waning Virus-specific Immu-
nity Model in Eq. (27). Then, the following conclusions
hold:

1. If λi/µi ≤ 1 for both i ∈ {1, 2}, then the DFE is
globally asymptotically stable.

2. If λi/µi > 1 and λj/µj ≤ 1, for i ̸= j ∈ {1, 2}, then
the DFE is unstable. Moreover, there is a unique
BEE with

xi =
νi(λi − µi)

λi(µi + νi)
, yi =

µi(λi − µi)

λi(µi + νi)
, xj = yj = 0,

(28)
which is globally asymptotically stable for any initial
condition in the interior of the domain.

3. If λi/µi > λj/µj > 1, for i ̸= j ∈ {1, 2}, then the
DFE is unstable. Moreover, there are two BEEs, viz.

xj =
νj(λj − µj)

λj(µj + νj)
, yj =

µj(λj − µj)

λj(µj + νj)
, xi = yi = 0,

(29)
which is always unstable, and that of Eq. (28), which
is locally asymptotically stable iff

νi > ν∗i =
µiλi(λj − µj)

µj(λiµj − λjµi)
, (30)

and unstable if νi < ν∗i .

Proof. Item 1 is a straightforward consequence of Theo-
rem 3. The computation of the BEEs and the assessment
of their (local) stability has been performed in [29] through
a direct analysis of Eq. (27) and of the eigenvalues of its
Jacobian matrix computed in the equilibrium point. For
more details, see [29, Theorem 9 and Corollary 11]. This
yields item 3, and the first part of item 2. We are left to

prove (almost) global convergence for item 2). Without
any loss in generality, let us consider the case λ1/µ1 > 1
and λ2/µ2 < 1, where the system has only the equilib-
rium on the boundary Eq. (28) with x2 = y2 = 0. From
Eq. (27b), we observe that ẋ2 ≤ −(µ2 − λ2)x2. By Gron-
wall’s inequality, x2(t) ≤ x2(0)e

−(µ2−λ2)t, and thus it con-
verges exponentially fast to 0. The system is thus a per-
turbation of a single-virus SIRIS model, which converges
exponentially fast to its unique BEE from any initial condi-
tion in the interior (see Proposition 3). Hence, the unique
BEE is (almost) globally asymptotically stable.

6.2. Results on the coexistence endemic equilibria

We now study the existence of CEEs, i.e., equilibria in
with both viruses are present (x1 ̸= 0 and x2 ̸= 0). We im-
mediately observe that the results in Theorem 5 preclude
the existence of such CEEs for all scenarios, except when
λ1/µ1 > 1 and λ2/µ2 > 1. In the following, we will focus
on this scenario. First, the following result (with proof re-
ported in Appendix C) proves that they cannot exist when
one of the BEEs is stable, i.e., when νi > ν∗i from Eq. (30).

Proposition 13. Consider the Waning Virus-specific Im-
munity Model in Eq. (27) with λi/µi > λj/µj > 1 and
νi > ν∗i from Eq. (30). Then, no CEEs can exist.

A consequence of Proposition 13, is that, when λi/µi >
λj/µj > 1 and νi > ν∗i , the system has a single (locally)
stable equilibrium, for which the simulations in Fig. 2a
suggest global asymptotic stability. Evidently, CEEs can
only be present when the two BEEs are unstable. The
following result (with proof reported in Appendix D) es-
tablishes the existence of such equilibria and provide a
bound on their number.

Proposition 14. If λi/µi > λjµj > 1 and νi < ν∗i , then,
for almost all values of the parameters, the system has
either one or three CEEs, with no more than two of them
being stable.

Proposition 14 guarantees the existence of CEEs for
the waning virus-specific immunity specialization of our
SIRIS model, in the region of the parameter space in which
none of the BEEs or the DFE are stable. Such result pro-
vides analytical support to the hypothesis in the medical
literature that immunity may play a key role in favoring
coexistence of multiple competitive diseases [17]. Finally,
the numerical simulations in Fig. 5 suggest that, when such
CEEs exist, then there is always exactly one of them which
is globally asymptotically stable.

