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A B S T R A C T

We consider a fashion retail network consisting of a central warehouse, owned by a fashion firm, and a
fairly large number of retail stores. Some stores are owned by the firm itself, whereas others are owned by
franchisees. An initial inventory allocation decision is made at the beginning of the selling season and is
periodically revised. Inventory reallocation comprises both direct shipments from the warehouse to stores and
lateral shipments among the stores. Besides stock availability and shipping costs, a suitable reallocation policy
must take into account the probability of selling each item, some operational constraints, as well as other
preference factors that define the utility of shipping an item from a node of the network to another one.
Since the problem does not lend itself to the application of typical tools from inventory theory, we propose
an optimization model that complements such tools. The model, given the number of nodes and SKUs, may
involve about one million binary variables, and just solving the LP relaxation may take hours using state-of-
the-art software. Since typical metaheuristics for combinatorial optimization do not seem a viable alternative,
we propose a matheuristic approach, in which a sequence of maximum-weight matching problems is solved
in order to reduce the problem and restrict the set of potential shipping pairs, with a corresponding drop in
the number of decision variables. Computational results obtained on a set of real-life problem instances are
discussed, showing the viability of the proposed algorithm.
1. Introduction and problem statement

The use of lateral shipments to rebalance inventory across multiple
locations is a key topic in inventory management (Paterson et al.,
2011), and early references like (Allen, 1958, 1961) adequately point
out its relevance. A wide variety of tools have been adopted to tackle
problems in this class, including stochastic modeling and dynamic
programming. In this paper, due to the peculiar nature of the problem
that we address, we resort to a different framework, based on an integer
linear programming model, whose solution requires the adoption of a
suitable matheuristic. As we discuss in the following, key features of our
case are the presence of several retail stores, whose managers may have
different incentives, as well as a large number of items. Due to limita-
tions on the number of outbound shipments that a store may manage,
there are interactions among items, making the decomposition of the
overall problem into a set of single-item subproblems inadequate.

More specifically, we deal with the problem of finding the best
way to match offers and requests for fashion items across a network
consisting of several retail stores and a central warehouse. It is often
the case that a retail store missing an item asks other stores to supply
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that item. It is important to notice that this kind of lateral shipment
may be of a different nature with respect to centrally managed and
proactive lateral shipments planned according to formal and rational
inventory control theory. On the one hand, requests for inter-store
shipments are sometimes informally managed on a case-by case basis,
possibly according to some business rules, even though they must be
centrally authorized. On the other one, lateral shipments may be re-
active, i.e., aimed at satisfying a specific customer request. In practice,
how lateral shipments are managed is heavily influenced by the specific
industry in which they are carried out. The case we deal with in this
paper arose from the need to rationalize the practice of inventory
management for an Italian fashion firm, Miroglio, which manages a
retail network comprising about 200 stores, where a large number of
SKUs are distributed.

The fashion industry setting is characterized by two essential fea-
tures:

1. significant demand volatility due to the fashion content of items;
2. the need for fast execution, due to the limited sales time window.
vailable online 21 April 2024
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Moreover, the specific problem that we consider in this paper is com-
plicated by a few additional peculiarities.

• Lateral shipments are both reactive and proactive. Proactive ship-
ments may arise from updated sales forecasts, whereas reactive
shipments may arise from specific customer requests (when they
face a stockout, but are willing to wait for a specific item).
An additional reason for lateral shipments is related to broken
assortments, which occur when only a few sizes of a model are
available at some stores, and the assortment must be consolidated
in order to offer the full range of sizes.

• The retail network consists of both owned and franchised stores.
Hence, store managers may react in different was to requests to
release items to another store. Accounting for managers’ incen-
tives results in a problem where objective costs and revenues
are mixed with intangible factors. Moreover, stores are not well
equipped to deal with shipments, and the time spent to arrange
them may be detrimental to store operations and customer care.
Hence, there is a limit on the total number of outgoing shipments
per week, especially from franchised ones, which is partly a
consequence of intangible issues, rather than hard shipping costs.

• In addition to lateral store-to-store shipments, the central ware-
house progressively releases items.

he problem requires to find the best way to match offers and requests
or a large number of stores and a large number of SKUs. As we show
ater, in order to account from this variety of issues, we associate

utility coefficient to each possible match between an offer and a
equest. The resulting model is a sort of max-weight matching problem
ith side constraints, which may be formulated as a pure Binary Integer
rogramming (BIP) model. Due to the size of some real life problem
nstances, the model cannot be solved by commercial solvers, and we
eed heuristics. We will resort to a matheuristic exploiting a sequence
f easy subproblems model in order to reduce the size of the overall
odel, which is then solved by a commercial solver. A significant

dvantage of this approach, with respect to alternative metaheuristics,
s its flexibility in dealing with additional constraints and variations of
he basic problem that we describe here.

It is important to stress that our approach is not meant to be a
ubstitute to typical decision models based on stochastic inventory
ontrol, but rather a substitute. The model we propose is meant to
ationalize and support a key business process in a real-life setting, in
flexible way, and it is agnostic with respect to demand forecasting

pproaches and business priorities, which may be easily incorporated
nto its input data.

.1. Plan of the paper

In Section 2 we provide motivation for the study by placing it within
real industrial context and by describing how our solution approach

its within the overall decision architecture. In Section 4 we state the
roblem formally and discuss possible modeling choices, with particu-
ar emphasis on one possible way to quantify the marginal utility for
ach shipped item. The matheuristic model reduction approach is the
opic of Section 5. Computational tests on real life problem instances
re described in Section 6. Finally, we conclude with Section 7, where
e also comment on the actual use of the model.

. Motivation and industrial context

The work described in this paper was motivated by the require-
ents of Miroglio Fashion, Italy’s third-largest retailer of women’s

pparel, with e520m+ annual revenues from a large number of stores
cross 11 brands. Like many fashion retail companies, Miroglio has
o address a sequence of difficult problems, comprising design of the
ext collection, sourcing of raw materials, production planning under
604

significant degree of uncertainty, inventory management at both
central warehouse and store level, and markdown/promotion decisions.
In 2016, the management at Miroglio perceived the need of improved
and optimized store inventory management, and they adopted a new
replenishment tool to improve inventory management with a more
data-driven approach, also involving store managers in the process.
The tool was provided by Evo, a company based in Turin and London,
focused on dynamic pricing, predictive supply chain management, and
customer scoring. Evo, which recently became part of Toolsgroup, pro-
vides a range of tools for retail players, which aim at optimizing retail
business decisions and extract value from company internal data and
external data, combining artificial intelligence and human experience.
The results of the cooperation between Miroglio and Evo to develop
a more structured approach to decision-making about markdowns and
promotions are described in a series of Harvard Business School (HBS)
business cases (Gupta, 2019a, 2019b; Gupta & Lane, 2019). The goal of
the overall system is to support decision making within a highly volatile
and hardly predictable fashion market. The ultimate aim is to maximize
expected profit, but in order to achieve this target, there are several
subproblems that must be solved, including inventory rebalancing.
Since store sales depend on several factors and are not uniform over
the network, the need arises of periodically reallocating inventory over
the network, in order to ship items where they are most requested,
as well as to cope with broken assortment issues. This is the specific
subproblem that we address in this paper, but we believe that it
is useful to place it within a more general framework, in order to
appreciate its relevance.

