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Abstract
Science and Engineering applications are typically associated with expensive optimization problem to identify optimal 
design solutions and states of the system of interest. Bayesian optimization and active learning compute surrogate models 
through efficient adaptive sampling schemes to assist and accelerate this search task toward a given optimization goal. Both 
those methodologies are driven by specific infill/learning criteria which quantify the utility with respect to the set goal of 
evaluating the objective function for unknown combinations of optimization variables. While the two fields have seen an 
exponential growth in popularity in the past decades, their dualism and synergy have received relatively little attention to 
date. This paper discusses and formalizes the synergy between Bayesian optimization and active learning as symbiotic adap-
tive sampling methodologies driven by common principles. In particular, we demonstrate this unified perspective through 
the formalization of the analogy between the Bayesian infill criteria and active learning criteria as driving principles of both 
the goal-driven procedures. To support our original perspective, we propose a general classification of adaptive sampling 
techniques to highlight similarities and differences between the vast families of adaptive sampling, active learning, and 
Bayesian optimization. Accordingly, the synergy is demonstrated mapping the Bayesian infill criteria with the active learn-
ing criteria, and is formalized for searches informed by both a single information source and multiple levels of fidelity. In 
addition, we provide guidelines to apply those learning criteria investigating the performance of different Bayesian schemes 
for a variety of benchmark problems to highlight benefits and limitations over mathematical properties that characterize 
real-world applications.

1 Introduction

In science and engineering, the development of advanced 
technologies involves the formalization and solution of opti-
mization problems to identify both optimal designs capable 
to satisfy competing requirements of performance [85], and 
states of the system to monitor their health status during the 
operational life [66]. Depending on the specific application, 
the identification of optimal solutions requires the minimiza-
tion of an objective function that measures the goodness of 
design configurations with respect to the requirements, or 

the accuracy of the estimated health status of the system as 
to measurements. Typically, the scale of complexity of engi-
neering systems requires several evaluations of this objec-
tive function through accurate computer simulations—e.g. 
Computational Fluid Dynamics (CFD) or Computational 
Structural Dynamics (CSD)—or physical experiments—e.g. 
lab-scale test benches or real-world testing—before assess-
ing an optimal solution. The use of highly complicate repre-
sentations of those systems leads to a significant bottleneck: 
the demand for resources to evaluate the objective function 
for all the combinations of optimization variables is difficult 
to be adequately satisfied. Indeed, the acquisition of data 
from these high-fidelity models involves huge non-trivial 
computational and economical costs that could arise from 
the computation of the objective function and its derivatives 
over ideally the entire optimization domain.

Surrogate models are computed on evaluations of the 
objective function acquired through computer codes and/or 
physical experiments of the system: these sources of infor-
mation are mostly treated as purely input/output black-box 
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relationship whose analytical form is unknown and not 
directly accessible to the optimizer. Thus, the accuracy and 
efficiency of the resulting surrogate are highly dependent on 
the sampling approach adopted to select informative combi-
nations of optimization variables for the acquisition of data. 
Among the numerous sampling schemes available in litera-
ture, it is possible to identify two major families: one-shot, 
and sequential schemes. The one-shot strategy defines a grid 
of samples over the domain all at once. Examples include 
Latin Hypercube [88], factorial and fractional factorials 
designs [42, 94], Placket-Burmann [44], and D-optimal [95]. 
However, it is very hard to identify a priori the best design of 
those experiments to efficiently compute the most informa-
tive surrogate. To overcome these limitations, sequential 
sampling selects samples over the domain through an itera-
tive process [16, 59]. Among these, adaptive sampling [108] 
provides resource-efficient techniques that seek to reduce as 
much as possible the evaluations of the objective function, 
and target the improvement of the fitting quality across the 
domain and/or the acceleration of the optimization search 
[24, 79, 133]. Popular adaptive samplings to address black-
box optimization problems characterized by the expen-
sive evaluation of the objective function are those realized 
through the Bayesian Optimization (BO) methodology [33, 
124]. BO aims at efficiently elicit valuable data from mod-
els of the system to contain the computational expense of 
the optimization procedure.The Bayesian routine iteratively 
computes a surrogate model of the objective function, and 
defines a goal-driven sampling process through an acquisi-
tion function computed on the surrogate information. This 
acquisition function measures the merit of samples accord-
ing to certain infill criteria, and permits to select the next 
sample that maximizes the query utility with respect to the 
given optimization goal.

The popular paradigms for Bayesian optimization show 
substantial synergy with active learning schemes which 
has not been explicitly discussed and formally described 
in literature to date. This paper proposes the explicit for-
malization of this synergy through an original perspective 
of Bayesian optimization and active learning as symbiotic 
expressions of adaptive sampling schemes. The aim of this 
unifying viewpoint is to support the use of those method-
ologies, and point out and discuss the analogies via their 
mathematical formalization. This unified interpretation is 
based on the formulation and demonstration of the analogy 
between the Bayesian infill criteria and the active learning 
criteria as the elements responsible for the decision on how 
learn from samples to reach the given goal. In support of 
this unified perspective, this paper first clarifies the concept 
of goal-driven learning, and proposes a general classifica-
tion of adaptive sampling methods that recognizes Bayesian 
optimization and active learning as methodologies character-
ized by goal-oriented search schemes. Thus, we elucidate the 

synergy between Bayesian optimization and active learn-
ing mapping the Bayesian learning features on the active 
learning properties. The mapping is discussed through the 
analysis of three popular Bayesian frameworks for both the 
case of a single information source, and when a spectrum of 
multiple sources are available to the search. In addition, we 
observe the capabilities introduced by the different learning 
criteria over a comprehensive set of benchmark problems 
specifically defined to stress test an validate goal-driven 
approaches [83]. The objective is to discuss opportunities 
and limitations of different learning principles over a vari-
ety of challenging mathematical properties of optimization 
problems frequently encountered in complex scientific and 
engineering applications.

This manuscript is organized as follows. Section 2 dis-
cusses goal-driven learning procedures and defines the con-
cept of goal-driven learner according to surrogate modeling 
and optimization. In Sect. 3, we recognize that Bayesian 
optimization, active learning and adaptive sampling are not 
fully superimposable concepts, and propose a general clas-
sification to position Bayesian optimization and active learn-
ing with respect to the adaptive sampling methodologies. 
Then, Sect. 4 provides an overview on Bayesian optimiza-
tion and multifidelity Bayesian optimization. Section 5 pre-
sents our perspective on the symbiotic relationship between 
Bayesian optimization and active learning. Then, in Sect. 6 
popular Bayesian optimization and multifidelity Bayesian 
optimization algorithms are numerically investigated over 
a variety of benchmark problems. Finally, Sect. 7 provides 
concluding remarks.

2  Goal‑Driven Learning

Goal-driven learning is a decision-making process in which 
each decision is made to acquire specific information about 
the system of interest that contributes the most to achieve 
a given goal [11, 21, 40, 78, 99, 109]. This learning goal 
can be the increase of the knowledge of the system behav-
iour over all the domain of application, or acquire specific 
knowledge to enhance and accelerate the identification of 
optimization solutions. Accordingly, a goal-driven learner 
selects what to learn considering both the current knowl-
edge and information needed, and determines how to learn 
quantifying the relative utility of alternative options in the 
current circumstances.

This paper focuses on Bayesian optimization and active 
learning as goal-driven procedures where a surrogate model 
is built to accurately represent the behaviour of a system or 
effectively inform an optimization procedure to minimize 
given objectives. This goal-driven process is guided by 
learning principles that determine the “best” location of the 
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domain to acquire information about the system, and refine 
the surrogate model towards the goal—improve the accu-
racy of the surrogate or minimize an objective function over 
the domain. Formally, these surrogate based modeling and 
optimization problems can be formulated as a minimization 
problem of the following form:

where f (R(x)) denotes the objective function evaluated at 
the location x ∈ � of the domain � . The objective function 
is of the general form f = f (R(x)) , where R(x) represents 
the response of the system of interest evaluated through a 
model—e.g. computer-based numerical simulations or real-
world experiments. In surrogate based modeling, the objec-
tive function can be represented as the error between the 
approximation of the surrogate model and the response of 
the system: the goal is to minimize such error to improve 
the accuracy of the surrogate over all the domain. In sur-
rogate based optimization, the objective function represents 
a performance indicator dependent on the system response: 
the goal is to minimize this indicator to improve the capabili-
ties of the system according to given performance require-
ments. Goal-driven techniques address Equation (1) through 
a decision-making iterative process where learning princi-
ples tailor the acquisition of specific knowledge about the 
objective function—evaluation of f  at certain domain loca-
tion x—currently needed to update the surrogate and inform 
the learner towards the given goal.

In this context, the goal-driven learner is the agent that 
makes decisions based on the current knowledge of the sys-
tem of interest, and acquires new information to accomplish 
a given goal while augmenting the awareness about the sys-
tem itself. In practice, the learner queries the sample that 
maximizes the utility to achieve the desired goal: specific 
learning principles quantify this utility based on the sur-
rogate estimate and in response to information needs. At 
the same time, the surrogate model is dynamically updated 

(1)x∗ = argmin
x∈�

f (R(x))

once new information are acquired, and informs the learner 
to focus and tailor on the fly the elicitation of samples to 
further overarching the goal. Thus, the distinguishing ele-
ment of a goal-driven learning procedure is represented by 
the mutual exchange of information between the learner and 
the surrogate model: the learner assimilates the information 
from the surrogate to make a decision aimed at achieving 
the goal, and the approximation/prediction of the surrogate 
is enriched by the result of this decision.

3  Adaptive Sampling Classification

Bayesian optimization and active learning realize adaptive 
sampling schemes to efficiently accomplish a given goal 
while adapting to the previously collected information. In 
recent years, there has been a profusion of literature devoted 
to the general topic of adaptive sampling but arguably a blur-
ring of focus: many contributions from different field pro-
vided a deal of interesting advancements, but also led to 
some degree of confusion around the concepts of adaptive 
sampling, active learning and Bayesian optimization. Fig-
ure 1 illustrates the use of the words “adaptive sampling”, 
“active learning”, and “Bayesian optimization” from 1990 
to 2022. In addition, we report the combined use of all the 
three words over the same period of time. It can be appreci-
ated both the general increasing trend of use of the three 
techniques and the associated increase of the use of the three 
terms combined. Many times the three concepts have been 
used as complete synonyms, with some growing abuse moti-
vated by the difficulties to map the (shaded) boundaries.

Stemming from these considerations, this paper recog-
nizes that adaptive sampling is not always superimposable 
with active learning and Bayesian optimization. Figure 2 
illustrates the relationships between those three method-
ologies. We propose a classification of adaptive sampling 
techniques in three main families, namely adaptive probing 
(Sect. 3.1), adaptive modeling (Sect. 3.2) and adaptive learn-
ing (Sect. 3.3). This classification is based on the concept of 
goal-driven learning as the distinctive element of adaptive 
learning methodologies: the learner assimilates the informa-
tion from the surrogate model to make a decision aimed at 
achieving a goal, and the surrogate is enriched by the result 
of this decision following a mutual exchange of informa-
tion. Conversely, adaptive probing and adaptive modeling 
classes do not realize a goal-driven learning: the former does 
not rely on a surrogate model to assist the sampling proce-
dure while the latter computes a surrogate model that is not 
used to inform the search task. This classification permits to 
clarify the reciprocal positions between adaptive sampling, 
active learning and Bayesian optimization.
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Fig. 1  Citations of Bayesian Optimization (BO), Active Learn-
ing (AL), Adaptive Sampling (AS) and the three terms combined 
(BO+AL+AS)



2988 F. Di Fiore et al.

Accordingly, adaptive sampling and active learning do 
not completely overlap. Active learning strategies are cat-
egorized into population-based and pool-based algorithms 
according to the nature of the search procedure [129, 141]. 
In population-based active learning, the distribution of the 
objective function is available: the learner seeks to deter-
mine the optimal training input density to generate training 
points without relying on a surrogate model of the objec-
tive function. Conversely, pool-based active learning com-
putes a surrogate model of the unknown objective function 
that is used to inform the learner toward a given goal, and 
is updated during the procedure to refine the informative 
content supporting the learning procedure. Thus, pool-
based active learning methods realize goal-driven learning 
schemes and can be collocated in the adaptive learning class 
while population-based active learning techniques can not be 
considered as adaptive samplings. Following the proposed 
classification, Bayesian optimization represents the logic 
intersection between active learning and adaptive sampling 
since (i) BO realizes an adaptive sampling scheme towards a 
given goal, and (ii) the BO goal-driven learning procedure is 
guided by learning principles also traceable in active learn-
ing schemes. This synergy between Bayesian optimization 
and active learning is the main focus of our work, and the 
remaining of this manuscript is dedicated to formalize and 
discuss this dualism. To support this discussion, we provide 
additional details of the proposed classification for adap-
tive sampling, and review some popular approaches for each 
of the three classes. The literature on adaptive sampling is 
vast, and a complete review goes beyond the purpose of this 
work. Although our discussion will not be comprehensive, 
the objective is to highlight the distinguishing features of 
each class and clarify the relative positions of adaptive sam-
pling, active learning and Bayesian optimization.