7. Conclusion

In this paper, we proposed and analyzed a novel math-
ematical model for the spread of two competing diseases
that accounts for real-world features of natural immunity,
including partial virus-specific and cross-immunity protec-
tion, and waning immunity. Through the theoretical anal-
ysis of the proposed model, termed bivirus SIRIS model,
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Figure 5: Simulations of Model II with λ1 = λ2 = 0.7, µ1 = 0.4,
µ2 = 0.2, ν1 = ν2 = 0.08, from different initial conditions (colored
circles). All trajectories converge to the same CEE, which is denoted
with a black cross.

we established general results that characterize the asymp-
totic behavior of the system in terms of convergence to the
disease-free equilibrium or to an endemic state, further
characterizing and counting the possible endemic equilib-
ria. Then, we delved into the analysis of two specific im-
plementations of the model, inspired by realistic scenarios,
which allowed us to shed light on the impact of partial im-
munity and waning virus-specific immunity, respectively,
on the transient and asymptotic behavior of the system.
In particular, we demonstrated how the complex nature
of immunity can impact the emergent behavior of an epi-
demic disease; for instance, by allowing multiple compet-
ing diseases to coexist in an endemic equilibrium.

The modeling framework and the results presented in
this paper pave the way for several lines of future research.
First, our theoretical results provide a thorough charac-
terization of the two specializations of interest. However,
the analysis of the most general scenario is limited to es-
tablishing conditions for the eradication of both diseases,
while in the endemic regime, results are limited to the
computation of the winner-take-all endemic equilibria and
a characterization of the possible coexistence equilibria.
Further effort should be placed into extending the study
of the transient and asymptotic behavior of the system
to the general bivirus SIRIS model. Second, while our
model was implemented in a homogeneous scenario where
the individuals of the population interact in an all-to-all
fashion, further modeling extensions of the SIRIS frame-
work should be developed and studied toward incorporat-
ing heterogeneity across the population and in the pattern
of interactions, e.g., by embedding the bivirus model onto
a network structure, similar to [14, 24, 27, 28]. Third,
leveraging our mathematical formulation of the bivirus
model, one can investigate the problem of mitigating an
epidemic outbreak by extending the modeling framework
to time-variant scenarios, which allows to consider, e.g.,
closed-loop intervention policies. This would allow us to
unveil how the characteristics of natural immunity shape
an optimal intervention policy, using, e.g., the methods
developed in [4, 25, 26]. Finally, while the features of nat-

ural immunity incorporated into our model are based on
real-world observations [10–12, 18–22] and the consistency
of our results with empirical evidence and epidemiologi-
cal theories provides some high-level validation to our ap-
proach [13, 16, 17], a rigorous validation of the model is
still missing and should be performed by establishing sys-
tematic ways to match real-world data to our predictions
(see, e.g., [39, 40]), building on our theoretical findings.
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Appendix A. Proof of Lemma 1

Proof. We prove just the first pair of inequalities, the
second following by an identical argument. Recall that
w = 1−x1−x2−y is necessarily nonnegative, correspond-
ing to the fraction of susceptible individuals. Then ob-
serve that ẋ1 = −µ1x1 + (1− x1 − x2 − (1−α11)y)λ1x1 =
−µ1x1 + (w + α11y)λ1x1 ≥ −µ1x1 + λ1α11(w + y)x1 =
−µ1x1 + λ1α11(1− x1 − x2)x1. To establish the claim re-
garding strict inequalities, observe first that the differen-
tial equations for x1, x2 are of the form ẋi = gi(x1, x2, y)xi,
which means that the conditions x1(0) > 0 and x2(0) > 0
propagate for all time, so that x1(t) > 0 and x2(t) > 0,
∀t ≥ 0. It is also readily verified using the differential
equations for x1, x2 and y that ẇ = −(λ1x1 + λ2x2)w,
which means that the condition w(0) > 0 also propagates
for all time t ≥ 0. The differential equation for y shows
that for all t > 0, y(t) > 0, even if y(0) = 0. Then
in relation to the inequality chain immediately above,
since w(t) and x1(t) are nonzero, and α11 ̸= 1, there
holds (1 − α11)λ1wx1 > 0 and so the inequality in the
above chain is strict. To verify the upper bound, observe
that ẋ2 = −µ2x2 + (1 − x1 − x2 − (1 − α22)y)λ2x2 ≤
−µ2x2 + λ2(1 − x1 − x2)x2. Since α22 ̸= 1 and x2(t) and
y(t) are positive, the inequality is also strict.

Appendix B. Proof of Proposition 12

Proof. The steady state equation for y yields(µ1 −
α11λ1y)x1 + (µ2 − α22λ2y)x2 = 0. The coefficients of x1
and x2 in the above equation are both strictly positive,
except for the case in which y = 1 and α11λ1

µ1
= α22λ2

µ2
= 1.