The retail network of Miroglio consists of more than 1000 stores.
In particular, our case study focuses on two of the major brands of the
company, which operate approximately 350 stores, collectively selling
about 2 million pieces per year, with an average item selling price of
e50. The number of distinct models (references) for each of the two
brands exceeds 800 for the Winter collection and 1200 for the Spring
collection. An individual Stock-Keeping Unit (SKU) is a pair featuring a
model and a size. A model is usually available in 4–5 different sizes, so
the number of distinct SKUs is about 3800 for the Winter collection
and 5200 for the Spring collection. Given the wide SKU range, and
the relatively short product lifecycle, it is hard to find the optimal
initial allocation of items to stores. Hence, the company keeps some
pieces in stock in the central warehouse, in order to ship them later
to the most suitable stores. An important feature of the retail network
is that stores are heterogeneous, since they can be directly owned by
the company or franchised, and are associated with different brands,
aimed at possibly different market segments. Furthermore, stores are
distributed over all Italy, with an impact on sales due to taste and
meteorological factors: a relatively heavy garment may sell less in
Southern Italy than in Northern Italy. As a result, sales are not uniform
across the network, and it can be useful to redistribute items among
different stores, in order to better match inventory availability and
customers demand. The logistic network of the company reflects these
needs. As shown in Fig. 1, there are flows from the central warehouse
to retail stores, as well as lateral shipments among retail stores. Further
inventory release from the central warehouse and lateral shipments
are carried out weekly, or every other week, depending on the brand.
Such additional shipments are based on matching a list of SKU offers,
which includes available inventory at the central warehouse of the firm,
and a list of requests. When available inventory is not sufficient to
meet requests, inventory rationing must be carried out. In the past,
because of the organizational complexity involved, as well as the need
to arrange and execute shipments quickly, given the fashion content of
items, the firm did not want to consider lateral shipments among retail
stores, as they lead to an informal and disordered negotiation process
among store managers and the central warehouse management. The
role of the model we describe here is to support this specific business
process, rather than the full-fledged inventory management problem.

Besides speed of execution, there are a number of operational

constraints that must be taken into account:
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Fig. 1. An illustration of the network structure and shipping patterns. Dotted arcs refer
to lateral shipments, whereas shipments from the central warehouse are depicted by a
continuous line.

• Since the firm uses fast couriers, the shipments are always point-
to-point, unlike some inventory routing problems with a VRP
flavor (Bertazzi & Speranza, 2012; Cordeau et al., 2015).

• The warehouse cannot act as a transit point among stores, as
unpacking incoming parcels and sorting out the content for out-
bound shipments would imply a significant operational workload,
which would slow down the reallocation process and cannot be
sustained.

• It is the responsibility of store managers to prepare the lateral
shipments. However, as we pointed out in the introduction, there
is no specific personnel for this task. Hence, an excessive time
devoted to prepare shipments could have an adverse effect on
store operations and lead to dissatisfaction on the part of both
managers and employees. The issue is not related with a hard
cost, but rather to intangibles, and it is particularly relevant at
franchised stores. In order to take care of the issue, an upper
bound is enforced on the number of outbound shipments from
retail stores.

s a result, there is a minimum amount that is worth shipping between
wo retail stores, in terms of monetary value, as well as a maximum
umber of outgoing shipments from stores. It is worth noting that this
as more to do with the difficulty of arranging parcel preparation and
hipping at each store than with the shipping cost itself, which has a
imited impact due to arrangements with the couriers. On the contrary,
he only constraint on shipping from the central warehouse is related
o stock availability. The frequency with which inventory reallocations
re planned depends on contingencies, as well as the store brand, but
ateral shipments may be carried out every week or every other week.
evertheless, the demand forecasts that are the one of the inputs to
uantify the utility of each match, as we shall see in Section 4.1, refer
o the full selling season. Thus the time horizon is progressively shrunk.

Last but certainly not least, we should also assess the expected
enefit of meeting a request for shipping additional stock to a retail
tore. Demand is uncertain and there is little point in shipping an
tem that has a low probability of being sold. In principle, one could
ormulate a stochastic optimization problem aiming at maximizing
xpected profit. However, a full-fledged stochastic optimization model
s out of the question. Leaving computational issues aside, character-
zing demand uncertainty for several items across several locations is

hopeless endeavor. Hence, the proposed model is deterministic and
elies on marginally decreasing utilities associated with the shipment
f each item from a source to a destination node. The estimation of
uch utilities will be clarified later, but this modeling choice results
n a large-scale binary programming model, which requires an ad
hoc solution approach. A matheuristic approach has been developed,
605

based on a sequence of maximum-weight matching problems aimed
at defining a restricted model, where only a subset of ‘‘interesting’’
decision variables is included. Then, the restricted model is solved using
standard branch-and-cut.

3. Literature review and paper positioning

In this section we review some relevant literature in order to po-
sition our contribution. We want to highlight that our paper is clearly
related to the well-known topic of lateral shipments, but the motivating
problem has some specific features that set it apart from other studies.

The subject of lateral shipments on a network of inventory locations
has been investigated for a long time. An early paper from the 60 s
is (Allen, 1961). Indeed, given the sheer size of this literature, this
section is not meant to be an extensive review, which is provided,
e.g., by Paterson et al. (2011) and references therein. Actually, there
is a variety of approaches involving lateral shipments, which may
be reactive or proactive, and possibly integrated with replenishments.
Here we just want to point out the building blocks of the overall
approach and to position the proposed model and matheuristic solution
strategy with respect to the available literature.

When demand is subject to considerable uncertainty, as is the case
with fashion items, a common practice is to avoid committing all of
the available inventory immediately to retail stores. Some inventory is
kept centralized, which is a form of risk pooling strategy (Brandimarte
& Zotteri, 2007). Furthermore, leaving room for multistage decisions,
to be taken sequentially after sales information is collected, is a rec-
ommended strategy under significant uncertainty conditions (Fisher
et al., 1994; Fisher & Raman, 1996). Besides sequential release of
items from a centralized location, lateral shipments are another useful
tool to cope with uncertainty A fair share of papers deals with a
limited number of items or locations, and the most common approach
relies on stochastic modeling for inventory control. See, for instance,
Agrawal et al. (2004), Amrani and Khmelnitsky (2017), van Wijk et al.
(2019), to appreciate the possible application of dynamic programming
or stochastic programming. A relevant paper, in the retail context,
is Agrawal and Smith (2009). See also Choi (2014), Fisher et al.
(2001). The latter references deal with a stochastic model based on
a dynamic programming recursion. We should also mention Grahovac
and Chakravarty (2001), who deal with a case involving low-demand
and expensive items, which is also relevant for fashion applications.
Their approach relies on stochastic modeling, and it is limited to a
single item.

