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Abstract 
The influence of sodium silicate on the corrosion behaviour of aluminium 
alloy 7075-T6 in 0.1 M sodium chloride solution was studied by open circuit 
potential (OCP) and electrochemical impedance spectroscopy (EIS) tech-
niques. Scanning electron microscopy (SEM) was used to characterize the 
AA7075-T6 surface. Silicate can significantly reduce corrosion deterioration 
and the inhibition efficiency increases with the concentration of Na2SiO3. The 
corrosion inhibition mechanism involves the formation of a protective film 
over the alloy surface by adsorption of aluminosilicate anions from solution, 
as has also been suggested by others in literature. 
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1. Introduction 

Aluminium and its alloys are attractive materials for a range of industrial appli-
cations due to cost-efficient recyclability, excellent physical and mechanical prop-
erties, such as low density, high thermal conductivity, good weldability, and high 
strength-to-weight ratio [1] [2]. However, aluminium alloys are prone to loca-
lized corrosion if exposed to aggressive environments containing chloride ions 
[3] [4] [5]. For a number of decades, protection schemes were based on the chemi-
stry of chromate oxoanions. Chromate and dichromates in aqueous solutions, 
such as conversion coatings or pigment primers, impart excellent corrosion pro-
tection to most aluminium alloys [6] [7] [8] [9]. The mechanism of protection is 
based on the existence of Cr in two oxidation states: Cr(III) oxide provides barrier 
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protection, while the Cr(VI) species are responsible for a “self-repairing” effect 
[7] [9] [10]. The use of chromate compounds has been restricted in the Euro-
pean Union since September 2017 due to their carcinogenicity and toxicity, 
mandating more viable alternatives [11]. In this regard, soluble silicates and sili-
cate-based protection schemes have been studied as corrosion inhibitors for 
aluminium alloys.  

Sodium silicate solutions, commercially known as “water glass”, are water-based 
solutions containing dissolved glass. These aqueous silicates are among the most 
widely used chemicals for a variety of applications such as cleaners, detergents, 
binders and coatings. In particular, they are employed in pre-treatments of alu-
minium alloys as corrosion inhibitors and to confer high hydrophilicity [12]. Si-
licates provide corrosion protection to various metals by forming a film of ad-
sorbed species on the surface [13] [14]. 

The effects of silicates and silica deposits have been reported extensively in li-
terature. Adsorption models have been proposed for various metals including 
iron [15] [16], copper [17], zinc [18] [19], and aluminium [20] [21]. In the case 
of steel, both Fe2+ and Fe3+ participate in the formation of a protective layer by 
reacting with silicate [22]. 

A few studies have been conducted on the interaction of silicates with alumi-
nium oxides [20] [21] [23]. Firmen et al. proposed a deposition mechanism for 
monomeric silica coatings on alumina particles in aqueous solution [23]. A ran-
dom growth mechanism is proposed for the first stage of the layer growth: the 
silica units approaching the surface stick where they first contact the surface. 
The silica units have no preference for where they become permanently fixed. 
Complete coverage of the surface is then achieved at high silica loadings. Gag-
giano et al. studied the interaction of soluble sodium silicates on porous anodic 
alumina [24] [25]. They proposed that aluminosilicate anions in solution react 
with the aluminate ions formed during oxide dissolution at high pH. The so-
dium cations act as a coagulating agent between the negatively charged alumi-
nium oxide surface and aluminosilicate anions in solution. 

Previous studies involving inhibitor combinations have shown a synergistic 
effect when combining silicate with other inorganic inhibitors [26] [27] [28]. 
Taylor and Chambers developed high-throughput methods to assess binary 
pairing of 12 inorganic chemistries [26]. While some systems exhibited antago-
nistic behaviour, others demonstrated synergies that were comparable to or bet-
ter than the equivalent concentration of Cr6+. These chemistries included pair-
ings of rare earth cations and vanadates with silicate.  

Despite the improved corrosion protection afforded by silicate, little is un-
derstood about its effect on aluminium alloys. The purpose of this study is to ex-
plore the protection properties of silicate on aluminium alloy (AA) 7075-T6 
commonly used in different applications in the aircraft industry. Furthermore, 
since most inhibiting conversion coatings and pigments act by releasing soluble 
species into the local aqueous environment, it is of interest to understand the 
mechanism of inhibition provided by silicate dissolved in aqueous NaCl solu-
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tion. The work has been performed using open circuit potential (OCP) and elec-
trochemical impedance spectroscopy (EIS) measurements along with scanning 
electron microscopy investigations. 

2. Experimental Details 

Reagent-grade sodium silicate (Na2SiO3) and sodium chloride (NaCl) were used 
for all experiments. Solutions were prepared using 18.2 MΩ∙cm deionized water. 