Hence, the only equilibrium solution in the region of in-
terest requires x1 = x2 = 0 (note that, when y = 1, then
this is necessarily verified), but then the equilibrium value
of y is unspecified. Note also that x1 = x2 = 0, y ∈ [0, 1]
defines a line segment of equilibria (as revealed by direct
calculation), irrespective of the inequalities among the pa-
rameters. At such an equilibrium, the Jacobian matrix is
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diagonal, with entries equal to −µ1 + λ1(1 − (1 − α11)y),
−µ2 + λ2(1− (1− α22)y), and 0.

The nonsingular part of the Jacobian gives some infor-
mation. In particular, for the line segment of equilibria
defined by x1 = x2 = 0, there will be an attractive in-
terval defined precisely by those values ȳ for which the
two nonzero eigenvalues are negative, i.e., −µ1 + λ1[1 −
(1 − α11)ȳ] < 0 and −µ2 + λ2[1 − (1 − α22)ȳ] < 0, or
ȳ > λ1−µ1

λ1(1−α11)
and ȳ > λ2−µ2

λ2(1−α22)
. Obviously, there is also

a requirement that ȳ ≤ 1. It is easily verified that the two
conditions α11λ1 < µ1 and α22λ2 < µ2 are necessary and
sufficient to ensure that (λ1 − µ1)/λ1(1 − α11) < 1 and
(λ2 − µ2)/λ2(1− α22) < 1.

For the cases in which α11λ1 = µ1 or α22λ2 = µ2,
we observe that all the equilibria on the line are unstable,
except for one with ȳ = 1, whose stability cannot be sim-
ply determined by the Jacobian. However, we can easily
observe that the equilibrium point (0, 0, 1) is always at-
tractive in directions orthogonal to the line if α11λ1 ≤ µ1

and α22λ2 ≤ µ2. In fact, orthogonal to the line segment
of equilibria, the dynamics reduces to a bivirus SIS model
with infection rates λ̃1 = α11λ1 and λ̃2 = α22λ2, for which
Proposition 3 yields the claim.

Finally, we are left to prove global convergence, which
we do by contradiction. Assume that the system does not
converge to the healthy manifold H. First, we observe
that, since the line segment y ∈ (ȳ, 1) ∈ H is locally at-
tractive, then there exists a positive constant δ > 0 such
that, if there were to hold x1(t)+x2(t) ≤ δ and y ≥ ȳ− δ,
then the trajectory would converge to the line. Since we
have assumed that x(t) does not converge to the line, then
it must be true that either i) x1(t) + x2(t) > δ or ii)
y < ȳ − δ, for all t ≥ 0. In both cases, we can con-
clude that 1 − y(t) > δ. Proposition 7, combined with
our temporary assumption that the system does not con-
verge to H guarantees that there exists τδ ≥ 0 such that

w(t) ≤ min{α11,α22}δ
2 , for any t ≥ τδ. Then, using Eq. (19),

we bound ẋi = −µixi + (w + αiiy)λixi ≤ −µixi + (w +
αiiy)

µi

αii
xi = −µi(1−y− w

αii
)xi, for both i ∈ {1, 2}. For any

t ≥ τδ, this implies that ẋi ≤ −µ1δ
2 xi. Finally, Gronwall’s

inequality yields xi(t) ≤ exp{−µi

2 δ(t − τδ)} → 0, which
contradicts our assumption. Consequently, the system
should necessarily converge to the healthy manifold.

Appendix C. Proof of Proposition 13

Proof. Without any loss in generality, we consider i = 1.
A CEE of Eq. (27) is a point (x1, x2, y1, y2) ∈ D such that
x1 > 0, x2 > 0 and the following four equalities hold:

0 =− µ1 + (1− x1 − x2 − y1)λ1 (C.1a)

0 =− µ2 + (1− x1 − x2 − y2)λ2 (C.1b)

0 =µ1x1 − ν1y1 − λ2x2y1 (C.1c)

0 =µ2x2 − ν2y2 − λ1x1y2. (C.1d)

In order to prove that no CEEs can exist, we consider
the following related system of equations:

0 = −µ1 + (1−X1 −X2 − Y1)λ1, (C.2a)

0 = −µ2 + (1−X1 −X2)λ2, (C.2b)

0 = µ1X1 − ν1Y1 − λ2X2Y1, (C.2c)

which is obtained from Eqs. (C.1a)–(C.1c), by modifying
Eq. (C.1b) through removal of the term −λ2y2. The proof
follows two main steps. First, we show that given any so-
lution (x̄1, x̄2, ȳ1, ȳ2) of Eq. (C.1) in the domain of interest,
and letting (X̄1, X̄2, Ȳ1) be any solution of Eq. (C.2) (with-
out restriction to any domain), there necessarily holds
x̄2 ≤ X̄2. Then, we prove that Eq. (C.2) does not ad-
mit solutions with X̄2 ≥ 0, which in turns implies that
there cannot be solutions of Eq. (C.1) with x̄2 > 0.