3.1  Adaptive Probing

Adaptive probing schemes exploit the observations of pre-
vious samples without computing any surrogate model. 
These sampling procedures are informed exclusively from 
the collected data to guide the selection of the next location 
to query, and exclude the adoption of emulators to support 
the search. Several adaptive probing frameworks have been 
developed based on the Monte Carlo method [101, 125]. 
Among these, adaptive importance samplings [10, 64, 102] 
and adaptive Markov Chain Monte Carlo samplings [2, 3] 
represent popular methodologies adopted in different practi-
cal scenarios, from signal processing [9, 159] to reliability 
analysis of complex systems [58, 147]. Adaptive importance 
sampling uses previously observed samples to adapt the pro-
posal densities and locate the regions from which samples 
should be drawn; this strategy permits to iteratively improve 
the quality of the samples distribution and enhance the 
accuracy of the relative inference from these observations. 
Adaptive Markov Chain Monte Carlo (MCMC) determines 
the parameters of the MCMC transition probabilities on the 
fly through already collected information. This adaptively 
generates new samples from an usually complex and high-
dimensional distribution, and enhances the overall compu-
tational efficiency and reliability of the procedure. In the 
next paragraph, we report the mathematical formulation of 
adaptive importance sampling to illustrate the properties of 
adaptive probing methodologies and the elements that dif-
ferentiate them from active learning paradigms.

3.1.1  Adaptive Importance Sampling

Adaptive Importance Sampling (AIS) usually considers a 
generic inference problem characterized by a certain prob-
ability density function (pdf) �̃�(x) of a d

x
-dimensional vector 

of unknown statistic real parameters x ∈ � . AIS frameworks 
aim to provide a numerical approximation of some particular 
moment of x:

where f ∶ � → ℝ can be any function of x integrable with 
respect to the pdf �̃�(x)

The integral I(f ) is representative of different mathemati-
cal problems, from Bayesian inference [113] to the estimate 
of rare events [48]. In many practical scenarios, the integral 
I(f ) cannot be computed in closed form. Adaptive impor-
tance sampling provides an algorithmic framework to effi-
ciently address this problem.

Let us define a proposal probability density function 
q(x) to simulate samples under the restriction that q(x) > 0 

(2)I(f ) = ��̃�

[
f (x)

]
= ∫ f (x)�̃�(x) dx

Fig. 2  Where adaptive sampling and active learning meet: this work 
focuses on the synergies between Bayesian optimization and active 
learning as goal-driven learning procedures driven by common learn-
ing principles
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for all x where �̃�(x)f (x) ≠ 0 . AIS provides an iterative pro-
cedure that improves the quality of one or multiple propos-
als q(x) to approximate a non-normalized non-negative 
target function �(x) . At the beginning, AIS initializes N 
proposals {qn(x|�n,1)}Nn=1 parameterized through the vec-
tor �n,1 . Then, the procedure simulates K  samples from 
each proposal x(k)

n,1
, n = 1, ...,N, k = 1, ...,K  , and assigns 

to each sample an associated importance weight formal-
ized as follows:

These importance weights measure the representativeness 
of each sample simulated from the proposal pdf q(x) with 
reference to the distribution of random variables �̃�(x).

At this point, this set of N  weighted samples 
{x

(k)

n,1
,w

(k)

n,1
}, n = 1, ...,N, k = 1, ...,K are used to define a 

self-normalized estimator:

where w̄n = wn∕
∑N

j=1
wj are the normalized weights. This 

permits to approximate the target function distribution as 
follows:

where � represents the Dirac measure.
Finally, AIS realizes the adaptation phase and updates 

the parameters of the n-th proposals from �n,1 to �n,2 using 
the last set of drawn parameters [84] or all the parameters 
evaluated so far [29]. The whole procedure is repeated until 
a certain termination criteria is met (e.g. maximum number 
of iterations).

This adaptive policy permits to gradually evolve the sin-
gle or multiple proposal densities to accurately approximate 
the target pdf. The generation of new samples is uniquely 
driven by the measurement of the importance of previous 
samples (weighting) that supports the updating of the pro-
posal parameters (adaptation). Thus, AIS adaptively locates 
promising regions to query without benefit from an overall 
quantification of the goodness of all the spectrum of samples 
available in the domain—e.g. through the construction of a 
surrogate model. On this basis, AIS and the general class of 
adaptive probing strategies are not considerable as learning 
procedures since the adaptation phase is not informed by a 
surrogate model updated on the fly during the procedure, 
and is not guided by a “learner” that assimilates information 
from this emulator and adapts the next queries to achieve a 
given goal.

(3)wn =
�(xn)

q(xn)
, n = 1, ...,N

(4)ÎN(f ) =

N∑
n=1

w̄nf (wn)

(5)�̃�N(x) =

N∑
n=1

w̄n𝛿(x − xN)

3.2  Adaptive Modeling

Adaptive modeling paradigms sample the domain sup-
ported by the information from previous queries, and use 
the collected data to build a surrogate model. However, the 
informative content encoded in the emulator is not used 
to guide the sampling and decide the next point to evalu-
ate. Adaptive modeling approaches have been extensively 
developed for the reliable propagation and quantification 
of uncertainties [56, 57], analysis of ordinary or partial 
differential equations [27, 43], and inverse problems [82, 
86]. One common approach is represented by adaptive sto-
chastic collocation methodologies, which uses an adaptive 
sparse grid approximation scheme to construct an interpo-
lant polynomial in a multi-dimensional random space [45, 
72]. The adaptive selection of collocation points is driven 
by an error indicator [37] or estimator [41] that evalu-
ates a certain number of sparse admissible subspaces of 
the domain: the subspace that exhibits the higher error is 
included in the grid and the new set of subspaces is identi-
fied. Other well-known adaptive modeling approaches are 
residual-based samplings distribution [146]. This family 
of techniques is mostly applied to improve the training 
efficiency of Physics-Informed Neural Networks (PINN) 
surrogate models. Residual-based approaches enhance the 
distribution of residual points by placing more samples 
according to certain properties of the residuals during the 
training of PINN. This decision can be made on the basis 
of locations where the residual of the partial differential 
equation is large [81], according to a probability density 
function of the residual points [96], and hybrid approaches 
of the above [146]. This permits to achieve better accu-
racy of the final PINN surrogate model while containing 
the computational burden associated with computations. 
Both stochastic collocation and residual based samplings 
are intended to build an efficient and accurate surrogate 
model over the domain of samples. However, the sam-
pling procedure is adapted uniquely to previous evaluated 
samples without a learning procedure from data: the sur-
rogate model is not used to inform the decision on where 
to sample, and is not progressively updated with previous 
information. In the following, we provide general math-
ematical details about adaptive stochastic collocation to 
analyze the peculiarities of the adaptive modeling class, 
and underline the absence of a learning process during the 
construction of the surrogate model.

3.2.1  Adaptive Stochastic Collocation

Adaptive Stochastic Collocation (ASC) builds an interpola-
tion function to approximate the outputs from a model of 
interest. This emulator is constructed on the evaluations of 
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the model at valuable collocation points of the stochastic 
inputs to obtain the moments and the probability density 
function of the outputs.

Consider any point x contained in the random space 
Γ ⊂ ℝ

N with probability distribution function �(x) . The 
goal of ASC is to find an interpolating polynomial I(f ) to 
approximate a smooth function f (x) ∶ ℝ

N
→ ℝ:

for a given set of points {xk}Pk=1 . The selection of the colloca-
tion points majorly influences the capability of the interpo-
lating polynomial to be close to the original function f  . For 
multivariate problems, the interpolation function is defined 
as follows using the tensor product grid:

where Uik is the univariate interpolation function for the level 
ik in the k-th coordinate, xik

jm
 is the jm-th node, and Ljk

 are the 
Lagrange interpolating polynomials.

Equation 7 demands for ni1 ×⋯ × niN nodes, which indi-
cates an exponential rate of computational cost growth with 
the number of dimensions. Adaptive stochastic collocation 
targets the reduction of this computational effort through 
an adaptive sparse grid of collocation points: the objective 
is to wisely place more points of the grid in the important 
directions to prioritize the collection of highly informative 
data. This adaptive sparse grid is defined through a subset 
of the full tensor product grid as follows:

where i = (i1, ..., iN) ∈ ℝ
N , |i| = i1 + ... + iN , q is the sparse-

ness parameter, and the difference formulas are defined by 
U
0 = 0 and ΔUi = U

i − U
i−1.

Equation 8 leverages the previous results to extend the 
interpolation from level q − 1 to q through the evaluation of 
the multivariate function on the sparse grid:

where Δ�i = �i��i−1 are the newly added set of univariate 
nodes �ik for level ik in the k-th coordinate.

This scheme adapts the sampling procedure through the 
knowledge acquired on the fly, and efficiently leverages data 

(6)I(f )(xk) = f (xk) , 1 ≤ k ≤ P

(7)

I(f ) = (Ui1 ⊗⋯⊗ U
iN )(f )

=

ni1∑
j1=1

⋯

niN∑
jN=1

f (x
i1
j1
, ..., x

iN
jN
) ⋅ (L

i1
j1
⊗⋯⊗ L

iN
jN
)

(8)

Aq,N(f ) =
∑
|i|≤q

(ΔUi1 ⊗⋯⊗ ΔUiN )(f )

= Aq−1,N(f ) +
∑
|i|=q

(ΔUi1 ⊗⋯⊗ ΔUiN )(f )

(9)

Hq,N =
⋃
|i|≤q

(Δ�i1 ×⋯ × Δ�iN )

= Hq−1,N +
⋃
|i|=q

(Δ�i1 ×⋯ × Δ�iN )

to improve the quality of the interpolation function. In this 
case, the selection of the collocation points is intended to 
compute an emulator of the target function, but the adap-
tive sampling is not driven by the information acquired 
from this emulator. In addition, the acquisition of data is 
not used to learn and update the surrogate model. These 
considerations on ASC can be extended to the general class 
of adaptive modeling methods: even if the sampling scheme 
is conceived to construct surrogate models, the selection 
of promising locations to query is not delegated to a goal-
driven learner that leverages a mutual exchange of informa-
tion with the surrogate.

3.3  Adaptive Learning

Adaptive learning methodologies realize goal-driven learn-
ing processes characterized by the mutual exchange of infor-
mation between the surrogate model and the goal-driven 
learner: the former is updated and refined after new evalu-
ations of samples while the latter decides the next query 
based on the updated approximation given by the emula-
tor. Bayesian optimization and pool-based active learning 
belong to this specific class of adaptive sampling techniques. 
Bayesian frameworks constitute a learning process driven 
by the mutual informative assimilation between an acquisi-
tion function—learner—and a surrogate model [33, 92]. The 
acquisition function commensurates the benefit of evaluating 
samples based on the prediction of the surrogate model, and 
selects the most useful sample to query towards the given 
goal—either improve the accuracy of the surrogate over the 
domain or effectively inform the optimization search; at the 
same time, the emulator is enriched with the data from the 
new query, and is updated to refine the approximation of the 
objective function over the domain. Similarly, pool-based 
active learning methods search the domain through a goal-
driven learner informed by a classification model of samples 
[120, 153]. This process is characterized by the reciprocal 
flow of information between the learner and the emulator: 
the classification model is updated through the new evalua-
tions of unsampled locations, and the learner uses this infor-
mation to select the next query. Mathematical details about 
pool-based active learning are provided in the following 
section to better clarify the distinction between this class of 
adaptive learners, and the other classes which do not realize 
a goal-driven learning procedure.