Samples of solution heat-treated, artificially aged AA7074-T6 (chemical com-
position in wt.%: 90.01% Al, 5.43% Zn, 2.40% Mg, 1.53% Cu, 0.28% Fe, 0.19% 
Cr, 0.07% Si, 0.04% Mn, 0.03% Ti) were mechanically abraded with SiC paper to 
1200 grit in a nonaqueous slurry (Blue Lube from Struers) to minimize the onset 
of corrosion. All samples were cleaned with ethyl alcohol in an ultrasonic bath, 
air dried, and stored overnight in a desiccator. For the electrochemical experi-
ments, sample dimensions of 2 × 2 × 0.5 cm were employed. 

A three-electrode Pyrex glass cell with a capacity of 250 ml was used in all ex-
periments. The cell was furnished with a large platinum sheet and a saturated 
calomel electrode (SCE) served as counter and reference electrode, respectively.  

The electrochemical experiments were performed with and without silicate 
additions to naturally aerated 0.1 M NaCl solution (pH = 6). Open circuit poten-
tial, EOC, measurements were carried out on freshly polished samples, in natu-
rally aerated aqueous electrolyte without stirring, immediately after polishing. 
The EOC was continuously monitored during 120 min exposure to the aggressive 
environment. Electrochemical impedance spectra (EIS) were recorded at Ecorr 
using a single sinusoidal excitation signal of 10 mV amplitude while the fre-
quency varied over the range 100 kHz - 10 mHz with at least seven points per 
decade. All impedance data were fitted to an appropriate equivalent circuit, us-
ing both the real and imaginary components of the data. Measurements were 
performed employing a PAR 2273 electrochemical workstation controlled by a 
personal computer.  

For surface examination, Scanning Electron Microscope (SEM) images were 
recorded using the JEOL JXA-840A electron probe microanalyzer.  

3. Results and Discussion 

Many efforts have been reported in the literature to describe the chemistry of 
soluble silicates [29] [30] [31] [32] [33]. It has been shown that the anionic com-
plexation of silicate in solution is related to concentration and the silicon-to-cation 
ratio (i.e. SiO2/Na2O). In this study, SiO2/Na2O is equal to 1. 

The solution pH measured after progressive addition of Na2SiO3 to 0.1 M 
NaCl solution is reported in Figure 1. As can be seen, increasing the silicate 
concentration increases the solution pH. The increase in pH can be explained by 
the formation of silicic acid and hydroxyl ions as described in the following 
chemical equation [29]: 

2
3 2 4 4SiO 3H O H SiO 2OH− −+ → +                  (1) 
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Figure 1. Effect of silicate concentration on solution pH. 

 
Gaggiano et al. used solid-state 29NMR to study anionic species in silicate solu-

tion at 0.1 M concentration [25]. For SiO2/Na2O = 1 the main species in solution 
was found to be silicate monomers, which can be represented as ( )4HO SiOx

xx
−

−
 

according to Swaddle [30].  
Figure 2 shows the time dependence of the open circuit potential, EOC, for 

AA7075-T6 monitored over a period of 120 min in quiescent 0.1 M NaCl solu-
tion. Upon immersion, the Eoc of AA7075-T6 in 0.1 M NaCl is −800 mV, but 
within 700 s reaches −745 mV, and then remains approximatively constant. The 
spontaneously formed passive oxide layer consists of an inner amorphous layer 
and more permeable outer layer of hydrated oxide, mainly described as AlOOH 
[4] [34]. 

Figure 3 shows the evolution over time of the open circuit potential of 
AA7075-T6 in naturally aerated 0.1 M NaCl with varying Na2SiO3 concentration 
(1.0 - 20.0 mM). The transients have all similar trend, where the potential rapid-
ly increases from the incipient of immersion, and then gradually tends towards a 
quasi-steady value less negative than the initial one (at t = 0). During immersion, 
a balance is established between the dissolution of the substrate and formation of 
the surface layer, resulting in a relatively stable potential.  

After 2 h exposure to 0.1 M NaCl, the Eoc values are as follows: NaCl (−740 
mV) < 1.0 mM Na2SiO3 (−730 mV) < 5.0 mM Na2SiO3 (−715 mV) < 10.0 mM 
Na2SiO3 (−695 mV) < 20.0 mM Na2SiO3 (−670 mV), i.e. the addition of Na2SiO3 
causes a positive shift of Eoc compared to NaCl, indicating that silicate can act as 
an anodic-type inhibitor. The results in general demonstrate that the inhibiting 
effect of Na2SiO3 could be resulted in the dissolution of aluminium-oxide and 
formation of a silicate-based film over the alloy surface, thereby enhancing 
passivity. 
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Figure 2. Open circuit potential, EOC, vs. time profile for AA7075-T6 after 2 h 
exposure to naturally aerated 0.1 M NaCl solution. 