On the contrary, the approach taken in this paper relies on an
integer programming formulation and is quite similar in spirit to the
model formulations proposed for Zara by Caro and Gallien (2010),
Caro et al. (2010), as well as to the approach followed in Wang et al.
(2022). The sheer size of the problem, as well as the complexity of
the involved constraints and the need for possible model extensions,
discourage a metaheuristic approach based on some form of local
search. A matheuristic approach, which actually takes advantage of
the mathematical model formulation may look more promising. A
wide array of such methods have been proposed (Maniezzo et al.,
2021). Common strategies are to solve a sequence of LP relaxations,
progressively fixing integer variables to integer values, or to limit the
number of integer variables in order to ease the computational effort of
standard branch-and-cut. Indeed, this is the approach pursued by Wang
et al. (2022), where a relax-and-fix strategy is successfully applied for
planning lateral shipments in a fashion retail network. Unfortunately,
their strategy cannot be applied to our model. The reason is the quite
different nature of the two models:

• They consider a multiperiod model under the assumption that
demand is perfectly forecast. As a result, their model involves
the typical inventory balance equations, plus variables related to
lateral shipments. The only operational constraint on shipments
is related to a minimum shipment of a single SKU, and everything
is centrally planned.
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• On the contrary, as fully explained in the following section, in our
model we consider demand uncertainty through expected utili-
ties. Furthermore, even though shipments are centrally planned,
we have to account for store manager preferences, since the
overall approach relies on their collaboration. Finally, operational
constraints on shipments involve all of the SKUs, not a single
one, and the total number of outbound shipments per store is
constrained.

s a result of these differences, our model does not rely on integer
ariables, but on a huge number of binary variables, and features a dif-
erent structure, more akin to a matching problem with side constraints.
o, even the LP relaxation of the model may take hours to solve with
state-of-the-art solver, precluding the adoption of matheuristics like

ix-and relax. Since we do want to take advantage of the power of state-
f-the-art MILP solvers, we have to reduce the model size in a clever
ay, by eliminating decision variables before applying the LP-based

solver. Hence, we have adopted a model reduction approach based on
a sequence of easy weighted matching subproblems, as we explain in
Section 5. It is interesting to observe that a similar strategy is applied,
in a different context, by Morabit et al. (2022), who apply machine
learning techniques to speed up the solution of the column generation
subproblem in a routing application. They analyze data collected over
successive iterations in order to reduce the set of arcs to consider when
solving an NP–hard variant of a shortest path subproblem, which is the
pricing component of their decomposition approach.

Another potential source of interesting ideas is stochastic dynamic
programming. It is well-known that a literal application of the dynamic
programming principle is usually not feasible, due to different curse
of dimensionality (Brandimarte, 2021). Nevertheless, a wide range of
approximation strategies is available to overcome the difficulty (Powell,
2011). Indeed, variations of dynamic programming strategies have
been proposed to deal with lateral shipments. Meissner and Senicheva
(2018) apply approximate dynamic programming, but they consider
a single SKU and a smaller network than we consider here. A de-
composition strategy is applied by Feng et al. (2017) for proactive
lateral shipments, whereas Seidscher and Minner (2013) deal with both
reactive and proactive shipments. These two references, too, deal with
a single item.

Hence, the problem that we consider, as well as the modeling and
solution approach, stand apart from other research work. This is due to
the size of the problem, the interactions between different SKUs, and
the need to involve store managers into the process, which is not purely
centralized. Needless to say, this does not imply in any way that our
proposal is better than the alternatives. Indeed, it is quite difficult to
compare it in terms of classical costs of inventory control models. We
can only claim that our modeling framework has some value in terms
of flexibility and that the solution approach based on variable selection
is of interest in itself.

4. Model formulation

Let us define the relevant sets and associate them with indexes:

• The set of SKU codes, indexed by 𝑖 ∈ .
• The set of destination nodes (retail stores), indexed by 𝑙 ∈ .
• The set of origin nodes, indexed by 𝑘 ∈ 0 =  ∪ {0}; this set

includes retail stores, as well as the central warehouse associated
with 0.

As we have pointed out, we may have lateral shipments between retail
stores, but the central warehouse is neither a transhipment node for
lateral shipments nor the destination of a reverse flow.

The basic problem data are denoted as follows:

• 𝑂𝑖𝑘: offered amount of SKU 𝑖 at source node 𝑘 ∈ 0.
606

• 𝑅𝑖𝑙: requested amount of SKU 𝑖 at store 𝑙 ∈ .
• 𝐵𝑘: upper bound on the number of outgoing shipments from retail
store 𝑘 ∈ .

• 𝑊 : fixed transportation charge per shipment.
• 𝑉𝑖: value of SKU 𝑖 ∈ .
• 𝑉min: minimum value for an acceptable shipment.

The most critical part in modeling this problem is the choice of decision
variables. A seemingly obvious choice would be to introduce integer
(due to small volumes) decision variables 𝑋𝑖𝑘𝑙, representing the amount
of SKU 𝑖 shipped from source node 𝑘 ∈ 0 to retail store 𝑙 ∈ . However,
by doing so we would disregard some relevant facts.

• The utility of shipping an item must take into account the prob-
ability of actually selling it. As a result, the (expected) utility
derived from shipping two items to a given store need not be
twice as much as the utility of a single item. In fact, the probabil-
ity that random demand 𝐷 exceeds a given threshold 𝑥, P{𝐷 >
𝑥}, is a decreasing function of 𝑥, which results in marginally
decreasing utility coefficients.

• Suppose that two units of an SKU are available at the central
warehouse, and two stores are requesting two (or more) units
each. Let us further assume that no unit is available at the two
stores and that the two probability distributions of demand are
identical. In terms of shipped SKU value, there is no difference
between allocating two units to either store or one to each store.
However, in terms of expected utility, the second solution would
be preferred. Actually, this also depends on the probability of
selling the shipped items, which in turns depends on the stock
on hand at the stores. Marginal utilities are quantified in order to
account for all of these issues.

• Priorities may also be associated with specific stores (e.g., re-
cently opened ones, where supporting sales has strategic value),
and they are reflected by utility coefficients.

• It may be preferable to ship items from the warehouse, rather
than a store, as this should improve chances of selling the overall
available inventory.

• Franchised store managers may be particularly reluctant to re-
lease items available in their inventory. Moreover, there are cases
in which some available items are not willingly released by the
manager of a store owned by the firm with an inventory surplus,
but they are nevertheless considered for an enforced lateral ship-
ment and included as offered items. Since it is preferable to satisfy
a request by a willing offer, this should be accounted for by a
lower utility coefficient.