3.3.1  Pool‑Based Active Learning

Pool-based active learning commonly defines an optimal 
sampling strategy to improve the accuracy of a surrogate 
model adopted to classify data-points from a target distri-
bution of labels over the domain of samples � . Considering 
this general classification task, pool-based active learning 
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routine is grounded on a probabilistic estimate of the dis-
tribution of features f  over the entire domain � through a 
surrogate model f̂  . This emulator is trained on a set of col-
lected data-points, and maps features to labels fN(xn) = f̂n 
through a predicted probability pN(fn = f |xn) that estimates 
the distribution of features over the domain. Suppose we 
have collected from a large pool of unlabelled data � the—
small– dataset DN{xn, f (xn)}

N
n=1

 observing the label values 
f (xn) in output from an observation model or oracle at some 
informative locations xn . Based on this dataset, the goal-
driven procedure learns a surrogate model f̂N whose predic-
tive framework emulates the behaviour of samples over the 
domain based on the previous collected information.

At this point, an utility function acts as the goal-driven 
learner informed by the surrogate model, and identifies 
the most promising sample to be labelled by the oracle 
according to a measure of utility with respect to the given 
goal—improve the accuracy of the classifier. The next query 
augments the dataset DN+1 = DN

⋃
{xN+1, fN+1} and the sur-

rogate model is updated. This utility function defines a learn-
ing policy that maps the current predictive distribution to a 
decision/action on where to sample in the next iteration as 
follows:

Equation (10) mathematically formalizes the concept of 
goal-driven learning procedure: the learner leverages the 
predicted probability of the surrogate pN(yn = y|xn) to make 
an action xN+1 ; at the same time, the decision is used to 
enrich the dataset D{xn, f (xn)}

N+1
n=1

 and update the predicted 
probability pN+1 . This mutual exchange and assimilation 
between the learner and the surrogate represents the key 
aspect that defines a goal-driven learning process and the 
whole class of adaptive learning sampling schemes.

4  Bayesian Frameworks

Bayesian optimization constitutes the mid-point between 
adaptive sampling and active learning. This intersection rep-
resents the focal point of our work, and motivates the sub-
stantial synergy between Bayesian optimization and active 
learning as adaptive sampling schemes capable to learn from 
data and accomplish a certain learning goal. The remain-
ing of this section is dedicated to the general overview of 
Bayesian optimization considering both a single source of 
information (Sect. 4.1) and when multiple sources are avail-
able to the learning procedure (Sect. 4.2). This will guide the 
reader into the next sections that make explicit the symbiosis 
between Bayesian frameworks and active learning through 
our original perspective of Bayesian optimization as a way 
to actively learn with acquisition functions (Sect. 5).

(10)xN+1 = arg maxU(pN(fn = f |xn))

4.1  Bayesian Optimization

The birth of Bayesian optimization can be retraced in 1964 
with the work of Kushner [69] where unconstrained one-
dimensional optimization problems are addressed through a 
predictive framework based on the Wiener process surrogate 
model, and a sampling scheme guided by the probability 
of improvement acquisition function. Further contributions 
have been proposed by Zhilinskas [158] and Mockus [90], 
and the methodology has been extended to high dimensional 
optimization problems in the works of Stuckman [128] and 
Elder [28]. Bayesian optimization achieved resounding suc-
cess after the introduction of the Efficient Global Optimi-
zation (EGO) algorithm by Jones et al. [61]. EGO uses a 
Kriging surrogate model to predict the distribution of the 
objective function, and adopts the expected improvement 
acquisition function to measure the improvement of the opti-
mization procedure obtained evaluating unknown samples.

The EGO methodology paves the way to the application 
of Bayesian optimization over a wide range of problems in 
science and engineering. These research fields demand for 
the efficient management of the information from black-box 
representations of the objective function—the procedure is 
only aware of the input and output without a priori knowl-
edge about the function—to guide the optimization search. 
Engineering has been pioneering in the adoption of Bayesian 
optimization: the design optimization of complex systems is 
frequently characterized by computationally intensive black-
box functions which require efficient global optimization 
methods. Early applications relates to engineering design 
optimization [152], computer vision [143] and combina-
torial problems [75]. Nowadays, the Bayesian framework 
becomes widely adopted in many fields including and not 
limited to engineering [34, 67, 71, 107], robotics and rein-
forcement learning [4, 7, 150], finance and economics [39, 
106], automatic machine learning [132, 134], and prefer-
ence learning [26, 68]. In addition, significant advances have 
been made in the expansion of BO methodologies to higher-
dimensional search spaces frequently encountered in sci-
ence and engineering, where the effectiveness of the search 
procedure is usually correlated to an exponential growth of 
the required observations of the objective function and asso-
ciated demand for computational resources and time. Within 
this context, BO techniques have been scaled to approach 
high-dimensional problems exploiting potential additive 
structures of the objective function [62, 138], mapping high-
dimensional search spaces into low-dimensional subspaces 
[97, 137], learning from observations of multiple input 
points evaluated through parallel computing [123, 139], and 
through simultaneous local optimization approaches [30].

Given a black-box expensive objective function 
f ∶ � → ℝ , Bayesian optimization seeks to identify the 
input x∗ ∈ min

x∈� f (x) that minimizes the objective f  over 
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an admissible set of queries � with a reduced computational 
cost. To achieve this goal, Bayesian optimization relies on 
an adaptive learning scheme based on a surrogate model that 
provides a probabilistic representation of the objective f  , 
and uses this information to compute an acquisition function 
U(x) ∶ � → ℝ

+ that drives the selection of the most promis-
ing sample to query. Let us consider the available informa-
tion regarding the objective function f  stored in the dataset 
DN = {(x1, y1), ..., (xn, yn)} where yn ∼ N(f (xn), ��(xn)) are 
the noisy observations of the objective function and �� is the 
standard deviation of the normally distributed noise.

At each iteration of the optimization procedure, the 
surrogate model depicts possible explanations of f  as 
f ∼ p(f |DN) applying a joint distribution over its behaviour 
at each sample x ∈ � . Typically, Gaussian Processes (GPs) 
have been widely used as the surrogate model for Bayes-
ian optimization [100, 110]. In GP regression, the prior 
distribution of the objective p(f ) is combined with the like-
lihood function p(DN|f ) to compute the posterior distribu-
tion p(f |DN) ∝ p(DN|f )p(f ) , representing the updated beliefs 
about f  . The GP posterior is a joint Gaussian distribution 
p(f |DN) = N(�(x), �(x, x�)) completely specified by its mean 
�(x) = �

[
f (x)

]
 and covariance (also referred as kernel) func-

tion �(x, x�) = �
[
(f (x) − �(x))(f (x�) − �(x�))

]
 , where �(x) 

represents the prediction of the GP model at x and �(x, x�) 
the associated uncertainty.

BO uses this statistical belief to make the decision of 
where to sample assisted by an acquisition function U , which 
identifies the most informative sample xnew ∈ � that should 
be evaluated via maximization xnew ∈ max

x∈� U(x) . Then, 
the objective function is evaluated at xnew and this informa-
tion is used to update the dataset DN = DN ∪ (xnew, y(xnew)) . 
Acquisition functions are designed to guide the search for 
the optimum solution according to different infill criteria 
which provide a measure of the improvement that the next 
query is likely to provide with respect to the current poste-
rior distribution of the objective function. In engineering 
applications, we could retrieve different implementations 
proposed for the acquisition function, which differ for the 
infill schemes adopted to sample pursuing the optimization 
goal. Examples include the Probability of Improvement (PI) 
[69], Expected Improvement (EI) [61], Entropy Search (ES) 
[47] and Max-Value Entropy Search (MES) [135], Knowl-
edge-Gradient (KG) [116], and non-myopic acquisition 
functions [70, 142].

The Probability of Improvement (PI) acquisition function 
encourages the selection of samples that are likely to obtain 
larger improvements over the current minimum predicted by 
the surrogate model, while the Expected Improvement (EI) 
considers not only the PI but also the expected gain in the 
solution of the optimization problem achieved evaluating a 
certain sample. Other popular schemes are entropy-based 
acquisition functions such as the Entropy Search (ES) and 

Max-Value Entropy Search (MES), which rely on estimating 
the entropy of the location of the optimum and the mini-
mum function value, respectively, to maximize the mutual 
information between the samples and the location of the 
global optimum. Knowledge-gradient sampling procedures 
are conceived for applications where the evaluations of the 
objective function are affected by noise, recommending the 
location that maximizes the increment of the expected value 
that would be acquired by taking a sample from the location. 
Through the adoption of non-myopic acquisition functions, 
the learner maximizes the predicted improvement at future 
iterations of the optimization procedure, overcoming myopic 
schemes where the improvement of the solution is measured 
at the immediate step ahead.

4.2  Multifidelity Bayesian Optimization

The evaluation of black-box functions in engineering and 
science frequently requires time-consuming lab experiments 
or expensive computer-based models, which would dramati-
cally increase the computational burden for the optimization 
procedure. This is the case of large-scale design optimiza-
tion problems, where the evaluation of the objective func-
tion for enough samples can not be afforded in practice. In 
many real-world applications, the objective function can be 
computed using multiple representations at different levels 
of fidelity {f (1), ..., f (L)} , where the lower the level of fidelity 
the less accurate but also less time-consuming the evalua-
tion procedure. Multifidelity methods recognize that differ-
ent representative levels of fidelity and associated cost can 
be used to accelerate the optimization process, and enable a 
flexible trade-off between computational cost and accuracy 
of the solution. In particular, multifidelity optimization lev-
erages low-fidelity data to massively query the domain, and 
uses a reduced number of high-fidelity observations to refine 
the belief about the objective function toward the optimum 
[6, 32, 103].

Accordingly, Multifidelity Bayesian Optimization 
(MFBO) learns a surrogate model that synthesizes through 
stochastic approximation the multiple levels of fidelity avail-
able, and uses an acquisition function as the learner that 
selects the most promising sample and associated level of 
fidelity to interrogate. This learning procedure provides 
potential accelerations of the optimization procedure that is 
reflected in the likely improvement of the surrogate accuracy. 
According to Godino et al. [38], the improvement in per-
formance occurs usually if the acquisition of large amount 
of high-fidelity is hampered by the computational expense, 
the correlation between high-fidelity and low-fidelity data is 
high, low-fidelity models are sufficiently inexpensive; Under 
different circumstances, multifidelity optimization might not 
deliver substantial accelerations and quality of the surro-
gate: the relationship between dimension of the training set 
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and surrogate accuracy is not monotonically increasing, as 
evidenced by [19]. In recent years, multifidelity Bayesian 
optimization has been successfully adopted for optimization 
problems ranging from engineering design optimization [8, 
22, 23, 40, 89, 119], automatic machine learning [63, 145], 
applied physics [55, 140], and medical applications [104, 
105]. In the context of high-dimensional problems, multifi-
delity Bayesian optimization capitalizes from fast low-fidel-
ity models to alleviate the computational burden associated 
with the required numerous observations of the objective 
function to effectively direct the search toward the given 
goal, and achieved promising results in terms of accuracy 
and efficiency for applications in quantum control [73], aero-
space engineering [115], and reinforcement learning [53].