 

 
Figure 3. Open circuit potential, EOC, vs. time profile for AA7075-T6 after 2 h 
exposure to naturally aerated 0.1 M NaCl solution with varying Na2SiO3 con-
centration. 

 
Corrosion damage results from electrochemical reactions, and electrochemical 

measurements can often reveal the corrosion mechanism. Electrochemical im-
pedance spectroscopy (EIS) is a technique with a small perturbing signal, and 
which causes very little damage to the sample. EIS is essentially a steady-state 
technique that is capable of accessing relaxation phenomena where relaxation 
times vary over orders of magnitude, and permits single averaging within a sin-
gle experiment to obtain high precision levels. Besides, the corrosion mechanism 
can be estimated by analyzing the measured electrochemical impedance spec-
trum [35] [36]. The EIS characteristics of AA7075-T6 in quiescent 0.1 NaCl so-
lution containing various Na2SiO3 additions in the domain 1.0 - 20.0 mM were 
recorded at the open circuit potential after immersing the sample in each solu-
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tion for 120 min to reach a quasi stationary condition. The natural pH measured 
in the silicate containing solutions was between 10.7 and 12.4. In addition, the 
experiment was also performed in as prepared (pH = 6) 0.1 M NaCl solution 
with no silicate. Figure 4 presents the impedance results as Nyquist plots. The 
general profile of the spectra is similar for all solutions without and with 
Na2SiO3. The presence of the inhibitor only increases the impedance without 
changing other aspects of the behaviour. The increase in impedance can be as-
cribed to the formation of a protective film over the aluminium alloy surface that 
increases the resistance of the alloy. As can be seen, the impedance spectra are 
characterized by a depressed single capacitive loop during the whole frequency 
range, whose diameter increases with the increase in silicate concentration. The 
depressed capacity loop is typical of solid metal electrodes that show frequency 
dispersion [37]. The use of constant phase element (CPE) in the equivalent cir-
cuit of the impedance not only minimizes the systematical error but also pro-
vides more detailed information about the non-ideal dielectric properties of the 
adsorbed inhibitor layer. CPE is required for modeling the frequency dispersion 
behaviour corresponding to different physical phenomena such as surface hete-
rogeneity which results from surface roughness, impurities, dislocations, distri-
bution of the active sites, adsorption of inhibitors and formation of porous layers 
[38]. The CPE is defined by Equation (2). 

( )1
0

nZ Y jω −−=                          (2) 

where Y0 and n are the admittance and empirical exponent of the CPE, respec-
tively, j is an imaginary number and ω  is the angle frequency. For n = 1, an 
ideal capacitor is defined. For n = 0, the CPE represents an ideal resistor. For n = 
−1, the CPE is equivalent with an inductance. Thus, using a CPE instead of a 
capacitor provides the deviation from ideal capacitive behaviour [39] [40]. Gen-
erally, the impedance response of an actively corroding metal in an aqueous so-
lution is well simulated by pure electric circuit (EC) of simple Randles model 
approximated by an ohmic solution resistance, Rs, series connected with a paral-
lel resistor, Rf, and capacitor, Cf, combination, representing the corrosion prod-
ucts film on the sample surface [41]. The impedance data were thus analyzed 
using Boukamp’s software [42] provided with the measuring impedance system 
and the proposed EC shown in Figure 5. The Nyquist plots deduced from the 
experimentally and simulated data show that the fitting results are in good 
agreement with the experimental data. The accuracy of fitting results, shown as 
solid lines in Figure 4, was evaluated by the chi-squared (χ2) values, which were 
in the order of 10−4 for all samples. 

The inhibition efficiency is calculated using the following equation [43] [44]: 

( )0
f f% IE 1 100R R = − ×                     (3) 

where 0
fR  and fR  represent the surface film resistance for AA7075-T6 in the 

absence and presence of Na2SiO3. As can be seen in Figure 6, the inhibition effi-
ciency increases with the increase in silicate concentration. 
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Figure 4. Electrochemical impedance spectra as Nyquist plots for AA7075-T6 in 0.1 M NaCl solution as a function Na2SiO3 
concentration, traced after 120 min exposure at 25˚C. 

 

 
Figure 5. Simplified Randles circuit used in the fitting procedure of the experimental EIS 
data. 
 