In order to avoid an overly complicated (nonlinear) objective function
or a stochastic optimization problem, we might consider going to the
opposite end of the spectrum and introduce binary decision variables
𝑋𝑖𝑘𝑙𝑚𝑛. Subscripts 𝑖, 𝑘, and 𝑙 refer to SKU code and source/destination
nodes as before, respectively. Subscript 𝑚 ∈ {1, 2,… , 𝑂𝑖𝑘} refers to the
item number (position) for SKU 𝑖 at source node 𝑘, and 𝑛 ∈ {1, 2,… , 𝑅𝑖𝑙}
efers to the item number (position) for SKU 𝑖 at destination node
. These decision variables should be multiplied by marginal utility
oefficients 𝑈𝑖𝑘𝑙𝑚𝑛. The precise meaning of subscripts 𝑚 and 𝑛 deserves
ome clarification. If, for instance, a retail store is offering two items
f a given SKU, 𝑚 would range from 1 to 2. Further suppose that the
tore manager is not quite willing to offer those items: he/she may be
equired to do that by the central planners for various reasons. In this
ase, being forced to release two items, rather than one, may lead to
ncreased dissatisfaction, a disutility that can be reflected in the utility
oefficients. The reduction of utility for item 𝑚 = 2 is larger than
he reduction for item 𝑚 = 1. Subscript 𝑛 plays a similar role when
e consider a store requesting more than one item of a given SKU.
he marginal utility is decreasing with respect to 𝑛, as the probability
f selling additional items at a retail store is decreasing. Therefore,
atching request 𝑛 = 1, for a given SKU at a retail store, yields a

arger marginal utility than matching request 𝑛 = 2, and so on. A
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Table 1
Table of offers/requests for a toy example. There are two retail
stores (nodes 1 and 2), besides the central warehouse (node 0),
and three SKUs (𝐴, 𝐵, 𝐶).

Node Offers Requests

0 2 of 𝐴, 1 of 𝐵 –
1 1 of 𝐵 2 of 𝐴, 1 of 𝐶
2 1 of 𝐶 1 of 𝐴, 1 of 𝐵

possible exception is the case of a store manager who is requesting a
reactive shipment to meet the realized demand by two customers who
are willing to wait for the delivery of their preferred item. In this case,
the selling probability would be 1 for both items, but the model can
accommodate this case. In fact, we may deal with both reactive and
proactive shipments.

Assuming that we may sensibly estimate the marginal utilities, a
matter discussed later in Section 4.1, this choice of decision variables
allows for a remarkable flexibility. Unfortunately, it also results in
a computational nightmare, not only due to the sheer number of
binary variables, but also due to potential issues with symmetry and
alternative optimal solutions. Indeed, the most common case in which
multiple items of the same SKU are available is the central warehouse,
where such disutility considerations are not relevant. It is worth noting
that well-known textbooks like (Williams, 2013) suggest using general
integer variables, rather than binary ones, when possible. However,
given the need to express marginally decreasing utilities, we would still
need to introduce plenty of auxiliary variables to represent a piecewise
linear utility.

A preliminary computational experience with this flexible modeling
approach showed that real-life instances may be quite difficult to solve.
Some problem instances required about 8 h only to solve the root
LP relaxation, using state-of-the-art interior point methods. Therefore,
we have adopted a compromise formulation, which may reduce the
number of decision variables from possibly a few millions, in large-scale
instances, to about one million, based on the following choice of core
decision variables:

𝑋𝑖𝑘𝑙𝑛 =

⎧

⎪

⎨

⎪

⎩

1 if node 𝑘 ∈ 0 sends an item of SKU 𝑖
to satisfy request number 𝑛 for 𝑖 at store 𝑙 ∈ ,

0 otherwise.

hese variables should be interpreted as matching variables (expressing
he fact that a request is matched by an offer), rather than trans-
ortation variables, and they multiply corresponding marginal utility
oefficients 𝑈𝑖𝑘𝑙𝑛 (see Section 4.1). Actually, the matching variables
𝑖𝑘𝑙𝑛 are only defined for quadruples (𝑖, 𝑘, 𝑙, 𝑛) such that the source

node 𝑘 offers an SKU 𝑖 that is requested by the destination node 𝑙.
Let us denote the set of such quadruples by , the set of possible
matchings. To clarify the meaning of these variables, a toy example
of offers and requests is illustrated in Table 1, and the corresponding
matching variables are visualized in Fig. 2. Note that in the case of SKU
𝐴, for which two items are available at the central warehouse, we do
not specify which of the two units is used to match a request. Therefore,
up to two arcs outgoing from node 0 may be selected (hence, we use the
term matching in an arguably lose sense). On the contrary, two separate
nodes are introduced to express the satisfaction of the two requests for
SKU 𝐴 by retail store 1, as different marginal utilities are associated
with the two arcs.

We also need additional variables related to the use of a point-to-
point arc for a shipment:

𝛿𝑘𝑙 =

{

1 if there is a shipment from node 𝑘 ∈ 0 to store 𝑙 ∈ ,
0 otherwise.

These variables are necessary to bound the number of outgoing ship-
ments from a retail store, to account for fixed shipping charges, and
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to enforce a minimum shipped value (if really needed). They are not
Fig. 2. The matching variables corresponding to the data of Table 1.

efined for every (source,destination) pair, but only for the subset of
easible shipping pairs, denoted by  . This is just the projection of the

set of matchings  on the set of (𝑘, 𝑙) pairs for which there is at least
possible matching for an SKU.

Let us also define the set 𝑘 ⊆  of SKUs offered by node 𝑘 ∈ 0,
s well as the set 𝑙 ⊆  of SKUs requested by node 𝑙 ∈ . Then, the
ptimization model may be stated as follows:

ax
∑

(𝑖,𝑘,𝑙,𝑛)∈
𝑈𝑖𝑘𝑙𝑛𝑋𝑖𝑘𝑙𝑛 −𝑊

∑

(𝑘,𝑙)∈
𝛿𝑘𝑙 (1)

s.t.
∑

(𝑙,𝑛)∶(𝑖,𝑘,𝑙,𝑛)∈
𝑋𝑖𝑘𝑙𝑛 ≤ 𝑂𝑖𝑘, 𝑘 ∈ 0, 𝑖 ∈ 𝑘 (2)

∑

𝑘∶(𝑖,𝑘,𝑙,𝑛)∈
𝑋𝑖𝑘𝑙𝑛 ≤ 1, 𝑙 ∈  , 𝑖 ∈ 𝑙 , 𝑛 = 1,… , 𝑅𝑖𝑙

(3)

𝑋𝑖𝑘𝑙𝑛 ≤ 𝛿𝑘𝑙 , (𝑖, 𝑘, 𝑙, 𝑛) ∈  (4)
∑

𝑙∶(𝑘,𝑙)∈
𝛿𝑘𝑙 ≤ 𝐵𝑘, 𝑘 ∈  (5)

∑

(𝑖,𝑛)∶(𝑖,𝑘,𝑙,𝑛)∈
𝑉𝑖𝑋𝑖𝑘𝑙𝑛 ≥ 𝑉min𝛿𝑘𝑙 , (𝑘, 𝑙) ∈  (6)

𝑋𝑖𝑘𝑙𝑛, 𝛿𝑘𝑙 ∈ {0, 1}. (7)