Multifidelity Bayesian optimization determines a 
learning procedure informed by the surrogate model 
of the objective function constructed on the dataset of 
noisy objective observations DN = {(x1, y

(l1)

1
), ..., (xn, y

(ln)
n )} , 

where y(ln)n ∼ N(f (ln)(xn), ��(xn)) and �� have the same dis-
tribution over the fidelities. This multifidelity surro-
gate model defines an approximation of the objective 
f (l) ∼ p(f (l)|(x, l),DN) at different level of fidelity, and 
represents the belief about the distribution of the objec-
tive function over the domain � based on data. A popular 
practice for MFBO is to extend the Gaussian process sur-
rogate model to a multifidelity setting through an autore-
gressive scheme [65]:

where � is a constant scaling factor that includes the con-
tribution of the previous fidelity with respect to the follow-
ing one, and � (l) ∼ GP(0, �(l)

(
x, x�

)
) models the discrepancy 

between two adjoining levels of fidelity. The posterior of 
the multifidelity Gaussian process is completely specified 
by the multifidelity mean function �(l)(x, l) = �

[
f (l)(x)

]
 that 

represents the approximation of the objective function at 
different levels of fidelity, and the multifidelity covariance 
function �(l)((x, l), (x�, l)) = �

[
(f (l)(x, l) − �(l)(x, l))(f (l)(x�, l)

−�(l)(x�, l))
]
 that defines the associated uncertainty for each 

level of fidelity.
The availability of multiple representations of the objec-

tive function poses a further decision task that has to be 
accounted by the learner during the sampling of unknown 
locations: the selection of the most promising sample is 
effected with the simultaneous designation of the infor-
mation source to be evaluated. This is obtained through a 
learner represented by the multifidelity acquisition function 
U(x, l) that extends the infill criteria of Bayesian optimiza-
tion, and selects the pair of sample and the associated level 
of fidelity to query (xnew, lnew) ∈ max

x∈� ,l∈L U(x, l) that is 
likely to provide higher gains with a regard for the com-
putational expenditure. Among different formulations, well 

(11)f (l) = �f (l−1)(x) + � (l)(x) l = 2, ..., L

known multifidelity acquisition functions to address optimi-
zation problems are the Multifidelity Probability of Improve-
ment (MFPI) [114], Multifidelity Expected Improvement 
(MFEI) [51], Multifidelity Predictive Entropy Search 
(MFPES) [154], Multifidelity Max-Value Entropy Search 
(MFMES) [130], and non-myopic multifidelity expected 
improvement [21]. These formulations of the acquisition 
function define adaptive learning schemes that retain the 
infill principles characterizing the single-fidelity counter-
part, and account for the dual decision task balancing the 
gains achieved through accurate queries with the associated 
cost during the optimization procedure.

5  An Active Learning Perspective

Bayesian frameworks and Active learning schemes exhibit 
a strong synergy: in both cases the learner seeks to design 
an efficient sampling policy to accomplish the learning goal, 
and is guided by a surrogate model that informs the learner 
and is continuously updated during the learning procedure. 
Active learning literature is vast an include a multitude of 
approaches [1, 12, 14, 20, 111, 121, 122, 141]. According 
to the well accepted classification proposed by Sugiyama 
and Nakajima [129], active learning strategies can be cat-
egorized in population-based and pool-based active learning 
frameworks according to the nature of the sampling scheme 
defined by the learner. Population-based active learning tar-
gets the identification of the best optimal density of the sam-
ples for training known the target distribution. Conversely, 
pool-based active learning defines an efficient sampling 
scheme to improve the efficiency of a surrogate model of 
the unknown target distribution over the domain of samples.

This paper explicitly formalizes and discusses Bayesian 
frameworks as an active learning procedure realized through 
acquisition functions. In particular, pool-based active learn-
ing shows in essence a strong dualism with Bayesian frame-
works. We emphasize this synergy through the dissertation 
on the correspondence between learning criteria and infill 
criteria; the former drive the sampling procedure in pool-
based active learning, while the latter guide the search in 
Bayesian schemes through the acquisition function. This 
symbiosis is evidenced for the case of a single source of 
information adopted to query samples, and when multiple 
sources are at disposal of the learner to interrogate new 
input. Accordingly, we review and discuss popular sampling 
policies commonly adopted in pool-based active learning, 
and discern the learning criteria to accomplish a specific 
learning goal (Sect. 5.1). Then, the attention is dedicated 
to the identification of the infill criteria realized through 
popular acquisition functions in Bayesian optimization 
(Sect. 5.2). The objective is to explicitly formalize the syn-
ergy between Bayesian frameworks and active learning as 
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adaptive sampling schemes guided by common principles. 
The same avenue is followed to formalize this dualism for 
the case of multiple sources of information available dur-
ing the learning procedure. In particular, we identify the 
learning criteria adopted in pool-based active learning 
with multiple oracles (Sect. 5.3), and compare them with 
the infill criteria specified by well-established multifidelity 
acquisition functions in multifidelity Bayesian optimization 
(Sect. 5.4). The objective is to clarify the shared principles 
and the mutual relationship that characterize the two adap-
tive learning schemes when the decision of the sample to 
query requires also the selection of the appropriate source 
of information to be evaluated.

5.1  Learning Criteria

Pool-based active learning determines a tailored sampling 
policy to ensure the maximum computational efficiency of 
the adaptive sampling procedure—limited and well selected 
amount of samples to query. This adaptive learning demands 
for principled guidelines to decide whether or not evaluate 
a certain sample based on a measure of its goodness. Learn-
ing criteria permit to establish a metric for quantifying the 
gains of all the possible learner decisions, and prescribe an 
optimal decision based in information acquired from the sur-
rogate model. The vast majority of the literature concerning 
pool-based active learning identifies three essential learning 
criteria: informativeness, representativeness and diversity 
[46, 93, 126, 141, 144, 153]:

1. Informativeness measures the amount of information 
encoded by a certain sample. This means that the sam-
pling policy is driven by the maximum likely contribu-
tion of queries that would significantly benefit the objec-
tive of the learning procedure.

2. Representativeness quantifies the similarity of a sample 
or a group of samples with respect to a target sample 
representative of the target distribution. Thus, the sam-

pling policy exploits the structure underlying the domain 
to direct the queries in locations where a sample can 
represent a large amount of neighbouring samples.

3. Diversity estimates how well the queries are dissemi-
nated over the domain of samples. This is reflected in a 
sampling policy that selects samples scattering across 
the full domain, and prevents the concentration of que-
ries in small local regions.

Figure 3 illustrates a watering optimization problem that 
attempts to clarify the peculiarities of each learning criteria. 
This simple toy problem requires identifying the areas of a 
wheat field where the crop is ripe and where it is still unripe 
for irrigation purposes. The learning goal is formalized 
as the identification of the area where the wheat is lower, 
which means an unripe cultivation and maximum require-
ments for irrigation. We assume that the learner can explore 
a maximum of five sites on the field during the procedure. A 
learner driven by the pure informativeness criterion (Fig. 3a) 
would uniquely sample the regions of the wheat field that 
are likely to provide the maximum amount of information to 
accomplish the given learning goal; Accordingly, observa-
tions are placed where the height of the wheat is minimum 
and the demand for water is maximum: this maximizes the 
information on where it is strictly necessary to irrigate, 
but nothing is known about the regions where the wheat is 
higher and irrigation is not a priority. Conversely, a purely 
representative sampling (Fig. 3b) would probe the field by 
agglomerating observations to ensure the representativeness 
of the samples. This allows to partially know even areas 
where copious irrigation is not necessary, but increases the 
overall uncertainty given the small amount of samples for 
each agglomeration. If the learner pursues only the diversity 
of queries (Fig. 3c), samples would scatter the field minimiz-
ing the maximum distance between measurements. Although 
this allows the queries to be distributed across the entire 
domain, the uncertainty is high as only one sample covers a 
respective area of the field.

Fig. 3  Learning criteria: watering optimization problem
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The remaining of this section is dedicated to the revi-
sion and discussion of popular pool-based active learning 
schemes. We aim to provide a broad spectrum of approaches 
that exemplify the implementation of different learning cri-
teria both individually and in combination. This permits to 
highlight the driving principles of learning procedures, and 
will help to better clarify the existing synergy between active 
learning and Bayesian optimization accounted in the follow-
ing sections. Figure 4 summarizes the relationship between 
the methodologies reviewed in the following and the three 
learning criteria.

5.1.1  Informativeness‑Based

Learning procedures characterized by a pure informative 
criterion can be traced in uncertainty-based sampling poli-
cies. These approaches make the query decision based on 
the predictive uncertainty of the surrogate model, and seek 
to improve the density of samples in regions that exhibit 
the largest uncertainty with respect to a specific learning 
goal. Popular uncertainty-based active learning algorithms 
are uncertainty sampling and query-by-committee meth-
ods. Uncertainty sampling algorithms probe the domain to 
improve the overall accuracy of the surrogate model accord-
ing to a measure of the predictive uncertainty. Examples 
include the quantification of the uncertainty associated with 
samples [74], and its alternatives as margin-based [5], least 
confident [77] and entropy-based [49] approaches. Other 
strategies defines sampling policies which promotes the 
minimization of the surrogate model predicted variance [17] 
to maximize, respectively, the decrease of loss augment-
ing the training set [120], and the gradient descend [13]. 
Other uncertainty-based strategies are query-by-committee 
sampling schemes [12, 155], where the most informative 
sample to query is selected through the maximization of 
the disagreement between the predictions of a committee 
of surrogate models computed on subsets of the locations.

5.1.2  Representativeness/Diversity‑Based

Other pool-based active learning algorithms relies exclu-
sively on representativeness and diversity learning frames: 
usually these learning criteria are implemented at the once 
in the learning procedure to drive the domain probing. This 
blend is justified by the mutual complementary relationship 
between representativeness and diversity: pure representa-
tiveness might concentrate the sampling in congregated rep-
resentative domain regions without a proper dispersion of 
queries, while pure diversity might lead to the over-query 
of the domain and divert the learning procedure from the 
actual goals. The combination of both the learning criteria 
permits on one hand to leverage the representativeness of 
samples to accomplish a certain learning goal, on the other 
hand prevents the selection of redundant samples and high 
densities of queries only in circumstanced regions of the 
domain. Representative/diversity-based algorithms include a 
multitude of approaches that are commonly classified in two 
main schemes: clustering methodology and optimal experi-
mental design. The former clustering algorithms identifies 
the most representative locations exploiting the underlying 
structures of the domain: the utility of samples is obtained as 
a function of their distance from the cluster centers. Popular 
examples include hierarchical clustering and k-center clus-
tering. The former identifies a hierarchy of clusters based 
on the encoded information, and selects samples closer to 
the cluster centers [18]; the latter determines a subset of k 
congruent clusters that together cover the sampling space 
and whose radius is minimized, and the best sample mini-
mizes the maximum distance of any point to a center [117]. 
The latter optimal experimental design defines a sampling 
policy based on a transductive approach: the learning pro-
cedure conducts the queries through a data reconstruction 
framework that measure the samples representativeness 
based on the capacity to reconstruct the training dataset. 
The selection of the most representative sample comes from 
an optimization process that maximizes the local acquisition 
of information about the parameters of the surrogate model 
[15, 35, 112].

5.1.3  Hybrid

Recent avenues explore the combination of both informa-
tiveness and representativeness/diversity learning criteria to 
combine the goal oriented query of the first, and the use of 
underlying structures preventing over-density of the second. 
Accordingly, combined-based algorithms integrate multi-
ple learning criteria to improve the overall sampling per-
formance. Those approaches are commonly classified into 
three main classes [153, 157]: serial-form, criteria selec-
tion, and parallel-form approaches. Serial-form algorithms 
use a switching approach to take advantages from all the Fig. 4  Mapping methodologies to learning criteria
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three learning criteria: informativeness-based techniques 
are used to select a subset of highly informative samples, 
and then representativeness/diversity techniques identify the 
centers of the clusters on this subset as the querying loca-
tions [126]. Criteria selection algorithms rely on a selection 
parameter informed by a measure of the learning improve-
ment that suggests the appropriate learning criteria to be 
used during the procedure [50]. Both serial-form and crite-
ria selection strategies combine the three learning criteria 
through a sequential approach where each criteria is used 
consecutively during the learning procedure. Parallel-form 
methods combine simultaneously multiple learning criteria: 
the utility of each sample is judged by weighting informa-
tiveness and representativeness/diversity at the same time; 
then, valuable samples are selected through a multi-objective 
optimization of the weights to maximize at the same time the 
improvement in terms of learning goals and the exploitation 
of potentially useful structures of the domain [76, 131, 136].

5.2  Acquisition Functions and Infill Criteria

The synergy between active learning and Bayesian optimi-
zation relies on the substantial analogy between the learn-
ing criteria driving the active learning procedure and the 
infill criteria that characterize the Bayesian learning scheme. 
Infill criteria provide a measure of the information gain in 
terms of utility acquired evaluating a certain location of the 
domain. In Bayesian optimization, the acquisition function 
is formalized according to a certain infill criterion: this per-
mits to quantify the merit of each sample with respect to a 
specific learning goal. Accordingly, the sample that maxi-
mizes the querying utility is observed to enrich the learning 
procedure towards this goal.