Let (X̄1, X̄2, Ȳ1) be a solution of Eq. (C.2). From
Eq. (C.2b), we obtain that

X̄1 + X̄2 = 1− µ2/λ2. (C.3)

In a similar way, from Eq. (C.1b) and using the fact that
ȳ2 ≥ 0, we obtain the inequality

x̄1 + x̄2 ≤ x̄1 + x̄2 + ȳ2 = 1− µ2/λ2 = X̄1 + X̄2. (C.4)

Similarly, by comparing the expressions for Ȳ1 and ȳ1
obtained from the equilibrium specialization of Eq. (C.2a)
and Eq. (C.1a), respectively, and inserting the inequality
obtained in Eq. (C.4), we conclude that

Ȳ1 ≤ ȳ1. (C.5)

Next, we observe that Ȳ1 can be explicitly obtained and
is positive. By dividing Eq. (C.2a) by λ1 and Eq. (C.2b)
by λ2, and subtracting the two equations, we get

Ȳ1 =
λ1µ2 − λ2µ1

λ1λ2
=
µ2

λ2
− µ1

λ1
> 0 (C.6)

with the positivity following by the Proposition hypothe-
sis. In the light of Eq. (C.5), this implies that ȳ1 > 0.

Using the two inequalities Eq. (C.4) and Eq. (C.5) and
the positivity of Ȳ1 and ȳ1, we will now show that x̄2 ≤ X̄2.
To prove this, assume temporarily to the contrary that
there holds X̄2 < x̄2 (and we will prove a contradiction).

From Eq. (C.1c) and Eq. (C.2c), we observe that:

X̄2 =
µ1X̄1

λ2Ȳ1
− ν1
λ2
, x̄2 =

µ1x̄1
λ2ȳ1

− ν1
λ2
, (C.7)

where the nonzero nature of Ȳ1 and ȳ1 is critical. From
Eq. (C.4), and with the temporary assumption X̄2 < x̄2,
then there would necessarily hold X̄1 > x̄1. Moreover,
since Ȳ1 ≤ ȳ1, from Eq. (C.7) we bound (using again the

positivity of Ȳ1 and ȳ1) X̄2 = µ2X̄1

λ2Ȳ1
− ν1
λ2

≥ µ2x̄1

λ2ȳ1
− ν1
λ2

= x̄2,

which contradicts our assumption, proving that x̄2 ≤ X̄2.
Now, we focus on Eq. (C.2). From Eq. (C.2c), we get

Ȳ1 =
µ1X̄1

ν1 + λ2X̄2
. (C.8)
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By equating the right-hand sides of Eq. (C.6) and

Eq. (C.8), we obtain λ1µ2−λ2µ1

λ1λ2
= µ1X̄1

ν1+λ2X̄2
, which implies

ν1 =
µ1λ1λ2X̄1

λ1µ2 − λ2µ1
− λ2X̄2. (C.9)

By using the assumption that ν1 > ν∗1 , and inserting
the expression of ν∗1 from Eq. (30) into Eq. (C.9), we ob-

tain µ1λ1λ2X̄1

λ1µ2−λ2µ1
−λ2X̄2 >

µ1λ1(λ2−µ2)
µ2(λ1µ2−λ2µ1)

, which, after some

algebraic simplifications, reads

X̄1 > 1− µ2

λ2
+
λ1µ2 − λ2µ1

µ1λ1
X̄2, (C.10)

where the coefficient of X̄2 is strictly positive. Finally,
inserting Eq. (C.3) into Eq. (C.10), we get X̄1 > X̄1 +
X̄2 +

λ1µ2−λ2µ1

µ1λ1
X̄2, which can only be satisfied if X̄2 < 0,

yielding the claim.