The objective function (1) is the total expected utility associated with
matchings, minus the sum of shipping charges associated with ship-
ments from sources to destinations. Constraint (2) bounds the number
of matchings out of a source node for each SKU by the number of
offered items 𝑂𝑖𝑘. Constraint (3) states that each single request, at each
node, for every item of each SKU, can be matched at most once. There
is a lack of symmetry between constraints (2) and (3), because the
matching variables depend on the position number 𝑛 on the destination
side, but there is no corresponding position 𝑚 on the source side (also
see Fig. 2, as far as SKU 𝐴 is concerned). As we have pointed out, this
is a modeling choice that reduces model complexity and computational

effort, while still allowing to express the decreasing marginal utility of a
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matching when a destination requests more than one item for a given
SKU. Constraint (4) links matching and shipment variables: we may
have a matching between nodes 𝑘 and 𝑙, for whatever item position
f whatever SKU, only if there is a shipment from 𝑘 to 𝑙. Constraint

(5) is operational in nature and limits the number of shipments out
of a source node 𝑘 ∈  to 𝐵𝑘. There is no limit for node 0, the
central warehouse. Constraint (6) states that if a shipment arc (𝑘, 𝑙)
is active, then the total value of the shipment must be at least 𝑉min.
Note that here we use the item value, not the utility of a matching,
and that this constraint is more operational than economic in nature:
it may contribute to limit the shipping burden out of a store. Finally,
we require that all of the decision variables are binary. In real-life
instances, this model may include about 1 million binary decision
variables, and just solving the LP relaxation, by a state-of-the-art solver
like Gurobi, may be quite expensive and take hours.

4.1. Setting the marginal utility coefficients

The most critical parameters of the proposed model are the coef-
ficients 𝑈𝑖𝑘𝑙𝑛 multiplying the matching variables 𝑋𝑖𝑘𝑙𝑛 in the objective
function (1). We refer to such coefficients as marginal utilities, or utilities
for the sake of brevity. The utility of matching the request by retail
store 𝑙 ∈  for item number 𝑛 ∈ {1,… , 𝑅𝑖𝑙} of SKU 𝑖 ∈  with an
item available at source node 𝑘 ∈ 0 depends on several considerations.
Here we describe one possible approach to set marginal utilities. This
is the approach that has been used in the computational experiments
of Section 6, but we stress the fact that the modeling framework and
the solution strategy are independent of this choice.

As far as the probability of selling that item is concerned, we rely
on the following steps.

1. A forecasting model for weekly demand is used, based on the dis-
aggregation of aggregate forecasts to store/reference/size level
and integrated with information from store managers; we refer
to Sirovich et al. (2018) for details.

2. Demand is assumed to be a Poisson random variable, with an
expected value corresponding to the demand forecast obtained
at the previous step.

3. The probability 𝜋̂𝑖𝑙𝑛 of selling each requested item 𝑛 of SKU
𝑖 at store 𝑙 is evaluated according to the Poisson distribution,
accounting for current on-hand inventory.

4. The expected contribution to revenue is estimated as 𝑉𝑖 ⋅ 𝜋̂𝑖𝑙𝑛.

In order to determine the utility coefficients, suitable corrections
are applied to account for policy rules and preferences, in the form of
multiplicative factors, which can be larger or smaller than 1, resulting
in an increase or decrease of utility:

• Utility is increased for items released from central inventory, and
it is decreased for items released from a franchised store.

• Utility is also decreased if the release is enforced.
• On the destination side, utility is increased for strategic stores.

Additional considerations could play a role in the quantification of
marginal utilities, and this is related with the specific features of
the business process we aim to support. For instance, we may deal
with both proactive and reactive lateral shipments, related to demand
forecasts or realized demand of patient customers, respectively. The
model is flexible and agnostic with respect to such features.

5. The solution approach

Due to the computational burden of solving the proposed model
exactly, a heuristic approach is needed. As we have pointed out, the size
of the problem discourages a local search metaheuristic strategy, and
the difficulty in solving the LP relaxation discourages a matheuristic
based on the full MILP model. Hence, the approach we have pur-
sued relies on a model reduction strategy, before applying commercial
608
branch-and-cut (possibly within a suboptimality tolerance). The key ob-
servation stems from constraint (4), which links the matching variables
𝑋𝑖𝑘𝑙𝑛 with the shipping variables 𝛿𝑘𝑙. When a shipping variable is set
to 0, a large number of matching variables is forced to 0. If we could
educe the set of shipping pairs from the set of feasible shipping pairs 
o a subset ∗ of really useful pairs, the overall problem size would be
onsiderably reduced. To get a quantitative feeling, we observe that
he overall number of binary variables in the model may be huge,
ut the number of decision variables related to pairs of arcs is quite
easonable. If we consider 200 stores, there might be about 40,000
ossible lateral arcs (actually less, as some offers and requests do not
atch for a pair of stores, or the shipped value would be too small). In

ur experience, the number of outgoing shipments per store is bounded
etween 5 and 10; hence, if we allow 8 outgoing shipments per store
n the average, at most 3,200 lateral shipments can be carried out.
his quick calculation suggests that indeed, by setting a 𝛿𝑘𝑙 variable to
ero, preventing a shipment from node 𝑘 to store 𝑙, we may eliminate
significant number of matching variables, drastically reducing the

roblem size without degrading the solution too much. We do so only
or store-to-store shipments. Then we introduce all of the potential arcs
rom the central warehouse into the reduced model, as their number is
ather small (200 in the case of 200 retail stores).

In order to assess the value of a shipping pair (𝑘, 𝑙) (from source
ode 𝑘 ∈  to destination node 𝑙 ∈ ) we may consider the total item

value

𝑉𝑘𝑙 =
∑

𝑖∈
𝑉𝑖 ⋅min{𝑂𝑖𝑘, 𝑅𝑖𝑙}, 𝑘 ≠ 𝑙. (8)

Let us denote by 𝑁max the maximum number of shipping pairs that
we want to include in the reduced model. A very simple algorithm
would sort feasible shipments in decreasing order of their value, pick
the best one, update offers and requests of the involved stores, update
the ranking, and repeat until either no shipment is feasible or we exceed
the maximum threshold 𝑁max. In the procedure, we should also keep
track of the allowable outgoing shipments for each store, and eliminate
a source node when its limit has been reached. The idea is quite simple,
but overly greedy.

In order to reduce the amount of myopia in the previous greedy
strategy, we may look for the best subset of independent shipping pairs,
where ‘‘independent’’ means that the pairs do not interfere with each
other, as each node may play the role of the source in at most one
shipment, and the role of the destination in at most one shipment. This
may be found by solving a maximum-weight matching problem, where
the weight of a pair is given by Eq. (8):

() max
∑

(𝑘,𝑙)∈
𝑉𝑘𝑙𝛿𝑘𝑙

s.t.
∑

𝑙∶(𝑘,𝑙)∈
𝛿𝑘𝑙 ≤ 1, 𝑘 ∈ 

∑

𝑘∶(𝑘,𝑙)∈
𝛿𝑘𝑙 ≤ 1, 𝑙 ∈ 

𝛿𝑘𝑙 ∈ {0, 1},

where  is the set of feasible shipping pairs. Note that at this level
we are matching pairs of stores, rather than single offers and requests.
By solving this (easy) problem, we will obtain a collection of 𝑁 pairs.
However, not all of them are necessarily worth including in the reduced
model. The most valuable matchings are probably good candidates
for inclusion in the overall solution. However, the same does not
necessarily apply to the lowest value matchings; by committing items
to them, we might preclude better shipments. Therefore, we introduce
a hyperparameter 𝛼, representing the fraction of shipping pairs in the
optimal matching that are introduced in the reduced model. Hence,
after solving a matching problem, we rank the pairs according to their
shipment value and select the top ⌈𝛼𝑁⌉ ones for inclusion as eligible
shipping pairs in the reduced model. A small value of 𝛼 increases
the number of matching subproblems to be solved, but may avoid
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Table 2
Descriptive statistics of the problem instance features.