In particular, Bayesian learning schemes relies on two 
main infill criteria: global exploration ad local exploita-
tion toward the optimum. The former exploration criterion 
concentrates the samples in regions of the domain where 
the uncertainty predicted by the surrogate is higher; this 
enhances the global awareness about the distribution of 
the objective function over the domain, but the resources 
might not be directed toward the goal of the procedure—
e.g. minimum of the objective function. The latter exploi-
tation criterion condensates the samples on regions where 
the surrogate model indicates that the objective is likely to 
be located—e.g. minimum of the Gaussian process mean 
function; exploitation realizes a goal-oriented sampling pro-
cedure that privileges the search for the objective without 
a potentially accurate knowledge of the overall distribution 
of interest. The dilemma between exploration and exploita-
tion represents a key challenge to be carefully addressed. On 
one hand, a learning procedure based on pure exploration 
might use a large amount of samples to improve the overall 

accuracy of the surrogate model without searching toward 
the learning goal. On the other hand, an exploitation-based 
learner might anchor a high density of samples to a subop-
timal local solution as a consequence of information from 
an unreliable surrogate model. These extreme behaviours 
demonstrate the need to find a compromise between explora-
tion and exploitation criteria.

In principle, infill criteria in Bayesian optimization are 
strongly related to the learning criteria commonly adopted in 
active learning. In particular:

• The concept of exploration is close to the representa-
tiveness/diversity criterion: both this learning schemes 
leverage underlying structures of the target distribution 
predicted by an accurate surrogate model to improve the 
awareness about the objective over the domain.

• The concept of exploitation is close to the informative-
ness criterion: the learner directs the selection of samples 
toward the believed objective without considering the 
global behaviour of the objective over the domain.

Figure 5 summarizes the mapping between infill criteria 
and learning criteria. The following sections discuss the for-
malization of (infill) active learning criteria for three most 
popular formulations of Bayesian acquisition functions, 
namely the expected improvement (Sect. 5.2.1), probability 
of improvement (Sect. 5.2.2), and max-value entropy search 
(Sect. 5.2.3).

5.2.1  Expected Improvement

The Expected Improvement (EI) acquisition function quan-
tifies the expected value of the improvement in the solution 
of the optimization problem achieved evaluating a certain 
location of the domain [61, 91]. EI at the generic location 
x relies on the predicted improvement over the best solution 
of the optimization problem observed so far. Considering the 

Fig. 5  Mapping of the learning criteria in active learning and infill 
criteria in Bayesian optimization
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Gaussian process as the surrogate model for Bayesian optimi-
zation, EI can be expressed as follows:

where I(x) = (f (x̂∗) − 𝜇(x))∕𝜎(x) is the predicted improve-
ment, x̂∗ is the current location of the best value of the objec-
tive sampled so far, Φ(⋅) is the cumulative distribution func-
tion of a standard normal distribution, � is the mean function 
and � is the standard deviation of the GP. The computation 
of UEI(x) requires limited computational resources and the 
first-order derivatives are easy to calculate:

Both Equations (13) and (14) demonstrate that UEI(x) is 
monotonic with respect to the increase of both the mean and 
the uncertainty of the GP surrogate model. This highlights 
a form of trade-off between exploration and exploitation: 
the formulation of the EI permits to balance the sampling 
in locations of the domain where is likely to have a signifi-
cant improvement of the solution with respect to the cur-
rent best solution, and the observations of regions where 
the improvement might be contained but the prediction is 
highly uncertain. In principle, it is possible to state that EI 
is driven by a combination of informativeness and repre-
sentativeness/diversity criteria adopted in active learning. 
On one hand, the learner seeks to direct the computational 
resources towards the maximization of the learning contribu-
tion and achievement of the goal—informativeness; on the 
other hand, the learner pursues the awareness of the objec-
tive distribution over the domain to improve the quality of 
the prediction and better drive the search—representative-
ness/diversity. The predictive framework of the surrogate 
model regulates the learning thrusts privileging the one over 
the other on the basis of the information about the objective 
function acquired over the iterations.

5.2.2  Probability of Improvement

The Probability of Improvement (PI) acquisition function 
targets the locations characterized by the highest probability 
of achieving the goal, based on the information from the 
current surrogate model [60, 69]. PI measures the probabil-
ity that the prediction of the surrogate model at the generic 
location is lower than the best observation of the objective 
function so far. Under the Gaussian process surrogate model, 
the PI acquisition function is computed in closed form as 
follows:

(12)UEI(x) = �(x)(I(x)Φ(I(x))) +N(I(x);0, 1)

(13)
�UEI(x)

�(x)
= −Φ(I(x))

(14)
�UEI(x)

�(x)
= �(I(x)).

where Φ(⋅) is the cumulative distribution function of a stand-
ard normal distribution and x∗ is the current location of the 
best value of the objective. Similarly to EI, also UPI(x) is 
inexpensive to compute and the evaluation of the first-order 
derivatives requires simple calculations:

where � is the standard Gaussian probability density func-
tion. As demonstrated by Equation (16), regions of the input 
space characterized by lower values of the posterior mean 
of the GP are preferred for sampling, at fixed uncertainty 
of the surrogate. Moreover, Equation (17) shows that if 
𝜇(x) < f (x∗) the regions characterized by lower uncertainty 
are preferred and, conversely, PI increases with uncertainty. 
Overall, the PI acquisition function can be considered as 
an exploitative scheme that determines the most informa-
tive location as the one that potentially produces a larger 
reduction of the minimum value of the objective function 
observed so far. This is achieved sampling regions where the 
surrogate model is reliable and characterized by lower levels 
of uncertainty. In principle, this sampling scheme makes PI 
in accordance with the informativeness criterion: the search 
toward the optimum is uniquely directed in regions of the 
domain that exhibit the higher probability of achieving the 
goal according to the emulator prediction.

5.2.3  Entropy Search and Max‑Value Entropy Search

The Entropy Search (ES) acquisition function measures the 
differential entropy of the believed global minimum location of 
the objective function, and targets the reduction of uncertainty 
selecting the sample that maximizes the decrease of differen-
tial entropy [47]. The ES acquisition function is formulated 
as follows:

where H(p(x∗)) is the entropy of the posterior distribution 
at the current iteration on the location of the minimum of 
the objective function x∗ , and �f (x)[⋅] is the expectation over 
f (x) of the entropy of the posterior distribution at the next 
iteration on x∗ . Typically, the exact calculation of the sec-
ond term of Equation (18) is not possible and requires com-
plex and expensive computational techniques to provide an 
approximation of UES(x).

The Max-value entropy search (MES) [135] acquisition 
function is derived from the ES acquisition function and 

(15)UPI(x) = Φ(I(x))

(16)
�UPI(x)

��(x)
= −

1

�(x)
�(I(x))

(17)
�UPI(x)

��(x)
= −

I(x)

�(x)
�(I(x))

(18)UES(x) = H(p(x∗|D)) − �f (x)|D[H(p(x∗|f (x),D))]
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allows to reduce the computational effort required to esti-
mate Equation (18) measuring the differential entropy of the 
minimum-value of the objective function:

where the first and the second term are now computed on the 
minimum value of the objective function f ∗ . This permits 
to simplify the computations and to approximate the second 
term through a Monte Carlo strategy [135]. The analysis of 
the derivatives is not possible for the MES acquisition func-
tion since the formulation of the second term of Equation 
(19) is intractable.

As reported by Wang et al. [135] in their experimental 
analysis, MES targets the balance between the explora-
tion of locations characterized by higher uncertainty of the 
surrogate model, and the exploitation toward the believed 
optimum of the objective function. However, Nguyen et al. 
[98] demonstrate that MES might suffer from an imbal-
anced exploration/exploitation trade-off due to noisy obser-
vations of the objective function, and to the discrepancy in 
the computation of the mutual information in the second 
term of Equation (19). As a result, MES might over-exploit 
the domain in presence of noise in measurements, and 
over-explore when the discrepancy in the evaluation issue 
determines a pronounced sensitivity to the uncertainty of 
the surrogate model. Overall, the adaptive sampling scheme 
determined by the MES acquisition function follows both the 
informativeness and the representativeness/diversity learn-
ing criteria: the most promising sample is ideally selected 
targeting the balance between the search toward the believed 
minimum predicted by the emulator, and the decrease of 
uncertainty about the objective function distribution.

5.3  Learning Criteria with Multiple Oracles

Most of the active learning paradigms rely on a unique 
and supposed omniscient source of information about the 
target distribution. This oracle is iteratively queried by the 
learner to evaluate the value of the distribution at certain 
locations, and is assumed that its estimate is exact. In many 
other scenarios, the learner can elicit information from 
multiple imperfect oracles at different levels of reliability, 
accuracy and cost. Accordingly, the active learning com-
munity introduces a multitude of annotator-aware algorithms 
which are capable to efficiently learn from multiple sources 
of information. This require to make an additional decision 
during the learning procedure: the learner has to select at 
each iteration the most useful sample and the associated 
information source to query. In this context, the original 
learning criteria of informativeness and representativeness/
diversity (Sect. 5.1) evolve and extend to quantify the utility 

(19)UMES(x) = H(p(f |D)) − �f (x)|D[H(p(f |f ∗,D))]

of querying the domain with a certain level of accuracy and 
associated cost: 

1. Informativeness seeks to maximize the amount of infor-
mation from deciding the sample and information source 
to query. Thus, the learner might privilege the evalua-
tions from accurate and yet costly oracles to capitalize 
from high-quality information and potentially reach the 
objective.

2. Representativeness attempts to identify underlying struc-
tures of the domain to better inform the search proce-
dure. In this case, the decision making process might 
prefer to interrogate less expensive sources of informa-
tion to contain the required effort, especially if cheap 
predictions of the target distribution exhibit good cor-
relation with the estimate of the accurate oracle.

3. Diversity scatters the sampling effort over the domain to 
pursue a proper distribution of evaluations and augment 
the awareness about the target distribution. This might 
be favored by a major use of less accurate predictions 
of the target distribution, which are more likely to well 
address the cost/effectiveness trade-off during the diver-
sity sampling.

The remaining of this section provides an overview of differ-
ent multiple oracles active learning methodologies to present 
and further clarify popular extensions of the learning criteria 
to a multi-oracle setting.

Typically, active learning paradigms are extended to the 
multiple-oracle setting through relabeling, repeating-labe-
ling, probabilistic and transfer knowledge, and cost-aware 
algorithms. Relabeling approaches query samples multiple 
times using the library of sources of information available, 
and the final query is obtained via majority voting [156]. 
Popular methodologies following this scheme pursue the 
identification of a subset of oracles according to the prox-
imity of their upper confidence bound to the maximum 
upper confidence bound, and apply the majority voting 
technique only considering the queries of this informative 
subset [25]. Other multi-oracle active learning methods use 
a repeating-labeling procedure: the learner integrates the 
repeated—often noisy—prediction of the oracles to improve 
the quality of the evaluation process and the accuracy of the 
surrogate model learned from data [54]. Both relabeling and 
repeating-labeling approaches share a common drawback: 
the same unknown sample is evaluated multiple times with 
different oracles, which results in a sub-optimal usage of the 
available sources of information. Probabilistic and transfer 
learning methodologies attempts to overcome this limitation. 
Probabilistic frameworks rely on surrogate models specifi-
cally conceived for the multi-source scenario that provide a 
predictive framework to estimate the accuracy of each oracle 
in the evaluation of samples over the domain [148, 149]. 
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Transfer knowledge approaches enhance the simultaneous 
selection of the most informative location to sample and the 
associated most profitable source to query; this is achieved 
through the transfer of knowledge from samples not evalu-
ated in auxiliary domains to support the estimate of the ora-
cle reliability [31]. Recent advancements in multiple oracles 
active learning are cost-effective algorithms, where the cost 
of an oracle is evaluated considering both the overall reli-
ability of the prediction and the quality of samples in spe-
cific locations [36, 52, 151]. The cost-effectiveness property 
enhance the use of computational resources for the evalua-
tion of samples, and targets the search toward the learning 
objectives while guarantees an optimal trade-off between 
evaluation accuracy and computational cost.