Appendix D. Proof of Proposition 14

Proof. From Eq. (C.1), we observe that, at a CEE, we have
y1 = µ1x1

ν1+λ2x2
and y2 = µ2x2

ν2+λ1x1
. When these equations are

substituted into the first two equations of Eq. (C.1), there
results two quadratic equations in x1, x2:

λ1λ2x1x2 + λ1λ2x
2
2 + λ1(µ1 + ν1)x1

+ (µ1λ2 + ν1λ1 − λ1λ2)x2 + ν1(µ1 − λ1) = 0 (D.1)

λ1λ2x
2
1 + λ1λ2x1x2 + (µ2λ1 + ν2λ2 − λ1λ2)x1

+ λ2(ν2 + µ2)x2 + ν2(µ2 − λ2) = 0 (D.2)

From Eq. (D.1), we obtain

x1 =
−λ1λ2x22 − (µ1λ2 + ν1λ1 − λ1λ2)x2 + ν1(λ1 − µ1)

λ1λ2x2 + λ1(µ1 + ν1)
.

(D.3)
When this equation is substituted into Eq. (D.2), algebraic
simplifications leads to a third order equation, which has
at least one and at most three real solutions.

To prove existence of at least one solution in the do-
main of interest, we observe that Eq. (27) is such that
i) Rn

+ is forward invariant (xi = 0 ⇐ fi(x) ≥ 0), and
ii) the semiflow induced by the system is dissipative, i.e.,
lim supt→+∞ xi(t) ≤ k for some constant k > 0. As a
consequence, we can use the theory developed in [41]. A
key result of this theory states that for a given system sat-
isfying those two aforementioned properties, there exists
at least one saturated equilibrium [41, Theorem 2], whose
definition is explainable as follows. Without loss of gen-
erality, let x̄ = [0, 0, . . . , x̄k+1, . . . , x̄n]

⊤, with k ≥ 0 and
x̄i > 0 for i ≥ k + 1. In other words, x̄ is a equilibrium
where the first k entries are equal to 0. The Jacobian of x̄
can be expressed as

J(x̄) =

[
A 0
B C

]
, (D.4)

where A is a Metzler matrix. We call A the external part
of the Jacobian, and C the internal part. Define s(A)
as the spectral abscissa of a given matrix A. Then, x̄
is said to be an unsaturated equilibrium if s(A) > 0, a
saturated equilibrium if s(A) ≤ 0 and a strictly saturated
equilibrium if s(A) < 0. If x̄ > 0n, i.e., it is a positive
vector, then x̄ is always saturated.

If λi/µi > λjµj > 1 and νi < ν∗i , the system has three
equilibria other than the (possibly existing) co-existence
ones. Evidently, the DFE is unstable, and thus the origin
is an unsaturated equilibrium. Next, consider the BEE
(0, x̄2, 0, ȳ2). After a permutation, the Jacobian can be
written into the form of Eq. (D.4), which yields

J̄ =


−µ1 + (1− x2)λ1 0 0 0

µ1 −λ2x2 − ν1 0 0
λ2x2 0 −λ2x2 −λ2x2
−λ1y2 0 µ2 −ν2

 .
(D.5)

The block corresponding to C in Eq. (D.4) is Hurwitz;
the block corresponding to A is lower-triangular with the
entry −λ2x2 − ν1 < 0, and −µ1 + (1 − x2)λ1 being pos-
itive or negative according as (0, x̄2, 0, ȳ2) is unstable or
locally stable, respectively. In other words, (0, x̄2, 0, ȳ2) is
a strictly saturated equilibrium iff it is locally exponen-
tially stable, and it is an unsaturated equilibrium if it is
unstable. The same statement can be made about the
other BEE, (x̄1, 0, ȳ1, 0). According to [41, Theorem 2],
this implies that when both BEEs are unstable, there ex-
ists at least one CEE, as none of the BEEs or the healthy
equilibrium are saturated. Finally, Proposition 6 guaran-
tees that all CEEs are nondegenerate for almost all choices
of the parameters (see Remark 3 for the fact that setting
α11 = α22 = 1 and α12 = α21 = 0 is not restrictive).
This implies that all saturated equilibria are nondegener-
ate. Hence, [41, Theorem 2] guarantees that the sum of
the indices of the saturated fixed points is equal to +1,
where the index of a fixed point is equal to the sign of the
determinant of the negative of the Jacobian matrix eval-
uated at the fixed point. As a consequence, stable equi-
libria necessarily have index +1, while unstable equilibria
can have index +1 or −1 (depending on the number of
positive eigenvalues). Consequently, in order for the sum
of the indices to be equal to +1, either there is a unique
equilibrium (with index +1) or there are three equilibria
(two with index +1 and one with index −1), yielding the
claim.
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