Stores SKU Offers Requests Store pairs Matchings

Min 30.0 118 290 475 132 631
Q1 197.8 1067 5328 7383 2110 20,697
Median 215.5 1738 11,773 13,958 8214 48,520
Mean 204.3 1787 13,384 16,370 17,266 179,293
Q3 247.0 2260 19,109 23,222 31,933 291,454
Max 259.0 4239 38,729 50,518 60,137 887,079
Algorithm 1 Model reduction based on maximum-weight matching
Set the maximum number of shipping pairs 𝑁max and the fraction of accepted
pairs 𝛼.
Set the termination flag 𝗌𝗍𝗈𝗉 ← 𝖿𝖺𝗅𝗌𝖾 and initialize the set of eligible pairs
 ← ∅.
For each shipping pair in the feasible set  set the shipment value according
to Eq. (8).
while 𝗇𝗈𝗍 𝗌𝗍𝗈𝗉 do

Solve the maximum-weight problem (). Let 𝑁 be the number of pairs
in the selected pairs.

If 𝑁 = 0 exit from the while loop.
Sort the selected pairs in decreasing order of their value.
for 𝑘 = 1 ∶ max{⌈𝛼𝑁⌉, 𝑁max} do

Include the pair in position 𝑘 to the set  , if it is feasible (i.e., it does
not violate the maximum number of outbound shipments from the source
node and its value is larger than the minimum threshold).

Update offers and requests at source and destination nodes,
respectively.

Reduce 𝑁max and the number of allowed outbound shipments from
the destination node.

If 𝑁max = 0, then 𝗌𝗍𝗈𝗉 ← 𝗍𝗋𝗎𝖾 and exit from the for loop.
end for

end while

myopic selections. In order to solve a new matching subproblem, we
have to update offers and request at nodes introduced in the subset
of eligible shipping pairs, as well as reducing the number of possible
outgoing shipments for each node. We keep adding eligible pairs until
we exceed the upper threshold 𝑁max. The model reduction approach is
more formally specified as a high-level pseudo-code in Algorithm 1.

There are possible variations on this basic procedure:

1. Rather than using shipment values, we may evaluate the suit-
ability of a shipping pair by using the utility coefficients. On
the one hand, this looks more consistent with the actual opti-
mization model. On the other hand, however, we have to update
utility-based matching weights whenever we update offers and
requests, following the sequence of selected pairs. This is not
necessarily consistent with the overall reduced model, where we
also consider shipments from the central warehouse.

2. We may also introduce a second control parameter, denoted by
𝛽, which is an allowance on the number of outgoing shipments
from each store. Hence, the upper bound for store 𝑘 may be
relaxed to 𝐵𝑘 + 𝛽. The aim of this parameter is to leave more
freedom to arrange shipments in the reduced model; however,
it may result in a sensible increase in computational effort.

6. Computational testing

6.1. The data set

In order to test the performance of the proposed matheuristic strat-
egy, we have collected 76 problem instances. It is a limited number of
instances, but they are significant, as they consist of real data. Due to
confidentiality reasons, we cannot report economic data, but Table 2
reports summary statistics for the following features:
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• Stores: the number of stores involved in the inventory reallocation
(not including the central warehouse).

• SKU: the number of SKUs.
• Offers: the number of offers (in terms of SKUs offered by any

node, not number of items).
• Requests: the number of requests.
• Store pairs: the number of store pairs that could exchange items,

as there is a match in terms of SKUs offered and requested. This
does not include the central warehouse, which may contribute
at most a number of shipments corresponding to the number of
stores. Note that pairs are ordered: in principle, store A could both
send items to and receive items from store B, but they are separate
shipments.

• Matchings: the number of matchings at the item level (i.e., the
number of binary matching variables).

We report the usual summary statistics (minimum and maximum value,
the three quartiles, and the mean). Clearly, there is a mix of small and
large scale problems, as sometimes the reallocation procedure is run for
a limited subset of nodes in the network. Hence, we may have to solve
both easy and hard problems.

The upper bound on the outgoing shipments from stores has been
set to 5 for franchised stores, and 10 for owned stores, in order to
reflect the respective peculiarities. As we have pointed out, this choice
is not necessarily related to hard costs, but rather to intangible issues
related to the inconvenience perceived by store managers when having
to prepare too many parcels. We remark again that involving store
managers is an essential requirement in our application. Moreover,
based on preliminary experience on the available problem instances, we
have decided to relax the constraint on the minimum shipment value.
In practice, this constraint increased the CPU time without having a
significant impact on the solution quality. To understand the reason,
we may observe that if the number of feasible outgoing shipments
from a node is large with respect to the maximum number allowed,
uninteresting shipments will not be considered by the model anyway.
If it is small, we may just post-process the solution eliminating small-
value shipments without really degrading solution quality. However,
this is specific of our computational experiments. In the actual use
of the model, the constraint on minimum shipped value has been
sometimes enforced. The fixed shipping charge is set to a relatively
small value, based on data provided by Miroglio (but again, this only
refers to this specific testbed).

6.2. Solution strategies

We compare the exact solver with the two versions of matheuristic:
the one in which the matching subproblems are solved using the item
values to define weights, and the one in which we use expected utilities.
To be more precise, let us define the algorithmics settings:

• When using straightforward branch and cut, we leave Gurobi
(version 9.5.2) to its default settings, with the only exception of
the suboptimality tolerance, which is set to 1% to cut CPU time
without degrading too much solution quality. The root node LP
relaxation is solved in parallel by the interior method, primal
simplex, and dual simplex. The first thread to complete the LP

relaxation stops the process. The experiments were run on a HP
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Table 3
Comparing expected utility across solvers.

Exact Val1000 Val2000 Val3000 Util1000 Util2000 Util3000

Min 15,980 15,808 15,808 15,808 15,573 15,573 15,575
Q1 267,913 262,308 263,955 264,422 261,834 263,457 263,615
Median 436,359 430,568 448,914 442,164 428,722 447,171 443,546
Mean 429,251 474,221 497,881 494,643 473,237 496,355 495,165
Q3 575,322 652,920 669,501 668,425 648,671 669,520 664,902
Max 1,274,560 1,600,711 1,718,857 1,726,396 1,592,015 1,710,087 1,724,039
Table 4
Comparing CPU time (seconds) for branch and cut across solvers.