From the examined literature, the three learning crite-
ria appear frequently coupled together during the learning 
procedure with multiple sources to query. This appears as 
a natural evolution of what has already been observed in 
the literature for active learning with single information 
source: the overall learning procedure usually benefits from 
a balanced learning scheme driven by informativeness and 
representativeness/diversity. In particular, informativeness 
permits to direct the search toward the learning goal, while 
representativeness/diversity augments the learner awareness 
about the target distribution over the domain; the combina-
tion of these learning criteria—in different measures—con-
tributes to improve the performance of the active learning 
algorithms by using efficiently the computational resources 
and the information from multiple oracles.

5.4  Multifidelity Acquisition Functions and Infill 
Criteria

This section further investigates and highlights the syn-
ergy between active learning and Bayesian optimization for 
the specific case of multiple source of information used to 
accomplish the learning goal. Similarly to the single source 
setting, this symbiotic relationship is revealed through com-
mon principles characterizing the infill criteria in multifidel-
ity Bayesian optimization and the learning criteria in active 
learning with multiple oracles. The multifidelity scenario 
imposes an additional decision to be made: the learner has to 
identify the appropriate information source to query accord-
ing to an accuracy/cost trade-off. This is reflected in the for-
malization of infill criteria capable to define an efficient and 
balanced sampling policy, targeting either the wise selection 
of the samples and the level of fidelity which ensures the 
maximum benefits with the minimum cost. Accordingly, 
the multifidelity acquisition function formalizes an adap-
tive sampling scheme based on one or multiple infill criteria 
to quantify the utility of querying a location of the domain 
with a specific level of fidelity.

Based on this considerations, the exploration and exploi-
tation infill strategies are extended according to the peculi-
arities of the multifidelity setting:

• Exploration is close to the representativeness/diversity 
criterion and defines a sampling policy that incentives the 
overall reduction of the surrogate uncertainty. Accordingly, 
the selection of the appropriate level of fidelity is driven 
by a trade-off between accuracy and evaluation cost. This 
might be accomplished through less-expensive low-fidel-
ity information to contain the demand for computational 
resources during exploration.

• Exploitation is close to the informativeness criterion: 
concentrates the sampling process in the regions of the 
domain where optimal solutions are likely to be located. 
For this purpose, the learner might emphasize the use of 
accurate evaluations of the target function to refine the 
solution of the learning procedure toward the specific 
goal.

Similarly to the acquisition functions in Bayesian optimiza-
tion (Sect. 5.2), the symmetry between informativeness and 
exploitation criterion, and between representativeness/diver-
sity and exploration criterion is preserved in the multifidelity 
setting. The following sections are dedicated to the revision 
and discussion of popular multifidelity acquisition function, 
namely the multifidelity expected improvement (Sect. 5.4.1), 
multifidelity probability of improvement (Sect. 5.4.2) and 
multifidelity max-value entropy search (Sect. 5.4.3). The 
goal is to highlight the equivalent principles driving both 
the learning schemes, and further clarify the elements that 
encode the symbiotic relationship that exists between mul-
tifidelity Bayesian optimization and multi-oracle active 
learning.

5.4.1  Multifidelity Expected Improvement

The Multifidelity Expected Improvement (MFEI) extends 
the expected improvement acquisition function to define a 
learning scheme in the multifidelity setting as follows [51]:

where UEI(x, L) is the expected improvement depicted in 
Equation (12) evaluated at the highest level of fidelity L , 
and the utility functions �1 , �2 and �3 are defined as follows:

(20)UMFEI(x, l) = UEI(x, L)�1(x, l)�2(x, l)�3(x, l)

(21)�1(x, l) = corr
[
f (l), f (L)

]

(22)
�2(x, l) = 1 −

��√
�2(l)(x) + �2

�
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The first element �1 is the posterior correlation coefficient 
between the level of fidelity l and the high-fidelity level L , 
and accounts for reduction of the expected improvement 
when a sample is evaluated with a low fidelity model. This 
term reflects a measure of the informativeness of the l-th 
source of information at the location x , and balances the 
amount of improvement achievable evaluating the high-
fidelity level L with the reliability of the prediction associ-
ated with the level of fidelity l . Accordingly, �1 modifies 
the learning scheme by adding a penalty in the formulation 
that reduces the UMFEI when 1 ≤ l < L : this includes aware-
ness about the increase of uncertainty associated with a low-
fidelity prediction. The second element �2 is conceived to 
adjust the expected improvement when the output at the l-th 
level of fidelity contains random errors. This is equivalent 
to consider the reduction of the uncertainty on the Gaussian 
process prediction after a new evaluation of the objective 
function is added to the dataset D . This function allows to 
improve the robustness of UMFEI when the representation 
of f (l) at different levels of fidelity is affected by noise in 
the measurements. The third element �3 is formulated as 
the ratio between the computational cost of the high-fidelity 
level L and the l-th level of fidelity. This permits to balance 
the informative contributions of high- and a lower-fidelity 
observation and the related computational resources required 
for the evaluation. The effect of this term is to encourage 
the use of low-fidelity representations if almost the same 
expected improvement can be achieved with a high-fidelity 
evaluation. This directs wisely the use of computational 
resources to achieve the representativeness/diversity of 
samples, and prevents a massive use of expensive accurate 
queries during exploration phases.

5.4.2  Multifidelity Probability of Improvement

The Multifidelity Probability of Improvement (MFPI) acquisi-
tion function provides an extended formulation of the prob-
ability of improvement suitable for the multifidelity scenario 
as follows [114]:

where the PI acquisition function (Equation (15)) is com-
puted considering the highest-fidelity level L available, and 
the utility function �1 , �2 and �3 are defined as follows:

(23)�3(l) =
�(L)

�(l)
.

(24)UMFPI(x, l) = UPI(x, L)�1(x, l)�2(l)�3(x, l)

(25)�1(x, l) = corr
[
f (l), f (L)

]

(26)�2(l) =
�(L)

�(l)

The first term �1 shares the same formalization of the utility 
function �1 in Equation (21), and accounts for the increase 
of uncertainty associated with low-fidelity representations 
1 ≤ l < L if compared with the high-fidelity output L . This 
reduces the probability of improvement if a low-fidelity rep-
resentation is queried at a specific location of the input space 
x . As already highlighted in Sect. 5.4.1, �1 incentives a form 
of informativeness learning where the information source is 
selected according to its capability to accurately represent 
the objective function. Similarly, the second utility function 
�2 is also included in the multifidelity expected improve-
ment in Equation (23) as the �3 term. This element balances 
the computational costs and the informative contributions 
achieved through the l-th level of fidelity. This prevents the 
rise of computational demand produced by the over-exploit-
ative nature of the probability of improvement (Sect. 5.2.2): 
�2 encourages the use of fast low-fidelity data if the discrep-
ancy between the l-th level of fidelity and the high-fidelity 
L—quantified by �1—is not significant. The third element 
�3 is the sample density function and is computed as the 
product of the complement to unity of the spatial correlation 
function R(⋅) [80] evaluated for the nl samples considering 
the l-th level of fidelity. This term reduces the probability of 
improvement in locations with an high sampling density—
over exploitation of the domain—to prevent the clustering of 
data. Accordingly, �3 promotes a form of representativeness/
diversity learning scheme and encourages the exploration to 
augment the awareness about the domain structure.

5.4.3  Multifidelity Entropy Search and Multifidelity 
Max‑Value Entropy Search

The Multifidelity Entropy Search (MFES) acquisition func-
tion is formulated extending the entropy search acquisition 
function to query multiple sources of information [154]

where the expectation term �f (l)(x)[⋅] considers multiple lev-
els of fidelity l = 1, ..., L . Similarly to the entropy search 
acquisition function, the computation of the expectation in 
Equation (28) is not possible in closed-form and requires 
an intensive procedure to provide a reliable approximation.

The Multifidelity Max-Value Entropy Search (MFMES) 
acquisition function can be formulated extending the max-
value entropy search to a multifidelity setting as follows 
[130]:

(27)�3(x, l) =

nl∏
i=1

[
1 − R

(
x, x

(l)

i

)]
.

(28)
UMFES(x) =H(p(x∗|))

− �f (l)(x)|[H(p(x∗|f (l)(x),))]
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where the differential entropy is measured on the minimum 
value of the objective function f ∗(L) considering the high-
fidelity representation L . In this case, the approximation 
of the expectation term in Equation (29) relies on a Monte 
Carlo strategy that allows to contain the computational cost 
if compared with the procedure used for the MFES acquisi-
tion function [130].

In the multifidelity scenario, the MFMES acquisition 
function measures the information gain obtained evaluat-
ing the objective function f (l)(x) at a certain location x and 
associated level of fidelity l with respect to the global mini-
mum of the objective function. This can be interpreted as an 
informativeness-driven learning based on the reduction of 
the uncertainty associated with the minimum value of the 
objective f ∗(L) through the observation f (l)(x) , where this 
uncertainty is measured as the differential entropy associated 
with the l-th level of fidelity. At the same time, the informa-
tion gain is also sensitive to the accuracy of the surrogate 
predictive framework, and realizes a form of representative-
ness/diversity balancing to improve the awareness about the 
distribution of the objective function over the domain. The 
sensitivity to the computational cost �(l) of the l-th level of 
fidelity is introduced in Equation (29) to balance the quality 
of the source—quantified by the information gain—and the 
demand for computational resources.

6  Experiments

This section investigates and compares the performance of 
the acquisition functions for both single-fidelity and multifi-
delity Bayesian optimization over a set of benchmark prob-
lems conceived to stress the algorithms. The objective is to 
highlight advantages and opportunities offered by different 
learning principles over challenging mathematical properties 
of the objective function, which are frequently encountered 
in real-world engineering and scientific problems. [83]. In 
particular, this comparative study considers the expected 
improvement (Sect.  5.2.1), probability of improvement 
(PI) (Sect. 5.2.2), and Max-Value Entropy Search (MES) 
(Sect. 5.2.3) for the single-fidelity frameworks, and their 
multifidelity counterparts Multifidelity Expected Improve-
ment (MFEI) (Sect.  5.4.1), Multifidelity Probability of 
Improvement (MFPI) (Sect. 5.4.2) and Multifidelity Max-
Value Entropy Search (MFMES) (Sect. 5.4.3).

We impose the same initialization conditions for both the 
single-fidelity and the multifidelity algorithms. This initial 
setting includes: (i) the initial dataset of N(l)

0
 samples for each 

(29)
UMFMES(x) = [H(p(f (l)|D))

− �f (l)(x)|D[H(p(f (l)|f ∗(L),D))]]∕�(l)

level of fidelity l to compute the prior surrogate model of 
the objective function, (ii) the computational cost assigned 
to each level of fidelity �(l) , and (iii) the maximum compu-
tational budget Bmax allocated for each benchmark problem 
defined linearly with the dimensionality D of the problem 
Bmax = 100D . The initial dataset N(l)

0
 is obtained through 

Latin hypercube sampling for all the numerical experiments 
[87] to ensure the full coverage of the range of the opti-
mization variables. The computational budget B =

∑
�
(l)

i
 is 

quantified as the cumulative computational cost used during 
the optimization at each iteration i.

All the methods are based on the Gaussian processes sur-
rogate model and its extension to the multifidelity setting. We 
implement the square exponential kernels for all the GP covar-
iances, and use the maximum likelihood estimation approach 
to optimize the hyperparameters of the kernel and the mean 
function of the GP [127].

6.1  Benchmark Problems

The following set of benchmark problems is specifically con-
ceived to investigate the capabilities of different learning cri-
teria over challenging mathematical properties of the objective 
function [83]. In particular, the experimental settings include 
a variety of attributes that can be traced in real-world optimi-
zation problems, namely local and global behaviours, non-
linearities and discontinuities, multimodality and noise. The 
set of problems consists of several objective functions such as 
the Forrester continuous and discontinuous, the Rosenbrock 
increasing the domain dimensionality, the Rastrigin shifted 
and rotated, the Agglomeration of Locally Optimized Surro-
gate (ALOS), a coupled spring-mass optimization problem and 
the noisy Paciorek function.