 
Figure 6. Inhibition efficiency as a function of silicate concentration for AA7075-T6 in 
0.1 M NaCl solution at 25˚C. 

https://doi.org/10.4236/msa.2024.154005


F. Rosalbino et al. 
 

 

DOI: 10.4236/msa.2024.154005 60 Materials Sciences and Applications 
 

The surface film capacitance, Cf, for a circuit including CPE were calculated 
using the following equation [45]: 

( )11
f t

n nnC Y R −=                        (4) 

where Y and n represent the CPE magnitude and exponent, respectively.  
Since the passive film on the metal surface can be considered as a dielectric 

plate capacitor, Cf is inversely proportional to the film thickness, d, in cm fol-
lowing the formula [41] [46] [47]:  

( ) 1
0 frd A Cε ε −=                         (5) 

where ε0 is the vacuum permittivity (8.85 × 10−12 F∙cm−1), εr is the relative dielec-
tric constant of the film, and A is the electrode area in cm2. Figure 7 shows the 
influential role of silicate additions on the surface film stability of AA7075-T6 in 
0.1 M NaCl solution. It can be observed that both Rf and 1/Cf increase with in-
creasing Na2SiO3 concentration. The results clearly demonstrate the reactivity of 
silicate towards enhancing spontaneous growth of a thicker and more protective 
surface film on AA7075-T6 via a dissolution-formation mechanism.  

In alkaline conditions, the aluminum oxide film is chemically unstable and 
dissolved in solution to form aluminate ions ( )4Al OH −  [30] [48] [49]. The re-
sulting aluminate ions react with the monomeric silicate anions in solution to 
form aluminosilicate species as described by the following chemical reaction 
proposed by Swaddle [30]: 

( ) ( ) ( ) ( )( )1
24 4 3 3OH SiO Al OH OH AlOSiO OH H Oxx

x xx x
− + −−

− −
+ → +      (6) 

It is known that the isoelectric point of oxide-covered aluminium is 9 - 9.5 
[50] [51]. Therefore, in alkaline silicate solution both the oxide surface and the 
aluminosilicate anions are negatively charged. As suggested by Iler, the deposi-
tion of silicate anions at a negatively charged oxide surface requires the presence 
of a potential coagulating agent, usually a small concentration of polyvalent 
metal ions [29]. However, other authors have suggested that univalent metal 
ions can also behave as coagulating agents. For instance, Gaggiano et al. [24] 
[25] suggested that hydrated Na+ ions, resulting from the following reaction: 

2
2 3 3Na SiO 2Na SiO+ −→ +                     (7) 

adsorb on the negatively charged oxide surface and behave as a coagulating 
agent. The Na+ ions on the surface coordinate with the oxygen atoms of hydrox-
yl group of the aluminosilicate anions, ( ) ( )( )1

3 3OH AlOSiO OH x
x x

+ −

−
, forming a 

coordination linkage between the anions and the surface. After the formation of 
the fist chemisorbed aluminosilicate layer, further adsorption occurs by physical 
interaction with the chemisorbed layer already formed on the alloy surface. The 
resulting silicate layer grows with time, thereby providing a more compact and 
protective surface film over the aluminium alloy with increasing the Na2SiO3 
concentration as supported by the open circuit potential and impedance spectra. 
The same mechanism has also been proposed by Gaggiano et al. [24] [25].  

In order to differentiate between the surface morphology of AA7075-T6 after 
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exposure to 0.1 M sodium chloride solution in the absence and in the presence 
of Na2SiO3, scanning electron microscopy investigations were carried out. Fig-
ure 8(a) shows the SEM micrograph obtained for the AA7075-T6 surface after 
120 min exposure to 0.1 M NaCl solution. In the absence of inhibitor, there are 
clear signs of corrosion on the sample surface. Figure 8(b) reports the SEM mi-
crograph obtained for the AA7075-T6 surface after 120 min exposure to 0.1 M 
NaCl solution containing 20.0 mM Na2SiO3. No attack is observed over the sam-
ple surface due to the presence of silicate film thus protecting the aluminium al-
loy from corrosion. 
 

 
Figure 7. Influence of silicate concentration on (a) surface film resistance, Rf, and (b) its relative thickness, 1/Cf, formed 
on AA7075-T6 in 0.1 M NaCl solution at 25˚C. 

 

 
Figure 8. SEM micrographs of AA7075-T6 after 120 min exposure at 25˚C in (a) 0.1 M NaCl and (b) 0.1 M NaCl + 20.0 
mM Na2SiO3. 
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4. Conclusions 

The addition of silicate can effectively improve the corrosion resistance of 
AA7075-T6 in 0.1 M NaCl solution.  

Increasing Na2SiO3 concentration significantly decreases the corrosion rate 
and shifts positively the corrosion potential, Ecorr. This is due to formation of a 
ticker and more compact film over the aluminum alloy surface.  

The corrosion inhibition mechanism of AA7075-T6 by silicate suggests that 
aluminosilicate is formed by the reaction of silicate anions in solution and the 
aluminate ions that form by oxide dissolution. The Na+ ions adsorb on the nega-
tively charged surface and coordinate with the oxygen atoms of hydroxyl group 
of the aluminosilicate anions, thereby forming a protective film over the alloy 
surface.  

SEM investigations revealed high corrosion protection of AA7075-T6 surface 
in sodium chloride medium containing the highest Na2SiO3 concentration. 
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