Exact Val1000 Val2000 Val3000 Util1000 Util2000 Util3000

Min 0.006 0.004 0.004 0.004 0.004 0.005 0.004
Q1 1.246 0.198 0.336 0.342 0.176 0.303 0.329
Median 8189.284 0.628 2.629 2.592 0.552 2.211 2.337
Mean 5531.865 1.163 828.629 1434.037 0.789 528.597 1262.690
Q3 10,800.421 1.437 568.01 3600.210 1.205 163.480 3600.224
Max 10,805.204 11.012 3601.086 3601.576 2.809 3605.686 3605.479
Limit 49% 0% 20% 38% 0% 9% 32%
ZBook 15 G6 Mobile Workstation, equipped with an Intel Core
i9-9880H 2.30 GHz processor. Of the 8 thread available on the
logical cores, 7 were allocated to Gurobi. We set a time limit of
10,800 s (i.e., three hours). This approach is referred to as Exact,
even though it is not really exact due to the relative suboptimality
tolerance.

• When applying the matheuristic, we must specify some hyperpa-
rameters:

– The maximum number of shipping pairs (between stores)
𝑁max has been set to 1000, 2000, and 3000. Since we may
define weights by value or by utility, we obtain six heuris-
tic solutions strategies: Val1000, Val2000, Val3000,
Util1000, Util2000, and Util3000. In the following,
we will refer to both exact and heuristic solution strategies
as solvers, for the sake of brevity.

– When solving the restricted problem by branch and cut, we
use similar settings as in the Exact case: suboptimality
tolerance of 1%, but CPU time limit of 3600 s (1 h). Note
that this only refers to the branch and cut phase, and it
does not include the time to solve the sequence of matching
subproblems, as well as the time to build the problem in-
stance for Gurobi using the Python interface (which may be
substantial, but is related to implementation details, rather
than the solution algorithm). Hence, the allocation of time
to the different solvers may be considered substantially fair.

– The fraction of accepted pairs 𝛼 (when solving each maxi-
mum weight matching subproblem) has been set to 0.5.

– In the model reduction phase, we do not allow more out-
going shipments than the limit per store (i.e., we set 𝛽 to
0).

These settings are the result of preliminary computational experience
with this specific testbed, but they are not necessarily the best ones in
general.

6.3. Aggregate analysis

To get a first visual and numerical feeling for the relative perfor-
mances of the seven solvers, we report descriptive statistics for the
objective value in Table 3, and for the branch and cut times (in seconds)
in Table 4. We note that no economic information can be associated
with the objective values, as they are related to an estimate of expected
utility. The same information is depicted in boxplot form in Figs. 3 and
4, respectively.

The differences between means and medians suggest that data are
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skewed, especially CPU times. Clearly, considering means and medians
of expected utilities is a crude analysis, since we are mixing quite
different problem instances. Nevertheless, some interesting patterns
emerge. If we look at medians in Table 3, we observe that the best
performance seems to be obtained by including about 2000 shipments
among stores in the reduced model, as is done with the Val2000
and Util2000 solvers. Adding more of them looks counterproductive,
which is actually an effect of the CPU time limit. In the last line of
Table 4 we report the fraction of problem instances for which the time
limit was reached. In almost 50% of the cases, branch and cut applied
to the full model is stopped by the time limit. It is also worth noting that
quite often a very limited number of branch and cut nodes is explored,
since most of the work is carried out at the root node, solving the LP
relaxation, running heuristics, and generating cuts. This never happens
for the case of 1000 shipping pairs, at the cost of a lower solution
quality. Increasing the shipping pairs to 2000 or 3000 has a significant
impact on computational effort, as it can be seen from the mean of CPU
times and in the fraction of unsolved problem instances. If we consider
the mean of expected utilities, we still see that solvers with 1000 pairs
are outperformed, whereas solvers with 2000 and 3000 pairs seem
comparable in terms of objective function (with a considerable increase
in computational effort in the latter case). This is not completely in line
with what we observe in terms of medians, but it is due to the skew in
the data.

This preliminary analysis suggests that we should disaggregate the
analysis with respect to problem size, and that we might focus on
comparing Exact with Val2000 and Util2000, which is what we
do in the next section.

6.4. Disaggregation of easy and hard problems

In order to split the problem instances in two classes, we use the
median number of possible shipments between stores, which is 8214,
as reported in Table 2. Thus, the 76 problem instances are split into
two classes of 38 instances each.

Figs. 5 and 6 report boxplots for expected utility and CPU time,
respectively, for instances below the median. The message is quite
clear. Apart from some outliers, the computational effort for the full
model is pretty small, and there is no reason to deteriorate solution by
resorting to the matheuristics based on model reduction (even though
they perform fairly well). This is not quite surprising, given the limited
size of this subset of problem instances, which are easy, yet realistic.

A completely different picture emerges from Figs. 7 and 8, which re-
fer to problem instances above the median. In this case, even Val1000
and Util1000 outperform Exact, due to the time limit. Increasing
the pairs from 2000 to 3000 has a significant impact on computational

effort, which is not justified in terms of solution quality. Using weights
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Fig. 3. A boxplot representation of expected utility across solvers.
Fig. 4. A boxplot representation of CPU time (seconds) for branch and cut across solvers.
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ased on utilities, rather than plain values, seems to be beneficial in
erms of computational effort, arguably because it results in smaller
odels.

This suggests drawing a more detailed picture for the 38 more
ifficult problem instances, which is reported in Table 5. In order
o make the pattern clearer, we give relative ratios, i.e., the ratio of
he expected utility obtained by each solver with the best solution
mong the three of them on each instance. Thus, 100% corresponds
o the best performance, and the fractions measure the relative quality
f the solution provided by the three solvers on each instance. The
ows have been sorted in increasing order with respect to the ratio
or Val2000. This solver emerges as the best one in terms of solution
uality. Apart from the first seven instances, where Exact is the best
erformer and the matheuristics fall short of obtaining the optimal
alue (within the relative suboptimality tolerance of 1%), Val2000
s always the best performer, with a small advantage with respect to
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til2000. As we have observed, the latter solver results in smaller s
CPU times, though. The tradeoff between solution quality and com-
putational effort, in practical terms, can be a matter of debate. The
inventory reallocation problem need not be solved in real time, and
increasing CPU times by a few minutes might be justified, if this results
in better quality of solutions. We should however observe that quality
is not really measured in terms of objective monetary value, but in
terms of expected utilities that are just estimated by a sensible but
somewhat arbitrary procedure. Hence, the improvement in terms of
expected utility obtained by Val2000 with respect to Util2000 is
uestionable. What is evident, though, is that if we do not reduce
he model size by a suitable procedure, poor solutions are typically
btained within the allocated CPU time limit.

.5. A further experiment with extended CPU time allowance

One might wonder whether the time limit enforced on the Exact

olver is restrictive, and whether this invalidates any conclusion about
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Fig. 5. Boxplot representation of expected utilities for instances below the median.
Fig. 6. Boxplot representation of computational effort for instances below the median.
the quality of the heuristic solution. To run a further check we reconsid-
ered the 17 problem instances for which the gap between the objective
of the incumbent solution and the best bound was above 30%. For
the sake of illustration, here are the gaps when the time limit stopped
branch-and-cut:

97.1%, 55.3%, 55.1%, 42.5%, 40.6%, 38.2%, 36.7%, 35.3%, 35.2%,

35.2%, 34.7%, 33.1%, 32.7%, 31.2%, 30.8%, 30.6%, 30.1%.