6.1.1  Forrester Function

The Forrester function is a popular test-case to investigate the 
performance of different learning strategies over a non-linear 
one-dimensional distribution characterized by local behav-
iours. This benchmark problem guarantees an high interpret-
ability of the results thanks to the one-dimensional nature of 
the objective function. The search domain is bounded between 
� = [0, 1] and four levels of fidelity are available during the 
optimization:

(30)f (4)(x) = (6x − 2)2 sin(12x − 4)

(31)f (3)(x) = (5.5x − 2.5)2 sin(12x − 4)

(32)f (2)(x) = 0.75f1(x) + 5(x − 0.5) − 2



3002 F. Di Fiore et al.

where f (4) is the high-fidelity function and the levels of 
fidelity l = 1, 2, 3, 4 increase with the accuracy of the rep-
resentations. Figure 6(a) reports the four levels of fidel-
ity for the Forrester function over the search domain. The 
analytical minimum of the Forrester function is equal 
to f ∗(4) = −6.0207 and is located at the domain point 
x∗ = 0.7572.

6.1.2  Jump Forrester Function

The jump Forrester function introduces a discontinuity in the 
formulation of the Forrester function to investigate the capa-
bilities of learning schemes to refine the surrogate model and 
capture the instantaneous variation of the objective function 
over the domain. This scenario can often occur in real prob-
lems where the phenomena of interest—e.g. physical quan-
tity of interest in engineering—evolves over the domain and 
determine large variations of the objective function values. 
Figure 6(b) reports the two levels of fidelity are available dur-
ing the search procedure:

(33)f (1)(x) = 0.5f1(x) + 10(x − 0.5) − 5

where f (2) is the high-fidelity information source. The opti-
mum is located at x∗ = 0.75724876 corresponding to a value 
of the objective equal to f ∗(2) = −0.9863.

6.1.3  Rosenbrock Function

The Rosenbrock function permits to investigate the learning 
criteria over a non-convex objective function that allows for 
parametric scalability over the domain � = [−2, 2]D where 
D is the dimensionality of the input space. A library of three 
levels of fidelity is available (Fig. 7):

(34)f (2)(x) =

{
(6x − 2)2sin(12x − 4), 0 ≤ x ≤ 0.5

(6x − 2)2sin(12x − 4) + 10, 0.5 < x ≤ 1

(35)f (1)(x) =

{
0.5f (2)(x) + 10(x − 0.5) − 5, 0 ≤ x ≤ 0.5

0.5f (2)(x) + 10(x − 0.5) − 2 0.5 < x ≤ 1

(36)f (3)(x) =

D−1∑
i=1

100(xi+1 − x
2
i
)2 + (1 − xi)

2

Fig. 6  Forrester function bench-
mark problems
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Fig. 7  Rosenbrock function 
benchmark problem over the 
D = 2 dimensional domain
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where the high-fidelity function is f (3) and the lower-fidel-
ities are obtained using a transformation of f (3) based on 
linear additive and multiplicative factors. The analytical 
minimum is located at x∗ = [1, 1]D and corresponds to a 
value of the objective function f ∗(3) = 0 . The scalability of 
the Rosenbrock function with D of the formulation allows 
to test the performance of the methods at increasing dimen-
sionality of the input space. In this study, we consider the 
cases D = 2, 5, 10.

6.1.4  ALOS Functions

The Agglomeration of Locally Optimized Surrogate (ALOS) 
is a heterogeneous and non-polynomial function defined on 
unit hypercubes up to three dimensions useful to assess the 
accuracy of surrogate models in presence of localized behav-
iours. In particular, the ALOS function reproduces a real-world 
scenario where the objective functions is characterized by 
oscillatory phenomena at different frequency distributed along 
the domain. We consider two levels of fidelity and increasing 
dimensionality of the input space D = 1, 2, 3 . For D = 1 the 
ALOS function is formalized as follows:

(37)

f (2)(x) =
D−1
∑

i=1
50(xi+1 − x2i )

2

+ (−2 − xi)2 −
D
∑

i=1
0.5xi

(38)f (1)(x) =
f (3)(x) − 4 −

∑D

i=1
0.5xi

10 +
∑D

i=1
0.25xi

(39)

⎧

⎪

⎨

⎪

⎩

f (2)(x) = sin[30(x − 0.9)4] cos[2(x − 0.9)]
+ (x − 0.9)∕2

f (1)(x) = (f (2)(x) − 1.0 + x)∕(1.0 + 0.25x)

and for D = 2, 3 is formulated as:

For D = 1 , the analytical optimum is located at x∗ = 0.2755 
corresponding to f ∗(2) = −0.6250 while for D ≥ 2 the mini-
mum is located at x∗ = [0, 0]D with value of the objective 
function f ∗(2) = −0.5627123 . Figure 8 illustrates the high 
and low-fidelity ALOS function for D = 1 (Fig. 8a) and 
D = 2 (Fig. 8b).

6.1.5  Shifted‑Rotated Rastrigin Function

The Rastrigin function is commonly used as test function 
to represent real-world applications where the objective 
function might present an high multimodal behaviour. We 
adopt a benchmark problem based on the original formula-
tion of the Rastrigin function shifted and rotated as follows 
(Fig. 9):

where: zzz = R(�)(x − x∗) and R(�) =
[
cos � − sin �

sin � cos �

]
 is the 

rotation matrix with the rotation angle fixed at � = 0.2 . We 
define three levels of fidelity for this benchmark problems 
as follows:

where er(zzz,�i) is the resolution error:

(40)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f (2)(x) = sin[21(x1 − 0.9)4] cos[2(x1 − 0.9)]
+ (x1 − 0.7)∕2 +

∑D
i=2 ix

i
i sin

(

∏i
j=1 xj

)

f (1)(x) = (f (2)(x) − 2.0 +
∑D

i=1 xi)∕(5.0
+
∑2

i=1 0.25ixi −
∑D

i=3 0.25ixi)

(41)f (zzz) =

D∑
i=1

(z2
i
+ 1 − cos(10�zi)),

(42)f (l)(zzz,�) = f (zzz) + er(zzz,�i)

Fig. 8  ALOS function bench-
mark problems over the D = 1 
and D = 2 dimensional domain
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with Θ(�) = 1 − 0.0001� , a(�) = Θ(�) , w(�) = 10�Θ(�) , 
and b(�) = 0.5�Θ(�) . Thus, we define the high-fidelity 
function f (3)(� = 10000) , the intermediate fidelity function 
f (2)(� = 5000) and the low-fidelity function f (1)(� = 2500) . 
For this benchmark, the input variables are defined within 
the interval � = [−0.1, 0.2]2 and the analytical optimum is 
f ∗(3) = 0 located at x∗ = [0.1, 0.1].

6.1.6  Spring‑Mass System

This benchmark problem consists of a coupled spring mass 
system composed of two masses connected by two springs. 
The challenges associated with this simple physical opti-
mization problem are related to the intrinsic multimodality 
induced by the elastic behaviour of the system dynamics. We 
consider the masses m1 and m2 concentrated at their center of 
gravity and the elastic behaviour of the two spring modeled 
through the Hooke’s law and characterized by the Hooke’s 
constants k1 and k2 , respectively. Considering a friction-less 
dynamics, it is possible to define the equations of motion 
as follows

where h1(t) and h2(t) are the positions of the masses as a 
function of time t.

Equation (44) can be solved using the fourth-order accu-
rate Runge–Kutta time-marching method and varying the 
time-step dt to define two fidelity levels. Specifically, we 
define the high-fidelity model f (2)(dt = 0.01) and the low-
fidelity model f (1)(dt = 0.6) . The benchmark problem con-
sists in the identification of the combination of masses and 
Hooke’s constants of spring x = [m1,m2, k1, k2] that mini-
mizes h1(t = 6) considering the domain � = [1, 4]4 and the 
initial conditions of motion h1 = h2 = 0 and ḣ1 = ḣ2 = 0.

(43)er(zzz,�) =

2∑
i=1

a(�) cos2(w(�)zi + b(�) + �).

(44)m1ḧ1(t) = (−k1 − k2) h1(t) + k2h2(t)

(45)m2ḧ2(t) = k2h1(t) + (−k1 − k2) h2(t).

6.1.7  Paciorek Function with Noise

The Paciorek function reproduces an optimization settings 
where the objective function is affected by measurement noise 
and localized multimodal behaviour. This scenario is repli-
cated through a uniformly distributed random noise over the 
two levels of fidelity defined as follows (Fig. 10):

where A = 0.5 , � = 0.2 , and the input variable is defined 
across the input domain � = [0, 3, 1]2.

6.2  Results and Discussion

First, we define the following evaluation metrics to assess the 
performances of the Bayesian schemes [83]:

(46)f (2)(x) = sin

(
D∏
i=1

xi

)−1

(47)
f (1)(x) = f (2)(x) − 9A2 cos

(
D∏
i=1

xi

)−1

+ rand.norm(0, �)

Fig. 10  Paciorek function benchmark problem

Fig. 9  Rastrigin function shifted 
and rotated benchmark problem
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where x∗ is the location of the analytical optimum, x̂∗ is the 
optimum identified by the algorithm, and fmax and f ∗ are the 
maximum and minimum of the objective function, respec-
tively. The first metric �

x
 quantifies the search error in the 

domain of the objective function, while the second metric 
�f  evaluates the error associated with the learning goal—
minimum of the objective function [118]. We evaluate the 
metrics �

x
 and �f  as functions of the computational budget 

B defined as the cumulative computational cost associated 
with observations of the objective function at the l-th level 
of fidelity. We run 10 trails for each benchmark problem 
presented in Sect. 6.1 to compensate the influence of the 
random initial design of experiments, and to verify the sen-
sitivity and robustness of the algorithms to the initialization 
setting. The results for all the experiments are reported in 
terms of median values of �

x
 and �f .

Figure 11 summarizes the outcome obtained for the For-
rester function and discontinuous Forrester function. The 

(48)𝜖
x
=

‖x∗ − x̂
∗‖√

N

(49)𝜖f =
f (x̂∗) − f ∗

fmax − f ∗

results for the Forrester benchmark (Fig. 11a, c) show that 
the multifidelity algorithms identify the optimum solution 
with a significant reduction of the computational budget if 
compared with the single fidelity counterparts. The best per-
forming algorithm is the MFPI learner considering only the 
high-fidelity l = 4 and the lower-fidelity l = 1 levels, while 
the second best is the MFEI acquisition function considering 
available the complete spectrum of fidelities l = 1, 2, 3, 4 . 
These outcomes suggest that multifidelity learning para-
digms driven majorly by informativeness—MFPI acquisition 
function—are capable to efficiently direct the computational 
resources toward the optimum of low-dimensional objec-
tive functions in presence of continuous localized behav-
iour. Moreover, it should be noted that the MFEI capitalizes 
from all the information sources available and leverages the 
balance between informativeness and representativeness/
diversity to effectively search toward the analytical optimum. 
The single fidelity Bayesian frameworks exhibit a lower con-
vergence rate with respect to the multifidelity algorithms. 
The EI and PI uses almost the same computational budget 
to identify the optimum solution, while the MES adopts 
more evaluations of the objective function. This confirms 
the observations for the multifidelity experiments. PI takes 
advantage from the purely exploitation of high-fidelity sam-
ples in the surrounding of the surrogate minimum to reach 

Fig. 11  Performances of the 
competing algorithms for the 
Forrester and Jump Forrester 
benchmarks
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the optimum. This can be explained with the computation 
of an accurate surrogate model—at least close to the opti-
mum—for low-dimensional objective functions. In contrast, 
EI balances an exploration phase to improve the overall 
accuracy of the surrogate with the exploitation toward the 
believed optimum. Particular attention should be dedicated 
to the MES and MFMES outcomes. In the single-fidelity 
frameworks, MES scores slightly worst both in terms of 
convergence rate and budget expenditure. This can be inter-
preted with an overall over-exploration behavior: MES dis-
tributes computational resources to explore the domain and 
refine the surrogate model, and directs lately efforts toward 
the optimum. This trend is considerably dampened in the 
multifidelity scenario, where MFMES shows good capa-
bilities especially when all the sources of information are 
available during the search. In this case, cheap low-fidelity 
observations are used to explore the domain with contained 
computational expenditure, and high-fidelity data are mostly 
adopted to search toward the prescribed optimum location.