We started branch-and-cut by setting the cutoff value to the value
provided by the Val2000 solver, using again a relative gap of 1%.
In other words, we asked the exact algorithm to improve the heuristic
solution by at least 1%, and we allowed 24 h to do so. In no case a
better solution was reported.

We cannot claim that this really certifies the quality of the heuristic
solution, but at least it shows that the three hours time limit was not a
restrictive choice, and that the model may indeed result in very difficult
BIP problems. We cannot rule out the possibility that an alternative
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approach, possibly a metaheuristic, could do better. However, we want
to emphasize that a matheuristic approach, relying on a reduced formal
optimization model, may be more flexible when additional restrictions
are enforced (which did happen, as discussed in the conclusions).
Moreover, it allows us to leverage any improvement in commercial
solvers without writing a single line of code.

7. Conclusions and directions for further research

Both the optimization model and the matheuristic solution approach
that we have described in the paper have been implemented in a
module within an overall inventory management solution devised by
Evo for Miroglio Fashion. The system is actually in use by Miroglio
to manage the stores inventory of the four main brands of the com-
pany and the corresponding outlet stores. Here we discuss academic
viewpoint separately from the business impact.
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Fig. 7. Boxplot representation of expected utilities for instances above the median.
Fig. 8. Boxplot representation of computational effort for instances above the median.
7.1. Methodological contribution

The model that we have proposed is not meant to be a substitute for
classical approaches to lateral shipments, based on stochastic inventory
control theory. Rather, it is a complement aimed at dealing with many
facets of the problem, which do not lend themselves to traditional
stochastic modeling, as well as approximate dynamic programming.
This is partly due to the sheer size of the problem, in terms of number
of stores and SKUs, and partly to the need to involve store managers
into the process, which implies some intangible aspects due to their
incentives and knowledge about their specific store location.

The model is remarkably flexible and it can be integrated within a
decision architecture supporting a range of different business processes.
Unfortunately, it requires the solution of a very difficult pure binary
linear program. The LP relaxation itself is computationally difficult,
which precludes the application of a whole range of matheuristics based
on solving a sequence of LPs or restricted BIPs (Maniezzo et al., 2021).
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We have resorted to a model reduction strategy, whose performance
has been analyzed by experiments on real-life instances.

Both the experience that we have described and the actual use have
shown that the model reduction approach has merit. However, there
are some open issues. For instance, a moderate increase in the number
of possible shipping pairs included in the reduced model may result
in an abrupt increase in the CPU time. This is somewhat related to
performance variability, which is a well-known issue in MILP models;
see, e.g., Lodi and Tramontani (2014) for a related discussion. Also
the choice of other hyperparameters, like the fraction of selected pairs
among those resulting from solving a weighted matching problem is
subject to discussion. Moreover, we have set the allowance parameter
𝛽 to zero, as a strictly positive value resulted in a sharp increase in
computational effort. However, a better strategy would be to allow
more shipping pairs from a carefully selected subset of stores, leav-
ing the final selection to the solution of the reduced model. From a
very practical viewpoint, a safe strategy is to solve the model with a

conservative setting of parameters, in order to obtain a good solution
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Table 5
Relative performance of Exact, Val2000, and Util2000 in terms of expected utility on instances above median.

# Exact Util2000 Val2000 # Exact Util2000 Val2000

1 100% 88% 89% 20 80% 99% 100%
2 100% 89% 89% 21 71% 99% 100%
3 100% 92% 93% 22 56% 99% 100%
4 100% 94% 95% 23 97% 100% 100%
5 100% 95% 95% 24 79% 100% 100%
6 100% 95% 96% 25 94% 100% 100%
7 100% 98% 98% 26 49% 100% 100%
8 67% 100% 100% 27 80% 100% 100%
9 100% 99% 100% 28 80% 100% 100%

10 77% 100% 100% 29 81% 100% 100%
11 96% 99% 100% 30 47% 100% 100%
12 95% 99% 100% 31 83% 100% 100%
13 99% 99% 100% 32 73% 100% 100%
14 73% 99% 100% 33 75% 100% 100%
15 74% 99% 100% 34 82% 100% 100%
16 84% 99% 100% 35 77% 100% 100%
17 77% 99% 100% 36 83% 100% 100%
18 75% 99% 100% 37 83% 100% 100%
19 83% 99% 100% 38 87% 100% 100%
o
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with a limited computational effort. Then, since the problem need not
be solved in real time, it is possible to start another computation to
see if a better solution can be found within a predefined time window.
Needless to say, this is a practical and sensible workaround, but it is
neither elegant nor quite satisfactory. A promising approach is to apply
machine learning techniques in order to find a suitable set of problem
features, besides the sheer size of the specific problem instance, and to
figure out a way to automate the choice of algorithm hyperparameters.

Last but not least, one might wonder whether alternative solution
strategies, like metaheuristics not relying on a formal optimization
model, could outperform the proposed approach. Clearly, despite the
large-scale nature of the problem, we cannot rule out this possibility.
Nevertheless, we argue that a matheuristic approach may entail two
advantages:

1. It may be easier to incorporate additional restrictions, which
may occur when the model is applied to a different firm within
the same industry (as we discuss below).

2. By relying on commercial solvers for mathematical program-
ming we may leverage improvements in performance without
the need to adapt code.

7.2. Business impact

The model discussed in this paper is one component of a replen-
ishment tool developed by Evo for the Miroglio application. During
its 5+ years in operation, the tool has already managed millions of
pieces of inventory. The introduction of the Evo Replenish tool, which
includes the matheuristic approach, has allowed the firm to achieve
e1 million/month incremental margin with a reduction in leftover
inventory and 23% fewer stockouts. Clearly, we cannot claim that such
a reduction can be attributed to the rebalancing module. It is impossible
to disentangle the contributions of each individual module of the
overall architecture. Nevertheless, the flexibility of the model played
a significant role in user acceptance, due to its ability to accommodate
inputs from store managers, including some of their preferences.

Besides Miroglio, the model has been successfully adopted also by
other companies in fashion and other industries to improve inventory
management. Since this also raised the need for model extensions,
new features and constraints have been added, at the request of the
companies themselves, in order to respond to different logistic needs.
The main changes have been the following:

• New logistic constraints have been introduced, besides the min-
imum value of each shipment. For each shipment it is possible
to specify minimum and maximum value, number of pieces and
614

physical weight.
• The shipment cost, instead of a fixed parameter, can depend on
the geographical location of source and destination nodes.

• The concept of bundle shipment has been introduced. Some items
can feature a special packaging, in which more pieces of the same
SKU are packed together, or even different sizes of the same item.
These bundles are usually available only at the central warehouse,
and they have to be shipped as a single unit. Hence, for these
items, we need to handle some extra constraints to ship a number
of pieces that is a multiple of the bundle size. For example, if five
pieces of an SKU are packed together, we can either decide to ship
nothing, or one bundle (5 pieces), or two bundles (10 pieces), and
so on.

The flexibility of the modeling framework has allowed a relatively easy
adaptation of the initial tool.
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