The discontinuous Forrester problem introduce a dis-
continuous local property of the objective function that 
further stresses the learning schemes. This can be explic-
itly observed with the average improvement of the budget 
required to achieve the optimum. Overall, it is possible to 
identify the same trends observed for the continuous For-
rester function (Fig. 11b, d): either balancing exploration 

and exploitation—EI and MFEI—or a major exploitation 
search—PI and MFPI—lead to an efficient identification of 
the analytical optimum. In contrast, the over-exploration of 
MES and MFMES decelerates the optimization procedure 
with respect to the counterpart competing methods. This 
can be observed majorly for the MES which uses almost all 
the budget available to explore the domain and finally reach 
the optimum.

Figure 12 illustrates the experiments conducted on the 
Rosenbrock benchmark function increasing the dimension-
ality D of the domain. This allows to investigate the perfor-
mance of the learning scheme as the number of parameters 
to optimize increases. Overall, the multifidelity schemes 
deliver better convergences with a fraction of the compu-
tational budget required by single-fidelity algorithms for all 
the dimensions of the domain—D = 2, 5, 10.

For D = 2 (Fig. 12a, b), MFEI and MFPI implementing 
only the highest and lower levels of fidelity l = 1, 3 are the 
best performing algorithms, followed by the counterpart 
considering all the fidelities spectrum and the MFMES 
also learning from l = 1, 3 . Two major observations can be 
made in this experimental setting. First, multifidelity learn-
ers are not capable to make advantage of the intermediate 
fidelity l = 2 during exploration leading to an increase of 
the computational expenditure. A possible explanation to 
these outcomes is the local behaviour of the intermediate 

50 100 150 200
Budget

0

10

20

30

40

50

60
EI
PI
MES
MFEI
MFPI
MFMES
MFEI complete
MFPI complete
MFMES complete

(a) Rosenbrock D=2

100 200 300 400 500
Budget

0

10

20

30

40

50

60

70
EI
PI
MES
MFEI
MFPI
MFMES
MFEI complete
MFPI complete
MFMES complete

(b) Rosenbrock D=5

200 400 600 800 1000
Budget

0

10

20

30

40

50

60

70
EI
PI
MES
MFEI
MFPI
MFMES
MFEI complete
MFPI complete
MFMES complete

(c) Rosenbrock D=10

50 100 150 200
Budget

0

10

20

30

40

50

60

70
EI
PI
MES
MFEI
MFPI
MFMES
MFEI complete
MFPI complete
MFMES complete

(d) Rosenbrock D=2

100 200 300 400 500
Budget

0

10

20

30

40

50

60

70

80
EI
PI
MES
MFEI
MFPI
MFMES
MFEI complete
MFPI complete
MFMES complete

(e) Rosenbrock D=5

200 400 600 800 1000
Budget

0

20

40

60

80

100
EI
PI
MES
MFEI
MFPI
MFMES
MFEI complete
MFPI complete
MFMES complete

(f) Rosenbrock D=10

Fig. 12  Performances of the competing algorithms for the Rosenbrock benchmarks
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fidelity that pushes the exploration in regions far from the 
optimum. Second, pure exploitation or a balanced search 
between exploration and exploitation are advantageous in 
low-dimensional domains, while pure exploration sacrifices 
valuable computational resources to improve the awareness 
about the global distribution of the objective instead of 
searching the optimum.

Increasing the dimension of the input space to D = 5 
(Fig. 12b, e), only the MFEI and the MFPI using all the 
fidelities available are capable to identify the optimum solu-
tion, while the other competing algorithms converge to sub-
optimal solutions. However, it should be noted the much 
faster convergence of MFEI with respect to the MFPI in 
complete setting. These outcomes indicate that as the num-
ber of optimization variables increases, both exploration and 
exploitation are required for an efficient learning procedure. 
In particular, the exploration improves the accuracy of the 
surrogate over the domain that better informs the learner 
during the exploitation phase. The utility of purely exploita-
tion—MFPI—also continues to be observed, but the effec-
tiveness is limited by the dimensionality of the domain that 
requires an exploration phase to better capture the distribu-
tion of the objective function.

Pushing further the dimensionality of the domain at 
D = 10 (Fig. 12c, f), all the algorithms are not capable to 
reach the analytical optimum with the allocated budget. 
This can be explained with the unreliable prediction of 
the surrogate model that is not capable to correctly inform 
the learner with limited amount of data—limited allocated 
budget. However, the multifidelity paradigms achieve larger 
reductions of both the error in the domain �

x
 and the goal 

error �f  if compared with the single-fidelity outcomes. This 
suggests that learners capable to leverage multiple informa-
tion sources might produce higher gains in a limited budget 
scenario thanks to the massive use of cheap low-fidelity 
models to learn the objective function. Among the com-
peting strategies, MFMES exhibits remarkable outcomes 
in terms of convergence values of the errors when all the 
library of fidelities is available. This results can be justified 
with the over-exploration properties of the MFMES acquisi-
tion function: the learner uses massive low-fidelity data to 
refine the approximation of the surrogate model and aug-
ment its predictive capabilities. This permits to better inform 
the procedure and direct computational resources toward the 
optimum.

The results obtained for the ALOS benchmark problem in 
Fig. 13 confirm the previous observations about the differ-
ent effectiveness of the learning schemes. In particular, the 
multifidelity strategies provides larger accelerations of the 
optimization procedure in presence oscillations at different 
frequencies of the objective function for the one- (Fig. 13a, 
d), two- (Fig. 13b, e) and three- (Fig. 13c, f) dimensional 
ALOS problem. We observe that the best performances are 

delivered by either learners based on the balance between 
informativeness and representativeness/diversity—MFEI 
and EI—or a purely informativeness-driven—MFPI and 
PI –, while over-exploration performs relatively poorly—
MFMES and MES. This results are justified with the low-
dimensionality of the objective function.

The outcomes related to the multimodal benchmarks 
are reported in Fig. 14. The multifidelity algorithms are 
capable to converge toward the analytical optimum with a 
fraction of the computational cost, if compared with the the 
single-fidelity results. For the Rastrigin function (Fig. 14a, 
d), the multifidelity methods implementing all the levels 
of fidelity l = 1, 2, 3 outperforms the multifidelity methods 
with l = 1, 3 : the intermediate level of fidelity l = 2 is more 
accurate, if compared with the low-fidelity output l = 3 and 
allows to improve the reliability of the Gaussian process in 
presence of a strong multimodal behaviour. The best per-
forming method is MFPI using l = 1, 2, 3 denoting that the 
over-exploitation of the input space with lower-fidelities lev-
els l = 2, 3 allows to take full advantage from low-fidelity 
data, improving the performance of the learning process. 
In contrast, we observe that the MES algorithm exhibits 
a more efficient convergence of the MFMES counterpart. 
This is related to the already noticed over-exploration of 
the domain: the MES uses accurate high-fidelity observa-
tions to refine the surrogate during the exploration, while 
the MFMES systematically adopts lower-levels of fidelity to 
massively query the domain and retard the exploitation with 
more accurate information sources. The results achieved for 
the mass spring benchmark problem (Fig. 14b, e) confirm 
the superior convergence performance of multifidelity algo-
rithms in presence of marked multimodal objective func-
tions. In particular, the balance between exploration and 
exploitation delivered by the MFEI allows for superior accel-
erations and contained demand for computational resources. 
Similar results can be observed for the Paciorek benchmark 
problem (Fig. 14c, f): the multifidelity learning delivers 
efficient optimization procedures even in the simultaneous 
presence of multi-modality and noise. It should be noticed 
that in presence of noise both the MES and MFMES show 
an attenuation of the exploratory behaviour and a greater 
exploitation of the domain. This result is in agreement with 
what observed by Nguyen et al. [98]. The overall outcomes 
for these subset of benchmark functions demonstrate that a 
learning scheme characterized by a balanced exploration and 
exploitation phases is essential in presence of multimodal 
behaviour and noise in the measurements of the objective 
function.

6.3  Advice on using Learning Criteria

Throughout the experiments in this paper and in our research 
experience, we can summarize several recommendations 
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Fig. 14  Performances of the competing algorithms for the multimodal benchmarks
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that are intended to provide a guideline to apply the differ-
ent learning criteria in real-world optimization problems. 
Although these advice may not be suitable in general due to 
the vast and natural heterogeneity of the applications where 
optimization is relevant, we believe that these guidelines can 
be useful in directing researchers towards the effective use 
of learning schemes. 

1. Pure exploitation/informativeness learning schemes 
could be potentially beneficial for low-dimensional 
optimization problems. In our experience, the direct 
exploitation of data at the beginning of the optimiza-
tion procedure can produce significant improvement in 
the solution with relatively contained computational 
resources. The reason behind this behaviour is due to 
the accurate prediction of the emulator with contained 
amount of data in low-dimensional domains. This con-
tributes to better inform the learner and effectively direct 
resources toward the optimum.

2. Pure exploration/representativeness-diversity could 
impact considerably the optimization results for high-
dimensional optimization problems. The exploration 
reduces the uncertainty of the emulator over all the 
domain and leads to a more reliable predictive frame-
work. This would better inform the learner and help 
directing the computational resources in regions of the 
domain where is more likely to achieve benefits in terms 
of solution.

3. The balance between exploration and exploitation guar-
antees consistent and satisfactory optimization perfor-
mances over different mathematical properties of the 
objective function. In particular, our experiments sug-
gest that pursuing the trade-off between exploration 
and exploitation often leads to satisfactory and in many 
cases better performance than implementing the learn-
ing criteria individually. Although the well performing 
behaviour in general, it should be privileged mainly in 
cases when there is no prior knowledge about the spe-
cific optimization problem considered to increase the 
chances of success.

4. When the computational resources are severely lim-
ited—e.g. engineering preliminary design phases or 
trade-off analysis –, there is a clear advantage of using 
multifidelity learning criteria and leverage a spectrum 
of information sources at different levels of fidelity. 
Indeed, the wise combination of fast low-fidelity data 
with expensive high-fidelity evaluations reduces the 
overall demand for computational resources, and shows 
more robust performance for challenging mathematical 
properties of the objective function such as local/global 
behaviours, non-linearities and discontinuities, multimo-
dality, and noisy measurements.

7  Concluding Remarks

This paper proposes an original unified perspective of 
Bayesian optimization and active learning as adaptive sam-
pling schemes guided by common learning principles toward 
a given optimization goal. Our arguments are based on the 
recognition of Bayesian optimization and active learning 
as goal-driven learning procedures characterized by the 
mutual information exchange between the learner and the 
surrogate model: the learner makes a decision based on the 
surrogate information to maximize the sampling utility with 
respect to the given goal, while the emulator is constantly 
updated through the results of this decision. Accordingly, 
we clarify and support our discussion through a general 
classification of adaptive sampling methodologies, and 
recognize Bayesian optimization as the logic intersection 
between active learning and adaptive sampling. This lays 
the foundations for the explicit formalization of the synergy 
between Bayesian optimization and active learning consider-
ing both a single information source and when a library of 
representations at different levels of fidelity is available to 
the learner. This unified perspective is based on the dualism 
between the active learning criteria of informativeness and 
representativeness/diversity, and the Bayesian infill criteria 
of exploration and exploitation as the driving elements to 
achieve the learning goal. To support our perspective, we 
reviewed and analysed popular formulations of the acqui-
sition function for Bayesian optimization considering both 
single-fidelity and multifidelity settings. Accordingly, we 
formalize this synergy mapping the informativeness learn-
ing criterion with the exploitation infill criterion as driving 
components that direct the selection of samples toward the 
learning goal. Similarly, we formulate the substantial anal-
ogy between representativeness-diversity learning criterion 
and the exploration infill criterion as sampling policies that 
improve the awareness about the objective function over 
the domain. Through stressfull analytical benchmark prob-
lems, the authors demonstrate the benefits of each learning/
infill criteria over challenging mathematical properties of 
the objective function typically encountered in real-world 
applications. The results reveal that the balance between 
the learning/infill criteria ensures good performances and 
computational efficiency over all the benchmark problems. 
In addition, multifidelity learning schemes deliver signifi-
cant accelerations of the learning procedure making them 
particularly attractive when the available computational 
resources are limited. The authors also include some advice 
and guidelines on the use of the different learning criteria 
based on the experimental results and their own experience 
in the field.
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